Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks

•Artificial Neural Networks (ANNs) were trained on stochastic multiscale model data.•ANNs were used in online nonlinear model predictive control scheme.•ANNs provided accurate predictions for industrially relevant observable values.•ANN computational costs were orders of magnitude lower than the ori...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 207; pp. 1230 - 1245
Main Authors Kimaev, Grigoriy, Ricardez-Sandoval, Luis A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 02.11.2019
Subjects
Online AccessGet full text
ISSN0009-2509
1873-4405
1873-4405
DOI10.1016/j.ces.2019.07.044

Cover

Abstract •Artificial Neural Networks (ANNs) were trained on stochastic multiscale model data.•ANNs were used in online nonlinear model predictive control scheme.•ANNs provided accurate predictions for industrially relevant observable values.•ANN computational costs were orders of magnitude lower than the original model.•The accuracy of ANNs deteriorated for observable values subject to stochastic noise. The purpose of this study was to employ Artificial Neural Networks (ANNs) to develop data-driven models that would enable the shrinking horizon nonlinear model predictive control of a computationally intensive stochastic multiscale system. The system of choice was a simulation of thin film formation by chemical vapour deposition. Two ANNs were trained to estimate the system’s observables. The ANNs were subsequently employed in a shrinking horizon optimization scheme to obtain the optimal time-varying profiles of the manipulated variables that would meet the desired thin film properties at the end of the batch. The resulting profiles were validated using the stochastic multiscale system and a good agreement with the predictions of the ANNs was observed. Due to their observed computational efficiency, accuracy, and the ability to reject disturbances, the ANNs seem to be a promising approach for online optimization and control of computationally demanding multiscale process systems.
AbstractList •Artificial Neural Networks (ANNs) were trained on stochastic multiscale model data.•ANNs were used in online nonlinear model predictive control scheme.•ANNs provided accurate predictions for industrially relevant observable values.•ANN computational costs were orders of magnitude lower than the original model.•The accuracy of ANNs deteriorated for observable values subject to stochastic noise. The purpose of this study was to employ Artificial Neural Networks (ANNs) to develop data-driven models that would enable the shrinking horizon nonlinear model predictive control of a computationally intensive stochastic multiscale system. The system of choice was a simulation of thin film formation by chemical vapour deposition. Two ANNs were trained to estimate the system’s observables. The ANNs were subsequently employed in a shrinking horizon optimization scheme to obtain the optimal time-varying profiles of the manipulated variables that would meet the desired thin film properties at the end of the batch. The resulting profiles were validated using the stochastic multiscale system and a good agreement with the predictions of the ANNs was observed. Due to their observed computational efficiency, accuracy, and the ability to reject disturbances, the ANNs seem to be a promising approach for online optimization and control of computationally demanding multiscale process systems.
Author Kimaev, Grigoriy
Ricardez-Sandoval, Luis A.
Author_xml – sequence: 1
  givenname: Grigoriy
  surname: Kimaev
  fullname: Kimaev, Grigoriy
– sequence: 2
  givenname: Luis A.
  surname: Ricardez-Sandoval
  fullname: Ricardez-Sandoval, Luis A.
  email: laricard@uwaterloo.ca
BookMark eNqNkc1OAyEURompiW31AdzxAjPCDFNm4so0_iWNbnRNKAN6K4UJ0DZ9e6l15aJxc7_cxbn5cu4EjZx3GqFrSkpK6OxmVSody4rQriS8JIydoTFteV0wRpoRGhNCuqJqSHeBJjGu8so5JWM0vHhnwWkZ8Nr32uIh6B5Ugq3GyrsUvMXeYInXG5sgKmk1Tp_gsAG7xr0efIQE3mXO5wYRbyK4DyxDAgMKpMVOb8JPpJ0PX_ESnRtpo776zSl6f7h_mz8Vi9fH5_ndolA156nou7apDGWzrpFVzUhl8mSyNbQ2Rs0Yq2aN6lsqa04oNWbJed9Whi_JkrWqo_UUVce7GzfI_U5aK4YAaxn2ghJxcCZWIjcWB2eCcJGdZYgeIRV8jEGbfzH8D6MgyYOTFCTYk-TtkdTZwxZ0EFGBdio_IGiVRO_hBP0N-3qbMw
CitedBy_id crossref_primary_10_1016_j_dche_2023_100111
crossref_primary_10_1016_j_fuel_2020_117731
crossref_primary_10_1177_01423312241263673
crossref_primary_10_1016_j_psep_2021_04_046
crossref_primary_10_1016_j_eng_2023_03_021
crossref_primary_10_1021_acs_iecr_1c04176
crossref_primary_10_1016_j_compchemeng_2020_107148
crossref_primary_10_1016_j_cherd_2019_09_005
crossref_primary_10_1016_j_seppur_2020_118104
crossref_primary_10_1016_j_compchemeng_2021_107640
crossref_primary_10_1016_j_cherd_2020_06_017
crossref_primary_10_1016_j_cherd_2022_05_041
crossref_primary_10_1016_j_ces_2020_116294
crossref_primary_10_1021_acs_iecr_0c06216
crossref_primary_10_1002_cjce_23957
crossref_primary_10_1021_acs_jpcc_3c07168
crossref_primary_10_1016_j_jprocont_2023_103088
crossref_primary_10_1002_aic_17642
crossref_primary_10_1002_aic_17246
crossref_primary_10_1002_aic_18356
crossref_primary_10_1016_j_asej_2021_09_004
crossref_primary_10_1016_j_compchemeng_2023_108339
crossref_primary_10_1016_j_conengprac_2024_106041
crossref_primary_10_1016_j_isatra_2022_09_033
crossref_primary_10_3390_pr10112374
crossref_primary_10_1002_aic_16907
crossref_primary_10_1016_j_ces_2023_119271
crossref_primary_10_1021_acs_iecr_2c00335
crossref_primary_10_1016_j_cherd_2020_05_014
crossref_primary_10_1111_risa_13829
crossref_primary_10_1016_j_dche_2021_100001
crossref_primary_10_1021_acs_jpcc_0c05250
crossref_primary_10_1016_j_cherd_2020_09_013
crossref_primary_10_1021_acs_iecr_3c02624
crossref_primary_10_1111_jmi_12942
crossref_primary_10_1016_j_cherd_2020_11_009
crossref_primary_10_1002_aic_17537
crossref_primary_10_1016_j_ces_2022_117493
crossref_primary_10_1016_j_cherd_2020_04_019
crossref_primary_10_1016_j_compchemeng_2020_106806
crossref_primary_10_1016_j_geoen_2024_213425
crossref_primary_10_1016_j_matpr_2020_08_695
crossref_primary_10_1021_acs_iecr_4c02918
crossref_primary_10_3389_fphy_2021_631918
crossref_primary_10_1016_j_cherd_2020_04_032
crossref_primary_10_1016_j_compchemeng_2022_107914
crossref_primary_10_1021_acs_iecr_2c03691
Cites_doi 10.1021/ie030535b
10.1002/aic.16489
10.1109/TPWRS.2008.2008606
10.1016/j.compchemeng.2018.08.029
10.1109/TNNLS.2015.2512283
10.1016/S0009-2509(00)00034-8
10.1002/aic.10505
10.1016/j.jprocont.2015.07.002
10.1002/aic.690470615
10.1016/j.compchemeng.2018.03.011
10.1007/s12247-010-9090-2
10.1016/S1570-7946(10)28215-9
10.1002/we.2142
10.1016/j.compchemeng.2018.08.011
10.1016/j.cherd.2019.03.004
10.1007/978-0-8176-4793-3
10.1016/S0065-2377(05)30001-9
10.1016/j.ejor.2016.06.041
10.1002/aic.690351106
10.1016/j.ijhydene.2018.01.130
10.1002/aic.690351210
10.3390/math6110242
10.1016/0893-6080(91)90009-T
10.1016/j.compchemeng.2017.03.011
10.1090/qam/10666
10.1016/j.procs.2016.09.321
10.1016/j.cherd.2019.05.049
10.1016/S0895-7177(03)90013-6
10.1137/0111030
10.1016/j.renene.2016.06.065
10.1021/acs.iecr.8b05938
10.1016/j.compchemeng.2017.05.020
10.1016/j.compchemeng.2018.08.010
10.1016/j.ces.2011.08.020
10.1016/S0009-2509(02)00432-3
10.1109/72.329697
10.1016/j.compchemeng.2004.02.014
10.1016/j.envsoft.2006.03.004
10.1016/S0255-2701(02)00209-X
10.1021/ac00029a018
10.1006/jcph.2000.6473
10.1002/aic.10922
10.1016/j.jcat.2015.03.010
10.1103/PhysRevB.64.035401
10.1016/S0169-7439(97)00061-0
10.1002/aic.15702
10.1016/j.jhydrol.2009.12.013
10.1007/s11071-016-2957-0
10.1021/ie00021a019
10.1166/jcsmd.2015.1069
10.1016/j.ces.2010.06.004
10.1016/j.neunet.2009.10.009
10.1049/ip-gtd:20010286
10.1103/PhysRevB.49.4858
10.1002/aic.15215
10.1016/0893-6080(90)90044-L
10.1002/aic.690431115
10.1016/j.ces.2015.10.004
10.1002/aic.14039
10.1002/aic.690470113
10.1016/S0009-2509(03)00168-4
10.1016/j.jprocont.2012.07.011
10.1109/ICPST.2002.1047201
10.1016/j.jhydrol.2015.06.007
10.1016/j.compchemeng.2006.05.025
10.1016/j.biortech.2015.09.114
10.1016/j.ress.2012.05.002
10.1016/j.ces.2007.07.071
10.1016/j.jhydrol.2014.10.009
10.1016/j.ces.2015.02.027
10.1002/aic.11756
10.1016/j.biortech.2011.10.006
10.1016/j.cherd.2018.06.015
10.1021/acs.iecr.7b00682
10.1016/j.ces.2015.02.002
10.1016/j.jcrysgro.2009.12.041
10.1016/j.ces.2014.07.058
10.1021/acs.iecr.5b02942
10.1016/j.cherd.2019.02.016
10.1016/j.cherd.2018.10.006
10.1109/59.544636
10.1016/j.ces.2013.12.005
10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
10.1016/j.ejor.2017.01.035
10.1007/BF02478259
10.1016/j.ces.2011.05.050
10.1016/j.ces.2014.05.027
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.ces.2019.07.044
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
EndPage 1245
ExternalDocumentID oai:uwspace.uwaterloo.ca:10012/15674
10_1016_j_ces_2019_07_044
S0009250919306086
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
SEW
T9H
VH1
WUQ
Y6R
ZY4
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c377t-d9852f14695a23402f2344a8f13ffc644265cd81a37011ffb77d82f7b0b48c913
IEDL.DBID UNPAY
ISSN 0009-2509
1873-4405
IngestDate Tue Aug 19 21:30:48 EDT 2025
Wed Oct 01 05:22:21 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Fri Feb 23 02:32:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiscale stochastic system
Nonlinear model predictive control
Artificial neural network
Machine learning
Shrinking horizon optimization
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-d9852f14695a23402f2344a8f13ffc644265cd81a37011ffb77d82f7b0b48c913
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10012/15674
PageCount 16
ParticipantIDs unpaywall_primary_10_1016_j_ces_2019_07_044
crossref_primary_10_1016_j_ces_2019_07_044
crossref_citationtrail_10_1016_j_ces_2019_07_044
elsevier_sciencedirect_doi_10_1016_j_ces_2019_07_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-02
PublicationDateYYYYMMDD 2019-11-02
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-02
  day: 02
PublicationDecade 2010
PublicationTitle Chemical engineering science
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lang, Waibel, Hinton (b0245) 1990; 3
Venkatasubramanian (b0440) 2019; 65
Thomas, Kardos, Joseph (b0425) 1994
Bird, Stewart, Lightfoot (b0045) 2002
Borggaard, Thodberg (b0050) 1992; 64
Nandi, Ghosh, Tambe, Kulkarni (b0305) 2001; 47
Hasenauer, Jagiella, Hross, Theis (b0155) 2015; 3
Dong, Zhang, Huang (b0120) 2001
Luo, Heun, Kennedy, Wollschläger, Henzler (b0285) 1994; 49
Lian, Zeng, Yao, Tang, Chen (b0280) 2016; 27
Jalali, Nieuwenhuyse, Picheny (b0180) 2017; 261
Kwon, Nayhouse, Christofides, Orkoulas (b0230) 2014; 107
Rasoulian, Ricardez-Sandoval (b0350) 2016; 140
Christofides, P.D., Armaou, A., Lou, Y., Varshney, A. (2009). Control and optimization of multiscale process systems. In: Levine W.S., (Ed.), first ed., Birkhäuser Boston, New York, NY.
Krishnapura, Jutan (b0210) 2000; 55
Zhang, Ding, Christofides (b0490) 2019; 147
Sutskever, Hinton (b0410) 2010; 23
Oliveira (b0320) 2004; 28
Lawrynczuk (b0255) 2016; 86
Dayhoff, DeLeo (b0105) 2001; 91
Bach-Andersen, Rømer-Odgaard, Winther (b0035) 2018; 21
Seagaran (b0370) 2007
Du Tao, Wang Xiuli, Wang Xifan. (n.d.). A combined model of wavelet and neural network for short term load forecasting. In: Proceedings. International Conference on Power System Technology (Vol. 4, pp. 2331–2335). IEEE.
Kimaev, Ricardez-Sandoval (b0200) 2018; 140
Soni, Parker (b0400) 2004; 43
Khanmohammadi, Tutun, Kucuk (b0190) 2016; 95
Rasoulian, Ricardez-Sandoval (b0345) 2015; 136
Shaikh, Al-Dahhan (b0375) 2003; 42
Yuan, Jiao, Quddus, Kwon, Mashuga (b0485) 2019; 58
Adomaitis (b0005) 2003; 38
Ozkaya, Demir, Bilgili (b0325) 2007; 22
Kumar, Venkateswarlu (b0215) 2012; 103
Chaffart, Rasoulian, Ricardez-Sandoval (b0060) 2016; 62
Bashir, El-Hawary (b0040) 2009; 24
Rasoulian, Ricardez-Sandoval (b0340) 2015; 34
Salciccioli, Stamatakis, Caratzoulas, Vlachos (b0355) 2011; 66
Ding, Zhang, Kim, Tran, Wu, Christofides (b0115) 2019; 145
Sharma, Das, Samanta (b0380) 2006; 52
Garg, Mhaskar (b0140) 2017; 56
Yıldız, Uzun, Ceylan, Topcu (b0480) 2016; 200
Joseph, Hanratty (b0185) 1993; 32
Venkatasubramanian, Vaidyanathan (b0450) 1992
Venkatasubramanian, Chan (b0445) 1989; 35
Levenberg (b0265) 1944; 2
Svozil, Kvasnicka, Pospichal (b0415) 1997; 39
Kleijnen (b0205) 2017; 256
Kwon, Nayhouse, Orkoulas, Christofides (b0225) 2014; 119
Crose, Zhang, Tran, Christofides (b0100) 2018; 113
Gandhi, Joshi, Jayaraman, Kulkarni (b0135) 2007; 62
Venkatasubramanian (b0435) 2009; 55
Lam, Vlachos (b0240) 2001; 64
Solvason (b0390) 2011
Hornik (b0160) 1991; 4
Akkisetty, Lee, Reklaitis, Venkatasubramanian (b0020) 2010; 5
Huang, Yang (b0165) 2001; 148
Lapedes, A., Farber, R. (1987). Nonlinear signal processing using neural networks: Prediction and system modelling. In: IEEE international conference on neural networks, San Diego, CA, USA, 21 Jun 1987. Retrieved from
Adomaitis (b0015) 2010; 312
Fausett (b0125) 1993
Raimondeau, Vlachos (b0330) 2000; 160
Chow, Leung (b0075) 1996; 11
Ding, Ping (b0110) 2012; 22
Watanabe, Matsuura, Abe, Kubota, Himmelblau (b0465) 1989; 35
Kwon, Nayhouse, Christofides (b0235) 2015; 54
Sarkar, Modak (b0360) 2003; 58
Wu, Tran, Ren, Barnes, Chen, Christofides (b0475) 2019; 145
Hagan, Menhaj (b0150) 1994; 5
Marquardt (b0290) 1963; 11
Li, Liu, Li, Fang, Liu, Mei, Wang (b0275) 2018; 43
Lee, Mohr, Kwon, Wu (b0260) 2018; 118
Chitsazan, Nadiri, Tsai (b0070) 2015; 528
Meidanshahi, Corbett, Adams, Mhaskar (b0300) 2017; 103
Sundaram, Ghosh, Caruthers, Venkatasubramanian (b0405) 2001; 47
Antanasijevic, Pocajt, Peric-Grujic, Ristic (b0030) 2014; 519
Narasingam, Kwon (b0310) 2018; 119
Tiwari, Chatterjee (b0430) 2010; 382
Oladyshkin, Nowak (b0315) 2012; 106
Crose, Sang-Il Kwon, Nayhouse, Ni, Christofides (b0090) 2015; 136
Vlachos (b0455) 1997; 43
Crose, Kwon, Tran, Christofides (b0095) 2017; 100
Solvason, Chemmangattuvalappil, Eden (b0395) 2010; 28
Alexandridis, Sarimveis (b0025) 2005; 51
Garg, Corbett, Mhaskar, Hu, Flores-Cerrillo (b0145) 2017; 106
Siddhamshetty, Wu, Kwon (b0385) 2018; 136
Christofides, Armaou (b0080) 2006; 30
Cheimarios, Kokkoris, Boudouvis (b0065) 2010; 65
Rasoulian, Ricardez-Sandoval (b0335) 2014; 116
Kwon, Nayhouse, Christofides, Orkoulas (b0220) 2013; 59
Vlachos (b0460) 2005; 30
Li, Croiset, Ricardez-Sandoval (b0270) 2015; 326
Adomaitis (b0010) 2010
Kimaev, Ricardez-Sandoval (b0195) 2017; 63
Frenkel, Smit (b0130) 2001
Huang, Zhan, Chen, Lü (b0170) 2003; 58
Huang, Zhang, Orkoulas, Christofides (b0175) 2011; 66
McCulloch, Pitts (b0295) 1943; 5
Chaffart, Ricardez-Sandoval (b0055) 2018; 119
Schroeder. (2007). An Introduction to Thermal Physics. Pearson Education.
Wong, Chee, Li, Wang (b0470) 2018; 6
Crose (10.1016/j.ces.2019.07.044_b0095) 2017; 100
Zhang (10.1016/j.ces.2019.07.044_b0490) 2019; 147
Lian (10.1016/j.ces.2019.07.044_b0280) 2016; 27
Huang (10.1016/j.ces.2019.07.044_b0170) 2003; 58
Chitsazan (10.1016/j.ces.2019.07.044_b0070) 2015; 528
Hagan (10.1016/j.ces.2019.07.044_b0150) 1994; 5
Raimondeau (10.1016/j.ces.2019.07.044_b0330) 2000; 160
Seagaran (10.1016/j.ces.2019.07.044_b0370) 2007
Shaikh (10.1016/j.ces.2019.07.044_b0375) 2003; 42
Li (10.1016/j.ces.2019.07.044_b0270) 2015; 326
10.1016/j.ces.2019.07.044_b0365
Solvason (10.1016/j.ces.2019.07.044_b0390) 2011
Rasoulian (10.1016/j.ces.2019.07.044_b0340) 2015; 34
Vlachos (10.1016/j.ces.2019.07.044_b0460) 2005; 30
Yıldız (10.1016/j.ces.2019.07.044_b0480) 2016; 200
Joseph (10.1016/j.ces.2019.07.044_b0185) 1993; 32
Kumar (10.1016/j.ces.2019.07.044_b0215) 2012; 103
Yuan (10.1016/j.ces.2019.07.044_b0485) 2019; 58
10.1016/j.ces.2019.07.044_b0085
Huang (10.1016/j.ces.2019.07.044_b0165) 2001; 148
Garg (10.1016/j.ces.2019.07.044_b0145) 2017; 106
Tiwari (10.1016/j.ces.2019.07.044_b0430) 2010; 382
Chaffart (10.1016/j.ces.2019.07.044_b0055) 2018; 119
Kimaev (10.1016/j.ces.2019.07.044_b0200) 2018; 140
Khanmohammadi (10.1016/j.ces.2019.07.044_b0190) 2016; 95
Kwon (10.1016/j.ces.2019.07.044_b0225) 2014; 119
Oliveira (10.1016/j.ces.2019.07.044_b0320) 2004; 28
Thomas (10.1016/j.ces.2019.07.044_b0425) 1994
Borggaard (10.1016/j.ces.2019.07.044_b0050) 1992; 64
Siddhamshetty (10.1016/j.ces.2019.07.044_b0385) 2018; 136
Marquardt (10.1016/j.ces.2019.07.044_b0290) 1963; 11
Alexandridis (10.1016/j.ces.2019.07.044_b0025) 2005; 51
Jalali (10.1016/j.ces.2019.07.044_b0180) 2017; 261
Venkatasubramanian (10.1016/j.ces.2019.07.044_b0440) 2019; 65
Li (10.1016/j.ces.2019.07.044_b0275) 2018; 43
Garg (10.1016/j.ces.2019.07.044_b0140) 2017; 56
Gandhi (10.1016/j.ces.2019.07.044_b0135) 2007; 62
Venkatasubramanian (10.1016/j.ces.2019.07.044_b0450) 1992
Chaffart (10.1016/j.ces.2019.07.044_b0060) 2016; 62
Crose (10.1016/j.ces.2019.07.044_b0090) 2015; 136
Vlachos (10.1016/j.ces.2019.07.044_b0455) 1997; 43
Chow (10.1016/j.ces.2019.07.044_b0075) 1996; 11
McCulloch (10.1016/j.ces.2019.07.044_b0295) 1943; 5
Adomaitis (10.1016/j.ces.2019.07.044_b0010) 2010
Venkatasubramanian (10.1016/j.ces.2019.07.044_b0435) 2009; 55
Kleijnen (10.1016/j.ces.2019.07.044_b0205) 2017; 256
Nandi (10.1016/j.ces.2019.07.044_b0305) 2001; 47
Hasenauer (10.1016/j.ces.2019.07.044_b0155) 2015; 3
Venkatasubramanian (10.1016/j.ces.2019.07.044_b0445) 1989; 35
Fausett (10.1016/j.ces.2019.07.044_b0125) 1993
Sutskever (10.1016/j.ces.2019.07.044_b0410) 2010; 23
Solvason (10.1016/j.ces.2019.07.044_b0395) 2010; 28
Ding (10.1016/j.ces.2019.07.044_b0110) 2012; 22
Soni (10.1016/j.ces.2019.07.044_b0400) 2004; 43
Rasoulian (10.1016/j.ces.2019.07.044_b0335) 2014; 116
Wu (10.1016/j.ces.2019.07.044_b0475) 2019; 145
Crose (10.1016/j.ces.2019.07.044_b0100) 2018; 113
Ding (10.1016/j.ces.2019.07.044_b0115) 2019; 145
Lee (10.1016/j.ces.2019.07.044_b0260) 2018; 118
Kwon (10.1016/j.ces.2019.07.044_b0235) 2015; 54
Dong (10.1016/j.ces.2019.07.044_b0120) 2001
Kwon (10.1016/j.ces.2019.07.044_b0230) 2014; 107
Wong (10.1016/j.ces.2019.07.044_b0470) 2018; 6
Watanabe (10.1016/j.ces.2019.07.044_b0465) 1989; 35
Frenkel (10.1016/j.ces.2019.07.044_b0130) 2001
Luo (10.1016/j.ces.2019.07.044_b0285) 1994; 49
Bach-Andersen (10.1016/j.ces.2019.07.044_b0035) 2018; 21
Hornik (10.1016/j.ces.2019.07.044_b0160) 1991; 4
Svozil (10.1016/j.ces.2019.07.044_b0415) 1997; 39
Salciccioli (10.1016/j.ces.2019.07.044_b0355) 2011; 66
Sundaram (10.1016/j.ces.2019.07.044_b0405) 2001; 47
Bird (10.1016/j.ces.2019.07.044_b0045) 2002
Ozkaya (10.1016/j.ces.2019.07.044_b0325) 2007; 22
Lang (10.1016/j.ces.2019.07.044_b0245) 1990; 3
Huang (10.1016/j.ces.2019.07.044_b0175) 2011; 66
Christofides (10.1016/j.ces.2019.07.044_b0080) 2006; 30
Krishnapura (10.1016/j.ces.2019.07.044_b0210) 2000; 55
Kimaev (10.1016/j.ces.2019.07.044_b0195) 2017; 63
Oladyshkin (10.1016/j.ces.2019.07.044_b0315) 2012; 106
Sharma (10.1016/j.ces.2019.07.044_b0380) 2006; 52
10.1016/j.ces.2019.07.044_b0420
Cheimarios (10.1016/j.ces.2019.07.044_b0065) 2010; 65
Levenberg (10.1016/j.ces.2019.07.044_b0265) 1944; 2
Meidanshahi (10.1016/j.ces.2019.07.044_b0300) 2017; 103
Rasoulian (10.1016/j.ces.2019.07.044_b0350) 2016; 140
Adomaitis (10.1016/j.ces.2019.07.044_b0015) 2010; 312
Sarkar (10.1016/j.ces.2019.07.044_b0360) 2003; 58
Narasingam (10.1016/j.ces.2019.07.044_b0310) 2018; 119
Lam (10.1016/j.ces.2019.07.044_b0240) 2001; 64
Adomaitis (10.1016/j.ces.2019.07.044_b0005) 2003; 38
Akkisetty (10.1016/j.ces.2019.07.044_b0020) 2010; 5
Kwon (10.1016/j.ces.2019.07.044_b0220) 2013; 59
Lawrynczuk (10.1016/j.ces.2019.07.044_b0255) 2016; 86
Dayhoff (10.1016/j.ces.2019.07.044_b0105) 2001; 91
Antanasijevic (10.1016/j.ces.2019.07.044_b0030) 2014; 519
Bashir (10.1016/j.ces.2019.07.044_b0040) 2009; 24
10.1016/j.ces.2019.07.044_b0250
Rasoulian (10.1016/j.ces.2019.07.044_b0345) 2015; 136
References_xml – volume: 106
  start-page: 179
  year: 2012
  end-page: 190
  ident: b0315
  article-title: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 42
  start-page: 599
  year: 2003
  end-page: 610
  ident: b0375
  article-title: Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 32
  start-page: 1951
  year: 1993
  end-page: 1961
  ident: b0185
  article-title: Predictive control of quality in a batch manufacturing process using artificial neural network models
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 101
  year: 2015
  end-page: 121
  ident: b0155
  article-title: Data-driven modelling of biological multi-scale processes
  publication-title: J. Coupled Syst. Multiscale Dyn.
– volume: 65
  start-page: 466
  year: 2019
  end-page: 478
  ident: b0440
  article-title: The promise of artificial intelligence in chemical engineering: is it here, finally?
  publication-title: AIChE J.
– volume: 148
  start-page: 222
  year: 2001
  ident: b0165
  article-title: Evolving wavelet-based networks for short-term load forecasting
  publication-title: IEE Proc. – Generat. Transmiss. Distribut.
– volume: 51
  start-page: 2495
  year: 2005
  end-page: 2506
  ident: b0025
  article-title: Nonlinear adaptive model predictive control based on self-correcting neural network models
  publication-title: AIChE J.
– volume: 95
  start-page: 237
  year: 2016
  end-page: 244
  ident: b0190
  article-title: A new multilevel input layer artificial neural network for predicting flight delays at JFK airport
  publication-title: Procedia – Procedia Comput. Sci.
– reference: Du Tao, Wang Xiuli, Wang Xifan. (n.d.). A combined model of wavelet and neural network for short term load forecasting. In: Proceedings. International Conference on Power System Technology (Vol. 4, pp. 2331–2335). IEEE.
– volume: 56
  start-page: 7491
  year: 2017
  end-page: 7502
  ident: b0140
  article-title: Subspace identification-based modeling and control of batch particulate processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 91
  start-page: 1615
  year: 2001
  end-page: 1635
  ident: b0105
  article-title: Artificial neural networks: opening the black box
  publication-title: Cancer
– volume: 28
  start-page: 1285
  year: 2010
  end-page: 1290
  ident: b0395
  article-title: Multi-Scale chemical product design using the reverse problem formulation
  publication-title: Comput. Aid. Chem. Eng.
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: b0415
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemomet. Intell. Laborat. Syst.
– volume: 43
  start-page: 3031
  year: 1997
  end-page: 3041
  ident: b0455
  article-title: Multiscale Integration Hybrid Algorithms for Homogeneous-Heterogeneous Reactors
  publication-title: AIChE J.
– volume: 65
  start-page: 5018
  year: 2010
  end-page: 5028
  ident: b0065
  article-title: Multiscale modeling in chemical vapor deposition processes: coupling reactor scale with feature scale computations
  publication-title: Chem. Eng. Sci.
– volume: 107
  start-page: 47
  year: 2014
  end-page: 57
  ident: b0230
  article-title: Modeling and control of crystal shape in continuous protein crystallization
  publication-title: Chem. Eng. Sci.
– volume: 28
  start-page: 755
  year: 2004
  end-page: 766
  ident: b0320
  article-title: Combining first principles modelling and artificial neural networks: a general framework
  publication-title: Comput. Chem. Eng.
– volume: 22
  start-page: 1773
  year: 2012
  end-page: 1784
  ident: b0110
  article-title: Dynamic output feedback model predictive control for nonlinear systems represented by Hammerstein – Wiener model
  publication-title: J. Process Control
– volume: 103
  start-page: 39
  year: 2017
  end-page: 57
  ident: b0300
  article-title: Subspace model identification and model predictive control based cost analysis of a semicontinuous distillation process
  publication-title: Comput. Chem. Eng.
– volume: 59
  start-page: 2317
  year: 2013
  end-page: 2327
  ident: b0220
  article-title: Modeling and control of protein crystal shape and size in batch crystallization
  publication-title: AIChE J.
– start-page: 547
  year: 1992
  end-page: 552
  ident: b0450
  article-title: Diagnosing noisy process data using neural networks
  publication-title: IFAC Symposia Series
– volume: 27
  start-page: 2683
  year: 2016
  end-page: 2695
  ident: b0280
  article-title: Landslide displacement prediction with uncertainty based on neural networks with random hidden weights
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– year: 2010
  ident: b0010
  article-title: Multiscale modeling and optimization of an atomic layer deposition process for nanomanufacturing applications
  publication-title: IFAC Proceedings Volumes (Vol. 43, pp. 859–864)
– volume: 49
  start-page: 4858
  year: 1994
  end-page: 4865
  ident: b0285
  article-title: Surface roughness and conductivity of thin Ag films
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 126
  year: 2001
  end-page: 141
  ident: b0305
  article-title: Artificial neural-network-assisted stochastic process optimization strategies
  publication-title: AIChE J.
– volume: 200
  start-page: 42
  year: 2016
  end-page: 47
  ident: b0480
  article-title: Application of artificial neural networks to co-combustion of hazelnut husk–lignite coal blends
  publication-title: Bioresour. Technol.
– year: 2002
  ident: b0045
  article-title: Transport Phenomena
– volume: 54
  start-page: 11903
  year: 2015
  end-page: 11914
  ident: b0235
  article-title: Multiscale, multidomain modeling and parallel computation: application to crystal shape evolution in crystallization
  publication-title: Ind. Eng. Chem. Res.
– volume: 86
  start-page: 1193
  year: 2016
  end-page: 1214
  ident: b0255
  article-title: Nonlinear predictive control of dynamic systems represented by Wiener-Hammerstein models
  publication-title: Nonlinear Dyn.
– volume: 47
  start-page: 1387
  year: 2001
  end-page: 1406
  ident: b0405
  article-title: Design of fuel additives using neural networks and evolutionary algorithms
  publication-title: AIChE J.
– volume: 55
  start-page: 2
  year: 2009
  end-page: 8
  ident: b0435
  article-title: DROWNING IN DATA: Informatics and modeling challenges in a data-rich networked world
  publication-title: AIChE J.
– volume: 160
  start-page: 564
  year: 2000
  end-page: 576
  ident: b0330
  article-title: Low-dimensional approximations of multiscale epitaxial growth models for microstructure control of materials
  publication-title: J. Comput. Phys.
– volume: 6
  year: 2018
  ident: b0470
  article-title: Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical Manufacturing
  publication-title: Mathematics
– volume: 66
  start-page: 5955
  year: 2011
  end-page: 5967
  ident: b0175
  article-title: Dynamics and control of aggregate thin film surface morphology for improved light trapping: implementation on a large-lattice kinetic Monte Carlo model
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b0295
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 140
  start-page: 33
  year: 2018
  end-page: 43
  ident: b0200
  article-title: Multilevel Monte Carlo for noise estimation in stochastic multiscale systems
  publication-title: Chem. Eng. Res. Des.
– reference: Schroeder. (2007). An Introduction to Thermal Physics. Pearson Education.
– volume: 35
  start-page: 1803
  year: 1989
  end-page: 1812
  ident: b0465
  article-title: Incipient fault diagnosis of chemical processes via artificial neural networks
  publication-title: AIChE J.
– volume: 326
  start-page: 15
  year: 2015
  end-page: 25
  ident: b0270
  article-title: Carbon nanotube growth: First-principles-based kinetic Monte Carlo model
  publication-title: J. Catal.
– volume: 261
  start-page: 279
  year: 2017
  end-page: 301
  ident: b0180
  article-title: Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise
  publication-title: Eur. J. Oper. Res.
– volume: 58
  start-page: 3531
  year: 2019
  end-page: 3537
  ident: b0485
  article-title: Developing quantitative structure-property relationship models to predict the upper flammability limit using machine learning
  publication-title: Ind. Eng. Chem. Res.
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: b0150
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
– volume: 119
  start-page: 101
  year: 2018
  end-page: 111
  ident: b0310
  article-title: Data-driven identification of interpretable reduced-order models using sparse regression
  publication-title: Comput. Chem. Eng.
– volume: 140
  start-page: 90
  year: 2016
  end-page: 103
  ident: b0350
  article-title: Stochastic nonlinear model predictive control applied to a thin film deposition process under uncertainty
  publication-title: Chem. Eng. Sci.
– volume: 116
  start-page: 590
  year: 2014
  end-page: 600
  ident: b0335
  article-title: Uncertainty analysis and robust optimization of multiscale process systems with application to epitaxial thin film growth
  publication-title: Chem. Eng. Sci.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: b0290
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– reference: Lapedes, A., Farber, R. (1987). Nonlinear signal processing using neural networks: Prediction and system modelling. In: IEEE international conference on neural networks, San Diego, CA, USA, 21 Jun 1987. Retrieved from
– volume: 43
  start-page: 3381
  year: 2004
  end-page: 3393
  ident: b0400
  article-title: Closed-loop control of fed-batch bioreactors: a shrinking-horizon approach
  publication-title: Ind. Eng. Chem. Res.
– reference: Christofides, P.D., Armaou, A., Lou, Y., Varshney, A. (2009). Control and optimization of multiscale process systems. In: Levine W.S., (Ed.), first ed., Birkhäuser Boston, New York, NY.
– volume: 62
  start-page: 7078
  year: 2007
  end-page: 7089
  ident: b0135
  article-title: Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas–liquid systems
  publication-title: Chem. Eng. Sci.
– volume: 119
  start-page: 30
  year: 2014
  end-page: 39
  ident: b0225
  article-title: Crystal shape and size control using a plug flow crystallization configuration
  publication-title: Chem. Eng. Sci.
– volume: 118
  start-page: 283
  year: 2018
  end-page: 295
  ident: b0260
  article-title: Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors
  publication-title: Comput. Chem. Eng.
– volume: 100
  start-page: 129
  year: 2017
  end-page: 140
  ident: b0095
  article-title: Multiscale modeling and run-to-run control of PECVD of thin film solar cells
  publication-title: Renew. Energy
– volume: 52
  start-page: 3018
  year: 2006
  end-page: 3028
  ident: b0380
  article-title: ANN–based prediction of two-phase gas– liquid flow patterns in a circular conduit
  publication-title: AIChE J.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: b0265
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 519
  start-page: 1895
  year: 2014
  end-page: 1907
  ident: b0030
  article-title: Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis
  publication-title: J. Hydrol.
– volume: 382
  start-page: 20
  year: 2010
  end-page: 33
  ident: b0430
  article-title: Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
  publication-title: J. Hydrol.
– volume: 103
  start-page: 300
  year: 2012
  end-page: 308
  ident: b0215
  article-title: Estimating biofilm reaction kinetics using hybrid mechanistic-neural network rate function model
  publication-title: Bioresour. Technol.
– year: 2001
  ident: b0120
  article-title: Adaptive neural network short term load forecasting with wavelet decompositions
  publication-title: 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502) (Vol. vol.2, p. 6)
– volume: 55
  start-page: 3803
  year: 2000
  end-page: 3812
  ident: b0210
  article-title: A neural adaptive controller
  publication-title: Chem. Eng. Sci.
– volume: 136
  start-page: 50
  year: 2015
  end-page: 61
  ident: b0090
  article-title: Multiscale modeling and operation of PECVD of thin film solar cells
  publication-title: Chem. Eng. Sci.
– volume: 22
  start-page: 815
  year: 2007
  end-page: 822
  ident: b0325
  article-title: Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors
  publication-title: Environ. Modell. Softw.
– volume: 256
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0205
  article-title: Regression and Kriging metamodels with their experimental designs in simulation: a review
  publication-title: Eur. J. Oper. Res.
– volume: 312
  start-page: 1449
  year: 2010
  end-page: 1452
  ident: b0015
  article-title: Development of a multiscale model for an atomic layer deposition process
  publication-title: J. Cryst. Growth
– volume: 113
  start-page: 184
  year: 2018
  end-page: 195
  ident: b0100
  article-title: Multiscale three-dimensional CFD modeling for PECVD of amorphous silicon thin films
  publication-title: Comput. Chem. Eng.
– volume: 21
  start-page: 29
  year: 2018
  end-page: 41
  ident: b0035
  article-title: Deep learning for automated drivetrain fault detection
  publication-title: Wind Energy
– volume: 58
  start-page: 81
  year: 2003
  end-page: 87
  ident: b0170
  article-title: Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm
  publication-title: Chem. Eng. Sci.
– volume: 136
  start-page: 675
  year: 2018
  end-page: 686
  ident: b0385
  article-title: Optimization of simultaneously propagating multiple fractures in hydraulic fracturing to achieve uniform growth using data-based model reduction
  publication-title: Chem. Eng. Res. Des.
– volume: 30
  start-page: 1
  year: 2005
  end-page: 61
  ident: b0460
  article-title: A review of multiscale analysis: examples from systems biology, materials engineering, and other fluid-surface interacting systems
  publication-title: Adv. Chem. Eng.
– volume: 64
  start-page: 545
  year: 1992
  end-page: 551
  ident: b0050
  article-title: Optimal minimal neural interpretation of spectra
  publication-title: Anal. Chem.
– volume: 11
  start-page: 1736
  year: 1996
  end-page: 1742
  ident: b0075
  article-title: Neural network based short-term load forecasting using weather compensation
  publication-title: IEEE Trans. Power Syst.
– start-page: 505
  year: 1994
  end-page: 509
  ident: b0425
  article-title: Shrinking Horizon model predictive control applied to autoclave curing of composite laminate materials
  publication-title: American Control Conference
– volume: 147
  start-page: 529
  year: 2019
  end-page: 544
  ident: b0490
  article-title: Multiscale computational fluid dynamics modeling of thermal atomic layer deposition with application to chamber design
  publication-title: Chem. Eng. Res. Des.
– volume: 5
  start-page: 161
  year: 2010
  end-page: 168
  ident: b0020
  article-title: Population balance model-based hybrid neural network for a pharmaceutical milling process
  publication-title: J. Pharm. Innovat.
– volume: 58
  start-page: 3131
  year: 2003
  end-page: 3142
  ident: b0360
  article-title: ANNSA: a hybrid artificial neural network/simulated annealing algorithm for optimal control problems
  publication-title: Chem. Eng. Sci.
– volume: 119
  start-page: 465
  year: 2018
  end-page: 479
  ident: b0055
  article-title: Optimization and control of a thin film growth process: a hybrid first principles/artificial neural network based multiscale modelling approach
  publication-title: Comput. Chem. Eng.
– year: 2001
  ident: b0130
  article-title: Understanding Molecular Simulation: From Algorithms to Applications
– volume: 64
  year: 2001
  ident: b0240
  article-title: Multiscale model for epitaxial growth of films: growth mode transition
  publication-title: Phys. Rev. B
– volume: 35
  start-page: 1993
  year: 1989
  end-page: 2002
  ident: b0445
  article-title: A neural network methodology for process fault diagnosis
  publication-title: AIChE J.
– volume: 62
  year: 2016
  ident: b0060
  article-title: Distributional uncertainty analysis and robust optimization in spatially heterogeneous multiscale process systems
  publication-title: AIChE J.
– year: 1993
  ident: b0125
  article-title: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications
– volume: 145
  start-page: 159
  year: 2019
  end-page: 172
  ident: b0115
  article-title: Microscopic modeling and optimal operation of thermal atomic layer deposition
  publication-title: Chem. Eng. Res. Des.
– volume: 43
  start-page: 5512
  year: 2018
  end-page: 5521
  ident: b0275
  article-title: Application of general regression neural network to model a novel integrated fluidized bed gasifier
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 38
  year: 2015
  end-page: 49
  ident: b0345
  article-title: A robust nonlinear model predictive controller for a multiscale thin film deposition process
  publication-title: Chem. Eng. Sci.
– volume: 106
  start-page: 183
  year: 2017
  end-page: 190
  ident: b0145
  article-title: Subspace-based model identification of a hydrogen plant startup dynamics
  publication-title: Comput. Chem. Eng.
– year: 2007
  ident: b0370
  article-title: Programming Collective Intelligence: Building Smart Web 2.0 Applications
– volume: 38
  start-page: 159
  year: 2003
  end-page: 175
  ident: b0005
  article-title: A reduced-basis discretization method for chemical vapor deposition reactor simulation
  publication-title: Math. Comput. Modell.
– volume: 24
  start-page: 20
  year: 2009
  end-page: 27
  ident: b0040
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
– volume: 63
  start-page: 3361
  year: 2017
  end-page: 3373
  ident: b0195
  article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems
  publication-title: AIChE J.
– volume: 66
  start-page: 4319
  year: 2011
  end-page: 4355
  ident: b0355
  article-title: A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior
  publication-title: Chem. Eng. Sci.
– volume: 3
  start-page: 23
  year: 1990
  end-page: 43
  ident: b0245
  article-title: A time-delay neural network architecture for isolated word recognition
  publication-title: Neural Netw.
– volume: 34
  start-page: 70
  year: 2015
  end-page: 81
  ident: b0340
  article-title: Robust multivariable estimation and control in an epitaxial thin film growth process under uncertainty
  publication-title: J. Process Control
– volume: 23
  start-page: 239
  year: 2010
  end-page: 243
  ident: b0410
  article-title: Temporal-kernel recurrent neural networks
  publication-title: Neural Netw.
– volume: 145
  start-page: 173
  year: 2019
  end-page: 183
  ident: b0475
  article-title: Model predictive control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via machine learning modeling
  publication-title: Chem. Eng. Res. Des.
– year: 2011
  ident: b0390
  article-title: Integrated Multiscale Chemical Product Design using Property Clustering and Decomposition Techniques in a Reverse Problem Formulation
– volume: 528
  start-page: 52
  year: 2015
  end-page: 62
  ident: b0070
  article-title: Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging
  publication-title: J. Hydrol.
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: b0160
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 30
  start-page: 1670
  year: 2006
  end-page: 1686
  ident: b0080
  article-title: Control and optimization of multiscale process systems
  publication-title: Comput. Chem. Eng.
– volume: 43
  start-page: 3381
  issue: 13
  year: 2004
  ident: 10.1016/j.ces.2019.07.044_b0400
  article-title: Closed-loop control of fed-batch bioreactors: a shrinking-horizon approach
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie030535b
– volume: 65
  start-page: 466
  issue: 2
  year: 2019
  ident: 10.1016/j.ces.2019.07.044_b0440
  article-title: The promise of artificial intelligence in chemical engineering: is it here, finally?
  publication-title: AIChE J.
  doi: 10.1002/aic.16489
– volume: 24
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.ces.2019.07.044_b0040
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2008606
– volume: 119
  start-page: 465
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0055
  article-title: Optimization and control of a thin film growth process: a hybrid first principles/artificial neural network based multiscale modelling approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.08.029
– volume: 27
  start-page: 2683
  issue: 12
  year: 2016
  ident: 10.1016/j.ces.2019.07.044_b0280
  article-title: Landslide displacement prediction with uncertainty based on neural networks with random hidden weights
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2015.2512283
– volume: 55
  start-page: 3803
  issue: 18
  year: 2000
  ident: 10.1016/j.ces.2019.07.044_b0210
  article-title: A neural adaptive controller
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00034-8
– volume: 51
  start-page: 2495
  issue: 9
  year: 2005
  ident: 10.1016/j.ces.2019.07.044_b0025
  article-title: Nonlinear adaptive model predictive control based on self-correcting neural network models
  publication-title: AIChE J.
  doi: 10.1002/aic.10505
– volume: 34
  start-page: 70
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0340
  article-title: Robust multivariable estimation and control in an epitaxial thin film growth process under uncertainty
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.07.002
– volume: 47
  start-page: 1387
  issue: 6
  year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0405
  article-title: Design of fuel additives using neural networks and evolutionary algorithms
  publication-title: AIChE J.
  doi: 10.1002/aic.690470615
– volume: 113
  start-page: 184
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0100
  article-title: Multiscale three-dimensional CFD modeling for PECVD of amorphous silicon thin films
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.03.011
– volume: 5
  start-page: 161
  issue: 4
  year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0020
  article-title: Population balance model-based hybrid neural network for a pharmaceutical milling process
  publication-title: J. Pharm. Innovat.
  doi: 10.1007/s12247-010-9090-2
– volume: 28
  start-page: 1285
  year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0395
  article-title: Multi-Scale chemical product design using the reverse problem formulation
  publication-title: Comput. Aid. Chem. Eng.
  doi: 10.1016/S1570-7946(10)28215-9
– volume: 21
  start-page: 29
  issue: 1
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0035
  article-title: Deep learning for automated drivetrain fault detection
  publication-title: Wind Energy
  doi: 10.1002/we.2142
– volume: 118
  start-page: 283
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0260
  article-title: Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.08.011
– volume: 145
  start-page: 159
  year: 2019
  ident: 10.1016/j.ces.2019.07.044_b0115
  article-title: Microscopic modeling and optimal operation of thermal atomic layer deposition
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.03.004
– ident: 10.1016/j.ces.2019.07.044_b0085
  doi: 10.1007/978-0-8176-4793-3
– volume: 30
  start-page: 1
  year: 2005
  ident: 10.1016/j.ces.2019.07.044_b0460
  article-title: A review of multiscale analysis: examples from systems biology, materials engineering, and other fluid-surface interacting systems
  publication-title: Adv. Chem. Eng.
  doi: 10.1016/S0065-2377(05)30001-9
– volume: 256
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0205
  article-title: Regression and Kriging metamodels with their experimental designs in simulation: a review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.06.041
– volume: 35
  start-page: 1803
  issue: 11
  year: 1989
  ident: 10.1016/j.ces.2019.07.044_b0465
  article-title: Incipient fault diagnosis of chemical processes via artificial neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690351106
– volume: 43
  start-page: 5512
  issue: 11
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0275
  article-title: Application of general regression neural network to model a novel integrated fluidized bed gasifier
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.130
– volume: 35
  start-page: 1993
  issue: 12
  year: 1989
  ident: 10.1016/j.ces.2019.07.044_b0445
  article-title: A neural network methodology for process fault diagnosis
  publication-title: AIChE J.
  doi: 10.1002/aic.690351210
– volume: 6
  issue: 11
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0470
  article-title: Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical Manufacturing
  publication-title: Mathematics
  doi: 10.3390/math6110242
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.ces.2019.07.044_b0160
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 103
  start-page: 39
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0300
  article-title: Subspace model identification and model predictive control based cost analysis of a semicontinuous distillation process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.03.011
– volume: 2
  start-page: 164
  issue: 2
  year: 1944
  ident: 10.1016/j.ces.2019.07.044_b0265
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 95
  start-page: 237
  year: 2016
  ident: 10.1016/j.ces.2019.07.044_b0190
  article-title: A new multilevel input layer artificial neural network for predicting flight delays at JFK airport
  publication-title: Procedia – Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.321
– volume: 147
  start-page: 529
  year: 2019
  ident: 10.1016/j.ces.2019.07.044_b0490
  article-title: Multiscale computational fluid dynamics modeling of thermal atomic layer deposition with application to chamber design
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.05.049
– volume: 38
  start-page: 159
  issue: 1–2
  year: 2003
  ident: 10.1016/j.ces.2019.07.044_b0005
  article-title: A reduced-basis discretization method for chemical vapor deposition reactor simulation
  publication-title: Math. Comput. Modell.
  doi: 10.1016/S0895-7177(03)90013-6
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.ces.2019.07.044_b0290
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 100
  start-page: 129
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0095
  article-title: Multiscale modeling and run-to-run control of PECVD of thin film solar cells
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.06.065
– volume: 58
  start-page: 3531
  issue: 8
  year: 2019
  ident: 10.1016/j.ces.2019.07.044_b0485
  article-title: Developing quantitative structure-property relationship models to predict the upper flammability limit using machine learning
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b05938
– volume: 106
  start-page: 183
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0145
  article-title: Subspace-based model identification of a hydrogen plant startup dynamics
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.05.020
– year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0130
– volume: 119
  start-page: 101
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0310
  article-title: Data-driven identification of interpretable reduced-order models using sparse regression
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.08.010
– volume: 66
  start-page: 5955
  issue: 23
  year: 2011
  ident: 10.1016/j.ces.2019.07.044_b0175
  article-title: Dynamics and control of aggregate thin film surface morphology for improved light trapping: implementation on a large-lattice kinetic Monte Carlo model
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.08.020
– volume: 58
  start-page: 81
  issue: 1
  year: 2003
  ident: 10.1016/j.ces.2019.07.044_b0170
  article-title: Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00432-3
– ident: 10.1016/j.ces.2019.07.044_b0250
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.ces.2019.07.044_b0150
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 28
  start-page: 755
  issue: 5
  year: 2004
  ident: 10.1016/j.ces.2019.07.044_b0320
  article-title: Combining first principles modelling and artificial neural networks: a general framework
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.02.014
– volume: 22
  start-page: 815
  issue: 6
  year: 2007
  ident: 10.1016/j.ces.2019.07.044_b0325
  article-title: Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2006.03.004
– volume: 42
  start-page: 599
  issue: 8–9
  year: 2003
  ident: 10.1016/j.ces.2019.07.044_b0375
  article-title: Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/S0255-2701(02)00209-X
– volume: 64
  start-page: 545
  issue: 5
  year: 1992
  ident: 10.1016/j.ces.2019.07.044_b0050
  article-title: Optimal minimal neural interpretation of spectra
  publication-title: Anal. Chem.
  doi: 10.1021/ac00029a018
– volume: 160
  start-page: 564
  issue: 2
  year: 2000
  ident: 10.1016/j.ces.2019.07.044_b0330
  article-title: Low-dimensional approximations of multiscale epitaxial growth models for microstructure control of materials
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6473
– start-page: 505
  year: 1994
  ident: 10.1016/j.ces.2019.07.044_b0425
  article-title: Shrinking Horizon model predictive control applied to autoclave curing of composite laminate materials
– volume: 52
  start-page: 3018
  issue: 9
  year: 2006
  ident: 10.1016/j.ces.2019.07.044_b0380
  article-title: ANN–based prediction of two-phase gas– liquid flow patterns in a circular conduit
  publication-title: AIChE J.
  doi: 10.1002/aic.10922
– volume: 326
  start-page: 15
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0270
  article-title: Carbon nanotube growth: First-principles-based kinetic Monte Carlo model
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.03.010
– volume: 64
  issue: 3
  year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0240
  article-title: Multiscale model for epitaxial growth of films: growth mode transition
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.035401
– volume: 39
  start-page: 43
  issue: 1
  year: 1997
  ident: 10.1016/j.ces.2019.07.044_b0415
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemomet. Intell. Laborat. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– year: 1993
  ident: 10.1016/j.ces.2019.07.044_b0125
– volume: 63
  start-page: 3361
  issue: 8
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0195
  article-title: A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems
  publication-title: AIChE J.
  doi: 10.1002/aic.15702
– volume: 382
  start-page: 20
  issue: 1–4
  year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0430
  article-title: Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.12.013
– start-page: 547
  year: 1992
  ident: 10.1016/j.ces.2019.07.044_b0450
  article-title: Diagnosing noisy process data using neural networks
– volume: 86
  start-page: 1193
  year: 2016
  ident: 10.1016/j.ces.2019.07.044_b0255
  article-title: Nonlinear predictive control of dynamic systems represented by Wiener-Hammerstein models
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2957-0
– ident: 10.1016/j.ces.2019.07.044_b0365
– volume: 32
  start-page: 1951
  issue: 9
  year: 1993
  ident: 10.1016/j.ces.2019.07.044_b0185
  article-title: Predictive control of quality in a batch manufacturing process using artificial neural network models
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00021a019
– volume: 3
  start-page: 101
  issue: 2
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0155
  article-title: Data-driven modelling of biological multi-scale processes
  publication-title: J. Coupled Syst. Multiscale Dyn.
  doi: 10.1166/jcsmd.2015.1069
– volume: 65
  start-page: 5018
  issue: 17
  year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0065
  article-title: Multiscale modeling in chemical vapor deposition processes: coupling reactor scale with feature scale computations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.06.004
– volume: 23
  start-page: 239
  issue: 2
  year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0410
  article-title: Temporal-kernel recurrent neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.10.009
– volume: 148
  start-page: 222
  issue: 3
  year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0165
  article-title: Evolving wavelet-based networks for short-term load forecasting
  publication-title: IEE Proc. – Generat. Transmiss. Distribut.
  doi: 10.1049/ip-gtd:20010286
– volume: 49
  start-page: 4858
  issue: 7
  year: 1994
  ident: 10.1016/j.ces.2019.07.044_b0285
  article-title: Surface roughness and conductivity of thin Ag films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.4858
– volume: 62
  issue: 7
  year: 2016
  ident: 10.1016/j.ces.2019.07.044_b0060
  article-title: Distributional uncertainty analysis and robust optimization in spatially heterogeneous multiscale process systems
  publication-title: AIChE J.
  doi: 10.1002/aic.15215
– year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0120
  article-title: Adaptive neural network short term load forecasting with wavelet decompositions
– volume: 3
  start-page: 23
  issue: 1
  year: 1990
  ident: 10.1016/j.ces.2019.07.044_b0245
  article-title: A time-delay neural network architecture for isolated word recognition
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(90)90044-L
– volume: 43
  start-page: 3031
  issue: 11
  year: 1997
  ident: 10.1016/j.ces.2019.07.044_b0455
  article-title: Multiscale Integration Hybrid Algorithms for Homogeneous-Heterogeneous Reactors
  publication-title: AIChE J.
  doi: 10.1002/aic.690431115
– volume: 140
  start-page: 90
  year: 2016
  ident: 10.1016/j.ces.2019.07.044_b0350
  article-title: Stochastic nonlinear model predictive control applied to a thin film deposition process under uncertainty
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.10.004
– volume: 59
  start-page: 2317
  issue: 7
  year: 2013
  ident: 10.1016/j.ces.2019.07.044_b0220
  article-title: Modeling and control of protein crystal shape and size in batch crystallization
  publication-title: AIChE J.
  doi: 10.1002/aic.14039
– volume: 47
  start-page: 126
  issue: 1
  year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0305
  article-title: Artificial neural-network-assisted stochastic process optimization strategies
  publication-title: AIChE J.
  doi: 10.1002/aic.690470113
– volume: 58
  start-page: 3131
  issue: 14
  year: 2003
  ident: 10.1016/j.ces.2019.07.044_b0360
  article-title: ANNSA: a hybrid artificial neural network/simulated annealing algorithm for optimal control problems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(03)00168-4
– volume: 22
  start-page: 1773
  issue: 9
  year: 2012
  ident: 10.1016/j.ces.2019.07.044_b0110
  article-title: Dynamic output feedback model predictive control for nonlinear systems represented by Hammerstein – Wiener model
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.07.011
– ident: 10.1016/j.ces.2019.07.044_b0420
  doi: 10.1109/ICPST.2002.1047201
– volume: 528
  start-page: 52
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0070
  article-title: Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.007
– volume: 30
  start-page: 1670
  issue: 10–12
  year: 2006
  ident: 10.1016/j.ces.2019.07.044_b0080
  article-title: Control and optimization of multiscale process systems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.05.025
– volume: 200
  start-page: 42
  year: 2016
  ident: 10.1016/j.ces.2019.07.044_b0480
  article-title: Application of artificial neural networks to co-combustion of hazelnut husk–lignite coal blends
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.09.114
– volume: 106
  start-page: 179
  year: 2012
  ident: 10.1016/j.ces.2019.07.044_b0315
  article-title: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.05.002
– volume: 62
  start-page: 7078
  issue: 24
  year: 2007
  ident: 10.1016/j.ces.2019.07.044_b0135
  article-title: Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas–liquid systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.07.071
– volume: 519
  start-page: 1895
  issue: 1
  year: 2014
  ident: 10.1016/j.ces.2019.07.044_b0030
  article-title: Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.10.009
– volume: 136
  start-page: 50
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0090
  article-title: Multiscale modeling and operation of PECVD of thin film solar cells
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.02.027
– year: 2002
  ident: 10.1016/j.ces.2019.07.044_b0045
– year: 2011
  ident: 10.1016/j.ces.2019.07.044_b0390
– volume: 55
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.ces.2019.07.044_b0435
  article-title: DROWNING IN DATA: Informatics and modeling challenges in a data-rich networked world
  publication-title: AIChE J.
  doi: 10.1002/aic.11756
– volume: 103
  start-page: 300
  issue: 1
  year: 2012
  ident: 10.1016/j.ces.2019.07.044_b0215
  article-title: Estimating biofilm reaction kinetics using hybrid mechanistic-neural network rate function model
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.006
– volume: 136
  start-page: 675
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0385
  article-title: Optimization of simultaneously propagating multiple fractures in hydraulic fracturing to achieve uniform growth using data-based model reduction
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.06.015
– volume: 56
  start-page: 7491
  issue: 26
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0140
  article-title: Subspace identification-based modeling and control of batch particulate processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00682
– volume: 136
  start-page: 38
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0345
  article-title: A robust nonlinear model predictive controller for a multiscale thin film deposition process
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.02.002
– year: 2007
  ident: 10.1016/j.ces.2019.07.044_b0370
– volume: 312
  start-page: 1449
  issue: 8
  year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0015
  article-title: Development of a multiscale model for an atomic layer deposition process
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.12.041
– year: 2010
  ident: 10.1016/j.ces.2019.07.044_b0010
  article-title: Multiscale modeling and optimization of an atomic layer deposition process for nanomanufacturing applications
– volume: 119
  start-page: 30
  year: 2014
  ident: 10.1016/j.ces.2019.07.044_b0225
  article-title: Crystal shape and size control using a plug flow crystallization configuration
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.07.058
– volume: 54
  start-page: 11903
  issue: 47
  year: 2015
  ident: 10.1016/j.ces.2019.07.044_b0235
  article-title: Multiscale, multidomain modeling and parallel computation: application to crystal shape evolution in crystallization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b02942
– volume: 145
  start-page: 173
  year: 2019
  ident: 10.1016/j.ces.2019.07.044_b0475
  article-title: Model predictive control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via machine learning modeling
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.02.016
– volume: 140
  start-page: 33
  year: 2018
  ident: 10.1016/j.ces.2019.07.044_b0200
  article-title: Multilevel Monte Carlo for noise estimation in stochastic multiscale systems
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.10.006
– volume: 11
  start-page: 1736
  issue: 4
  year: 1996
  ident: 10.1016/j.ces.2019.07.044_b0075
  article-title: Neural network based short-term load forecasting using weather compensation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.544636
– volume: 107
  start-page: 47
  year: 2014
  ident: 10.1016/j.ces.2019.07.044_b0230
  article-title: Modeling and control of crystal shape in continuous protein crystallization
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.12.005
– volume: 91
  start-page: 1615
  issue: 8 SUPPL.
  year: 2001
  ident: 10.1016/j.ces.2019.07.044_b0105
  article-title: Artificial neural networks: opening the black box
  publication-title: Cancer
  doi: 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
– volume: 261
  start-page: 279
  issue: 1
  year: 2017
  ident: 10.1016/j.ces.2019.07.044_b0180
  article-title: Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.01.035
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.ces.2019.07.044_b0295
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 66
  start-page: 4319
  issue: 19
  year: 2011
  ident: 10.1016/j.ces.2019.07.044_b0355
  article-title: A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.05.050
– volume: 116
  start-page: 590
  year: 2014
  ident: 10.1016/j.ces.2019.07.044_b0335
  article-title: Uncertainty analysis and robust optimization of multiscale process systems with application to epitaxial thin film growth
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.05.027
SSID ssj0007710
Score 2.528464
Snippet •Artificial Neural Networks (ANNs) were trained on stochastic multiscale model data.•ANNs were used in online nonlinear model predictive control scheme.•ANNs...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1230
SubjectTerms Artificial neural network
Machine learning
Multiscale stochastic system
Nonlinear model predictive control
Shrinking horizon optimization
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqLsCAeIrykgcmUGjiuHE8ooqqQqITlbpFdmJDUUmjPoRY-O3cOUkpA0ViSZTIlpM7--4sf_cdIVecS9vhTHvGZpHHYwNrTrPUs1pEvg6sSQ3mOz8Oov6QP4w6owbp1rkwCKusbH9p0521rt60K2m2i_EYc3x9ydDfSQh7ITLHDHYeIazv9vMb5iFE4NfV1LB1fbLpMF6wFBHdJR1_J-e_-aatZV6oj3c1maz5nt4e2a2CRnpXftc-aZj8gOysUQkekmJQcl6oGXXFbWgxwyMYNGa0gqPTqaWKOgThHDRj6OJlnFM7nrzRzNTgLVqUmQMUAfHPFEVRckxQZL50N4cbnx-RYe_-qdv3qmoKXhoKsfAyGXeYBcMoO4qFsG20cOUqtkFobQphEYuQKCBQoYA1b0FZIouZFdrXPE5lEB6TZj7NzQmhQkLcZDMhtM44iF4piCKNjE0Q-VyHrEX8Wo5JWlGNY8WLSVJjyl4T-JUERZ_4IgHRt8j1qktR8mxsasxr5SQ_JksCfmBTt5uVIv8e5PR_g5yRbXxy6YrsnDQXs6W5gLhloS_dxPwC3WvsFw
  priority: 102
  providerName: Elsevier
Title Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks
URI https://dx.doi.org/10.1016/j.ces.2019.07.044
http://hdl.handle.net/10012/15674
UnpaywallVersion submittedVersion
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 1873-4405
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 1873-4405
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 1873-4405
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 1873-4405
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007710
  issn: 1873-4405
  databaseCode: AKRWK
  dateStart: 19510101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se1APvsVn2YMnJTXZbLPJsYilKhYPFvQUdpNdXzWGmiJ68Lc7m4cWpYqXhMAuSZjZnW-Zb74B2GMs0G1GpaV07FnMV7jmJI0sLblnS0erSJl65_O-1xuw06v21QxU_Qm_yQsYgSB6iEcMzmrQ8EwOqQ6NQf-ic111SMMQbiCu43PXYog-qsxlzuHCpWbYW0Guz8nYtNgzO05S8foihsOJ2NJd_KrQKSglD61xJlvR20_BxumfvQQLJbIkncIVlmFGJSswP6E3uAppvxDGECOSd8Ah6cjkacyOR0rOOnnSRJCcZviM5lMku71LiL4bPpJYVQwvkhblBcSw5m-I8b5CiIIYecz8lpPLn9dg0D2-POpZZcsFK3I5z6w48NtU4-4ZtAV18Wyp8cqErx1X6wixE_WMmoAjXI4bg0aL8tinmktbMj8KHHcd6slTojaA8ADBlY45lzJmnu0LgVBTBb5yPJtJl26CXRkjjEo9ctMWYxhWxLP7EH8lNPYLbR6i_TZh_3NKWohx_DaYVRYOSzRRoIQQg8Vv0w4-veHvl2z9a_Q2zJmnvJSR7kA9G43VLmKaTDah1np3mtDonJz1-s3Sxz8AhE310g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFOMZw6cQBVtmjbNEU2gDcZOIHGLkjaBodFV2xDi3-P0McEBkLi0UlsrrZ3YrvL5M8ApY8JGjGrP2Cz2WGJwzWmaelbz2NeBNalx9c53w7j3wG4eo8cWdJtaGAerrH1_5dNLb11fuai1eVGMRq7G1xfUxTuBaS9m5kuwzCL0yW1Yvuzf9oYLh8x54DcN1ZxAs7lZwrxwNTqAlygpPBn7KTytvOWF-nhX4_GX8HO9Aet13kguq1fbhJbJt2DtC5vgNhTDivZCTUnZ34YUU7cL4_wZqRHpZGKJIiWIcIbGMWT-PMqJHY1fSWYa_BYpquIB4jDxT8Rpo6KZII78sjyV0PHZDjxcX913e17dUMFLQ87nXiaSiFr0jSJSNMQ_R4tHphIbhNammBnR2HEFBCrkuOwt2otnCbVc-5olqQjCXWjnk9zsAeECUyebca51xlD7SmEiaURigthnOqQd8Bs9yrRmG3dNL8aygZW9SPwU6VQvfS5R9R04W4gUFdXGbw-zxjjy23yRGAp-EztfGPLvQfb_N8gJrPTu7wZy0B_eHsCqu1NWL9JDaM-nb-YI05i5Pq6n6SdcGvBQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5ze1AfvIvzRh58UjrbNGvSxyGOITh8cDCfStIm3mpXtg7RX-9JL3Mom_jSUkhoyznJ-cL5zncQOqPU121KpKV05FmUK1hzkoSWlsyzpaNVqEy9823f6w3ozbA9rKGqP-EPeQEjEEQu4YjB6ApqeCaHVEeNQf-u81B1SIMQbiCuw5lrUUAfVeYy53DBUjPsLT_X56R0UexZnSap-HgXcTwXW7qb3xU6BaXktTXNZCv8_C3YuPizt9BGiSxxp3CFbVRTyQ5an9Mb3EVpvxDGEGOcd8DB6djkacyOh0vOOh5pLHBOM5yA-RTOnp4TrJ_jNxypiuGF06K8ABvW_CM23lcIUWAjj5nfcnL5ZA8Nutf3Vz2rbLlghS5jmRX5vE007J5-WxAXzpYarlRw7bhah4CdiGfUBBzhMtgYNFiURZxoJm1Jeeg77j6qJ6NEHSDMfABXOmJMyoh6NhcCoKbyuXI8m0qXNJFdGSMISz1y0xYjDiri2UsAvxIY-wU2C8B-TXQ-m5IWYhzLBtPKwkGJJgqUEECwWDbtYuYNf7_k8F-jj9CaecpLGckxqmfjqToBTJPJ09KrvwApWfNG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+model+predictive+control+of+a+multiscale+thin+film+deposition+process+using+artificial+neural+networks&rft.jtitle=Chemical+engineering+science&rft.au=Kimaev%2C+Grigoriy&rft.au=Ricardez-Sandoval%2C+Luis+A.&rft.date=2019-11-02&rft.issn=0009-2509&rft.volume=207&rft.spage=1230&rft.epage=1245&rft_id=info:doi/10.1016%2Fj.ces.2019.07.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2019_07_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon