Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro
The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi,...
Saved in:
Published in | The Journal of biological chemistry Vol. 269; no. 1; pp. 633 - 638 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Biochemistry and Molecular Biology
07.01.1994
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X |
DOI | 10.1016/s0021-9258(17)42396-9 |
Cover
Abstract | The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells
are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a
sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937).
In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative
involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2
cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic
acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed
when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic
acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of
HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA
reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that
the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate
and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not,
by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic
reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components
for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum. |
---|---|
AbstractList | The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells
are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a
sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937).
In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative
involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2
cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic
acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed
when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic
acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of
HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA
reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that
the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate
and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not,
by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic
reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components
for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum. The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum.The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum. The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum. |
Author | P A Edwards C C Correll |
Author_xml | – sequence: 1 givenname: C.C. surname: Correll fullname: Correll, C.C. – sequence: 2 givenname: P.A. surname: Edwards fullname: Edwards, P.A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8276863$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVBR2RZ-QqVwQeVg8Edix-JUVXxJRRwAiZvl2JONUWIvtrMQfj3Z7qoHLsxlRnrvjWbeu0BnIQZA6IqSV5RQ8ToTwihWrGmvqXxZM64EVo_QhpKWY97Q72do80B5gi5y_kHWqhU9R-ctk6IVfIPGT7A3YwzeVsZ6hx3sIDgIpXKwTcaZ4mOoYl9xPCwuxd8L5niCMizjdpyLScuIbYTwZ5mguqkSuNkWk6Hyodr7faxMcMe5pPgUPe7NmOHZqV-ib-_efr39gO8-v_94e3OHLZeyYNf0BKC3lrraES46Acq1kncAigETTd0L1fTS2K4lEsBB3dCWMaCcyhYMv0Qvjnt3Kf6cIRc9-WxhHE2AOGctBec1o2IlXp2IczeB07vkp_UlfbJnxZsjblPMOUH_wKBEH1LQXw4W64PFmkp9n4JWq-7NPzrry72VJRk__lf9_Kge_Hb45RPozkc7wKSZUJrq9TD-F7RNmfE |
CitedBy_id | crossref_primary_10_1016_S0022_2275_20_33336_8 crossref_primary_10_1007_s00425_015_2254_z crossref_primary_10_3390_ijerph121012958 crossref_primary_10_1111_j_1432_1033_1996_0720u_x crossref_primary_10_1046_j_1525_1373_2000_22359_x crossref_primary_10_1016_j_febslet_2005_05_001 crossref_primary_10_1016_S0304_3835_01_00723_6 crossref_primary_10_1074_jbc_M109_032342 crossref_primary_10_1006_abbi_1998_0704 crossref_primary_10_1007_s11745_999_0405_5 crossref_primary_10_1046_j_1523_1755_2002_00319_x crossref_primary_10_1074_jbc_274_3_1856 crossref_primary_10_1074_jbc_271_44_27645 crossref_primary_10_1016_S0021_9258_17_32450_X crossref_primary_10_1074_jbc_271_14_7916 crossref_primary_10_1177_153537020422900701 crossref_primary_10_7554_eLife_64688 crossref_primary_10_1007_s11745_004_1233_3 crossref_primary_10_1146_annurev_biochem_081820_101010 crossref_primary_10_1177_089686080202200108 crossref_primary_10_1074_jbc_M206564200 crossref_primary_10_1074_jbc_M402442200 crossref_primary_10_1146_annurev_biochem_66_1_613 crossref_primary_10_1074_jbc_273_34_22037 crossref_primary_10_1016_j_jnutbio_2012_07_007 crossref_primary_10_1007_BF02254770 crossref_primary_10_1007_s11745_009_3344_0 crossref_primary_10_1097_00041433_199810000_00007 crossref_primary_10_1016_0014_5793_95_01479_9 crossref_primary_10_1111_j_1525_1373_2000_22359_x crossref_primary_10_1016_S0014_2999_01_01411_X crossref_primary_10_1074_jbc_M310053200 crossref_primary_10_1016_S0022_2275_20_32020_4 crossref_primary_10_1146_annurev_biochem_68_1_157 crossref_primary_10_1006_bbrc_1999_0945 crossref_primary_10_1016_S0039_6257_96_82007_8 crossref_primary_10_1074_jbc_271_24_14376 crossref_primary_10_1006_abbi_1997_0200 crossref_primary_10_1074_jbc_271_41_25630 crossref_primary_10_1111_j_1432_1033_1995_tb20665_x crossref_primary_10_1194_jlr_M033639 crossref_primary_10_1007_s00253_004_1720_5 crossref_primary_10_1074_jbc_270_49_29532 crossref_primary_10_1007_BF02522977 crossref_primary_10_1016_S0022_3565_24_36653_4 crossref_primary_10_1074_jbc_M004793200 crossref_primary_10_1002_mc_20039 crossref_primary_10_1074_jbc_M605575200 |
Cites_doi | 10.1016/S0021-9258(18)50064-8 10.1016/S0021-9258(18)60424-7 10.1126/science.2296720 10.7164/antibiotics.45.639 10.1097/00041433-199110000-00002 10.1016/S0021-9258(18)90945-2 10.1016/S0021-9258(18)68719-8 10.1083/jcb.115.5.1225 10.1016/S0021-9258(19)49754-8 10.1016/S0091-679X(08)61602-7 10.1016/S0021-9258(18)68397-8 10.1042/bj2330167 10.1083/jcb.117.5.959 10.1073/pnas.80.17.5198 10.1016/0003-2697(79)90716-4 10.1146/annurev.bi.61.070192.002035 10.1096/fasebj.4.15.2123808 10.1016/S0021-9258(18)48445-1 10.1016/S0021-9258(18)63906-7 10.1016/S0021-9258(19)74035-6 10.1073/pnas.89.19.9161 10.1016/S0021-9258(18)42246-6 10.1016/S0021-9258(17)44444-9 10.1016/S0021-9258(18)32171-9 10.1016/S0021-9258(17)44716-8 10.1016/0092-8674(85)90078-9 10.1016/S0021-9258(19)49735-4 10.1016/S0021-9258(18)61610-2 10.1016/S0022-2275(20)38491-1 10.1126/science.2296721 10.1016/S0021-9258(19)75205-3 10.1038/343425a0 10.1083/jcb.104.6.1693 10.1016/S0021-9258(18)32090-8 10.1038/227680a0 10.1016/S0021-9258(18)71442-7 10.1016/S0021-9258(18)45839-5 10.1016/S0021-9258(18)89764-2 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/s0021-9258(17)42396-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 638 |
ExternalDocumentID | 8276863 10_1016_S0021_9258_17_42396_9 269_1_633 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM 07185 – fundername: NHLBI NIH HHS grantid: HL 30568 |
GroupedDBID | - 02 08R 186 2WC 3O- 53G 55 5BI 5GY 5RE 5VS 85S AARDX AAWZA ABFLS ABOCM ABPPZ ABPTK ABUFD ABZEH ACNCT ADACO ADBBV ADBIT ADCOW AEILP AENEX AFFNX AFMIJ AIZTS ALMA_UNASSIGNED_HOLDINGS C1A CJ0 CS3 DIK DL DU5 DZ E3Z EBS EJD ET F20 F5P FA8 FRP GJ GX1 H13 HH5 IH2 J5H KM KQ8 L7B LI MVM MYA N9A NHB O0- OHM OHT OK1 P-O P0W P2P R.V RHF RHI RNS RPM SJN TBC TN5 UHB UPT UQL VH1 VQA WH7 WOQ X X7M XFK XHC XJT Y6R YZZ ZA5 ZGI ZY4 --- -DZ -ET -~X .55 .7T .GJ 0R~ 18M 29J 34G 39C 4.4 41~ 6TJ 79B AAEDW AAFWJ AALRI AAXUO AAYJJ AAYWO AAYXX ABDNZ ABFSI ABRJW ACGFO ACSFO ACVFH ACYGS ADCNI ADIYS ADNWM ADVLN ADXHL AEUPX AEXQZ AFPKN AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP AMRAJ AOIJS BAWUL BTFSW CITATION E.L FDB GROUPED_DOAJ HYE QZG ROL TR2 UKR W8F WHG XSW YQT YSK YWH YYP ZE2 ~02 ~KM AFOSN CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 |
ID | FETCH-LOGICAL-c377t-d5f0eefcc1d4d036b6e9d873bee92e2654f695f7acb807eede451822e13178ea3 |
ISSN | 0021-9258 |
IngestDate | Fri Sep 05 05:24:56 EDT 2025 Wed Feb 19 02:29:20 EST 2025 Thu Sep 25 00:40:22 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Tue Jan 05 14:51:57 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c377t-d5f0eefcc1d4d036b6e9d873bee92e2654f695f7acb807eede451822e13178ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/s0021-9258(17)42396-9 |
PMID | 8276863 |
PQID | 76334216 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_76334216 pubmed_primary_8276863 crossref_primary_10_1016_S0021_9258_17_42396_9 crossref_citationtrail_10_1016_S0021_9258_17_42396_9 highwire_biochem_269_1_633 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 1900 |
PublicationDate | 1994-01-07 |
PublicationDateYYYYMMDD | 1994-01-07 |
PublicationDate_xml | – month: 01 year: 1994 text: 1994-01-07 day: 07 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 1994 |
Publisher | American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: American Society for Biochemistry and Molecular Biology |
References | Edwards (10.1016/S0021-9258(17)42396-9_bib2) 1991 Chun (10.1016/S0021-9258(17)42396-9_bib18) 1990; 265 Faust (10.1016/S0021-9258(17)42396-9_bib26) 1987; 262 Horie (10.1016/S0021-9258(17)42396-9_bib28) 1990; 265 Edwards (10.1016/S0021-9258(17)42396-9_bib6) 1983; 258 Dawson (10.1016/S0021-9258(17)42396-9_bib29) 1992; 45 Farnsworth (10.1016/S0021-9258(17)42396-9_bib40) 1990; 247 Rosser (10.1016/S0021-9258(17)42396-9_bib5) 1989; 264 Clarke (10.1016/S0021-9258(17)42396-9_bib19) 1987; 7 Roitelman (10.1016/S0021-9258(17)42396-9_bib37) 1992; 267 Meigs (10.1016/S0021-9258(17)42396-9_bib17) 1992; 267 Balch (10.1016/S0021-9258(17)42396-9_bib41) 1989; 264 Anhert-Hilger (10.1016/S0021-9258(17)42396-9_bib34) 1989; 31 Edwards (10.1016/S0021-9258(17)42396-9_bib24) 1977; 252 Thrift (10.1016/S0021-9258(17)42396-9_bib16) 1992; 89 Jingami (10.1016/S0021-9258(17)42396-9_bib11) 1987; 104 Baxter (10.1016/S0021-9258(17)42396-9_bib30) 1992; 267 Nielsen (10.1016/S0021-9258(17)42396-9_bib23) 1983; 80 Goldstein (10.1016/S0021-9258(17)42396-9_bib1) 1990; 343 Panini (10.1016/S0021-9258(17)42396-9_bib36) 1989; 264 Skalnik (10.1016/S0021-9258(17)42396-9_bib13) 1988; 263 Edwards (10.1016/S0021-9258(17)42396-9_bib3) 1983; 258 Chin (10.1016/S0021-9258(17)42396-9_bib7) 1985; 5 Roitelman (10.1016/S0021-9258(17)42396-9_bib10) 1992; 117 Rilling (10.1016/S0021-9258(17)42396-9_bib39) 1990; 247 Joly (10.1016/S0021-9258(17)42396-9_bib32) 1991; 2 Chamberlain (10.1016/S0021-9258(17)42396-9_bib22) 1979; 98 Spear (10.1016/S0021-9258(17)42396-9_bib20) 1992; 267 Kim (10.1016/S0021-9258(17)42396-9_bib27) 1992; 267 Sinensky (10.1016/S0021-9258(17)42396-9_bib4) 1983; 258 Wikstrom (10.1016/S0021-9258(17)42396-9_bib15) 1992; 267 Maltese (10.1016/S0021-9258(17)42396-9_bib31) 1990; 4 Liscum (10.1016/S0021-9258(17)42396-9_bib9) 1985; 260 Gil (10.1016/S0021-9258(17)42396-9_bib12) 1985; 41 Schmidt (10.1016/S0021-9258(17)42396-9_bib33) 1984; 259 Li (10.1016/S0021-9258(17)42396-9_bib35) 1988; 29 Laemmli (10.1016/S0021-9258(17)42396-9_bib21) 1970; 227 Stafford (10.1016/S0021-9258(17)42396-9_bib14) 1991; 115 Ness (10.1016/S0021-9258(17)42396-9_bib25) 1986; 233 Nakanishi (10.1016/S0021-9258(17)42396-9_bib8) 1988; 263 Clarke (10.1016/S0021-9258(17)42396-9_bib38) 1992; 61 |
References_xml | – volume: 267 start-page: 23113 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib27 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)50064-8 – volume: 264 start-page: 11044 year: 1989 ident: 10.1016/S0021-9258(17)42396-9_bib36 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)60424-7 – volume: 247 start-page: 318 year: 1990 ident: 10.1016/S0021-9258(17)42396-9_bib39 publication-title: Science doi: 10.1126/science.2296720 – volume: 45 start-page: 614 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib29 publication-title: J. Antibiot. (Tokyo) doi: 10.7164/antibiotics.45.639 – volume: 2 start-page: 283 year: 1991 ident: 10.1016/S0021-9258(17)42396-9_bib32 publication-title: Curr. Opin. Lipid. doi: 10.1097/00041433-199110000-00002 – volume: 259 start-page: 10175 year: 1984 ident: 10.1016/S0021-9258(17)42396-9_bib33 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)90945-2 – volume: 263 start-page: 6836 year: 1988 ident: 10.1016/S0021-9258(17)42396-9_bib13 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)68719-8 – volume: 115 start-page: 1225 year: 1991 ident: 10.1016/S0021-9258(17)42396-9_bib14 publication-title: J. Cell Biol. doi: 10.1083/jcb.115.5.1225 – volume: 267 start-page: 11705 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib30 publication-title: J. Biol Chem. doi: 10.1016/S0021-9258(19)49754-8 – volume: 31 start-page: 63 year: 1989 ident: 10.1016/S0021-9258(17)42396-9_bib34 publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(08)61602-7 – volume: 263 start-page: 8929 year: 1988 ident: 10.1016/S0021-9258(17)42396-9_bib8 publication-title: J. Biol Chem. doi: 10.1016/S0021-9258(18)68397-8 – volume: 233 start-page: 167 year: 1986 ident: 10.1016/S0021-9258(17)42396-9_bib25 publication-title: Biochem. J. doi: 10.1042/bj2330167 – volume: 117 start-page: 959 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib10 publication-title: J. Cell Biol. doi: 10.1083/jcb.117.5.959 – volume: 80 start-page: 5198 year: 1983 ident: 10.1016/S0021-9258(17)42396-9_bib23 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.80.17.5198 – volume: 98 start-page: 132 year: 1979 ident: 10.1016/S0021-9258(17)42396-9_bib22 publication-title: Anal Biochem. doi: 10.1016/0003-2697(79)90716-4 – volume: 61 start-page: 355 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib38 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.61.070192.002035 – volume: 7 start-page: 3138 year: 1987 ident: 10.1016/S0021-9258(17)42396-9_bib19 publication-title: Mol. Cell. Biol. – volume: 4 start-page: 3319 year: 1990 ident: 10.1016/S0021-9258(17)42396-9_bib31 publication-title: FASEB J. doi: 10.1096/fasebj.4.15.2123808 – volume: 267 start-page: 5 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)48445-1 – volume: 264 start-page: 12653 year: 1989 ident: 10.1016/S0021-9258(17)42396-9_bib5 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63906-7 – volume: 267 start-page: 25264 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib37 publication-title: J. Biol Chem. doi: 10.1016/S0021-9258(19)74035-6 – volume: 89 start-page: 9161 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib16 publication-title: Proc. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.89.19.9161 – volume: 267 start-page: 13547 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib17 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42246-6 – volume: 258 start-page: 10219 year: 1983 ident: 10.1016/S0021-9258(17)42396-9_bib3 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44444-9 – volume: 258 start-page: 7272 year: 1983 ident: 10.1016/S0021-9258(17)42396-9_bib6 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32171-9 – volume: 5 start-page: 634 year: 1985 ident: 10.1016/S0021-9258(17)42396-9_bib7 publication-title: Mol. Cell. Biol. – volume: 265 start-page: 18075 year: 1990 ident: 10.1016/S0021-9258(17)42396-9_bib28 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44716-8 – volume: 41 start-page: 249 year: 1985 ident: 10.1016/S0021-9258(17)42396-9_bib12 publication-title: Cell doi: 10.1016/0092-8674(85)90078-9 – volume: 267 start-page: 14462 year: 1992 ident: 10.1016/S0021-9258(17)42396-9_bib20 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49735-4 – volume: 262 start-page: 1996 year: 1987 ident: 10.1016/S0021-9258(17)42396-9_bib26 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)61610-2 – volume: 29 start-page: 781 year: 1988 ident: 10.1016/S0021-9258(17)42396-9_bib35 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)38491-1 – volume: 247 start-page: 320 year: 1990 ident: 10.1016/S0021-9258(17)42396-9_bib40 publication-title: Science doi: 10.1126/science.2296721 – volume: 252 start-page: 1057 year: 1977 ident: 10.1016/S0021-9258(17)42396-9_bib24 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)75205-3 – volume: 343 start-page: 425 year: 1990 ident: 10.1016/S0021-9258(17)42396-9_bib1 publication-title: Nature doi: 10.1038/343425a0 – volume: 104 start-page: 1693 year: 1987 ident: 10.1016/S0021-9258(17)42396-9_bib11 publication-title: J. Cell Biol. doi: 10.1083/jcb.104.6.1693 – start-page: 383 year: 1991 ident: 10.1016/S0021-9258(17)42396-9_bib2 – volume: 258 start-page: 8547 year: 1983 ident: 10.1016/S0021-9258(17)42396-9_bib4 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32090-8 – volume: 227 start-page: 680 year: 1970 ident: 10.1016/S0021-9258(17)42396-9_bib21 publication-title: Nature doi: 10.1038/227680a0 – volume: 264 start-page: 16965 year: 1989 ident: 10.1016/S0021-9258(17)42396-9_bib41 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)71442-7 – volume: 265 start-page: 22004 year: 1990 ident: 10.1016/S0021-9258(17)42396-9_bib18 publication-title: J. Biol Chem. doi: 10.1016/S0021-9258(18)45839-5 – volume: 260 start-page: 522 year: 1985 ident: 10.1016/S0021-9258(17)42396-9_bib9 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)89764-2 |
SSID | ssj0000491 |
Score | 1.6884041 |
Snippet | The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells
are incubated with sterols or... The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 633 |
SubjectTerms | Animals Benzylamines - pharmacology Bridged Bicyclo Compounds - pharmacology Bridged Bicyclo Compounds, Heterocyclic Cells, Cultured Enzyme Inhibitors - pharmacology Hydrolysis Hydroxymethylglutaryl CoA Reductases - metabolism Male Mevalonic Acid - antagonists & inhibitors Mevalonic Acid - metabolism Mevalonic Acid - pharmacology Microsomes, Liver - enzymology Rats Rats, Sprague-Dawley Sterols - pharmacology Thiophenes - pharmacology Tricarboxylic Acids - pharmacology |
Title | Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro |
URI | http://www.jbc.org/content/269/1/633.abstract https://www.ncbi.nlm.nih.gov/pubmed/8276863 https://www.proquest.com/docview/76334216 |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwGA06H_RF5ubwzql5EFEktT-Spnm8XJQhTBA32Ftok1Qv3LXj2g26v94vSZvu-nPzpYRC09BzknzNl5yD0Ms6EaqsY0qEEQWhuoxJpeOCFMw6W2vGjJNdPPqUH57Qj6fsdFrMcadLuipSV789V_I_qMI9wNWekr0FsqFSuAFlwBeugDBcb4TxkdXqdhY2pVpqMhradm-1lYDQIRrMyLde2_0qJCPWMrpffYVmlet-RVRrmqv-zMAAsbYqrh3ManYN5HJ52Q7KTFDu1u31KHY6T-YiWS_k5KVGRv-4kNuw7h8-tbGIFlEI4J1XtDcJiObRtPbgRYQT4k1qw1mAhIjUi6-P42nqvVc2iONHx9xrXgwTbe5lXX4Zw_1ywpdQtxWssusiVqowJ2KauMZk_U_zWdhlOG1gg6qkrUomXLpqpLiL7qUcwi2bx_88CczDD5M3WRxePh36eje16HXC3wyt2QxnRonpP_-uuLDleBs9HFDCc0-eR-iOaXbQ7rwpu_asx6-w2wHsUis76P5iRG8XrQK38Ca38DVu4bbGN-AWnuPALbxssOUWBm75MnDrMTr58P54cUgGZw6iMs47olkdG1MrlWiqIQaqciN0wbPKGJGaNGe0zgWreamqIuYQhhnK4Ec2NQmEq4Upsz201bSNeYKwjoU1VRAVrzSFWFHElMcqZXVW6NRwNkN0_MBSDbL11j1lJf8K7wxF4bFzr9vyrwf2R_QkdBvbXSQwWSYSWDtDL0Y8JeBgc2plY9qL7xKm54ymST5Dex7m8LYC6FXk2f5tG_IUPZi62gHa6tYX5hkEvl313FH1B-k_ptk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mevalonic+acid-dependent+degradation+of+3-hydroxy-3-methylglutaryl-coenzyme+A+reductase+in+vivo+and+in+vitro&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Correll%2C+C.C.&rft.au=Edwards%2C+P.A.&rft.date=1994-01-07&rft.issn=0021-9258&rft.volume=269&rft.issue=1&rft.spage=633&rft.epage=638&rft_id=info:doi/10.1016%2FS0021-9258%2817%2942396-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0021_9258_17_42396_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |