Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro

The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi,...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 269; no. 1; pp. 633 - 638
Main Authors Correll, C.C., Edwards, P.A.
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 07.01.1994
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
DOI10.1016/s0021-9258(17)42396-9

Cover

Abstract The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum.
AbstractList The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum.
The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum.The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum.
The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum.
Author P A Edwards
C C Correll
Author_xml – sequence: 1
  givenname: C.C.
  surname: Correll
  fullname: Correll, C.C.
– sequence: 2
  givenname: P.A.
  surname: Edwards
  fullname: Edwards, P.A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8276863$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVBR2RZ-QqVwQeVg8Edix-JUVXxJRRwAiZvl2JONUWIvtrMQfj3Z7qoHLsxlRnrvjWbeu0BnIQZA6IqSV5RQ8ToTwihWrGmvqXxZM64EVo_QhpKWY97Q72do80B5gi5y_kHWqhU9R-ctk6IVfIPGT7A3YwzeVsZ6hx3sIDgIpXKwTcaZ4mOoYl9xPCwuxd8L5niCMizjdpyLScuIbYTwZ5mguqkSuNkWk6Hyodr7faxMcMe5pPgUPe7NmOHZqV-ib-_efr39gO8-v_94e3OHLZeyYNf0BKC3lrraES46Acq1kncAigETTd0L1fTS2K4lEsBB3dCWMaCcyhYMv0Qvjnt3Kf6cIRc9-WxhHE2AOGctBec1o2IlXp2IczeB07vkp_UlfbJnxZsjblPMOUH_wKBEH1LQXw4W64PFmkp9n4JWq-7NPzrry72VJRk__lf9_Kge_Hb45RPozkc7wKSZUJrq9TD-F7RNmfE
CitedBy_id crossref_primary_10_1016_S0022_2275_20_33336_8
crossref_primary_10_1007_s00425_015_2254_z
crossref_primary_10_3390_ijerph121012958
crossref_primary_10_1111_j_1432_1033_1996_0720u_x
crossref_primary_10_1046_j_1525_1373_2000_22359_x
crossref_primary_10_1016_j_febslet_2005_05_001
crossref_primary_10_1016_S0304_3835_01_00723_6
crossref_primary_10_1074_jbc_M109_032342
crossref_primary_10_1006_abbi_1998_0704
crossref_primary_10_1007_s11745_999_0405_5
crossref_primary_10_1046_j_1523_1755_2002_00319_x
crossref_primary_10_1074_jbc_274_3_1856
crossref_primary_10_1074_jbc_271_44_27645
crossref_primary_10_1016_S0021_9258_17_32450_X
crossref_primary_10_1074_jbc_271_14_7916
crossref_primary_10_1177_153537020422900701
crossref_primary_10_7554_eLife_64688
crossref_primary_10_1007_s11745_004_1233_3
crossref_primary_10_1146_annurev_biochem_081820_101010
crossref_primary_10_1177_089686080202200108
crossref_primary_10_1074_jbc_M206564200
crossref_primary_10_1074_jbc_M402442200
crossref_primary_10_1146_annurev_biochem_66_1_613
crossref_primary_10_1074_jbc_273_34_22037
crossref_primary_10_1016_j_jnutbio_2012_07_007
crossref_primary_10_1007_BF02254770
crossref_primary_10_1007_s11745_009_3344_0
crossref_primary_10_1097_00041433_199810000_00007
crossref_primary_10_1016_0014_5793_95_01479_9
crossref_primary_10_1111_j_1525_1373_2000_22359_x
crossref_primary_10_1016_S0014_2999_01_01411_X
crossref_primary_10_1074_jbc_M310053200
crossref_primary_10_1016_S0022_2275_20_32020_4
crossref_primary_10_1146_annurev_biochem_68_1_157
crossref_primary_10_1006_bbrc_1999_0945
crossref_primary_10_1016_S0039_6257_96_82007_8
crossref_primary_10_1074_jbc_271_24_14376
crossref_primary_10_1006_abbi_1997_0200
crossref_primary_10_1074_jbc_271_41_25630
crossref_primary_10_1111_j_1432_1033_1995_tb20665_x
crossref_primary_10_1194_jlr_M033639
crossref_primary_10_1007_s00253_004_1720_5
crossref_primary_10_1074_jbc_270_49_29532
crossref_primary_10_1007_BF02522977
crossref_primary_10_1016_S0022_3565_24_36653_4
crossref_primary_10_1074_jbc_M004793200
crossref_primary_10_1002_mc_20039
crossref_primary_10_1074_jbc_M605575200
Cites_doi 10.1016/S0021-9258(18)50064-8
10.1016/S0021-9258(18)60424-7
10.1126/science.2296720
10.7164/antibiotics.45.639
10.1097/00041433-199110000-00002
10.1016/S0021-9258(18)90945-2
10.1016/S0021-9258(18)68719-8
10.1083/jcb.115.5.1225
10.1016/S0021-9258(19)49754-8
10.1016/S0091-679X(08)61602-7
10.1016/S0021-9258(18)68397-8
10.1042/bj2330167
10.1083/jcb.117.5.959
10.1073/pnas.80.17.5198
10.1016/0003-2697(79)90716-4
10.1146/annurev.bi.61.070192.002035
10.1096/fasebj.4.15.2123808
10.1016/S0021-9258(18)48445-1
10.1016/S0021-9258(18)63906-7
10.1016/S0021-9258(19)74035-6
10.1073/pnas.89.19.9161
10.1016/S0021-9258(18)42246-6
10.1016/S0021-9258(17)44444-9
10.1016/S0021-9258(18)32171-9
10.1016/S0021-9258(17)44716-8
10.1016/0092-8674(85)90078-9
10.1016/S0021-9258(19)49735-4
10.1016/S0021-9258(18)61610-2
10.1016/S0022-2275(20)38491-1
10.1126/science.2296721
10.1016/S0021-9258(19)75205-3
10.1038/343425a0
10.1083/jcb.104.6.1693
10.1016/S0021-9258(18)32090-8
10.1038/227680a0
10.1016/S0021-9258(18)71442-7
10.1016/S0021-9258(18)45839-5
10.1016/S0021-9258(18)89764-2
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/s0021-9258(17)42396-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 638
ExternalDocumentID 8276863
10_1016_S0021_9258_17_42396_9
269_1_633
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM 07185
– fundername: NHLBI NIH HHS
  grantid: HL 30568
GroupedDBID -
02
08R
186
2WC
3O-
53G
55
5BI
5GY
5RE
5VS
85S
AARDX
AAWZA
ABFLS
ABOCM
ABPPZ
ABPTK
ABUFD
ABZEH
ACNCT
ADACO
ADBBV
ADBIT
ADCOW
AEILP
AENEX
AFFNX
AFMIJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
C1A
CJ0
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
ET
F20
F5P
FA8
FRP
GJ
GX1
H13
HH5
IH2
J5H
KM
KQ8
L7B
LI
MVM
MYA
N9A
NHB
O0-
OHM
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
RPM
SJN
TBC
TN5
UHB
UPT
UQL
VH1
VQA
WH7
WOQ
X
X7M
XFK
XHC
XJT
Y6R
YZZ
ZA5
ZGI
ZY4
---
-DZ
-ET
-~X
.55
.7T
.GJ
0R~
18M
29J
34G
39C
4.4
41~
6TJ
79B
AAEDW
AAFWJ
AALRI
AAXUO
AAYJJ
AAYWO
AAYXX
ABDNZ
ABFSI
ABRJW
ACGFO
ACSFO
ACVFH
ACYGS
ADCNI
ADIYS
ADNWM
ADVLN
ADXHL
AEUPX
AEXQZ
AFPKN
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
AOIJS
BAWUL
BTFSW
CITATION
E.L
FDB
GROUPED_DOAJ
HYE
QZG
ROL
TR2
UKR
W8F
WHG
XSW
YQT
YSK
YWH
YYP
ZE2
~02
~KM
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
ID FETCH-LOGICAL-c377t-d5f0eefcc1d4d036b6e9d873bee92e2654f695f7acb807eede451822e13178ea3
ISSN 0021-9258
IngestDate Fri Sep 05 05:24:56 EDT 2025
Wed Feb 19 02:29:20 EST 2025
Thu Sep 25 00:40:22 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Tue Jan 05 14:51:57 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c377t-d5f0eefcc1d4d036b6e9d873bee92e2654f695f7acb807eede451822e13178ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/s0021-9258(17)42396-9
PMID 8276863
PQID 76334216
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_76334216
pubmed_primary_8276863
crossref_primary_10_1016_S0021_9258_17_42396_9
crossref_citationtrail_10_1016_S0021_9258_17_42396_9
highwire_biochem_269_1_633
ProviderPackageCode RHF
RHI
PublicationCentury 1900
PublicationDate 1994-01-07
PublicationDateYYYYMMDD 1994-01-07
PublicationDate_xml – month: 01
  year: 1994
  text: 1994-01-07
  day: 07
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 1994
Publisher American Society for Biochemistry and Molecular Biology
Publisher_xml – name: American Society for Biochemistry and Molecular Biology
References Edwards (10.1016/S0021-9258(17)42396-9_bib2) 1991
Chun (10.1016/S0021-9258(17)42396-9_bib18) 1990; 265
Faust (10.1016/S0021-9258(17)42396-9_bib26) 1987; 262
Horie (10.1016/S0021-9258(17)42396-9_bib28) 1990; 265
Edwards (10.1016/S0021-9258(17)42396-9_bib6) 1983; 258
Dawson (10.1016/S0021-9258(17)42396-9_bib29) 1992; 45
Farnsworth (10.1016/S0021-9258(17)42396-9_bib40) 1990; 247
Rosser (10.1016/S0021-9258(17)42396-9_bib5) 1989; 264
Clarke (10.1016/S0021-9258(17)42396-9_bib19) 1987; 7
Roitelman (10.1016/S0021-9258(17)42396-9_bib37) 1992; 267
Meigs (10.1016/S0021-9258(17)42396-9_bib17) 1992; 267
Balch (10.1016/S0021-9258(17)42396-9_bib41) 1989; 264
Anhert-Hilger (10.1016/S0021-9258(17)42396-9_bib34) 1989; 31
Edwards (10.1016/S0021-9258(17)42396-9_bib24) 1977; 252
Thrift (10.1016/S0021-9258(17)42396-9_bib16) 1992; 89
Jingami (10.1016/S0021-9258(17)42396-9_bib11) 1987; 104
Baxter (10.1016/S0021-9258(17)42396-9_bib30) 1992; 267
Nielsen (10.1016/S0021-9258(17)42396-9_bib23) 1983; 80
Goldstein (10.1016/S0021-9258(17)42396-9_bib1) 1990; 343
Panini (10.1016/S0021-9258(17)42396-9_bib36) 1989; 264
Skalnik (10.1016/S0021-9258(17)42396-9_bib13) 1988; 263
Edwards (10.1016/S0021-9258(17)42396-9_bib3) 1983; 258
Chin (10.1016/S0021-9258(17)42396-9_bib7) 1985; 5
Roitelman (10.1016/S0021-9258(17)42396-9_bib10) 1992; 117
Rilling (10.1016/S0021-9258(17)42396-9_bib39) 1990; 247
Joly (10.1016/S0021-9258(17)42396-9_bib32) 1991; 2
Chamberlain (10.1016/S0021-9258(17)42396-9_bib22) 1979; 98
Spear (10.1016/S0021-9258(17)42396-9_bib20) 1992; 267
Kim (10.1016/S0021-9258(17)42396-9_bib27) 1992; 267
Sinensky (10.1016/S0021-9258(17)42396-9_bib4) 1983; 258
Wikstrom (10.1016/S0021-9258(17)42396-9_bib15) 1992; 267
Maltese (10.1016/S0021-9258(17)42396-9_bib31) 1990; 4
Liscum (10.1016/S0021-9258(17)42396-9_bib9) 1985; 260
Gil (10.1016/S0021-9258(17)42396-9_bib12) 1985; 41
Schmidt (10.1016/S0021-9258(17)42396-9_bib33) 1984; 259
Li (10.1016/S0021-9258(17)42396-9_bib35) 1988; 29
Laemmli (10.1016/S0021-9258(17)42396-9_bib21) 1970; 227
Stafford (10.1016/S0021-9258(17)42396-9_bib14) 1991; 115
Ness (10.1016/S0021-9258(17)42396-9_bib25) 1986; 233
Nakanishi (10.1016/S0021-9258(17)42396-9_bib8) 1988; 263
Clarke (10.1016/S0021-9258(17)42396-9_bib38) 1992; 61
References_xml – volume: 267
  start-page: 23113
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib27
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)50064-8
– volume: 264
  start-page: 11044
  year: 1989
  ident: 10.1016/S0021-9258(17)42396-9_bib36
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)60424-7
– volume: 247
  start-page: 318
  year: 1990
  ident: 10.1016/S0021-9258(17)42396-9_bib39
  publication-title: Science
  doi: 10.1126/science.2296720
– volume: 45
  start-page: 614
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib29
  publication-title: J. Antibiot. (Tokyo)
  doi: 10.7164/antibiotics.45.639
– volume: 2
  start-page: 283
  year: 1991
  ident: 10.1016/S0021-9258(17)42396-9_bib32
  publication-title: Curr. Opin. Lipid.
  doi: 10.1097/00041433-199110000-00002
– volume: 259
  start-page: 10175
  year: 1984
  ident: 10.1016/S0021-9258(17)42396-9_bib33
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)90945-2
– volume: 263
  start-page: 6836
  year: 1988
  ident: 10.1016/S0021-9258(17)42396-9_bib13
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)68719-8
– volume: 115
  start-page: 1225
  year: 1991
  ident: 10.1016/S0021-9258(17)42396-9_bib14
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.115.5.1225
– volume: 267
  start-page: 11705
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib30
  publication-title: J. Biol Chem.
  doi: 10.1016/S0021-9258(19)49754-8
– volume: 31
  start-page: 63
  year: 1989
  ident: 10.1016/S0021-9258(17)42396-9_bib34
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(08)61602-7
– volume: 263
  start-page: 8929
  year: 1988
  ident: 10.1016/S0021-9258(17)42396-9_bib8
  publication-title: J. Biol Chem.
  doi: 10.1016/S0021-9258(18)68397-8
– volume: 233
  start-page: 167
  year: 1986
  ident: 10.1016/S0021-9258(17)42396-9_bib25
  publication-title: Biochem. J.
  doi: 10.1042/bj2330167
– volume: 117
  start-page: 959
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib10
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.117.5.959
– volume: 80
  start-page: 5198
  year: 1983
  ident: 10.1016/S0021-9258(17)42396-9_bib23
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.80.17.5198
– volume: 98
  start-page: 132
  year: 1979
  ident: 10.1016/S0021-9258(17)42396-9_bib22
  publication-title: Anal Biochem.
  doi: 10.1016/0003-2697(79)90716-4
– volume: 61
  start-page: 355
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib38
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.61.070192.002035
– volume: 7
  start-page: 3138
  year: 1987
  ident: 10.1016/S0021-9258(17)42396-9_bib19
  publication-title: Mol. Cell. Biol.
– volume: 4
  start-page: 3319
  year: 1990
  ident: 10.1016/S0021-9258(17)42396-9_bib31
  publication-title: FASEB J.
  doi: 10.1096/fasebj.4.15.2123808
– volume: 267
  start-page: 5
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib15
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48445-1
– volume: 264
  start-page: 12653
  year: 1989
  ident: 10.1016/S0021-9258(17)42396-9_bib5
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63906-7
– volume: 267
  start-page: 25264
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib37
  publication-title: J. Biol Chem.
  doi: 10.1016/S0021-9258(19)74035-6
– volume: 89
  start-page: 9161
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib16
  publication-title: Proc. Natl Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.19.9161
– volume: 267
  start-page: 13547
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib17
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42246-6
– volume: 258
  start-page: 10219
  year: 1983
  ident: 10.1016/S0021-9258(17)42396-9_bib3
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)44444-9
– volume: 258
  start-page: 7272
  year: 1983
  ident: 10.1016/S0021-9258(17)42396-9_bib6
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)32171-9
– volume: 5
  start-page: 634
  year: 1985
  ident: 10.1016/S0021-9258(17)42396-9_bib7
  publication-title: Mol. Cell. Biol.
– volume: 265
  start-page: 18075
  year: 1990
  ident: 10.1016/S0021-9258(17)42396-9_bib28
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)44716-8
– volume: 41
  start-page: 249
  year: 1985
  ident: 10.1016/S0021-9258(17)42396-9_bib12
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90078-9
– volume: 267
  start-page: 14462
  year: 1992
  ident: 10.1016/S0021-9258(17)42396-9_bib20
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)49735-4
– volume: 262
  start-page: 1996
  year: 1987
  ident: 10.1016/S0021-9258(17)42396-9_bib26
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)61610-2
– volume: 29
  start-page: 781
  year: 1988
  ident: 10.1016/S0021-9258(17)42396-9_bib35
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)38491-1
– volume: 247
  start-page: 320
  year: 1990
  ident: 10.1016/S0021-9258(17)42396-9_bib40
  publication-title: Science
  doi: 10.1126/science.2296721
– volume: 252
  start-page: 1057
  year: 1977
  ident: 10.1016/S0021-9258(17)42396-9_bib24
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)75205-3
– volume: 343
  start-page: 425
  year: 1990
  ident: 10.1016/S0021-9258(17)42396-9_bib1
  publication-title: Nature
  doi: 10.1038/343425a0
– volume: 104
  start-page: 1693
  year: 1987
  ident: 10.1016/S0021-9258(17)42396-9_bib11
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.104.6.1693
– start-page: 383
  year: 1991
  ident: 10.1016/S0021-9258(17)42396-9_bib2
– volume: 258
  start-page: 8547
  year: 1983
  ident: 10.1016/S0021-9258(17)42396-9_bib4
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)32090-8
– volume: 227
  start-page: 680
  year: 1970
  ident: 10.1016/S0021-9258(17)42396-9_bib21
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 264
  start-page: 16965
  year: 1989
  ident: 10.1016/S0021-9258(17)42396-9_bib41
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)71442-7
– volume: 265
  start-page: 22004
  year: 1990
  ident: 10.1016/S0021-9258(17)42396-9_bib18
  publication-title: J. Biol Chem.
  doi: 10.1016/S0021-9258(18)45839-5
– volume: 260
  start-page: 522
  year: 1985
  ident: 10.1016/S0021-9258(17)42396-9_bib9
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)89764-2
SSID ssj0000491
Score 1.6884041
Snippet The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or...
The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 633
SubjectTerms Animals
Benzylamines - pharmacology
Bridged Bicyclo Compounds - pharmacology
Bridged Bicyclo Compounds, Heterocyclic
Cells, Cultured
Enzyme Inhibitors - pharmacology
Hydrolysis
Hydroxymethylglutaryl CoA Reductases - metabolism
Male
Mevalonic Acid - antagonists & inhibitors
Mevalonic Acid - metabolism
Mevalonic Acid - pharmacology
Microsomes, Liver - enzymology
Rats
Rats, Sprague-Dawley
Sterols - pharmacology
Thiophenes - pharmacology
Tricarboxylic Acids - pharmacology
Title Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro
URI http://www.jbc.org/content/269/1/633.abstract
https://www.ncbi.nlm.nih.gov/pubmed/8276863
https://www.proquest.com/docview/76334216
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwGA06H_RF5ubwzql5EFEktT-Spnm8XJQhTBA32Ftok1Qv3LXj2g26v94vSZvu-nPzpYRC09BzknzNl5yD0Ms6EaqsY0qEEQWhuoxJpeOCFMw6W2vGjJNdPPqUH57Qj6fsdFrMcadLuipSV789V_I_qMI9wNWekr0FsqFSuAFlwBeugDBcb4TxkdXqdhY2pVpqMhradm-1lYDQIRrMyLde2_0qJCPWMrpffYVmlet-RVRrmqv-zMAAsbYqrh3ManYN5HJ52Q7KTFDu1u31KHY6T-YiWS_k5KVGRv-4kNuw7h8-tbGIFlEI4J1XtDcJiObRtPbgRYQT4k1qw1mAhIjUi6-P42nqvVc2iONHx9xrXgwTbe5lXX4Zw_1ywpdQtxWssusiVqowJ2KauMZk_U_zWdhlOG1gg6qkrUomXLpqpLiL7qUcwi2bx_88CczDD5M3WRxePh36eje16HXC3wyt2QxnRonpP_-uuLDleBs9HFDCc0-eR-iOaXbQ7rwpu_asx6-w2wHsUis76P5iRG8XrQK38Ca38DVu4bbGN-AWnuPALbxssOUWBm75MnDrMTr58P54cUgGZw6iMs47olkdG1MrlWiqIQaqciN0wbPKGJGaNGe0zgWreamqIuYQhhnK4Ec2NQmEq4Upsz201bSNeYKwjoU1VRAVrzSFWFHElMcqZXVW6NRwNkN0_MBSDbL11j1lJf8K7wxF4bFzr9vyrwf2R_QkdBvbXSQwWSYSWDtDL0Y8JeBgc2plY9qL7xKm54ymST5Dex7m8LYC6FXk2f5tG_IUPZi62gHa6tYX5hkEvl313FH1B-k_ptk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mevalonic+acid-dependent+degradation+of+3-hydroxy-3-methylglutaryl-coenzyme+A+reductase+in+vivo+and+in+vitro&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Correll%2C+C.C.&rft.au=Edwards%2C+P.A.&rft.date=1994-01-07&rft.issn=0021-9258&rft.volume=269&rft.issue=1&rft.spage=633&rft.epage=638&rft_id=info:doi/10.1016%2FS0021-9258%2817%2942396-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0021_9258_17_42396_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon