Active Volume Models for Medical Image Segmentation

In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedd...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 30; no. 3; pp. 774 - 791
Main Authors Shen, Tian, Li, Hongsheng, Huang, Xiaolei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2010.2094623

Cover

Abstract In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: 1) deforming according to current region of interest (ROI), which is a binary mask representing the object region predicted by the current model, and 2) predicting ROI according to current appearance statistics of the model. To further improve robustness and accuracy when segmenting multiple objects or an object with multiple parts, we also propose multiple-surface active volume model (MSAVM), which consists of several single-surface AVM models subject to high-level geometric spatial constraints. An AVM's deformation is derived from a linear system based on finite element method (FEM). To keep the model's surface triangulation optimized, surface remeshing is derived from another linear system based on Laplacian mesh optimization (LMO) , . Thus efficient optimization and fast convergence of the model are achieved by solving two linear systems. Segmentation, validation and comparison results are presented from experiments on a variety of 2-D and 3-D medical images.
AbstractList In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: 1) deforming according to current region of interest (ROI), which is a binary mask representing the object region predicted by the current model, and 2) predicting ROI according to current appearance statistics of the model. To further improve robustness and accuracy when segmenting multiple objects or an object with multiple parts, we also propose multiple-surface active volume model (MSAVM), which consists of several single-surface AVM models subject to high-level geometric spatial constraints. An AVM's deformation is derived from a linear system based on finite element method (FEM). To keep the model's surface triangulation optimized, surface remeshing is derived from another linear system based on Laplacian mesh optimization (LMO). Thus efficient optimization and fast convergence of the model are achieved by solving two linear systems. Segmentation, validation and comparison results are presented from experiments on a variety of 2-D and 3-D medical images.In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: 1) deforming according to current region of interest (ROI), which is a binary mask representing the object region predicted by the current model, and 2) predicting ROI according to current appearance statistics of the model. To further improve robustness and accuracy when segmenting multiple objects or an object with multiple parts, we also propose multiple-surface active volume model (MSAVM), which consists of several single-surface AVM models subject to high-level geometric spatial constraints. An AVM's deformation is derived from a linear system based on finite element method (FEM). To keep the model's surface triangulation optimized, surface remeshing is derived from another linear system based on Laplacian mesh optimization (LMO). Thus efficient optimization and fast convergence of the model are achieved by solving two linear systems. Segmentation, validation and comparison results are presented from experiments on a variety of 2-D and 3-D medical images.
In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: 1) deforming according to current region of interest (ROI), which is a binary mask representing the object region predicted by the current model, and 2) predicting ROI according to current appearance statistics of the model. To further improve robustness and accuracy when segmenting multiple objects or an object with multiple parts, we also propose multiple-surface active volume model (MSAVM), which consists of several single-surface AVM models subject to high-level geometric spatial constraints. An AVM's deformation is derived from a linear system based on finite element method (FEM). To keep the model's surface triangulation optimized, surface remeshing is derived from another linear system based on Laplacian mesh optimization (LMO) , . Thus efficient optimization and fast convergence of the model are achieved by solving two linear systems. Segmentation, validation and comparison results are presented from experiments on a variety of 2-D and 3-D medical images.
In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: 1) deforming according to current region of interest (ROI), which is a binary mask representing the object region predicted by the current model, and 2) predicting ROI according to current appearance statistics of the model. To further improve robustness and accuracy when segmenting multiple objects or an object with multiple parts, we also propose multiple-surface active volume model (MSAVM), which consists of several single-surface AVM models subject to high-level geometric spatial constraints. An AVM's deformation is derived from a linear system based on finite element method (FEM). To keep the model's surface triangulation optimized, surface remeshing is derived from another linear system based on Laplacian mesh optimization (LMO) [Ref 26], [Ref 27] . Thus efficient optimization and fast convergence of the model are achieved by solving two linear systems. Segmentation, validation and comparison results are presented from experiments on a variety of 2-D and 3-D medical images.
Author Hongsheng Li
Xiaolei Huang
Tian Shen
Author_xml – sequence: 1
  givenname: Tian
  surname: Shen
  fullname: Shen, Tian
  organization: Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
– sequence: 2
  givenname: Hongsheng
  surname: Li
  fullname: Li, Hongsheng
– sequence: 3
  givenname: Xiaolei
  surname: Huang
  fullname: Huang, Xiaolei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21118771$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1LwzAYBvAgis7pXRCkePFUffPdHmX4Mdjw4BRvJUveSqVttGkF_3tbOnfwoIcQAr8nIe9zSHZrXyMhJxQuKYX0arWcXzLoTwxSoRjfIRMqZRIzKV52yQSYTmIAxQ7IYQhvAFRISPfJAaOUJlrTCeHXti0-MXr2ZVdhtPQOyxDlvomW6AprymhemVeMHvG1wro1beHrI7KXmzLg8Wafkqfbm9XsPl483M1n14vYcq3b2IncoTLSMANiTXmqaIoS0SE4R611gufrlCZSCsaYUEo4sMJwoa3lrF9TcjHe-974jw5Dm1VFsFiWpkbfhSxRwLWilP0vpZBKSj3I81_yzXdN3X9jQEwz0NCjsw3q1hW67L0pKtN8ZT9j6wGMwDY-hAbzLaGQDc1kfTPZ0Ey2aaaPqF8RW4zjbBtTlH8FT8dggYjbd6QSCZeafwNg05eq
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_neucom_2016_03_106
crossref_primary_10_1016_j_cviu_2013_01_014
crossref_primary_10_1109_TVCG_2014_2377772
crossref_primary_10_1016_j_compmedimag_2015_07_003
crossref_primary_10_1088_1748_0221_7_08_P08016
crossref_primary_10_1016_j_media_2019_101601
crossref_primary_10_1007_s11042_021_11273_5
crossref_primary_10_1016_j_patcog_2013_04_006
crossref_primary_10_1016_j_cmpb_2017_11_007
crossref_primary_10_1016_j_media_2023_102775
crossref_primary_10_1016_j_media_2012_07_007
crossref_primary_10_1016_j_media_2021_101980
crossref_primary_10_1016_j_neucom_2014_11_011
crossref_primary_10_1109_TVCG_2015_2452905
crossref_primary_10_1016_j_compbiomed_2025_109761
crossref_primary_10_1016_j_media_2022_102527
crossref_primary_10_1007_s11042_018_5697_y
crossref_primary_10_1097_WAD_0b013e318299d3d6
crossref_primary_10_1016_j_cmpb_2017_12_027
crossref_primary_10_1016_j_neuroimage_2011_02_046
crossref_primary_10_1109_TMI_2017_2667578
crossref_primary_10_1016_j_ejmp_2017_09_123
crossref_primary_10_1016_j_neucom_2011_12_033
crossref_primary_10_1109_TMI_2014_2323074
crossref_primary_10_1016_j_media_2014_04_003
crossref_primary_10_1007_s13534_023_00341_4
crossref_primary_10_1002_mp_15854
crossref_primary_10_1002_mp_15308
crossref_primary_10_1049_iet_cvi_2012_0226
crossref_primary_10_1016_j_media_2019_101550
Cites_doi 10.1109/CVPR.2008.4587475
10.1145/1073204.1073324
10.1109/ICCV.1999.790317
10.1007/s11263-006-8711-1
10.1006/nimg.1999.0534
10.1016/S0531-5131(03)00312-1
10.1016/j.media.2009.06.003
10.1109/CVPR.2008.4587460
10.1007/BF00133570
10.1023/A:1014080923068
10.1007/BF00119840
10.1109/CVPR.2009.5206563
10.1109/TPAMI.2007.70795
10.1002/cpa.3160420503
10.1364/OE.16.017521
10.1109/83.661186
10.1023/A:1020874308076
10.1109/34.216727
10.1109/42.811276
10.1006/cviu.1995.1004
10.1016/S1361-8415(00)00008-6
10.1109/34.244675
10.1109/34.537343
10.1109/CVPR.2000.855835
10.1023/A:1007979827043
10.1007/s11548-007-0125-1
10.1007/978-3-540-85988-8_40
10.1109/83.902291
10.1109/TPAMI.2007.70774
10.1109/TPAMI.2006.19
10.1145/1174429.1174494
10.1109/34.368173
10.1109/34.166621
10.1109/TPAMI.2007.250595
10.1023/A:1008183109594
10.1109/TMI.2009.2031063
10.1016/j.media.2004.06.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2010.2094623
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 791
ExternalDocumentID 2279282521
21118771
10_1109_TMI_2010_2094623
5648357
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c377t-d4fde6a5a2a04b139619e5eede0dd1ccd43fb9185542224664d0c4a347cc32cc3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Sep 05 13:50:58 EDT 2025
Fri Sep 05 09:36:37 EDT 2025
Sun Jun 29 16:21:30 EDT 2025
Thu Apr 03 07:09:43 EDT 2025
Tue Jul 01 03:15:49 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Tue Aug 26 17:17:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-d4fde6a5a2a04b139619e5eede0dd1ccd43fb9185542224664d0c4a347cc32cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21118771
PQID 854272070
PQPubID 85460
PageCount 18
ParticipantIDs pubmed_primary_21118771
proquest_miscellaneous_854565572
proquest_journals_854272070
crossref_primary_10_1109_TMI_2010_2094623
ieee_primary_5648357
proquest_miscellaneous_860376112
crossref_citationtrail_10_1109_TMI_2010_2094623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-March
2011-03-00
2011-Mar
20110301
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-March
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
shen (ref32) 2009
ref34
ref12
ref37
ref15
ref36
ref31
ref30
logan (ref19) 2006
ref33
ref11
ref10
li (ref16) 2005; 1
ref2
ref1
zhu (ref43) 1996; 18
ref39
ref17
ref38
ref18
cocosco (ref3) 1997; 5
costa (ref7) 2007
cootes (ref5) 1998; 2
ref24
ref23
nealen (ref26) 2006
ref25
ref20
ref42
kohlberger (ref14) 2006
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref6
zhu (ref44) 2010; 29
ref40
References_xml – ident: ref10
  doi: 10.1109/CVPR.2008.4587475
– ident: ref27
  doi: 10.1145/1073204.1073324
– ident: ref41
  doi: 10.1109/ICCV.1999.790317
– ident: ref8
  doi: 10.1007/s11263-006-8711-1
– ident: ref20
  doi: 10.1006/nimg.1999.0534
– ident: ref35
  doi: 10.1016/S0531-5131(03)00312-1
– ident: ref31
  doi: 10.1016/j.media.2009.06.003
– ident: ref37
  doi: 10.1109/CVPR.2008.4587460
– ident: ref12
  doi: 10.1007/BF00133570
– ident: ref28
  doi: 10.1023/A:1014080923068
– ident: ref13
  doi: 10.1007/BF00119840
– volume: 5
  year: 1997
  ident: ref3
  article-title: Brainweb: Online interface to a 3-D MRI simulated brain database
  publication-title: NeuroImage
– ident: ref33
  doi: 10.1109/CVPR.2009.5206563
– ident: ref11
  doi: 10.1109/TPAMI.2007.70795
– ident: ref25
  doi: 10.1002/cpa.3160420503
– ident: ref23
  doi: 10.1364/OE.16.017521
– ident: ref39
  doi: 10.1109/83.661186
– ident: ref38
  doi: 10.1023/A:1020874308076
– volume: 2
  start-page: 484
  year: 1998
  ident: ref5
  article-title: Active appearance models
  publication-title: Eur Conf Comput Vis
– ident: ref24
  doi: 10.1109/34.216727
– year: 2006
  ident: ref19
  publication-title: A First Course in the Finite Element Method
– start-page: 252
  year: 2007
  ident: ref7
  article-title: Automatic segmentation of bladder and prostate using coupled 3-D deformable models
  publication-title: Med Image Comput Comput Assist Interv
– ident: ref42
  doi: 10.1109/42.811276
– ident: ref6
  doi: 10.1006/cviu.1995.1004
– ident: ref22
  doi: 10.1016/S1361-8415(00)00008-6
– ident: ref4
  doi: 10.1109/34.244675
– start-page: 1059
  year: 2009
  ident: ref32
  article-title: 3-D medical image segmentation by multiple-surface active volume models
  publication-title: Med Image Comput Comput Assist Interv
– volume: 18
  start-page: 884
  year: 1996
  ident: ref43
  article-title: Region competition: Unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.537343
– ident: ref15
  doi: 10.1109/CVPR.2000.855835
– ident: ref1
  doi: 10.1023/A:1007979827043
– ident: ref29
  doi: 10.1007/s11548-007-0125-1
– ident: ref34
  doi: 10.1007/978-3-540-85988-8_40
– ident: ref2
  doi: 10.1109/83.902291
– ident: ref9
  doi: 10.1109/TPAMI.2007.70774
– ident: ref18
  doi: 10.1109/TPAMI.2006.19
– start-page: 381
  year: 2006
  ident: ref26
  article-title: Laplacian mesh optimization
  publication-title: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia - GRAPHITE 06 GRAPHITE 06
  doi: 10.1145/1174429.1174494
– start-page: 92
  year: 2006
  ident: ref14
  article-title: 4-D shape priors for a level set segmentation of the left myocardium in SPECT sequences
  publication-title: Med Image Comput Comput Assist Interv
– volume: 1
  start-page: 430
  year: 2005
  ident: ref16
  article-title: Level set evolution without re-initialization: A new variational formulation
  publication-title: IEEE Conf Comput Vis Pattern Recognit
– ident: ref21
  doi: 10.1109/34.368173
– ident: ref36
  doi: 10.1109/34.166621
– ident: ref17
  doi: 10.1109/TPAMI.2007.250595
– ident: ref30
  doi: 10.1023/A:1008183109594
– volume: 29
  start-page: 669
  year: 2010
  ident: ref44
  article-title: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2009.2031063
– ident: ref40
  doi: 10.1016/j.media.2004.06.008
SSID ssj0014509
Score 2.278749
Snippet In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic "object" model whose...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 774
SubjectTerms Active volume models
Algorithms
Computer Simulation
Deformable models
Finite element analysis
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Level set
Models, Anatomic
Models, Biological
multiple surface models
Pattern Recognition, Automated - methods
Predictive models
Reproducibility of Results
segmentation
Sensitivity and Specificity
Shape
Solid modeling
Studies
Three dimensional displays
Title Active Volume Models for Medical Image Segmentation
URI https://ieeexplore.ieee.org/document/5648357
https://www.ncbi.nlm.nih.gov/pubmed/21118771
https://www.proquest.com/docview/854272070
https://www.proquest.com/docview/854565572
https://www.proquest.com/docview/860376112
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RBgQDj5ZHKCAPLEikTWwnacYKUQFSWWhRtyixHQbaFNF24ddzdpwIEFQMkaLk4ti-8_mz73wHcMmkDqqCwhsyqlxExJkb53nmSuanXi9KfZobb4vH8G7MHybBZAOu67MwSinjfKY6-tbY8uVcrPRWWTcIOQKGqAENFLPyrFZtMeBB6c5BdcRYL6SVSdKLu6PhfenDRXEtg9O9CQCs02xH_rfZyKRX-RtpmhlnsAfDqq6lo8lrZ7XMOuLjRxjH_zZmH3Yt9CT9UlYOYEMVTdj5EpCwCVtDa2pvAesbTUiejfoiOmfadEEQ4hJr2yH3M9RF5Em9zOz5peIQxoPb0c2dazMsuIJF0dKVPJcqTIOUph7PEAzickoFOG0qT0pfCMlZnsW-dmWjOvJcyKUneMp4JASjeB3BZjEv1AkQ2cMSMnyKY5pnTKSMxVhYHguR4ypEONCtejoRNvy4zoIxTcwyxIsTZFOi2ZRYNjlwVX_xVobeWEPb0j1c09nOdaBdMTOxY3OR9LAxEUVV5wCp3-Kg0paStFDzlSFBoBtEdA1J6KFuRrTqwHEpJfXPK-E6_b1SbdguN6a1I9sZbC7fV-ockc0yuzAi_QkkCu-s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4SDwOvB9lPHLggkS3Nknb9YgQaAO2CwNxq9ok5cDWIbZd-PU4aVoBAsShUtWmaR6O_Tl2bIBTJnVQFSTekFHlIiLO3DjPM1cyP_XaUerT3Hhb9MPOA795Cp7m4Lw-C6OUMs5nqqlvjS1fjsVMb5W1gpAjYIjmYTFAraJdntaqbQY8KB06qI4Z64W0Mkp6cWvQ65ZeXBS1GRT4JgSwTrQd-V_kkUmw8jvWNDLneh16VWtLV5OX5myaNcX7t0CO_-3OBqxZ8EkuSmrZhDlVbMHqp5CEW7DUs8b2bWAXhheSR8PAiM6aNpwQBLnEWndId4TciNyr55E9wVTswMP11eCy49ocC65gUTR1Jc-lCtMgpanHM4SDqFCpAAWn8qT0hZCc5Vnsa2c2qmPPhVx6gqeMR0IwitcuLBTjQu0DkW2sIcOnuKp5xkTKWIyV5bEQOeohwoFWNdKJsAHIdR6MYWIUES9OcJoSPU2JnSYHzuovXsvgG3-U3dYjXJezg-tAo5rMxK7OSdLGzkQUmZ0DpH6Ly0rbStJCjWemCELdIKJ_FAk95M6IVx3YK6mk_nlFXAc_N-oEljuD3l1y1-3fNmCl3KbWbm2HsDB9m6kjxDnT7NiQ9wfrBPL_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Volume+Models+for+Medical+Image+Segmentation&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Tian+Shen&rft.au=Hongsheng+Li&rft.au=Xiaolei+Huang&rft.date=2011-03-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=30&rft.issue=3&rft.spage=774&rft.epage=791&rft_id=info:doi/10.1109%2FTMI.2010.2094623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2010_2094623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon