Mechanochemistry-driven phase transformation of crystalline covalent triazine frameworks assisted by alkaline molten salts
Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed...
Saved in:
| Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 27; pp. 1431 - 14315 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Royal Society of Chemistry
12.07.2022
Royal Society of Chemistry (RSC) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2050-7488 2050-7496 2050-7496 |
| DOI | 10.1039/d2ta02117j |
Cover
| Abstract | Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials
via
facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m
2
g
−1
), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials.
A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline molten salts, generating high-quality CTF-1 material under ambient conditions. |
|---|---|
| AbstractList | A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline molten salts, generating high-quality CTF-1 material under ambient conditions. Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m2 g−1), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials. Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m 2 g −1 ), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials. A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline molten salts, generating high-quality CTF-1 material under ambient conditions. Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m² g⁻¹), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials. Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m 2 g −1 ), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials. |
| Author | Suo, Xian Dai, Sheng Fan, Juntian Mahurin, Shannon M Yang, Zhenzhen Wang, Tao Kobayashi, Takeshi Wang, Zongyu Do-Thanh, Chi-Linh |
| AuthorAffiliation | Department of Chemistry University of Tennessee Institute for Advanced Materials and Manufacturing Chemical Sciences Division Iowa State University Oak Ridge National Laboratory U.S. DoE Ames Laboratory |
| AuthorAffiliation_xml | – name: Institute for Advanced Materials and Manufacturing – name: University of Tennessee – name: U.S. DoE Ames Laboratory – name: Chemical Sciences Division – name: Department of Chemistry – name: Iowa State University – name: Oak Ridge National Laboratory |
| Author_xml | – sequence: 1 givenname: Juntian surname: Fan fullname: Fan, Juntian – sequence: 2 givenname: Xian surname: Suo fullname: Suo, Xian – sequence: 3 givenname: Tao surname: Wang fullname: Wang, Tao – sequence: 4 givenname: Zongyu surname: Wang fullname: Wang, Zongyu – sequence: 5 givenname: Chi-Linh surname: Do-Thanh fullname: Do-Thanh, Chi-Linh – sequence: 6 givenname: Shannon M surname: Mahurin fullname: Mahurin, Shannon M – sequence: 7 givenname: Takeshi surname: Kobayashi fullname: Kobayashi, Takeshi – sequence: 8 givenname: Zhenzhen surname: Yang fullname: Yang, Zhenzhen – sequence: 9 givenname: Sheng surname: Dai fullname: Dai, Sheng |
| BackLink | https://www.osti.gov/biblio/1874515$$D View this record in Osti.gov |
| BookMark | eNpdkc1v1DAQxSNUJErphTtSBBcECtjZxHaOVflWEZdytmadiTZbr714vK3Sv57pBi2wvtga_WbmveenxUmIAYviuRTvpFh07_s6g6il1OtHxWktWlHpplMnh7cxT4pzorXgY4RQXXda3H9Ht4IQ3Qo3I-U0VX0abzGU2xUQljlBoCGmDeQxhjIOpUsTZfB-DFi6eAseQ2ZshPuHypBgg3cx3VAJRDwQ-3I5leBvYN-xiT7zcAKf6VnxeABPeP7nPit-fvp4ffmluvrx-evlxVXlFlrnqkPRSSebBXsRzbLvURkA1SihnNFdJ5yUqFuDWmpTD4NqdSdUU2u5HAzKfnFWvJ3n7sIWpjvWbrdp3ECarBT2ITn7NzmmX850pDxacmPmgFwMAV220uimlS1Dr2dom-KvHVK2HJ5D7yFg3JHl5abWHLth9NURuo67FNiwrZUxtdIslykxUy5FooSD5cX7zPkHRn8Q-qG-vtgL_cYtb45ajl39B7-Y4UTuwP3j-jcam7KT |
| CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106523 crossref_primary_10_1016_j_gce_2023_04_001 crossref_primary_10_1039_D3CC00712J crossref_primary_10_1021_acsanm_4c01965 crossref_primary_10_1002_anie_202403649 crossref_primary_10_1016_j_pmatsci_2024_101352 crossref_primary_10_1002_ange_202403649 crossref_primary_10_1021_acssuschemeng_4c04051 crossref_primary_10_1039_D4CS00521J |
| Cites_doi | 10.1002/anie.201908513 10.1021/acsami.1c01134 10.1021/jacs.0c00365 10.1016/j.chempr.2019.12.006 10.1002/adma.201705401 10.1002/adma.200903436 10.1039/C6TA06089G 10.1021/acsenergylett.0c01750 10.1039/C4TA03438D 10.1002/anie.201708548 10.1021/acs.chemmater.5b03330 10.1002/anie.201511553 10.1021/acs.chemmater.9b02825 10.1039/c3cc00039g 10.1002/anie.201804878 10.1002/adma.201807865 10.1039/C9TA06847C 10.1002/anie.201801128 10.1002/anie.202109342 10.1002/adma.202107947 10.1021/acs.chemmater.0c04348 10.1002/cssc.202001638 10.1016/j.cej.2015.07.069 10.1021/cm303751n 10.1002/adma.201200751 10.1039/C5TA00665A 10.1002/anie.201914424 10.1021/jacs.7b05025 10.1039/C9GC03482J 10.1016/j.micromeso.2016.11.033 10.3390/polym11010031 10.1039/c3cc41382a 10.1007/s41061-021-00336-8 10.1002/anie.201702303 10.1039/B914761F 10.1002/adma.201403299 10.1002/anie.200705710 10.1021/ja304879c 10.1002/anie.202113926 10.1039/C9TA02573A 10.1039/C8TA12442F 10.1021/acs.chemmater.1c00699 10.1002/anie.201806664 10.1021/ja408121p 10.1021/ja4017842 10.1016/j.mtener.2020.100506 10.1039/C4TA07196D |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2022 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
| DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 OTOTI ADTOC UNPAY |
| DOI | 10.1039/d2ta02117j |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2050-7496 |
| EndPage | 14315 |
| ExternalDocumentID | oai:osti.gov:1874515 1874515 10_1039_D2TA02117J d2ta02117j |
| GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 -JG OTOTI ADTOC ANBJS EJD J3G J3H ROL UNPAY |
| ID | FETCH-LOGICAL-c377t-9e091c14349604bdde68aa64606c87990c11e758e71782ff6579064271bf8e1d3 |
| IEDL.DBID | UNPAY |
| ISSN | 2050-7488 2050-7496 |
| IngestDate | Sun Oct 26 03:50:02 EDT 2025 Fri May 19 00:40:16 EDT 2023 Thu Oct 02 07:38:09 EDT 2025 Mon Jun 30 11:58:33 EDT 2025 Tue Jul 01 01:13:27 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Wed Jul 13 11:14:06 EDT 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-9e091c14349604bdde68aa64606c87990c11e758e71782ff6579064271bf8e1d3 |
| Notes | https://doi.org/10.1039/d2ta02117j Electronic supplementary information (ESI) available. See ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-07CH11358 |
| ORCID | 0000-0003-2263-8331 0000-0002-6366-0925 0000-0003-3792-1631 0000-0002-8046-3931 0000-0002-0233-4747 0000000322638331 0000000337921631 0000000263660925 0000000202334747 0000000280463931 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1874515 |
| PQID | 2688267790 |
| PQPubID | 2047523 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2718272058 unpaywall_primary_10_1039_d2ta02117j osti_scitechconnect_1874515 rsc_primary_d2ta02117j proquest_journals_2688267790 crossref_citationtrail_10_1039_D2TA02117J crossref_primary_10_1039_D2TA02117J |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-12 |
| PublicationDateYYYYMMDD | 2022-07-12 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge – name: United Kingdom |
| PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
| PublicationYear | 2022 |
| Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
| Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
| References | Chen (D2TA02117J/cit5/1) 2021 Bhunia (D2TA02117J/cit20/1) 2013; 49 Liu (D2TA02117J/cit35/1) 2019; 31 Zou (D2TA02117J/cit48/1) 2013; 49 Biswal (D2TA02117J/cit43/1) 2013; 135 Huang (D2TA02117J/cit39/1) 2021; 13 Liu (D2TA02117J/cit6/1) 2019; 7 Zhang (D2TA02117J/cit36/1) 2020; 59 Zhang (D2TA02117J/cit42/1) 2015; 3 Wang (D2TA02117J/cit33/1) 2017; 56 Qian (D2TA02117J/cit13/1) 2021; 33 Dey (D2TA02117J/cit47/1) 2017; 241 Qu (D2TA02117J/cit49/1) 2018; 57 Kuhn (D2TA02117J/cit1/1) 2008; 47 Yang (D2TA02117J/cit16/1) 2021; 6 Suo (D2TA02117J/cit7/1) 2021; 60 Ren (D2TA02117J/cit22/1) 2012; 24 Yang (D2TA02117J/cit28/1) 2020; 142 Wang (D2TA02117J/cit11/1) 2019; 7 Yang (D2TA02117J/cit26/1) 2021; 33 Chen (D2TA02117J/cit17/1) 2020; 13 Krishnaraj (D2TA02117J/cit4/1) 2020; 22 Chandra (D2TA02117J/cit44/1) 2013; 135 Zhang (D2TA02117J/cit41/1) 2015; 27 Ren (D2TA02117J/cit21/1) 2010; 46 Sun (D2TA02117J/cit9/1) 2021; 379 Hug (D2TA02117J/cit12/1) 2015; 27 Liu (D2TA02117J/cit34/1) 2018; 57 Jiang (D2TA02117J/cit15/1) 2015; 3 Zhu (D2TA02117J/cit23/1) 2012; 134 Katekomol (D2TA02117J/cit19/1) 2013; 25 Liu (D2TA02117J/cit46/1) 2018; 30 Liu (D2TA02117J/cit25/1) 2018; 30 Liu (D2TA02117J/cit24/1) 2017; 139 Zhou (D2TA02117J/cit31/1) 2019; 58 Puthiaraj (D2TA02117J/cit37/1) 2015; 3 Puthiaraj (D2TA02117J/cit40/1) 2016; 283 Yu (D2TA02117J/cit32/1) 2018; 57 Deng (D2TA02117J/cit10/1) 2020; 18 Yang (D2TA02117J/cit45/1) 2020; 142 Zhang (D2TA02117J/cit2/1) 2018; 11 Yang (D2TA02117J/cit27/1) 2020; 6 Meier (D2TA02117J/cit14/1) 2019; 31 Talapaneni (D2TA02117J/cit30/1) 2016; 55 Sun (D2TA02117J/cit29/1) 2021; 61 Yang (D2TA02117J/cit8/1) 2019; 7 Troschke (D2TA02117J/cit38/1) 2017; 56 Bojdys (D2TA02117J/cit18/1) 2010; 22 Puthiaraj (D2TA02117J/cit3/1) 2016; 4 |
| References_xml | – volume: 58 start-page: 16795 year: 2019 ident: D2TA02117J/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908513 – volume: 13 start-page: 13604 year: 2021 ident: D2TA02117J/cit39/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01134 – volume: 142 start-page: 6856 year: 2020 ident: D2TA02117J/cit45/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00365 – volume: 6 start-page: 631 year: 2020 ident: D2TA02117J/cit27/1 publication-title: Chem doi: 10.1016/j.chempr.2019.12.006 – volume: 30 start-page: 1705401 year: 2018 ident: D2TA02117J/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705401 – volume: 22 start-page: 2202 year: 2010 ident: D2TA02117J/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.200903436 – volume: 142 start-page: 6856 year: 2020 ident: D2TA02117J/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00365 – volume: 4 start-page: 16288 year: 2016 ident: D2TA02117J/cit3/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06089G – volume: 6 start-page: 41 year: 2021 ident: D2TA02117J/cit16/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01750 – volume: 3 start-page: 7750 year: 2015 ident: D2TA02117J/cit15/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03438D – volume: 56 start-page: 14149 year: 2017 ident: D2TA02117J/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708548 – volume: 27 start-page: 8001 year: 2015 ident: D2TA02117J/cit12/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03330 – volume: 55 start-page: 3106 year: 2016 ident: D2TA02117J/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511553 – volume: 31 start-page: 8830 year: 2019 ident: D2TA02117J/cit14/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02825 – volume: 49 start-page: 3925 year: 2013 ident: D2TA02117J/cit48/1 publication-title: Chem. Commun. doi: 10.1039/c3cc00039g – volume: 57 start-page: 12057 year: 2018 ident: D2TA02117J/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804878 – volume: 31 start-page: e1807865 year: 2019 ident: D2TA02117J/cit35/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807865 – volume: 7 start-page: 22848 year: 2019 ident: D2TA02117J/cit11/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06847C – volume: 57 start-page: 8438 year: 2018 ident: D2TA02117J/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801128 – volume: 60 start-page: 25688 year: 2021 ident: D2TA02117J/cit7/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109342 – start-page: e2107947 year: 2021 ident: D2TA02117J/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107947 – volume: 33 start-page: 1909 year: 2021 ident: D2TA02117J/cit13/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c04348 – volume: 13 start-page: 6182 year: 2020 ident: D2TA02117J/cit17/1 publication-title: ChemSusChem doi: 10.1002/cssc.202001638 – volume: 283 start-page: 184 year: 2016 ident: D2TA02117J/cit40/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.07.069 – volume: 25 start-page: 1542 year: 2013 ident: D2TA02117J/cit19/1 publication-title: Chem. Mater. doi: 10.1021/cm303751n – volume: 24 start-page: 2357 year: 2012 ident: D2TA02117J/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.201200751 – volume: 3 start-page: 6792 year: 2015 ident: D2TA02117J/cit37/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00665A – volume: 59 start-page: 6007 year: 2020 ident: D2TA02117J/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914424 – volume: 139 start-page: 11666 year: 2017 ident: D2TA02117J/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05025 – volume: 22 start-page: 1038 year: 2020 ident: D2TA02117J/cit4/1 publication-title: Green Chem. doi: 10.1039/C9GC03482J – volume: 241 start-page: 303 year: 2017 ident: D2TA02117J/cit47/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.11.033 – volume: 11 start-page: 31 year: 2018 ident: D2TA02117J/cit2/1 publication-title: Polymer doi: 10.3390/polym11010031 – volume: 49 start-page: 3961 year: 2013 ident: D2TA02117J/cit20/1 publication-title: Chem. Commun. doi: 10.1039/c3cc41382a – volume: 379 start-page: 24 year: 2021 ident: D2TA02117J/cit9/1 publication-title: Top. Curr. Chem. doi: 10.1007/s41061-021-00336-8 – volume: 56 start-page: 6859 year: 2017 ident: D2TA02117J/cit38/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702303 – volume: 46 start-page: 291 year: 2010 ident: D2TA02117J/cit21/1 publication-title: Chem. Commun. doi: 10.1039/B914761F – volume: 30 start-page: 1705401 year: 2018 ident: D2TA02117J/cit46/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705401 – volume: 27 start-page: 234 year: 2015 ident: D2TA02117J/cit41/1 publication-title: Adv. Mater. doi: 10.1002/adma.201403299 – volume: 47 start-page: 3450 year: 2008 ident: D2TA02117J/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705710 – volume: 134 start-page: 10478 year: 2012 ident: D2TA02117J/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304879c – volume: 61 start-page: e202113926 year: 2021 ident: D2TA02117J/cit29/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.202113926 – volume: 7 start-page: 17277 year: 2019 ident: D2TA02117J/cit8/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02573A – volume: 7 start-page: 5153 year: 2019 ident: D2TA02117J/cit6/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12442F – volume: 33 start-page: 3386 year: 2021 ident: D2TA02117J/cit26/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c00699 – volume: 57 start-page: 11968 year: 2018 ident: D2TA02117J/cit34/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806664 – volume: 135 start-page: 17853 year: 2013 ident: D2TA02117J/cit44/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408121p – volume: 135 start-page: 5328 year: 2013 ident: D2TA02117J/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 18 start-page: 100506 year: 2020 ident: D2TA02117J/cit10/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100506 – volume: 3 start-page: 6739 year: 2015 ident: D2TA02117J/cit42/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA07196D |
| SSID | ssj0000800699 |
| Score | 2.4317734 |
| Snippet | Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term... A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline... |
| SourceID | unpaywall osti proquest crossref rsc |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1431 |
| SubjectTerms | carbonization Catalysis catalytic activity Crystal structure Crystallinity energy Energy storage mechanochemistry Molten salts nanopores phase transition Phase transitions Porosity Salts surface area Triazine triazines |
| Title | Mechanochemistry-driven phase transformation of crystalline covalent triazine frameworks assisted by alkaline molten salts |
| URI | https://www.proquest.com/docview/2688267790 https://www.proquest.com/docview/2718272058 https://www.osti.gov/biblio/1874515 |
| UnpaywallVersion | submittedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection (IReL) customDbUrl: https://pubs.rsc.org eissn: 2050-7496 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800699 issn: 2050-7496 databaseCode: AETIL dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB3R5NBy6DeqgaKt4NKDIV7b691jVEAUFdRDItGTtV7vqhTXjmJHKPz6ziR2EtpK7c2Sx_JK83bnjXbmDcBRJIWR0nA_UpnwIxfmvraUuOJBmGknVR5RN_LVtbgYR5c38c0WHHa9MFRWWSG4FzWV2W1W3FYnNDYupkbyvoiRcPegP77-OvxGY-MG8YDUMOX6WYlOhDRUJzlvNAaxIPnxKOz06A-PKOWTaW224emsnOj5vS6KjRhz_gJOu9UtS0vujmdNdmwefhNu_MfyX8LzlmOy4RIUr2DLlq9he0N58A08XFlq-aVxWct5b34-pXOPTb5jWGPNBp2tSlY5ZqZz5JEk4G2ZqRCeGKwYjfwgdWrmuhKvmiEZJ-TkLJszXdzpxRc_qwK5Oat10dRvYXx-Nvp04bdjGHwTJknjK4ucwiCvikjIJcPzUEitRYSpj5EJRjMTBBbTDouZoeTOiThRlNags520QR7uQK-sSvsOmIgtN4NAIjxsFEoax5CEmcuVVtw4l3jwsfNSalqNchqVUaSLu_JQpad8NFx49NKDw5XtZKnM8VerPfJHinyCRHENVQ-ZJm194sF-h4G03bt1ygVmHYJ0GD34sHqNzqCrFF3aaoY2GNLpBjuWHuwgdlYrWCPOg6MVnP5Y4Nps9__M9uAZp8YLkvTk-9BrpjP7HulQkx1Af3g2-vzloN0WvwB0egsd |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SzaHNod-hTtKiklx6cLKWbVk6Lk1DCCT0kIX0ZCRZomlce1l7KZtfn5lde3fTFtqbwWMsmCfNGzTzBuAokcJKaXmYKCPCxMdFqB0lrngQGu2lKhLqRr68Eufj5OImvdmCw74XhsoqawT3oqbS3Jrytj6hsXEpNZJvixQJ9wC2x1dfR99obNwwHZIaplw_K9GLkMbqpOCtxiAWZT8ehZ0B_eERpXwybewOPJ1VEz3_pctyI8acvYDTfnXL0pK741lrju39b8KN_1j-S3jecUw2WoLiFWy56jXsbCgPvoH7S0ctvzQuaznvLSymdO6xyXcMa6zdoLN1xWrP7HSOPJIEvB2zNcITgxWjkR-kTs18X-LVMCTjhJyCmTnT5Z1efPGzLpGbs0aXbfMWxmdfrj-fh90YhtDGWdaGyiGnsMirEhJyMXgeCqm1SDD1sTLDaGajyGHa4TAzlNx7kWaK0hp0tpcuKuJdGFR15d4BE6njdhhJhIdLYknjGLLY-EJpxa33WQCfei_lttMop1EZZb64K49VfsqvRwuPXgRwuLKdLJU5_mq1T_7IkU-QKK6l6iHb5p1PAjjoMZB3e7fJucCsQ5AOYwAfV6_RGXSVoitXz9AGQzrdYKcygF3EzmoFa8QFcLSC0x8LXJvt_Z_ZPjzj1HhBkp78AAbtdObeIx1qzYduOzwAI9EJiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanochemistry-driven+phase+transformation+of+crystalline+covalent+triazine+frameworks+assisted+by+alkaline+molten+salts&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Fan%2C+Juntian&rft.au=Suo%2C+Xian&rft.au=Wang%2C+Tao&rft.au=Wang%2C+Zongyu&rft.date=2022-07-12&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=27&rft.spage=1431&rft.epage=14315&rft_id=info:doi/10.1039%2Fd2ta02117j&rft.externalDocID=d2ta02117j |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |