Mechanochemistry-driven phase transformation of crystalline covalent triazine frameworks assisted by alkaline molten salts

Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 27; pp. 1431 - 14315
Main Authors Fan, Juntian, Suo, Xian, Wang, Tao, Wang, Zongyu, Do-Thanh, Chi-Linh, Mahurin, Shannon M, Kobayashi, Takeshi, Yang, Zhenzhen, Dai, Sheng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.07.2022
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d2ta02117j

Cover

Abstract Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m 2 g −1 ), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials. A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline molten salts, generating high-quality CTF-1 material under ambient conditions.
AbstractList A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline molten salts, generating high-quality CTF-1 material under ambient conditions.
Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m2 g−1), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials.
Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m 2 g −1 ), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials. A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline molten salts, generating high-quality CTF-1 material under ambient conditions.
Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m² g⁻¹), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials.
Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term challenging subject to fabricate high-quality CTF materials via facile procedures. Herein, a mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline CTFs assisted by alkaline molten salts. The transformation of CTF-1 from staggered AB to eclipsed AA stacking mode was achieved by short time (30 min) mechanochemical treatment in the presence of molten salts composed of LiOH/KOH, generating high-quality CTF-1 material with high crystallinity, high surface area (625 m 2 g −1 ), and permanent/ordered porosity without carbonization under ambient conditions. This facile procedure could be extended to provide nanoporous three-dimensional CTF materials.
Author Suo, Xian
Dai, Sheng
Fan, Juntian
Mahurin, Shannon M
Yang, Zhenzhen
Wang, Tao
Kobayashi, Takeshi
Wang, Zongyu
Do-Thanh, Chi-Linh
AuthorAffiliation Department of Chemistry
University of Tennessee
Institute for Advanced Materials and Manufacturing
Chemical Sciences Division
Iowa State University
Oak Ridge National Laboratory
U.S. DoE Ames Laboratory
AuthorAffiliation_xml – name: Institute for Advanced Materials and Manufacturing
– name: University of Tennessee
– name: U.S. DoE Ames Laboratory
– name: Chemical Sciences Division
– name: Department of Chemistry
– name: Iowa State University
– name: Oak Ridge National Laboratory
Author_xml – sequence: 1
  givenname: Juntian
  surname: Fan
  fullname: Fan, Juntian
– sequence: 2
  givenname: Xian
  surname: Suo
  fullname: Suo, Xian
– sequence: 3
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
– sequence: 4
  givenname: Zongyu
  surname: Wang
  fullname: Wang, Zongyu
– sequence: 5
  givenname: Chi-Linh
  surname: Do-Thanh
  fullname: Do-Thanh, Chi-Linh
– sequence: 6
  givenname: Shannon M
  surname: Mahurin
  fullname: Mahurin, Shannon M
– sequence: 7
  givenname: Takeshi
  surname: Kobayashi
  fullname: Kobayashi, Takeshi
– sequence: 8
  givenname: Zhenzhen
  surname: Yang
  fullname: Yang, Zhenzhen
– sequence: 9
  givenname: Sheng
  surname: Dai
  fullname: Dai, Sheng
BackLink https://www.osti.gov/biblio/1874515$$D View this record in Osti.gov
BookMark eNpdkc1v1DAQxSNUJErphTtSBBcECtjZxHaOVflWEZdytmadiTZbr714vK3Sv57pBi2wvtga_WbmveenxUmIAYviuRTvpFh07_s6g6il1OtHxWktWlHpplMnh7cxT4pzorXgY4RQXXda3H9Ht4IQ3Qo3I-U0VX0abzGU2xUQljlBoCGmDeQxhjIOpUsTZfB-DFi6eAseQ2ZshPuHypBgg3cx3VAJRDwQ-3I5leBvYN-xiT7zcAKf6VnxeABPeP7nPit-fvp4ffmluvrx-evlxVXlFlrnqkPRSSebBXsRzbLvURkA1SihnNFdJ5yUqFuDWmpTD4NqdSdUU2u5HAzKfnFWvJ3n7sIWpjvWbrdp3ECarBT2ITn7NzmmX850pDxacmPmgFwMAV220uimlS1Dr2dom-KvHVK2HJ5D7yFg3JHl5abWHLth9NURuo67FNiwrZUxtdIslykxUy5FooSD5cX7zPkHRn8Q-qG-vtgL_cYtb45ajl39B7-Y4UTuwP3j-jcam7KT
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_106523
crossref_primary_10_1016_j_gce_2023_04_001
crossref_primary_10_1039_D3CC00712J
crossref_primary_10_1021_acsanm_4c01965
crossref_primary_10_1002_anie_202403649
crossref_primary_10_1016_j_pmatsci_2024_101352
crossref_primary_10_1002_ange_202403649
crossref_primary_10_1021_acssuschemeng_4c04051
crossref_primary_10_1039_D4CS00521J
Cites_doi 10.1002/anie.201908513
10.1021/acsami.1c01134
10.1021/jacs.0c00365
10.1016/j.chempr.2019.12.006
10.1002/adma.201705401
10.1002/adma.200903436
10.1039/C6TA06089G
10.1021/acsenergylett.0c01750
10.1039/C4TA03438D
10.1002/anie.201708548
10.1021/acs.chemmater.5b03330
10.1002/anie.201511553
10.1021/acs.chemmater.9b02825
10.1039/c3cc00039g
10.1002/anie.201804878
10.1002/adma.201807865
10.1039/C9TA06847C
10.1002/anie.201801128
10.1002/anie.202109342
10.1002/adma.202107947
10.1021/acs.chemmater.0c04348
10.1002/cssc.202001638
10.1016/j.cej.2015.07.069
10.1021/cm303751n
10.1002/adma.201200751
10.1039/C5TA00665A
10.1002/anie.201914424
10.1021/jacs.7b05025
10.1039/C9GC03482J
10.1016/j.micromeso.2016.11.033
10.3390/polym11010031
10.1039/c3cc41382a
10.1007/s41061-021-00336-8
10.1002/anie.201702303
10.1039/B914761F
10.1002/adma.201403299
10.1002/anie.200705710
10.1021/ja304879c
10.1002/anie.202113926
10.1039/C9TA02573A
10.1039/C8TA12442F
10.1021/acs.chemmater.1c00699
10.1002/anie.201806664
10.1021/ja408121p
10.1021/ja4017842
10.1016/j.mtener.2020.100506
10.1039/C4TA07196D
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
OTOTI
ADTOC
UNPAY
DOI 10.1039/d2ta02117j
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 14315
ExternalDocumentID oai:osti.gov:1874515
1874515
10_1039_D2TA02117J
d2ta02117j
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
-JG
OTOTI
ADTOC
ANBJS
EJD
J3G
J3H
ROL
UNPAY
ID FETCH-LOGICAL-c377t-9e091c14349604bdde68aa64606c87990c11e758e71782ff6579064271bf8e1d3
IEDL.DBID UNPAY
ISSN 2050-7488
2050-7496
IngestDate Sun Oct 26 03:50:02 EDT 2025
Fri May 19 00:40:16 EDT 2023
Thu Oct 02 07:38:09 EDT 2025
Mon Jun 30 11:58:33 EDT 2025
Tue Jul 01 01:13:27 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Wed Jul 13 11:14:06 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-9e091c14349604bdde68aa64606c87990c11e758e71782ff6579064271bf8e1d3
Notes https://doi.org/10.1039/d2ta02117j
Electronic supplementary information (ESI) available. See
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-07CH11358
ORCID 0000-0003-2263-8331
0000-0002-6366-0925
0000-0003-3792-1631
0000-0002-8046-3931
0000-0002-0233-4747
0000000322638331
0000000337921631
0000000263660925
0000000202334747
0000000280463931
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1874515
PQID 2688267790
PQPubID 2047523
PageCount 6
ParticipantIDs proquest_miscellaneous_2718272058
unpaywall_primary_10_1039_d2ta02117j
osti_scitechconnect_1874515
rsc_primary_d2ta02117j
proquest_journals_2688267790
crossref_citationtrail_10_1039_D2TA02117J
crossref_primary_10_1039_D2TA02117J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-12
PublicationDateYYYYMMDD 2022-07-12
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-12
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United Kingdom
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Chen (D2TA02117J/cit5/1) 2021
Bhunia (D2TA02117J/cit20/1) 2013; 49
Liu (D2TA02117J/cit35/1) 2019; 31
Zou (D2TA02117J/cit48/1) 2013; 49
Biswal (D2TA02117J/cit43/1) 2013; 135
Huang (D2TA02117J/cit39/1) 2021; 13
Liu (D2TA02117J/cit6/1) 2019; 7
Zhang (D2TA02117J/cit36/1) 2020; 59
Zhang (D2TA02117J/cit42/1) 2015; 3
Wang (D2TA02117J/cit33/1) 2017; 56
Qian (D2TA02117J/cit13/1) 2021; 33
Dey (D2TA02117J/cit47/1) 2017; 241
Qu (D2TA02117J/cit49/1) 2018; 57
Kuhn (D2TA02117J/cit1/1) 2008; 47
Yang (D2TA02117J/cit16/1) 2021; 6
Suo (D2TA02117J/cit7/1) 2021; 60
Ren (D2TA02117J/cit22/1) 2012; 24
Yang (D2TA02117J/cit28/1) 2020; 142
Wang (D2TA02117J/cit11/1) 2019; 7
Yang (D2TA02117J/cit26/1) 2021; 33
Chen (D2TA02117J/cit17/1) 2020; 13
Krishnaraj (D2TA02117J/cit4/1) 2020; 22
Chandra (D2TA02117J/cit44/1) 2013; 135
Zhang (D2TA02117J/cit41/1) 2015; 27
Ren (D2TA02117J/cit21/1) 2010; 46
Sun (D2TA02117J/cit9/1) 2021; 379
Hug (D2TA02117J/cit12/1) 2015; 27
Liu (D2TA02117J/cit34/1) 2018; 57
Jiang (D2TA02117J/cit15/1) 2015; 3
Zhu (D2TA02117J/cit23/1) 2012; 134
Katekomol (D2TA02117J/cit19/1) 2013; 25
Liu (D2TA02117J/cit46/1) 2018; 30
Liu (D2TA02117J/cit25/1) 2018; 30
Liu (D2TA02117J/cit24/1) 2017; 139
Zhou (D2TA02117J/cit31/1) 2019; 58
Puthiaraj (D2TA02117J/cit37/1) 2015; 3
Puthiaraj (D2TA02117J/cit40/1) 2016; 283
Yu (D2TA02117J/cit32/1) 2018; 57
Deng (D2TA02117J/cit10/1) 2020; 18
Yang (D2TA02117J/cit45/1) 2020; 142
Zhang (D2TA02117J/cit2/1) 2018; 11
Yang (D2TA02117J/cit27/1) 2020; 6
Meier (D2TA02117J/cit14/1) 2019; 31
Talapaneni (D2TA02117J/cit30/1) 2016; 55
Sun (D2TA02117J/cit29/1) 2021; 61
Yang (D2TA02117J/cit8/1) 2019; 7
Troschke (D2TA02117J/cit38/1) 2017; 56
Bojdys (D2TA02117J/cit18/1) 2010; 22
Puthiaraj (D2TA02117J/cit3/1) 2016; 4
References_xml – volume: 58
  start-page: 16795
  year: 2019
  ident: D2TA02117J/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908513
– volume: 13
  start-page: 13604
  year: 2021
  ident: D2TA02117J/cit39/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01134
– volume: 142
  start-page: 6856
  year: 2020
  ident: D2TA02117J/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00365
– volume: 6
  start-page: 631
  year: 2020
  ident: D2TA02117J/cit27/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.12.006
– volume: 30
  start-page: 1705401
  year: 2018
  ident: D2TA02117J/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705401
– volume: 22
  start-page: 2202
  year: 2010
  ident: D2TA02117J/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903436
– volume: 142
  start-page: 6856
  year: 2020
  ident: D2TA02117J/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00365
– volume: 4
  start-page: 16288
  year: 2016
  ident: D2TA02117J/cit3/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06089G
– volume: 6
  start-page: 41
  year: 2021
  ident: D2TA02117J/cit16/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01750
– volume: 3
  start-page: 7750
  year: 2015
  ident: D2TA02117J/cit15/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03438D
– volume: 56
  start-page: 14149
  year: 2017
  ident: D2TA02117J/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708548
– volume: 27
  start-page: 8001
  year: 2015
  ident: D2TA02117J/cit12/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03330
– volume: 55
  start-page: 3106
  year: 2016
  ident: D2TA02117J/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511553
– volume: 31
  start-page: 8830
  year: 2019
  ident: D2TA02117J/cit14/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02825
– volume: 49
  start-page: 3925
  year: 2013
  ident: D2TA02117J/cit48/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc00039g
– volume: 57
  start-page: 12057
  year: 2018
  ident: D2TA02117J/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804878
– volume: 31
  start-page: e1807865
  year: 2019
  ident: D2TA02117J/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807865
– volume: 7
  start-page: 22848
  year: 2019
  ident: D2TA02117J/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06847C
– volume: 57
  start-page: 8438
  year: 2018
  ident: D2TA02117J/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801128
– volume: 60
  start-page: 25688
  year: 2021
  ident: D2TA02117J/cit7/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109342
– start-page: e2107947
  year: 2021
  ident: D2TA02117J/cit5/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107947
– volume: 33
  start-page: 1909
  year: 2021
  ident: D2TA02117J/cit13/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04348
– volume: 13
  start-page: 6182
  year: 2020
  ident: D2TA02117J/cit17/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001638
– volume: 283
  start-page: 184
  year: 2016
  ident: D2TA02117J/cit40/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.07.069
– volume: 25
  start-page: 1542
  year: 2013
  ident: D2TA02117J/cit19/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm303751n
– volume: 24
  start-page: 2357
  year: 2012
  ident: D2TA02117J/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200751
– volume: 3
  start-page: 6792
  year: 2015
  ident: D2TA02117J/cit37/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00665A
– volume: 59
  start-page: 6007
  year: 2020
  ident: D2TA02117J/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914424
– volume: 139
  start-page: 11666
  year: 2017
  ident: D2TA02117J/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05025
– volume: 22
  start-page: 1038
  year: 2020
  ident: D2TA02117J/cit4/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC03482J
– volume: 241
  start-page: 303
  year: 2017
  ident: D2TA02117J/cit47/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.11.033
– volume: 11
  start-page: 31
  year: 2018
  ident: D2TA02117J/cit2/1
  publication-title: Polymer
  doi: 10.3390/polym11010031
– volume: 49
  start-page: 3961
  year: 2013
  ident: D2TA02117J/cit20/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41382a
– volume: 379
  start-page: 24
  year: 2021
  ident: D2TA02117J/cit9/1
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-021-00336-8
– volume: 56
  start-page: 6859
  year: 2017
  ident: D2TA02117J/cit38/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702303
– volume: 46
  start-page: 291
  year: 2010
  ident: D2TA02117J/cit21/1
  publication-title: Chem. Commun.
  doi: 10.1039/B914761F
– volume: 30
  start-page: 1705401
  year: 2018
  ident: D2TA02117J/cit46/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705401
– volume: 27
  start-page: 234
  year: 2015
  ident: D2TA02117J/cit41/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403299
– volume: 47
  start-page: 3450
  year: 2008
  ident: D2TA02117J/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 134
  start-page: 10478
  year: 2012
  ident: D2TA02117J/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304879c
– volume: 61
  start-page: e202113926
  year: 2021
  ident: D2TA02117J/cit29/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.202113926
– volume: 7
  start-page: 17277
  year: 2019
  ident: D2TA02117J/cit8/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02573A
– volume: 7
  start-page: 5153
  year: 2019
  ident: D2TA02117J/cit6/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12442F
– volume: 33
  start-page: 3386
  year: 2021
  ident: D2TA02117J/cit26/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c00699
– volume: 57
  start-page: 11968
  year: 2018
  ident: D2TA02117J/cit34/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806664
– volume: 135
  start-page: 17853
  year: 2013
  ident: D2TA02117J/cit44/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408121p
– volume: 135
  start-page: 5328
  year: 2013
  ident: D2TA02117J/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 18
  start-page: 100506
  year: 2020
  ident: D2TA02117J/cit10/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100506
– volume: 3
  start-page: 6739
  year: 2015
  ident: D2TA02117J/cit42/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA07196D
SSID ssj0000800699
Score 2.4317734
Snippet Covalent triazine frameworks (CTFs) have shown wide applications in the fields of separation, catalysis, energy storage, and beyond. However, it is a long-term...
A mechanochemistry-driven procedure was developed to achieve phase transformation of crystalline covalent triazine frameworks (CTFs) assisted by alkaline...
SourceID unpaywall
osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1431
SubjectTerms carbonization
Catalysis
catalytic activity
Crystal structure
Crystallinity
energy
Energy storage
mechanochemistry
Molten salts
nanopores
phase transition
Phase transitions
Porosity
Salts
surface area
Triazine
triazines
Title Mechanochemistry-driven phase transformation of crystalline covalent triazine frameworks assisted by alkaline molten salts
URI https://www.proquest.com/docview/2688267790
https://www.proquest.com/docview/2718272058
https://www.osti.gov/biblio/1874515
UnpaywallVersion submittedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection (IReL)
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7496
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800699
  issn: 2050-7496
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB3R5NBy6DeqgaKt4NKDIV7b691jVEAUFdRDItGTtV7vqhTXjmJHKPz6ziR2EtpK7c2Sx_JK83bnjXbmDcBRJIWR0nA_UpnwIxfmvraUuOJBmGknVR5RN_LVtbgYR5c38c0WHHa9MFRWWSG4FzWV2W1W3FYnNDYupkbyvoiRcPegP77-OvxGY-MG8YDUMOX6WYlOhDRUJzlvNAaxIPnxKOz06A-PKOWTaW224emsnOj5vS6KjRhz_gJOu9UtS0vujmdNdmwefhNu_MfyX8LzlmOy4RIUr2DLlq9he0N58A08XFlq-aVxWct5b34-pXOPTb5jWGPNBp2tSlY5ZqZz5JEk4G2ZqRCeGKwYjfwgdWrmuhKvmiEZJ-TkLJszXdzpxRc_qwK5Oat10dRvYXx-Nvp04bdjGHwTJknjK4ucwiCvikjIJcPzUEitRYSpj5EJRjMTBBbTDouZoeTOiThRlNags520QR7uQK-sSvsOmIgtN4NAIjxsFEoax5CEmcuVVtw4l3jwsfNSalqNchqVUaSLu_JQpad8NFx49NKDw5XtZKnM8VerPfJHinyCRHENVQ-ZJm194sF-h4G03bt1ygVmHYJ0GD34sHqNzqCrFF3aaoY2GNLpBjuWHuwgdlYrWCPOg6MVnP5Y4Nps9__M9uAZp8YLkvTk-9BrpjP7HulQkx1Af3g2-vzloN0WvwB0egsd
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SzaHNod-hTtKiklx6cLKWbVk6Lk1DCCT0kIX0ZCRZomlce1l7KZtfn5lde3fTFtqbwWMsmCfNGzTzBuAokcJKaXmYKCPCxMdFqB0lrngQGu2lKhLqRr68Eufj5OImvdmCw74XhsoqawT3oqbS3Jrytj6hsXEpNZJvixQJ9wC2x1dfR99obNwwHZIaplw_K9GLkMbqpOCtxiAWZT8ehZ0B_eERpXwybewOPJ1VEz3_pctyI8acvYDTfnXL0pK741lrju39b8KN_1j-S3jecUw2WoLiFWy56jXsbCgPvoH7S0ctvzQuaznvLSymdO6xyXcMa6zdoLN1xWrP7HSOPJIEvB2zNcITgxWjkR-kTs18X-LVMCTjhJyCmTnT5Z1efPGzLpGbs0aXbfMWxmdfrj-fh90YhtDGWdaGyiGnsMirEhJyMXgeCqm1SDD1sTLDaGajyGHa4TAzlNx7kWaK0hp0tpcuKuJdGFR15d4BE6njdhhJhIdLYknjGLLY-EJpxa33WQCfei_lttMop1EZZb64K49VfsqvRwuPXgRwuLKdLJU5_mq1T_7IkU-QKK6l6iHb5p1PAjjoMZB3e7fJucCsQ5AOYwAfV6_RGXSVoitXz9AGQzrdYKcygF3EzmoFa8QFcLSC0x8LXJvt_Z_ZPjzj1HhBkp78AAbtdObeIx1qzYduOzwAI9EJiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanochemistry-driven+phase+transformation+of+crystalline+covalent+triazine+frameworks+assisted+by+alkaline+molten+salts&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Fan%2C+Juntian&rft.au=Suo%2C+Xian&rft.au=Wang%2C+Tao&rft.au=Wang%2C+Zongyu&rft.date=2022-07-12&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=27&rft.spage=1431&rft.epage=14315&rft_id=info:doi/10.1039%2Fd2ta02117j&rft.externalDocID=d2ta02117j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon