Group Replicator Dynamics: A Novel Group-Wise Evolutionary Approach for Sparse Brain Network Detection

Functional magnetic resonance imaging (fMRI) is increasingly used for studying functional integration of the brain. However, large inter-subject variability in functional connectivity, particularly in disease populations, renders detection of representative group networks challenging. In this paper,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 31; no. 3; pp. 576 - 585
Main Authors Ng, B., McKeown, M. J., Abugharbieh, R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2011.2173699

Cover

More Information
Summary:Functional magnetic resonance imaging (fMRI) is increasingly used for studying functional integration of the brain. However, large inter-subject variability in functional connectivity, particularly in disease populations, renders detection of representative group networks challenging. In this paper, we propose a novel technique, "group replicator dynamics" (GRD), for detecting sparse functional brain networks that are common across a group of subjects. We extend the replicator dynamics (RD) approach, which we show to be a solution of the nonnegative sparse principal component analysis problem, by integrating group information into each subject's RD process. Our proposed strategy effectively coaxes all subjects' networks to evolve towards the common network of the group. This results in sparse networks comprising the same brain regions across subjects yet with subject-specific weightings of the identified brain regions. Thus, in contrast to traditional averaging approaches, GRD enables inter-subject variability to be modeled, which facilitates statistical group inference. Quantitative validation of GRD on synthetic data demonstrated superior network detection performance over standard methods. When applied to real fMRI data, GRD detected task-specific networks that conform well to prior neuroscience knowledge.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2011.2173699