Bayesian inference of frequency-specific functional connectivity in MEG imaging using a spectral graph model

Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wirin...

Full description

Saved in:
Bibliographic Details
Published inImaging neuroscience (Cambridge, Mass.) Vol. 2
Main Authors Jin, Huaqing, Abdelnour, Farras, Verma, Parul, Sipes, Benjamin S., Nagarajan, Srikantan S., Raj, Ashish
Format Journal Article
LanguageEnglish
Published 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA MIT Press 10.10.2024
Subjects
Online AccessGet full text
ISSN2837-6056
2837-6056
DOI10.1162/imag_a_00307

Cover

Abstract Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure–function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph’s Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.
AbstractList Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure–function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph’s Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.
Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure–function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph’s Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.
Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure-function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph's Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure-function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph's Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.
Author Abdelnour, Farras
Raj, Ashish
Verma, Parul
Jin, Huaqing
Nagarajan, Srikantan S.
Sipes, Benjamin S.
AuthorAffiliation Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
AuthorAffiliation_xml – name: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
Author_xml – sequence: 1
  givenname: Huaqing
  surname: Jin
  fullname: Jin, Huaqing
  organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
– sequence: 2
  givenname: Farras
  surname: Abdelnour
  fullname: Abdelnour, Farras
  organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
– sequence: 3
  givenname: Parul
  surname: Verma
  fullname: Verma, Parul
  organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
– sequence: 4
  givenname: Benjamin S.
  surname: Sipes
  fullname: Sipes, Benjamin S.
  organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
– sequence: 5
  givenname: Srikantan S.
  surname: Nagarajan
  fullname: Nagarajan, Srikantan S.
  organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
– sequence: 6
  givenname: Ashish
  surname: Raj
  fullname: Raj, Ashish
  email: ashish.raj@ucsf.edu
  organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40800323$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB90xxp5yYLAxI88VgiqtiAVsYG15TjjW1eJHeykKP8eR_dSXSQkNrZH_s7M0ZlzcuKDR0JelfCuLCv23o16p7QC4FA_I2es4XVRgaxOjt6n5DKlBwBgbQtNLV-QUwFNljB-RoZPesXktKfOW4zoDdJgqY34c8nFWqQJjbPOULt4M7vg9UBN8B5z8ejmNevo1-tbujlxfkeXtJ2abro5ZngX9XRPx9Dj8JI8t3pIeHm4L8iPm-vvV5-Lu2-3X64-3hWG1_VctDXjXBrLWGONqFqowEBnoKkEykZ0QjcCS9Fh2XMjddNLxqHrawmyE8YivyDFvu_iJ73-0sOgppgNxlWVoLbg1HFwmf-w56elG7E36DfnT5qgnfr7x7t7tQuPqmRsi1TkDm8OHWLIwaVZjS4ZHAbtMSxJ5azbkuUVyIy-Ph72NOXPTjLwdg-YGFKKaP9n_jB6dLN6CEvMG0r_Rn8DoemuXA
Cites_doi 10.1007/s11571-008-9038-0
10.1038/s41467-019-12765-7
10.1016/j.neuroimage.2012.03.048
10.1016/j.neuroimage.2013.12.039
10.1038/s41586-023-06098-1
10.1016/0022-5193(83)90414-9
10.1038/nn.4497
10.1186/1471-2202-10-55
10.1038/s41598-017-18769-x
10.2307/2532051
10.1016/j.neuroimage.2018.10.079
10.1002/hbm.24991
10.1016/j.neuroimage.2022.118919
10.1016/j.neuroimage.2017.03.045
10.1016/j.neuroimage.2023.120337
10.1006/nimg.1999.0472
10.1016/j.neuroimage.2013.06.018
10.1016/j.neuroimage.2020.117705
10.1016/j.neuroimage.2015.01.002
10.1038/35065725
10.1126/science.1238411
10.1038/nrn2575
10.1016/j.neuroimage.2003.07.015
10.1109/TMI.2002.1009385
10.1162/netn_a_00187
10.1162/netn_a_00267
10.1016/S0006-3495(72)86068-5
10.7554/eLife.42722
10.1007/s00422-009-0328-3
10.1016/j.neuroimage.2009.01.062
10.1016/j.neuroimage.2017.02.090
10.1097/WCO.0b013e32832d93dd
10.2307/3315017
10.1016/j.neuroimage.2013.11.009
10.1016/j.media.2020.101799
10.1007/s11571-008-9044-2
10.1109/ISBI.2015.7163912
10.1177/1073858406293182
10.1093/cercor/bhw089
10.1016/j.neuroimage.2020.117137
10.1371/journal.pcbi.1005076
10.1038/s41467-019-10467-8
10.1371/journal.pbio.0060159
10.1088/0967-3334/32/8/011
10.1371/journal.pcbi.1006007
10.1016/j.neurobiolaging.2005.05.027
10.3389/fnins.2013.00267
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2021.118190
10.1038/ncomms10340
10.21105/joss.02505
10.1016/j.neuroimage.2018.05.070
10.7554/eLife.56261
10.7554/eLife.77850
10.1523/JNEUROSCI.0141-08.2008
10.1098/rstb.2005.1638
10.1093/cercor/bhy136
10.1016/j.neuroimage.2011.02.054
10.1523/JNEUROSCI.2177-05.2005
10.1523/JNEUROSCI.3874-05.2006
10.1016/S0074-7742(05)68006-3
10.1007/s12559-021-09931-9
10.1162/netn_a_00263
10.1002/wsbm.1348
10.1002/hbm.25967
10.1038/nrn3901
10.1002/hbm.20737
10.1016/j.neuroimage.2018.02.016
10.1016/j.neuroimage.2016.04.050
10.1007/s10548-021-00828-2
10.1162/netn_a_00183
10.1016/j.bandc.2020.105677
10.1016/j.neuron.2015.05.035
10.1016/S0079-6123(07)68012-1
10.1016/j.neuroimage.2011.08.020
10.1007/s00401-016-1631-4
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuron.2010.04.020
10.1038/s41598-022-23656-1
10.1007/s11571-008-9064-y
10.1162/neco.2009.02-08-710
10.1162/netn_a_00303
10.3389/fncom.2012.00068
10.1016/j.neuroimage.2017.03.023
10.1007/s10439-010-0155-7
10.1371/journal.pcbi.1006694
10.1016/j.pneurobio.2013.12.005
10.1371/journal.pcbi.1003427
10.1016/j.neuroimage.2020.116805
10.1016/j.neuroimage.2023.119975
10.1016/j.nicl.2014.07.006
10.1089/brain.2015.0408
10.3389/fnins.2022.959557
10.1016/j.neuroimage.2018.05.058
10.1177/1094428118804657
10.3389/fpsyg.2017.01850
10.1073/pnas.1219562110
10.1016/j.neuron.2013.10.017
10.1016/j.tics.2020.01.008
10.1007/BF00288786
10.1073/pnas.0811168106
ContentType Journal Article
Copyright 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.
Copyright_xml – notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
– notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1162/imag_a_00307
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2837-6056
ExternalDocumentID 10.1162/imag_a_00307
PMC12290874
40800323
10_1162_imag_a_00307
imag_a_00307.pdf
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: K25AG071840; R01NS132766; R01AG072753; R56AG082087
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JMNJE
M~E
AAYXX
CITATION
RPM
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c377t-972335cf228fc469060c0bc0864e584b4a84e14be1d3c5a8d5230bd7505b4cfe3
IEDL.DBID UNPAY
ISSN 2837-6056
IngestDate Sun Oct 26 03:49:44 EDT 2025
Tue Sep 30 17:01:56 EDT 2025
Sat Aug 23 12:15:50 EDT 2025
Sun Aug 17 02:21:41 EDT 2025
Wed Oct 01 05:40:16 EDT 2025
Tue Aug 12 12:10:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords connectomes
functional connectivity
simulation-based inference
magnetoencephalography
Bayesian
spectral graph theory
Language English
License 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/ .
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-972335cf228fc469060c0bc0864e584b4a84e14be1d3c5a8d5230bd7505b4cfe3
Notes 2024
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1162/imag_a_00307
PMID 40800323
PQID 3239120025
PQPubID 23479
PageCount 24
ParticipantIDs unpaywall_primary_10_1162_imag_a_00307
crossref_primary_10_1162_imag_a_00307
pubmed_primary_40800323
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12290874
mit_journals_10_1162_imag_a_00307
proquest_miscellaneous_3239120025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-10
  day: 10
PublicationDecade 2020
PublicationPlace 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
PublicationPlace_xml – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
– name: United States
– name: One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu
PublicationTitle Imaging neuroscience (Cambridge, Mass.)
PublicationTitleAlternate Imaging Neurosci (Camb)
PublicationYear 2024
Publisher MIT Press
Publisher_xml – name: MIT Press
References Brookes (2025081118584803900_b18) 2012; 63
Breakspear (2025081118584803900_b16) 2017; 20
Kiebel (2025081118584803900_b59) 2008; 2
Deslauriers-Gauthier (2025081118584803900_b32) 2020; 66
Abeysuriya (2025081118584803900_b5) 2018; 14
Achard (2025081118584803900_b6) 2006; 26
Nakagawa (2025081118584803900_b74) 2014; 87
Tejero-Cantero (2025081118584803900_b98) 2020; 5
Frässle (2025081118584803900_b41) 2017; 155
Glomb (2025081118584803900_b44) 2022; 35
Henson (2025081118584803900_b53) 2009; 46
Ng (2025081118584803900_b75) 2001; 14
Destexhe (2025081118584803900_b33) 2009; 101
Bassett (2025081118584803900_b13) 2009; 22
Desikan (2025081118584803900_b31) 2006; 31
Xie (2025081118584803900_b113) 2019
Deistler (2025081118584803900_b30) 2022
Raj (2025081118584803900_b84) 2022; 16
Robinson (2025081118584803900_b87) 2005; 360
Chatterjee (2025081118584803900_b24) 2007; 168
Hagmann (2025081118584803900_b48) 2008; 6
Honey (2025081118584803900_b56) 2009; 106
He (2025081118584803900_b50) 2010; 66
Freeman (2025081118584803900_b39) 2009; 3
Deco (2025081118584803900_b29) 2012; 6
Gonçalves (2025081118584803900_b46) 2020; 9
Auffarth (2025081118584803900_b11) 2007
Rué-Queralt (2025081118584803900_b91) 2023; 280
Cabral (2025081118584803900_b21) 2014; 114
Atasoy (2025081118584803900_b10) 2016; 7
Xie (2025081118584803900_b112) 2019
Cabral (2025081118584803900_b22) 2017; 160
Hillebrand (2025081118584803900_b55) 2005; 68
Lange (2025081118584803900_b62) 1999; 10
Mišić (2025081118584803900_b72) 2014; 10
van den Heuvel (2025081118584803900_b105) 2009; 30
da Silva (2025081118584803900_b26) 2013; 80
Ghosh (2025081118584803900_b43) 2023; 272
Chung (2025081118584803900_b25) 1997
Fornito (2025081118584803900_b37) 2015; 16
Raj (2025081118584803900_b83) 2020; 41
Larsen (2025081118584803900_b63) 2006
Jin (2025081118584803900_b57) 2023
Escudero (2025081118584803900_b36) 2011; 32
Racine (2025081118584803900_b81) 2017; 1
Strogatz (2025081118584803900_b96) 2001; 410
Tewarie (2025081118584803900_b99) 2019; 186
Tewarie (2025081118584803900_b101) 2022; 43
Tewarie (2025081118584803900_b102) 2020; 216
Tivadar (2025081118584803900_b103) 2019; 22
Glomb (2025081118584803900_b45) 2020; 221
Gramfort (2025081118584803900_b47) 2013; 7
Preti (2025081118584803900_b80) 2019; 10
Shimizu (2025081118584803900_b93) 1983; 104
Abdelnour (2025081118584803900_b3) 2015
Beppi (2025081118584803900_b15) 2021; 148
Kulik (2025081118584803900_b61) 2023; 7
Franciotti (2025081118584803900_b38) 2006; 27
Hermundstad (2025081118584803900_b54) 2013; 110
Rubinov (2025081118584803900_b90) 2009; 10
Henderson (2025081118584803900_b52) 1979; 7
Abdelnour (2025081118584803900_b2) 2021; 228
Wilson (2025081118584803900_b109) 1973; 13
Spiegler (2025081118584803900_b95) 2013; 83
Mišić (2025081118584803900_b70) 2016; 26
Sanz-Leon (2025081118584803900_b92) 2015; 111
Park (2025081118584803900_b78) 2013; 342
Cakan (2025081118584803900_b23) 2021; 15
Hartoyo (2025081118584803900_b49) 2019; 15
Pinotsis (2025081118584803900_b79) 2012; 59
Abdelnour (2025081118584803900_b1) 2018; 172
Frässle (2025081118584803900_b40) 2018; 179
Becker (2025081118584803900_b14) 2018; 8
Suárez (2025081118584803900_b97) 2020; 24
Meier (2025081118584803900_b68) 2016; 6
Pang (2025081118584803900_b77) 2023; 618
Lassmann (2025081118584803900_b64) 2017; 133
Messaritaki (2025081118584803900_b69) 2021; 5
Raftery (2025081118584803900_b82) 1996
Siettos (2025081118584803900_b94) 2016; 8
Tokariev (2025081118584803900_b104) 2019; 10
Abdelnour (2025081118584803900_b4) 2014; 90
Mišić (2025081118584803900_b71) 2015; 86
Jirsa (2025081118584803900_b58) 2002; 21
Brookes (2025081118584803900_b17) 2011; 56
Alexander-Bloch (2025081118584803900_b7) 2018; 178
Deco (2025081118584803900_b28) 2017; 152
Verma (2025081118584803900_b106) 2022; 249
Lioi (2025081118584803900_b67) 2021; 5
Wilson (2025081118584803900_b108) 1972
Bullmore (2025081118584803900_b20) 2009; 10
Wodeyar (2025081118584803900_b110) 2022; 6
Bassett (2025081118584803900_b12) 2006; 12
He (2025081118584803900_b51) 2008; 28
Rubinov (2025081118584803900_b89) 2010; 52
David (2025081118584803900_b27) 2003; 20
Ghosh (2025081118584803900_b42) 2008; 2
Li (2025081118584803900_b65) 2022; 12
Tewarie (2025081118584803900_b100) 2019; 29
Kondor (2025081118584803900_b60) 2002
Lin (2025081118584803900_b66) 1989; 45
Durkan (2025081118584803900_b34) 2019; 32
Buckner (2025081118584803900_b19) 2005; 25
Robinson (2025081118584803900_b88) 2016; 142
Muldoon (2025081118584803900_b73) 2016; 12
Verma (2025081118584803900_b107) 2023; 7
Ranasinghe (2025081118584803900_b85) 2014; 5
Xie (2025081118584803900_b111) 2021; 237
Ranasinghe (2025081118584803900_b86) 2022; 11
Nozari (2025081118584803900_b76) 2020
El Boustani (2025081118584803900_b35) 2009; 21
Alonso (2025081118584803900_b9) 2019; 8
Alonso (2025081118584803900_b8) 2011; 39
References_xml – volume: 2
  start-page: 121
  issue: 2
  year: 2008
  ident: 2025081118584803900_b59
  article-title: Dynamic causal modelling for EEG and MEG
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-008-9038-0
– volume: 10
  start-page: 4747
  issue: 1
  year: 2019
  ident: 2025081118584803900_b80
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-12765-7
– volume: 63
  start-page: 910
  issue: 2
  year: 2012
  ident: 2025081118584803900_b18
  article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.048
– volume: 90
  start-page: 335
  year: 2014
  ident: 2025081118584803900_b4
  article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.039
– volume: 618
  start-page: 566
  issue: 7965
  year: 2023
  ident: 2025081118584803900_b77
  article-title: Geometric constraints on human brain function
  publication-title: Nature
  doi: 10.1038/s41586-023-06098-1
– volume: 104
  start-page: 261
  issue: 2
  year: 1983
  ident: 2025081118584803900_b93
  article-title: Co-operative dynamics in organelles
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/0022-5193(83)90414-9
– volume: 20
  start-page: 340
  issue: 3
  year: 2017
  ident: 2025081118584803900_b16
  article-title: Dynamic models of large-scale brain activity
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4497
– volume: 10
  start-page: 1
  issue: 1
  year: 2009
  ident: 2025081118584803900_b90
  article-title: Symbiotic relationship between brain structure and dynamics
  publication-title: BMC Neuroscience
  doi: 10.1186/1471-2202-10-55
– volume: 8
  start-page: 1411
  issue: 1
  year: 2018
  ident: 2025081118584803900_b14
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Nature Scientific Reports
  doi: 10.1038/s41598-017-18769-x
– volume: 45
  start-page: 255
  issue: 1
  year: 1989
  ident: 2025081118584803900_b66
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 186
  start-page: 211
  year: 2019
  ident: 2025081118584803900_b99
  article-title: How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.079
– volume: 41
  start-page: 2980
  issue: 11
  year: 2020
  ident: 2025081118584803900_b83
  article-title: Spectral graph theory of brain oscillations
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.24991
– volume: 249
  start-page: 118919
  year: 2022
  ident: 2025081118584803900_b106
  article-title: Spectral graph theory of brain oscillations—revisited and improved
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118919
– volume: 160
  start-page: 84
  year: 2017
  ident: 2025081118584803900_b22
  article-title: Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.045
– volume: 280
  start-page: 120337
  year: 2023
  ident: 2025081118584803900_b91
  article-title: The coupling between the spatial and temporal scales of neural processes revealed by a joint time-vertex connectome spectral analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120337
– volume: 10
  start-page: 282
  issue: 3
  year: 1999
  ident: 2025081118584803900_b62
  article-title: Plurality and resemblance in fMRI data analysis
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0472
– volume: 83
  start-page: 704
  year: 2013
  ident: 2025081118584803900_b95
  article-title: Systematic approximations of neural fields through networks of neural masses in the virtual brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.018
– volume: 228
  start-page: 117705
  year: 2021
  ident: 2025081118584803900_b2
  article-title: Algebraic relationship between the structural network’s Laplacian and functional network’s adjacency matrix is preserved in temporal lobe epilepsy subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117705
– volume: 111
  start-page: 385
  year: 2015
  ident: 2025081118584803900_b92
  article-title: Mathematical framework for large-scale brain network modeling in The Virtual Brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.002
– volume: 410
  start-page: 268
  issue: 6825
  year: 2001
  ident: 2025081118584803900_b96
  article-title: Exploring complex networks
  publication-title: Nature
  doi: 10.1038/35065725
– volume: 342
  start-page: 1238411
  issue: 6158
  year: 2013
  ident: 2025081118584803900_b78
  article-title: Structural and functional brain networks: From connections to cognition
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 2025081118584803900_b20
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2575
– volume: 20
  start-page: 1743
  issue: 3
  year: 2003
  ident: 2025081118584803900_b27
  article-title: A neural mass model for MEG/EEG: Coupling and neuronal dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.07.015
– volume: 21
  start-page: 493
  issue: 5
  year: 2002
  ident: 2025081118584803900_b58
  article-title: Spatiotemporal forward solution of the EEG and MEG using network modeling
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2002.1009385
– volume: 5
  start-page: 477
  issue: 2
  year: 2021
  ident: 2025081118584803900_b69
  article-title: Predicting MEG resting-state functional connectivity from microstructural information
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00187
– volume: 6
  start-page: 1219
  issue: 4
  year: 2022
  ident: 2025081118584803900_b110
  article-title: Structural connectome constrained graphical lasso for MEG partial coherence
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00267
– year: 1972
  ident: 2025081118584803900_b108
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 8
  start-page: e42722
  year: 2019
  ident: 2025081118584803900_b9
  article-title: Visualization of currents in neural models with similar behavior and different conductance densities
  publication-title: eLife
  doi: 10.7554/eLife.42722
– volume: 101
  start-page: 1
  issue: 1
  year: 2009
  ident: 2025081118584803900_b33
  article-title: The Wilson–Cowan model, 36 years later
  publication-title: Biological Cybernetics
  doi: 10.1007/s00422-009-0328-3
– volume: 46
  start-page: 168
  issue: 1
  year: 2009
  ident: 2025081118584803900_b53
  article-title: Selecting forward models for MEG source-reconstruction using model-evidence
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.062
– volume: 155
  start-page: 406
  year: 2017
  ident: 2025081118584803900_b41
  article-title: Regression DCM for fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.090
– volume: 22
  start-page: 340
  issue: 4
  year: 2009
  ident: 2025081118584803900_b13
  article-title: Human brain networks in health and disease
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0b013e32832d93dd
– volume: 7
  start-page: 65
  issue: 1
  year: 1979
  ident: 2025081118584803900_b52
  article-title: Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics
  publication-title: Canadian Journal of Statistics
  doi: 10.2307/3315017
– year: 2023
  ident: 2025081118584803900_b57
  article-title: Bayesian inference of a spectral graph model for brain oscillations
  publication-title: bioRxiv
– volume: 87
  start-page: 383
  year: 2014
  ident: 2025081118584803900_b74
  article-title: How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.009
– volume: 66
  start-page: 101799
  year: 2020
  ident: 2025081118584803900_b32
  article-title: A unified framework for multimodal structure-function mapping based on eigenmodes
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101799
– volume: 2
  start-page: 115
  issue: 2
  year: 2008
  ident: 2025081118584803900_b42
  article-title: Cortical network dynamics with time delays reveals functional connectivity in the resting brain
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-008-9044-2
– start-page: 466
  volume-title: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI)
  year: 2015
  ident: 2025081118584803900_b3
  article-title: Estimating function from structure in epileptics using graph diffusion model
  doi: 10.1109/ISBI.2015.7163912
– volume: 12
  start-page: 512
  issue: 6
  year: 2006
  ident: 2025081118584803900_b12
  article-title: Small-world brain networks
  publication-title: The Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 26
  start-page: 3285
  issue: 7
  year: 2016
  ident: 2025081118584803900_b70
  article-title: Network-level structure-function relationships in human neocortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhw089
– volume: 221
  start-page: 117137
  year: 2020
  ident: 2025081118584803900_b45
  article-title: Connectome spectral analysis to track EEG task dynamics on a subsecond scale
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117137
– volume: 12
  start-page: 1
  issue: 9
  year: 2016
  ident: 2025081118584803900_b73
  article-title: Stimulation-based control of dynamic brain networks
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005076
– volume: 10
  start-page: 2619
  issue: 1
  year: 2019
  ident: 2025081118584803900_b104
  article-title: Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10467-8
– volume: 6
  start-page: 1
  issue: 7
  year: 2008
  ident: 2025081118584803900_b48
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0060159
– volume: 32
  start-page: 1163
  issue: 8
  year: 2011
  ident: 2025081118584803900_b36
  article-title: Regional coherence evaluation in mild cognitive impairment and Alzheimer’s disease based on adaptively extracted magnetoencephalogram rhythms
  publication-title: Physiological measurement
  doi: 10.1088/0967-3334/32/8/011
– volume: 14
  start-page: 1
  issue: 2
  year: 2018
  ident: 2025081118584803900_b5
  article-title: A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1006007
– start-page: 115
  volume-title: Markov chain Monte Carlo in practice
  year: 1996
  ident: 2025081118584803900_b82
  article-title: Implementing MCMC
– volume: 27
  start-page: 1100
  issue: 8
  year: 2006
  ident: 2025081118584803900_b38
  article-title: Cortical rhythms reactivity in AD, LBD and normal subjects: A quantitative MEG study
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2005.05.027
– volume: 7
  start-page: 267
  year: 2013
  ident: 2025081118584803900_b47
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2013.00267
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 2025081118584803900_b89
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 237
  start-page: 118190
  year: 2021
  ident: 2025081118584803900_b111
  article-title: Emergence of canonical functional networks from the structural connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118190
– start-page: 315
  volume-title: Proceedings of the 19th International Conference on Machine Learning
  year: 2002
  ident: 2025081118584803900_b60
  article-title: Diffusion kernels on graphs and other discrete structures
– volume: 7
  start-page: 10340
  year: 2016
  ident: 2025081118584803900_b10
  article-title: Human brain networks function in connectome-specific harmonic waves
  publication-title: Nature Communications
  doi: 10.1038/ncomms10340
– volume: 5
  start-page: 2505
  issue: 52
  year: 2020
  ident: 2025081118584803900_b98
  article-title: SBI: A toolkit for simulation-based inference
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.02505
– volume: 178
  start-page: 540
  year: 2018
  ident: 2025081118584803900_b7
  article-title: On testing for spatial correspondence between maps of human brain structure and function
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.070
– year: 2019
  ident: 2025081118584803900_b112
  article-title: Parameter identifiability and non-uniqueness in connectome based neural mass models
  publication-title: bioRxiv
– volume: 9
  start-page: e56261
  year: 2020
  ident: 2025081118584803900_b46
  article-title: Training deep neural density estimators to identify mechanistic models of neural dynamics
  publication-title: eLife
  doi: 10.7554/eLife.56261
– volume: 11
  start-page: e77850
  year: 2022
  ident: 2025081118584803900_b86
  article-title: Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease
  publication-title: eLife
  doi: 10.7554/eLife.77850
– volume: 28
  start-page: 4756
  issue: 18
  year: 2008
  ident: 2025081118584803900_b51
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0141-08.2008
– volume: 360
  start-page: 1043
  issue: 1457
  year: 2005
  ident: 2025081118584803900_b87
  article-title: Multiscale brain modelling
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2005.1638
– volume-title: Spectral graph theory
  year: 1997
  ident: 2025081118584803900_b25
– volume: 29
  start-page: 2668
  issue: 6
  year: 2019
  ident: 2025081118584803900_b100
  article-title: Relationships between neuronal oscillatory amplitude and dynamic functional connectivity
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhy136
– volume: 56
  start-page: 1082
  issue: 3
  year: 2011
  ident: 2025081118584803900_b17
  article-title: Measuring functional connectivity using MEG: Methodology and comparison with fcMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.054
– volume: 25
  start-page: 7709
  issue: 34
  year: 2005
  ident: 2025081118584803900_b19
  article-title: Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2177-05.2005
– year: 2022
  ident: 2025081118584803900_b30
  article-title: Truncated proposals for scalable and hassle-free simulation-based inference
  publication-title: arXiv preprint arXiv:2210.04815
– volume: 26
  start-page: 63
  issue: 1
  year: 2006
  ident: 2025081118584803900_b6
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 68
  start-page: 149
  year: 2005
  ident: 2025081118584803900_b55
  article-title: Beamformer analysis of MEG data
  publication-title: International Review of Neurobiology
  doi: 10.1016/S0074-7742(05)68006-3
– volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006, Proceedings, Part I
  year: 2006
  ident: 2025081118584803900_b63
– volume: 15
  start-page: 1132
  year: 2021
  ident: 2025081118584803900_b23
  article-title: neurolib: A simulation framework for whole-brain neural mass modeling
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-021-09931-9
– volume: 14
  start-page: 849
  year: 2001
  ident: 2025081118584803900_b75
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 7
  start-page: 48
  issue: 1
  year: 2023
  ident: 2025081118584803900_b107
  article-title: Stability and dynamics of a spectral graph model of brain oscillations
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00263
– volume: 8
  start-page: 438
  issue: 5
  year: 2016
  ident: 2025081118584803900_b94
  article-title: Multiscale modeling of brain dynamics: From single neurons and networks to mathematical tools
  publication-title: WIREs Systems Biology and Medicine
  doi: 10.1002/wsbm.1348
– volume: 43
  start-page: 4475
  issue: 14
  year: 2022
  ident: 2025081118584803900_b101
  article-title: Predicting time-resolved electrophysiological brain networks from structural eigenmodes
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.25967
– volume: 16
  start-page: 159
  issue: 3
  year: 2015
  ident: 2025081118584803900_b37
  article-title: The connectomics of brain disorders
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn3901
– volume: 30
  start-page: 3127
  issue: 10
  year: 2009
  ident: 2025081118584803900_b105
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20737
– volume: 172
  start-page: 728
  year: 2018
  ident: 2025081118584803900_b1
  article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.02.016
– volume: 142
  start-page: 79
  year: 2016
  ident: 2025081118584803900_b88
  article-title: Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.050
– volume: 35
  start-page: 142
  issue: 1
  year: 2022
  ident: 2025081118584803900_b44
  article-title: Computational models in electroencephalography
  publication-title: Brain Topography
  doi: 10.1007/s10548-021-00828-2
– volume: 5
  start-page: 322
  issue: 2
  year: 2021
  ident: 2025081118584803900_b67
  article-title: Gradients of connectivity as graph Fourier bases of brain activity
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00183
– volume: 148
  start-page: 105677
  year: 2021
  ident: 2025081118584803900_b15
  article-title: EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions
  publication-title: Brain and Cognition
  doi: 10.1016/j.bandc.2020.105677
– volume: 86
  start-page: 1518
  issue: 6
  year: 2015
  ident: 2025081118584803900_b71
  article-title: Cooperative and competitive spreading dynamics on the human connectome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.035
– volume: 168
  start-page: 145
  year: 2007
  ident: 2025081118584803900_b24
  article-title: Understanding the mind of a worm: Hierarchical network structure underlying nervous system function in C. elegans
  publication-title: Progress in Brain Research
  doi: 10.1016/S0079-6123(07)68012-1
– volume: 59
  start-page: 1261
  issue: 2
  year: 2012
  ident: 2025081118584803900_b79
  article-title: Dynamic causal modeling with neural fields
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.020
– volume: 133
  start-page: 223
  issue: 2
  year: 2017
  ident: 2025081118584803900_b64
  article-title: Multiple sclerosis: Experimental models and reality
  publication-title: Acta Neuropathologica
  doi: 10.1007/s00401-016-1631-4
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 2025081118584803900_b31
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume-title: Universitat Politecnica de Catalunya
  year: 2007
  ident: 2025081118584803900_b11
– volume: 66
  start-page: 353
  issue: 3
  year: 2010
  ident: 2025081118584803900_b50
  article-title: The temporal structures and functional significance of scale-free brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.020
– volume: 12
  start-page: 18998
  issue: 1
  year: 2022
  ident: 2025081118584803900_b65
  article-title: Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-23656-1
– volume: 3
  start-page: 97
  issue: 1
  year: 2009
  ident: 2025081118584803900_b39
  article-title: Simulated power spectral density (PSD) of background electrocorticogram (ECoG)
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-008-9064-y
– volume: 32
  year: 2019
  ident: 2025081118584803900_b34
  article-title: Neural spline flows
  publication-title: Advances in Neural Information Processing Systems
– volume: 21
  start-page: 46
  issue: 1
  year: 2009
  ident: 2025081118584803900_b35
  article-title: A master equation formalism for macroscopic modeling of asynchronous irregular activity states
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.02-08-710
– volume: 7
  start-page: 950
  issue: 3
  year: 2023
  ident: 2025081118584803900_b61
  article-title: Comparing individual and group-level simulated neurophysiological brain connectivity using the Jansen and Rit neural mass model
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00303
– volume: 6
  start-page: 68
  year: 2012
  ident: 2025081118584803900_b29
  article-title: How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2012.00068
– volume: 152
  start-page: 538
  year: 2017
  ident: 2025081118584803900_b28
  article-title: Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.023
– volume: 39
  start-page: 524
  year: 2011
  ident: 2025081118584803900_b8
  article-title: MEG connectivity analysis in patients with Alzheimer’s disease using cross mutual information and spectral coherence
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-010-0155-7
– volume: 15
  start-page: 1
  issue: 5
  year: 2019
  ident: 2025081118584803900_b49
  article-title: Parameter estimation and identifiability in a neural population model for electro-cortical activity
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1006694
– volume: 114
  start-page: 102
  year: 2014
  ident: 2025081118584803900_b21
  article-title: Exploring the network dynamics underlying brain activity during rest
  publication-title: Progress in Neurobiology
  doi: 10.1016/j.pneurobio.2013.12.005
– volume: 10
  start-page: e1003427
  issue: 1
  year: 2014
  ident: 2025081118584803900_b72
  article-title: Communication efficiency and congestion of signal traffic in large-scale brain networks
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003427
– volume: 216
  start-page: 116805
  year: 2020
  ident: 2025081118584803900_b102
  article-title: Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116805
– volume: 272
  start-page: 119975
  year: 2023
  ident: 2025081118584803900_b43
  article-title: A joint subspace mapping between structural and functional brain connectomes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.119975
– volume: 5
  start-page: 385
  year: 2014
  ident: 2025081118584803900_b85
  article-title: Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.07.006
– volume: 6
  start-page: 298
  issue: 4
  year: 2016
  ident: 2025081118584803900_b68
  article-title: A mapping between structural and functional brain networks
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2015.0408
– volume: 16
  start-page: 959557
  year: 2022
  ident: 2025081118584803900_b84
  article-title: Structure-function models of temporal, spatial, and spectral characteristics of non-invasive whole brain functional imaging
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2022.959557
– volume: 179
  start-page: 505
  year: 2018
  ident: 2025081118584803900_b40
  article-title: A generative model of whole-brain effective connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.058
– volume: 22
  start-page: 69
  issue: 1
  year: 2019
  ident: 2025081118584803900_b103
  article-title: A primer on electroencephalography and event-related potentials for organizational neuroscience
  publication-title: Organizational Research Methods
  doi: 10.1177/1094428118804657
– volume: 1
  start-page: 1850
  issue: 8
  year: 2017
  ident: 2025081118584803900_b81
  article-title: Free will and the brain disease model of addiction: The not so seductive allure of neuroscience and its modest impact on the attribution of free will to people with an addiction
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2017.01850
– volume: 110
  start-page: 6169
  issue: 15
  year: 2013
  ident: 2025081118584803900_b54
  article-title: Structural foundations of resting-state and task-based functional connectivity in the human brain
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1219562110
– volume: 80
  start-page: 1112
  issue: 5
  year: 2013
  ident: 2025081118584803900_b26
  article-title: EEG and MEG: Relevance to neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.017
– year: 2020
  ident: 2025081118584803900_b76
  article-title: Is the brain macroscopically linear? A system identification of resting state dynamics
  publication-title: bioRxiv
– volume: 24
  start-page: 302
  issue: 4
  year: 2020
  ident: 2025081118584803900_b97
  article-title: Linking structure and function in macroscale brain networks
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2020.01.008
– volume: 13
  start-page: 55
  issue: 2
  year: 1973
  ident: 2025081118584803900_b109
  article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
  publication-title: Kybernetik
  doi: 10.1007/BF00288786
– volume: 106
  start-page: 2035
  issue: 6
  year: 2009
  ident: 2025081118584803900_b56
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0811168106
– year: 2019
  ident: 2025081118584803900_b113
  article-title: Raj-Lab-UCSF/spectrome: Spectral graph model of connectomes
SSID ssj0002990875
Score 2.280072
Snippet Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Bayesian
connectomes
functional connectivity
magnetoencephalography
simulation-based inference
spectral graph theory
Title Bayesian inference of frequency-specific functional connectivity in MEG imaging using a spectral graph model
URI https://direct.mit.edu/IMAG/article/doi/10.1162/imag_a_00307
https://www.ncbi.nlm.nih.gov/pubmed/40800323
https://www.proquest.com/docview/3239120025
https://pubmed.ncbi.nlm.nih.gov/PMC12290874
https://doi.org/10.1162/imag_a_00307
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  issn: 2837-6056
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  issn: 2837-6056
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAPP
  databaseName: MIT Press Direct OA Journals
  issn: 2837-6056
  databaseCode: JMNJE
  dateStart: 20230810
  customDbUrl:
  isFulltext: true
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  providerName: MIT
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  issn: 2837-6056
  databaseCode: RPM
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLZgSMAL91GOKUjAW2Fp0y57BDRASEM8MAmeqiRNxsToEHRC49cT95g27ue6SlM78fXZBtj3lKbG6gI3VlS4jLPYFfamdCXVdSUY5vLQUWxdh5dtdnUX3E3BflkLM56_p6F33H0SnUhEmSxOw0wYWIu7AjPt65uTe5wbx7HKzSrxEtP-6ZUJbTP91E2_MyS_4iHnBsmzGL6JXm9M2ZwvQrP8zBxj8ng0SOWRev_UwfGvfSzBQmFtkpNcPJZhSicrMNsq8umr0DsVQ41llKRbFv6RviHmJQdYD10sxEQwEUH9l4cNiUJsjMqnTtj3SKt5QXBhqwQJwug7RJCsgNNukmQNsUk2b2cN2ufN27NLt5i_4Cq_Xk9dHEjmB8p4HjcK3eiwpmpSWSeIaWu3SCY405RJTWNfBYLHGGGWsbVBAsmU0f46VJJ-ojeBeLFh0l4uMpAxdhjkDWMUdg9UDakF9x04KPkUPedtNqLMPQm9aPzXObBnmRgV5-z1J5qSxZE9K5gAEYnuD14j3_MbFFEpgQMbOctHqzE0nS2BA3xCGEYE2Id78knSfcj6cVPsmc_rzIHDkdz8uout_xJuw7xnjSjUlbS2A5X0ZaB3rRGUymoWPKhm0alqcR4-AIFlCWc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB5BkZZ9QbBnOI0EvGWpEydNJV5YBJQu6RNIvFm2Y7OVSopoK9R_z0yOLuVY8RxbPsaZw_7mG4C9wFju0Bb4meHKF4nIfIWa0tfctowS9JZHgWLaizvXonsT3SzAUZ0LUyryX3f9EkVzkR6fH1Z7OCMb4HFw2L9Tt1LJ4owuwlIsmiGGXkvdtNf9d8dCqhb98Rrv_qLbnCVaxBHfcjJfYyWXJ_m9mj6qweCZITpbhZXKg2TH5XTXYMHmX-BTWr2Rf4XBbzW1lBrJ-nUyHxs65h5K0PTUp-RKAggxsmnlVSAzhHcxZSUJ7MfS03NGq0DDxggaf8sUK5IycXKsILlmRQ2db3B9dnp10vGrmgq-CVutsU9FxsLIuCBInKHQOG6apjYY2AiLvogWKhGWC215FppIJRndGusM_YpIC-Ns-B0a-TC3P4EFmRMaFYaOdEasgUnbOUOMgKatrUpCD_br_ZX3JXWGLEKOOJDP5eDBLm6-rP6d0XttatFIPP_0qKFyO5yMZBiEbU5Ik8iDH6WoZqMJcoexgQfJnBBnDYhbe_5L3v9bcGxz4sFPWsKDg5m8_7uK9Q-sYgeWO1fppby86P3ZgM8B-kdkBnlzExrjh4ndQv9mrLerY_wEIvz6bw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgSMCF96O8FCTgVljatMuOgAYIaYgDk-BUJWkCE6ObRic0fj1xH9PG-1xXaWonduLPnwEOPKWpsb7AjRUVLuMsdoXdKV1JdU0Jhrk8PCg2b8KrFru-D-6n4KCshRnP39PQO2m_iMdIRJktTsNMGNiIuwIzrZvb0wfsG8exys068RLT_umVCW8z_dJOvwskv-Ih5wZJTwzfRKcz5mwuFqFRfmaOMXk-HqTyWL1_YnD8ax5LsFBEm-Q0N49lmNLJCsw2i3z6KnTOxFBjGSVpl4V_pGuI6ecA66GLhZgIJiLo__JrQ6IQG6PyrhP2PdJsXBIc2DpBgjD6RyJIVsBpJ0kyQmyS9dtZg9ZF4-78yi36L7jKr9VSFxuS-YEynseNwmN0WFVVqewhiGkbt0gmONOUSU1jXwWCx3jDLGMbgwSSKaP9dagk3URvAvFiw6TdXGQgY2QY5HVjFLIHqrrUgvsOHJZ6ino5zUaUHU9CLxr_dQ7sWyVGxTp7_UmmVHFk1womQESiu4PXyPf8OkVUSuDARq7y0WgMQ2cr4ACfMIaRAPJwTz5J2k8ZHzdFznxeYw4cjezm11ls_VdwG-Y9G0Shr6TVHaik_YHetUFQKveKNfABIhkHYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+inference+of+frequency-specific+functional+connectivity+in+MEG+imaging+using+a+spectral+graph+model&rft.jtitle=Imaging+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Jin%2C+Huaqing&rft.au=Abdelnour%2C+Farras&rft.au=Verma%2C+Parul&rft.au=Sipes%2C+Benjamin+S.&rft.date=2024-10-10&rft.pub=MIT+Press&rft.eissn=2837-6056&rft.volume=2&rft_id=info:doi/10.1162%2Fimag_a_00307&rft.externalDBID=n%2Fa&rft.externalDocID=imag_a_00307.pdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-6056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-6056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-6056&client=summon