Bayesian inference of frequency-specific functional connectivity in MEG imaging using a spectral graph model
Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wirin...
        Saved in:
      
    
          | Published in | Imaging neuroscience (Cambridge, Mass.) Vol. 2 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
          MIT Press
    
        10.10.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2837-6056 2837-6056  | 
| DOI | 10.1162/imag_a_00307 | 
Cover
| Abstract | Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure–function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph’s Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns.
We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies. | 
    
|---|---|
| AbstractList | Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure–function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph’s Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns.
We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies. Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure–function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph’s Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies. Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure-function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph's Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience. Highly detailed mathematical models of neural masses exist that can simulate the interactions between functional activity and structural wiring. These models are often complex and require intensive computation. Most importantly, they do not provide a direct or intuitive interpretation of this structure-function relationship. In this study, we employ the emerging concepts of spectral graph theory to obtain this mapping in terms of graph harmonics, which are eigenvectors of the structural graph's Laplacian matrix. In order to imbue these harmonics with biophysical underpinnings, we leverage recent advances in parsimonious spectral graph modeling (SGM) of brain activity. Here, we show that such a model can indeed be cast in terms of graph harmonics, and can provide a closed-form prediction of FC in an arbitrary frequency band. The model requires only three global, spatially invariant parameters, yet is capable of generating rich FC patterns in different frequency bands. Only a few harmonics are sufficient to reproduce realistic FC patterns. We applied the method to predict FC obtained from pairwise magnitude coherence of source-reconstructed resting-state magnetoencephalography (MEG) recordings of 36 healthy subjects. To enable efficient model inference, we adopted a deep neural network-based Bayesian procedure called simulation-based inference. Using this tool, we were able to speedily infer not only the single most likely model parameters, but also their full posterior distributions. We also implemented several other benchmark methods relating SC to FC, including graph diffusion and coupled neural mass models. The present method was shown to give the best performance overall. Notably, we discovered that a single biophysical parameterization is capable of fitting FCs from all relevant frequency bands simultaneously, an aspect that did not receive adequate attention in prior computational studies.  | 
    
| Author | Abdelnour, Farras Raj, Ashish Verma, Parul Jin, Huaqing Nagarajan, Srikantan S. Sipes, Benjamin S.  | 
    
| AuthorAffiliation | Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States | 
    
| AuthorAffiliation_xml | – name: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States | 
    
| Author_xml | – sequence: 1 givenname: Huaqing surname: Jin fullname: Jin, Huaqing organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States – sequence: 2 givenname: Farras surname: Abdelnour fullname: Abdelnour, Farras organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States – sequence: 3 givenname: Parul surname: Verma fullname: Verma, Parul organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States – sequence: 4 givenname: Benjamin S. surname: Sipes fullname: Sipes, Benjamin S. organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States – sequence: 5 givenname: Srikantan S. surname: Nagarajan fullname: Nagarajan, Srikantan S. organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States – sequence: 6 givenname: Ashish surname: Raj fullname: Raj, Ashish email: ashish.raj@ucsf.edu organization: Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40800323$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkUtv1TAQhS1URB90xxp5yYLAxI88VgiqtiAVsYG15TjjW1eJHeykKP8eR_dSXSQkNrZH_s7M0ZlzcuKDR0JelfCuLCv23o16p7QC4FA_I2es4XVRgaxOjt6n5DKlBwBgbQtNLV-QUwFNljB-RoZPesXktKfOW4zoDdJgqY34c8nFWqQJjbPOULt4M7vg9UBN8B5z8ejmNevo1-tbujlxfkeXtJ2abro5ZngX9XRPx9Dj8JI8t3pIeHm4L8iPm-vvV5-Lu2-3X64-3hWG1_VctDXjXBrLWGONqFqowEBnoKkEykZ0QjcCS9Fh2XMjddNLxqHrawmyE8YivyDFvu_iJ73-0sOgppgNxlWVoLbg1HFwmf-w56elG7E36DfnT5qgnfr7x7t7tQuPqmRsi1TkDm8OHWLIwaVZjS4ZHAbtMSxJ5azbkuUVyIy-Ph72NOXPTjLwdg-YGFKKaP9n_jB6dLN6CEvMG0r_Rn8DoemuXA | 
    
| Cites_doi | 10.1007/s11571-008-9038-0 10.1038/s41467-019-12765-7 10.1016/j.neuroimage.2012.03.048 10.1016/j.neuroimage.2013.12.039 10.1038/s41586-023-06098-1 10.1016/0022-5193(83)90414-9 10.1038/nn.4497 10.1186/1471-2202-10-55 10.1038/s41598-017-18769-x 10.2307/2532051 10.1016/j.neuroimage.2018.10.079 10.1002/hbm.24991 10.1016/j.neuroimage.2022.118919 10.1016/j.neuroimage.2017.03.045 10.1016/j.neuroimage.2023.120337 10.1006/nimg.1999.0472 10.1016/j.neuroimage.2013.06.018 10.1016/j.neuroimage.2020.117705 10.1016/j.neuroimage.2015.01.002 10.1038/35065725 10.1126/science.1238411 10.1038/nrn2575 10.1016/j.neuroimage.2003.07.015 10.1109/TMI.2002.1009385 10.1162/netn_a_00187 10.1162/netn_a_00267 10.1016/S0006-3495(72)86068-5 10.7554/eLife.42722 10.1007/s00422-009-0328-3 10.1016/j.neuroimage.2009.01.062 10.1016/j.neuroimage.2017.02.090 10.1097/WCO.0b013e32832d93dd 10.2307/3315017 10.1016/j.neuroimage.2013.11.009 10.1016/j.media.2020.101799 10.1007/s11571-008-9044-2 10.1109/ISBI.2015.7163912 10.1177/1073858406293182 10.1093/cercor/bhw089 10.1016/j.neuroimage.2020.117137 10.1371/journal.pcbi.1005076 10.1038/s41467-019-10467-8 10.1371/journal.pbio.0060159 10.1088/0967-3334/32/8/011 10.1371/journal.pcbi.1006007 10.1016/j.neurobiolaging.2005.05.027 10.3389/fnins.2013.00267 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2021.118190 10.1038/ncomms10340 10.21105/joss.02505 10.1016/j.neuroimage.2018.05.070 10.7554/eLife.56261 10.7554/eLife.77850 10.1523/JNEUROSCI.0141-08.2008 10.1098/rstb.2005.1638 10.1093/cercor/bhy136 10.1016/j.neuroimage.2011.02.054 10.1523/JNEUROSCI.2177-05.2005 10.1523/JNEUROSCI.3874-05.2006 10.1016/S0074-7742(05)68006-3 10.1007/s12559-021-09931-9 10.1162/netn_a_00263 10.1002/wsbm.1348 10.1002/hbm.25967 10.1038/nrn3901 10.1002/hbm.20737 10.1016/j.neuroimage.2018.02.016 10.1016/j.neuroimage.2016.04.050 10.1007/s10548-021-00828-2 10.1162/netn_a_00183 10.1016/j.bandc.2020.105677 10.1016/j.neuron.2015.05.035 10.1016/S0079-6123(07)68012-1 10.1016/j.neuroimage.2011.08.020 10.1007/s00401-016-1631-4 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuron.2010.04.020 10.1038/s41598-022-23656-1 10.1007/s11571-008-9064-y 10.1162/neco.2009.02-08-710 10.1162/netn_a_00303 10.3389/fncom.2012.00068 10.1016/j.neuroimage.2017.03.023 10.1007/s10439-010-0155-7 10.1371/journal.pcbi.1006694 10.1016/j.pneurobio.2013.12.005 10.1371/journal.pcbi.1003427 10.1016/j.neuroimage.2020.116805 10.1016/j.neuroimage.2023.119975 10.1016/j.nicl.2014.07.006 10.1089/brain.2015.0408 10.3389/fnins.2022.959557 10.1016/j.neuroimage.2018.05.058 10.1177/1094428118804657 10.3389/fpsyg.2017.01850 10.1073/pnas.1219562110 10.1016/j.neuron.2013.10.017 10.1016/j.tics.2020.01.008 10.1007/BF00288786 10.1073/pnas.0811168106  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.  | 
    
| Copyright_xml | – notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. – notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.  | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1162/imag_a_00307 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2837-6056 | 
    
| ExternalDocumentID | 10.1162/imag_a_00307 PMC12290874 40800323 10_1162_imag_a_00307 imag_a_00307.pdf  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: ; grantid: K25AG071840; R01NS132766; R01AG072753; R56AG082087  | 
    
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ JMNJE M~E AAYXX CITATION RPM NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c377t-972335cf228fc469060c0bc0864e584b4a84e14be1d3c5a8d5230bd7505b4cfe3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2837-6056 | 
    
| IngestDate | Sun Oct 26 03:49:44 EDT 2025 Tue Sep 30 17:01:56 EDT 2025 Sat Aug 23 12:15:50 EDT 2025 Sun Aug 17 02:21:41 EDT 2025 Wed Oct 01 05:40:16 EDT 2025 Tue Aug 12 12:10:33 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | connectomes functional connectivity simulation-based inference magnetoencephalography Bayesian spectral graph theory  | 
    
| Language | English | 
    
| License | 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/ . cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c377t-972335cf228fc469060c0bc0864e584b4a84e14be1d3c5a8d5230bd7505b4cfe3 | 
    
| Notes | 2024 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1162/imag_a_00307 | 
    
| PMID | 40800323 | 
    
| PQID | 3239120025 | 
    
| PQPubID | 23479 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | unpaywall_primary_10_1162_imag_a_00307 crossref_primary_10_1162_imag_a_00307 pubmed_primary_40800323 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12290874 mit_journals_10_1162_imag_a_00307 proquest_miscellaneous_3239120025  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-10-10 | 
    
| PublicationDateYYYYMMDD | 2024-10-10 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-10 day: 10  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA | 
    
| PublicationPlace_xml | – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA – name: United States – name: One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu  | 
    
| PublicationTitle | Imaging neuroscience (Cambridge, Mass.) | 
    
| PublicationTitleAlternate | Imaging Neurosci (Camb) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MIT Press | 
    
| Publisher_xml | – name: MIT Press | 
    
| References | Brookes (2025081118584803900_b18) 2012; 63 Breakspear (2025081118584803900_b16) 2017; 20 Kiebel (2025081118584803900_b59) 2008; 2 Deslauriers-Gauthier (2025081118584803900_b32) 2020; 66 Abeysuriya (2025081118584803900_b5) 2018; 14 Achard (2025081118584803900_b6) 2006; 26 Nakagawa (2025081118584803900_b74) 2014; 87 Tejero-Cantero (2025081118584803900_b98) 2020; 5 Frässle (2025081118584803900_b41) 2017; 155 Glomb (2025081118584803900_b44) 2022; 35 Henson (2025081118584803900_b53) 2009; 46 Ng (2025081118584803900_b75) 2001; 14 Destexhe (2025081118584803900_b33) 2009; 101 Bassett (2025081118584803900_b13) 2009; 22 Desikan (2025081118584803900_b31) 2006; 31 Xie (2025081118584803900_b113) 2019 Deistler (2025081118584803900_b30) 2022 Raj (2025081118584803900_b84) 2022; 16 Robinson (2025081118584803900_b87) 2005; 360 Chatterjee (2025081118584803900_b24) 2007; 168 Hagmann (2025081118584803900_b48) 2008; 6 Honey (2025081118584803900_b56) 2009; 106 He (2025081118584803900_b50) 2010; 66 Freeman (2025081118584803900_b39) 2009; 3 Deco (2025081118584803900_b29) 2012; 6 Gonçalves (2025081118584803900_b46) 2020; 9 Auffarth (2025081118584803900_b11) 2007 Rué-Queralt (2025081118584803900_b91) 2023; 280 Cabral (2025081118584803900_b21) 2014; 114 Atasoy (2025081118584803900_b10) 2016; 7 Xie (2025081118584803900_b112) 2019 Cabral (2025081118584803900_b22) 2017; 160 Hillebrand (2025081118584803900_b55) 2005; 68 Lange (2025081118584803900_b62) 1999; 10 Mišić (2025081118584803900_b72) 2014; 10 van den Heuvel (2025081118584803900_b105) 2009; 30 da Silva (2025081118584803900_b26) 2013; 80 Ghosh (2025081118584803900_b43) 2023; 272 Chung (2025081118584803900_b25) 1997 Fornito (2025081118584803900_b37) 2015; 16 Raj (2025081118584803900_b83) 2020; 41 Larsen (2025081118584803900_b63) 2006 Jin (2025081118584803900_b57) 2023 Escudero (2025081118584803900_b36) 2011; 32 Racine (2025081118584803900_b81) 2017; 1 Strogatz (2025081118584803900_b96) 2001; 410 Tewarie (2025081118584803900_b99) 2019; 186 Tewarie (2025081118584803900_b101) 2022; 43 Tewarie (2025081118584803900_b102) 2020; 216 Tivadar (2025081118584803900_b103) 2019; 22 Glomb (2025081118584803900_b45) 2020; 221 Gramfort (2025081118584803900_b47) 2013; 7 Preti (2025081118584803900_b80) 2019; 10 Shimizu (2025081118584803900_b93) 1983; 104 Abdelnour (2025081118584803900_b3) 2015 Beppi (2025081118584803900_b15) 2021; 148 Kulik (2025081118584803900_b61) 2023; 7 Franciotti (2025081118584803900_b38) 2006; 27 Hermundstad (2025081118584803900_b54) 2013; 110 Rubinov (2025081118584803900_b90) 2009; 10 Henderson (2025081118584803900_b52) 1979; 7 Abdelnour (2025081118584803900_b2) 2021; 228 Wilson (2025081118584803900_b109) 1973; 13 Spiegler (2025081118584803900_b95) 2013; 83 Mišić (2025081118584803900_b70) 2016; 26 Sanz-Leon (2025081118584803900_b92) 2015; 111 Park (2025081118584803900_b78) 2013; 342 Cakan (2025081118584803900_b23) 2021; 15 Hartoyo (2025081118584803900_b49) 2019; 15 Pinotsis (2025081118584803900_b79) 2012; 59 Abdelnour (2025081118584803900_b1) 2018; 172 Frässle (2025081118584803900_b40) 2018; 179 Becker (2025081118584803900_b14) 2018; 8 Suárez (2025081118584803900_b97) 2020; 24 Meier (2025081118584803900_b68) 2016; 6 Pang (2025081118584803900_b77) 2023; 618 Lassmann (2025081118584803900_b64) 2017; 133 Messaritaki (2025081118584803900_b69) 2021; 5 Raftery (2025081118584803900_b82) 1996 Siettos (2025081118584803900_b94) 2016; 8 Tokariev (2025081118584803900_b104) 2019; 10 Abdelnour (2025081118584803900_b4) 2014; 90 Mišić (2025081118584803900_b71) 2015; 86 Jirsa (2025081118584803900_b58) 2002; 21 Brookes (2025081118584803900_b17) 2011; 56 Alexander-Bloch (2025081118584803900_b7) 2018; 178 Deco (2025081118584803900_b28) 2017; 152 Verma (2025081118584803900_b106) 2022; 249 Lioi (2025081118584803900_b67) 2021; 5 Wilson (2025081118584803900_b108) 1972 Bullmore (2025081118584803900_b20) 2009; 10 Wodeyar (2025081118584803900_b110) 2022; 6 Bassett (2025081118584803900_b12) 2006; 12 He (2025081118584803900_b51) 2008; 28 Rubinov (2025081118584803900_b89) 2010; 52 David (2025081118584803900_b27) 2003; 20 Ghosh (2025081118584803900_b42) 2008; 2 Li (2025081118584803900_b65) 2022; 12 Tewarie (2025081118584803900_b100) 2019; 29 Kondor (2025081118584803900_b60) 2002 Lin (2025081118584803900_b66) 1989; 45 Durkan (2025081118584803900_b34) 2019; 32 Buckner (2025081118584803900_b19) 2005; 25 Robinson (2025081118584803900_b88) 2016; 142 Muldoon (2025081118584803900_b73) 2016; 12 Verma (2025081118584803900_b107) 2023; 7 Ranasinghe (2025081118584803900_b85) 2014; 5 Xie (2025081118584803900_b111) 2021; 237 Ranasinghe (2025081118584803900_b86) 2022; 11 Nozari (2025081118584803900_b76) 2020 El Boustani (2025081118584803900_b35) 2009; 21 Alonso (2025081118584803900_b9) 2019; 8 Alonso (2025081118584803900_b8) 2011; 39  | 
    
| References_xml | – volume: 2 start-page: 121 issue: 2 year: 2008 ident: 2025081118584803900_b59 article-title: Dynamic causal modelling for EEG and MEG publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-008-9038-0 – volume: 10 start-page: 4747 issue: 1 year: 2019 ident: 2025081118584803900_b80 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nature Communications doi: 10.1038/s41467-019-12765-7 – volume: 63 start-page: 910 issue: 2 year: 2012 ident: 2025081118584803900_b18 article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.048 – volume: 90 start-page: 335 year: 2014 ident: 2025081118584803900_b4 article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.039 – volume: 618 start-page: 566 issue: 7965 year: 2023 ident: 2025081118584803900_b77 article-title: Geometric constraints on human brain function publication-title: Nature doi: 10.1038/s41586-023-06098-1 – volume: 104 start-page: 261 issue: 2 year: 1983 ident: 2025081118584803900_b93 article-title: Co-operative dynamics in organelles publication-title: Journal of Theoretical Biology doi: 10.1016/0022-5193(83)90414-9 – volume: 20 start-page: 340 issue: 3 year: 2017 ident: 2025081118584803900_b16 article-title: Dynamic models of large-scale brain activity publication-title: Nature Neuroscience doi: 10.1038/nn.4497 – volume: 10 start-page: 1 issue: 1 year: 2009 ident: 2025081118584803900_b90 article-title: Symbiotic relationship between brain structure and dynamics publication-title: BMC Neuroscience doi: 10.1186/1471-2202-10-55 – volume: 8 start-page: 1411 issue: 1 year: 2018 ident: 2025081118584803900_b14 article-title: Spectral mapping of brain functional connectivity from diffusion imaging publication-title: Nature Scientific Reports doi: 10.1038/s41598-017-18769-x – volume: 45 start-page: 255 issue: 1 year: 1989 ident: 2025081118584803900_b66 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – volume: 186 start-page: 211 year: 2019 ident: 2025081118584803900_b99 article-title: How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.079 – volume: 41 start-page: 2980 issue: 11 year: 2020 ident: 2025081118584803900_b83 article-title: Spectral graph theory of brain oscillations publication-title: Human Brain Mapping doi: 10.1002/hbm.24991 – volume: 249 start-page: 118919 year: 2022 ident: 2025081118584803900_b106 article-title: Spectral graph theory of brain oscillations—revisited and improved publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118919 – volume: 160 start-page: 84 year: 2017 ident: 2025081118584803900_b22 article-title: Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.045 – volume: 280 start-page: 120337 year: 2023 ident: 2025081118584803900_b91 article-title: The coupling between the spatial and temporal scales of neural processes revealed by a joint time-vertex connectome spectral analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.120337 – volume: 10 start-page: 282 issue: 3 year: 1999 ident: 2025081118584803900_b62 article-title: Plurality and resemblance in fMRI data analysis publication-title: NeuroImage doi: 10.1006/nimg.1999.0472 – volume: 83 start-page: 704 year: 2013 ident: 2025081118584803900_b95 article-title: Systematic approximations of neural fields through networks of neural masses in the virtual brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.06.018 – volume: 228 start-page: 117705 year: 2021 ident: 2025081118584803900_b2 article-title: Algebraic relationship between the structural network’s Laplacian and functional network’s adjacency matrix is preserved in temporal lobe epilepsy subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117705 – volume: 111 start-page: 385 year: 2015 ident: 2025081118584803900_b92 article-title: Mathematical framework for large-scale brain network modeling in The Virtual Brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.002 – volume: 410 start-page: 268 issue: 6825 year: 2001 ident: 2025081118584803900_b96 article-title: Exploring complex networks publication-title: Nature doi: 10.1038/35065725 – volume: 342 start-page: 1238411 issue: 6158 year: 2013 ident: 2025081118584803900_b78 article-title: Structural and functional brain networks: From connections to cognition publication-title: Science doi: 10.1126/science.1238411 – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 2025081118584803900_b20 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2575 – volume: 20 start-page: 1743 issue: 3 year: 2003 ident: 2025081118584803900_b27 article-title: A neural mass model for MEG/EEG: Coupling and neuronal dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.07.015 – volume: 21 start-page: 493 issue: 5 year: 2002 ident: 2025081118584803900_b58 article-title: Spatiotemporal forward solution of the EEG and MEG using network modeling publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2002.1009385 – volume: 5 start-page: 477 issue: 2 year: 2021 ident: 2025081118584803900_b69 article-title: Predicting MEG resting-state functional connectivity from microstructural information publication-title: Network Neuroscience doi: 10.1162/netn_a_00187 – volume: 6 start-page: 1219 issue: 4 year: 2022 ident: 2025081118584803900_b110 article-title: Structural connectome constrained graphical lasso for MEG partial coherence publication-title: Network Neuroscience doi: 10.1162/netn_a_00267 – year: 1972 ident: 2025081118584803900_b108 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophysical Journal doi: 10.1016/S0006-3495(72)86068-5 – volume: 8 start-page: e42722 year: 2019 ident: 2025081118584803900_b9 article-title: Visualization of currents in neural models with similar behavior and different conductance densities publication-title: eLife doi: 10.7554/eLife.42722 – volume: 101 start-page: 1 issue: 1 year: 2009 ident: 2025081118584803900_b33 article-title: The Wilson–Cowan model, 36 years later publication-title: Biological Cybernetics doi: 10.1007/s00422-009-0328-3 – volume: 46 start-page: 168 issue: 1 year: 2009 ident: 2025081118584803900_b53 article-title: Selecting forward models for MEG source-reconstruction using model-evidence publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.062 – volume: 155 start-page: 406 year: 2017 ident: 2025081118584803900_b41 article-title: Regression DCM for fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.090 – volume: 22 start-page: 340 issue: 4 year: 2009 ident: 2025081118584803900_b13 article-title: Human brain networks in health and disease publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0b013e32832d93dd – volume: 7 start-page: 65 issue: 1 year: 1979 ident: 2025081118584803900_b52 article-title: Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics publication-title: Canadian Journal of Statistics doi: 10.2307/3315017 – year: 2023 ident: 2025081118584803900_b57 article-title: Bayesian inference of a spectral graph model for brain oscillations publication-title: bioRxiv – volume: 87 start-page: 383 year: 2014 ident: 2025081118584803900_b74 article-title: How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.009 – volume: 66 start-page: 101799 year: 2020 ident: 2025081118584803900_b32 article-title: A unified framework for multimodal structure-function mapping based on eigenmodes publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101799 – volume: 2 start-page: 115 issue: 2 year: 2008 ident: 2025081118584803900_b42 article-title: Cortical network dynamics with time delays reveals functional connectivity in the resting brain publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-008-9044-2 – start-page: 466 volume-title: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) year: 2015 ident: 2025081118584803900_b3 article-title: Estimating function from structure in epileptics using graph diffusion model doi: 10.1109/ISBI.2015.7163912 – volume: 12 start-page: 512 issue: 6 year: 2006 ident: 2025081118584803900_b12 article-title: Small-world brain networks publication-title: The Neuroscientist doi: 10.1177/1073858406293182 – volume: 26 start-page: 3285 issue: 7 year: 2016 ident: 2025081118584803900_b70 article-title: Network-level structure-function relationships in human neocortex publication-title: Cerebral Cortex doi: 10.1093/cercor/bhw089 – volume: 221 start-page: 117137 year: 2020 ident: 2025081118584803900_b45 article-title: Connectome spectral analysis to track EEG task dynamics on a subsecond scale publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117137 – volume: 12 start-page: 1 issue: 9 year: 2016 ident: 2025081118584803900_b73 article-title: Stimulation-based control of dynamic brain networks publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005076 – volume: 10 start-page: 2619 issue: 1 year: 2019 ident: 2025081118584803900_b104 article-title: Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms publication-title: Nature Communications doi: 10.1038/s41467-019-10467-8 – volume: 6 start-page: 1 issue: 7 year: 2008 ident: 2025081118584803900_b48 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biology doi: 10.1371/journal.pbio.0060159 – volume: 32 start-page: 1163 issue: 8 year: 2011 ident: 2025081118584803900_b36 article-title: Regional coherence evaluation in mild cognitive impairment and Alzheimer’s disease based on adaptively extracted magnetoencephalogram rhythms publication-title: Physiological measurement doi: 10.1088/0967-3334/32/8/011 – volume: 14 start-page: 1 issue: 2 year: 2018 ident: 2025081118584803900_b5 article-title: A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1006007 – start-page: 115 volume-title: Markov chain Monte Carlo in practice year: 1996 ident: 2025081118584803900_b82 article-title: Implementing MCMC – volume: 27 start-page: 1100 issue: 8 year: 2006 ident: 2025081118584803900_b38 article-title: Cortical rhythms reactivity in AD, LBD and normal subjects: A quantitative MEG study publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2005.05.027 – volume: 7 start-page: 267 year: 2013 ident: 2025081118584803900_b47 article-title: MEG and EEG data analysis with MNE-Python publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2013.00267 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 2025081118584803900_b89 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 237 start-page: 118190 year: 2021 ident: 2025081118584803900_b111 article-title: Emergence of canonical functional networks from the structural connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118190 – start-page: 315 volume-title: Proceedings of the 19th International Conference on Machine Learning year: 2002 ident: 2025081118584803900_b60 article-title: Diffusion kernels on graphs and other discrete structures – volume: 7 start-page: 10340 year: 2016 ident: 2025081118584803900_b10 article-title: Human brain networks function in connectome-specific harmonic waves publication-title: Nature Communications doi: 10.1038/ncomms10340 – volume: 5 start-page: 2505 issue: 52 year: 2020 ident: 2025081118584803900_b98 article-title: SBI: A toolkit for simulation-based inference publication-title: Journal of Open Source Software doi: 10.21105/joss.02505 – volume: 178 start-page: 540 year: 2018 ident: 2025081118584803900_b7 article-title: On testing for spatial correspondence between maps of human brain structure and function publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.05.070 – year: 2019 ident: 2025081118584803900_b112 article-title: Parameter identifiability and non-uniqueness in connectome based neural mass models publication-title: bioRxiv – volume: 9 start-page: e56261 year: 2020 ident: 2025081118584803900_b46 article-title: Training deep neural density estimators to identify mechanistic models of neural dynamics publication-title: eLife doi: 10.7554/eLife.56261 – volume: 11 start-page: e77850 year: 2022 ident: 2025081118584803900_b86 article-title: Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease publication-title: eLife doi: 10.7554/eLife.77850 – volume: 28 start-page: 4756 issue: 18 year: 2008 ident: 2025081118584803900_b51 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0141-08.2008 – volume: 360 start-page: 1043 issue: 1457 year: 2005 ident: 2025081118584803900_b87 article-title: Multiscale brain modelling publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2005.1638 – volume-title: Spectral graph theory year: 1997 ident: 2025081118584803900_b25 – volume: 29 start-page: 2668 issue: 6 year: 2019 ident: 2025081118584803900_b100 article-title: Relationships between neuronal oscillatory amplitude and dynamic functional connectivity publication-title: Cerebral Cortex doi: 10.1093/cercor/bhy136 – volume: 56 start-page: 1082 issue: 3 year: 2011 ident: 2025081118584803900_b17 article-title: Measuring functional connectivity using MEG: Methodology and comparison with fcMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.054 – volume: 25 start-page: 7709 issue: 34 year: 2005 ident: 2025081118584803900_b19 article-title: Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2177-05.2005 – year: 2022 ident: 2025081118584803900_b30 article-title: Truncated proposals for scalable and hassle-free simulation-based inference publication-title: arXiv preprint arXiv:2210.04815 – volume: 26 start-page: 63 issue: 1 year: 2006 ident: 2025081118584803900_b6 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 68 start-page: 149 year: 2005 ident: 2025081118584803900_b55 article-title: Beamformer analysis of MEG data publication-title: International Review of Neurobiology doi: 10.1016/S0074-7742(05)68006-3 – volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006, Proceedings, Part I year: 2006 ident: 2025081118584803900_b63 – volume: 15 start-page: 1132 year: 2021 ident: 2025081118584803900_b23 article-title: neurolib: A simulation framework for whole-brain neural mass modeling publication-title: Cognitive Computation doi: 10.1007/s12559-021-09931-9 – volume: 14 start-page: 849 year: 2001 ident: 2025081118584803900_b75 article-title: On spectral clustering: Analysis and an algorithm publication-title: Advances in Neural Information Processing Systems – volume: 7 start-page: 48 issue: 1 year: 2023 ident: 2025081118584803900_b107 article-title: Stability and dynamics of a spectral graph model of brain oscillations publication-title: Network Neuroscience doi: 10.1162/netn_a_00263 – volume: 8 start-page: 438 issue: 5 year: 2016 ident: 2025081118584803900_b94 article-title: Multiscale modeling of brain dynamics: From single neurons and networks to mathematical tools publication-title: WIREs Systems Biology and Medicine doi: 10.1002/wsbm.1348 – volume: 43 start-page: 4475 issue: 14 year: 2022 ident: 2025081118584803900_b101 article-title: Predicting time-resolved electrophysiological brain networks from structural eigenmodes publication-title: Human Brain Mapping doi: 10.1002/hbm.25967 – volume: 16 start-page: 159 issue: 3 year: 2015 ident: 2025081118584803900_b37 article-title: The connectomics of brain disorders publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn3901 – volume: 30 start-page: 3127 issue: 10 year: 2009 ident: 2025081118584803900_b105 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Human Brain Mapping doi: 10.1002/hbm.20737 – volume: 172 start-page: 728 year: 2018 ident: 2025081118584803900_b1 article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.02.016 – volume: 142 start-page: 79 year: 2016 ident: 2025081118584803900_b88 article-title: Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.050 – volume: 35 start-page: 142 issue: 1 year: 2022 ident: 2025081118584803900_b44 article-title: Computational models in electroencephalography publication-title: Brain Topography doi: 10.1007/s10548-021-00828-2 – volume: 5 start-page: 322 issue: 2 year: 2021 ident: 2025081118584803900_b67 article-title: Gradients of connectivity as graph Fourier bases of brain activity publication-title: Network Neuroscience doi: 10.1162/netn_a_00183 – volume: 148 start-page: 105677 year: 2021 ident: 2025081118584803900_b15 article-title: EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions publication-title: Brain and Cognition doi: 10.1016/j.bandc.2020.105677 – volume: 86 start-page: 1518 issue: 6 year: 2015 ident: 2025081118584803900_b71 article-title: Cooperative and competitive spreading dynamics on the human connectome publication-title: Neuron doi: 10.1016/j.neuron.2015.05.035 – volume: 168 start-page: 145 year: 2007 ident: 2025081118584803900_b24 article-title: Understanding the mind of a worm: Hierarchical network structure underlying nervous system function in C. elegans publication-title: Progress in Brain Research doi: 10.1016/S0079-6123(07)68012-1 – volume: 59 start-page: 1261 issue: 2 year: 2012 ident: 2025081118584803900_b79 article-title: Dynamic causal modeling with neural fields publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.020 – volume: 133 start-page: 223 issue: 2 year: 2017 ident: 2025081118584803900_b64 article-title: Multiple sclerosis: Experimental models and reality publication-title: Acta Neuropathologica doi: 10.1007/s00401-016-1631-4 – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 2025081118584803900_b31 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – volume-title: Universitat Politecnica de Catalunya year: 2007 ident: 2025081118584803900_b11 – volume: 66 start-page: 353 issue: 3 year: 2010 ident: 2025081118584803900_b50 article-title: The temporal structures and functional significance of scale-free brain activity publication-title: Neuron doi: 10.1016/j.neuron.2010.04.020 – volume: 12 start-page: 18998 issue: 1 year: 2022 ident: 2025081118584803900_b65 article-title: Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity publication-title: Scientific Reports doi: 10.1038/s41598-022-23656-1 – volume: 3 start-page: 97 issue: 1 year: 2009 ident: 2025081118584803900_b39 article-title: Simulated power spectral density (PSD) of background electrocorticogram (ECoG) publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-008-9064-y – volume: 32 year: 2019 ident: 2025081118584803900_b34 article-title: Neural spline flows publication-title: Advances in Neural Information Processing Systems – volume: 21 start-page: 46 issue: 1 year: 2009 ident: 2025081118584803900_b35 article-title: A master equation formalism for macroscopic modeling of asynchronous irregular activity states publication-title: Neural Computation doi: 10.1162/neco.2009.02-08-710 – volume: 7 start-page: 950 issue: 3 year: 2023 ident: 2025081118584803900_b61 article-title: Comparing individual and group-level simulated neurophysiological brain connectivity using the Jansen and Rit neural mass model publication-title: Network Neuroscience doi: 10.1162/netn_a_00303 – volume: 6 start-page: 68 year: 2012 ident: 2025081118584803900_b29 article-title: How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2012.00068 – volume: 152 start-page: 538 year: 2017 ident: 2025081118584803900_b28 article-title: Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.023 – volume: 39 start-page: 524 year: 2011 ident: 2025081118584803900_b8 article-title: MEG connectivity analysis in patients with Alzheimer’s disease using cross mutual information and spectral coherence publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-010-0155-7 – volume: 15 start-page: 1 issue: 5 year: 2019 ident: 2025081118584803900_b49 article-title: Parameter estimation and identifiability in a neural population model for electro-cortical activity publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1006694 – volume: 114 start-page: 102 year: 2014 ident: 2025081118584803900_b21 article-title: Exploring the network dynamics underlying brain activity during rest publication-title: Progress in Neurobiology doi: 10.1016/j.pneurobio.2013.12.005 – volume: 10 start-page: e1003427 issue: 1 year: 2014 ident: 2025081118584803900_b72 article-title: Communication efficiency and congestion of signal traffic in large-scale brain networks publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003427 – volume: 216 start-page: 116805 year: 2020 ident: 2025081118584803900_b102 article-title: Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116805 – volume: 272 start-page: 119975 year: 2023 ident: 2025081118584803900_b43 article-title: A joint subspace mapping between structural and functional brain connectomes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.119975 – volume: 5 start-page: 385 year: 2014 ident: 2025081118584803900_b85 article-title: Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2014.07.006 – volume: 6 start-page: 298 issue: 4 year: 2016 ident: 2025081118584803900_b68 article-title: A mapping between structural and functional brain networks publication-title: Brain Connectivity doi: 10.1089/brain.2015.0408 – volume: 16 start-page: 959557 year: 2022 ident: 2025081118584803900_b84 article-title: Structure-function models of temporal, spatial, and spectral characteristics of non-invasive whole brain functional imaging publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2022.959557 – volume: 179 start-page: 505 year: 2018 ident: 2025081118584803900_b40 article-title: A generative model of whole-brain effective connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.05.058 – volume: 22 start-page: 69 issue: 1 year: 2019 ident: 2025081118584803900_b103 article-title: A primer on electroencephalography and event-related potentials for organizational neuroscience publication-title: Organizational Research Methods doi: 10.1177/1094428118804657 – volume: 1 start-page: 1850 issue: 8 year: 2017 ident: 2025081118584803900_b81 article-title: Free will and the brain disease model of addiction: The not so seductive allure of neuroscience and its modest impact on the attribution of free will to people with an addiction publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2017.01850 – volume: 110 start-page: 6169 issue: 15 year: 2013 ident: 2025081118584803900_b54 article-title: Structural foundations of resting-state and task-based functional connectivity in the human brain publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1219562110 – volume: 80 start-page: 1112 issue: 5 year: 2013 ident: 2025081118584803900_b26 article-title: EEG and MEG: Relevance to neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2013.10.017 – year: 2020 ident: 2025081118584803900_b76 article-title: Is the brain macroscopically linear? A system identification of resting state dynamics publication-title: bioRxiv – volume: 24 start-page: 302 issue: 4 year: 2020 ident: 2025081118584803900_b97 article-title: Linking structure and function in macroscale brain networks publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2020.01.008 – volume: 13 start-page: 55 issue: 2 year: 1973 ident: 2025081118584803900_b109 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Kybernetik doi: 10.1007/BF00288786 – volume: 106 start-page: 2035 issue: 6 year: 2009 ident: 2025081118584803900_b56 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0811168106 – year: 2019 ident: 2025081118584803900_b113 article-title: Raj-Lab-UCSF/spectrome: Spectral graph model of connectomes  | 
    
| SSID | ssj0002990875 | 
    
| Score | 2.280072 | 
    
| Snippet | Understanding the relationship between structural connectivity (SC) and functional connectivity (FC) of the human brain is an important goal of neuroscience.... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref mit  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Bayesian connectomes functional connectivity magnetoencephalography simulation-based inference spectral graph theory  | 
    
| Title | Bayesian inference of frequency-specific functional connectivity in MEG imaging using a spectral graph model | 
    
| URI | https://direct.mit.edu/IMAG/article/doi/10.1162/imag_a_00307 https://www.ncbi.nlm.nih.gov/pubmed/40800323 https://www.proquest.com/docview/3239120025 https://pubmed.ncbi.nlm.nih.gov/PMC12290874 https://doi.org/10.1162/imag_a_00307  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 issn: 2837-6056 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 issn: 2837-6056 databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAPP databaseName: MIT Press Direct OA Journals issn: 2837-6056 databaseCode: JMNJE dateStart: 20230810 customDbUrl: isFulltext: true eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 providerName: MIT – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 issn: 2837-6056 databaseCode: RPM dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDLZgSMAL91GOKUjAW2Fp0y57BDRASEM8MAmeqiRNxsToEHRC49cT95g27ue6SlM78fXZBtj3lKbG6gI3VlS4jLPYFfamdCXVdSUY5vLQUWxdh5dtdnUX3E3BflkLM56_p6F33H0SnUhEmSxOw0wYWIu7AjPt65uTe5wbx7HKzSrxEtP-6ZUJbTP91E2_MyS_4iHnBsmzGL6JXm9M2ZwvQrP8zBxj8ng0SOWRev_UwfGvfSzBQmFtkpNcPJZhSicrMNsq8umr0DsVQ41llKRbFv6RviHmJQdYD10sxEQwEUH9l4cNiUJsjMqnTtj3SKt5QXBhqwQJwug7RJCsgNNukmQNsUk2b2cN2ufN27NLt5i_4Cq_Xk9dHEjmB8p4HjcK3eiwpmpSWSeIaWu3SCY405RJTWNfBYLHGGGWsbVBAsmU0f46VJJ-ojeBeLFh0l4uMpAxdhjkDWMUdg9UDakF9x04KPkUPedtNqLMPQm9aPzXObBnmRgV5-z1J5qSxZE9K5gAEYnuD14j3_MbFFEpgQMbOctHqzE0nS2BA3xCGEYE2Id78knSfcj6cVPsmc_rzIHDkdz8uout_xJuw7xnjSjUlbS2A5X0ZaB3rRGUymoWPKhm0alqcR4-AIFlCWc | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT-MwEB5BkZZ9QbBnOI0EvGWpEydNJV5YBJQu6RNIvFm2Y7OVSopoK9R_z0yOLuVY8RxbPsaZw_7mG4C9wFju0Bb4meHKF4nIfIWa0tfctowS9JZHgWLaizvXonsT3SzAUZ0LUyryX3f9EkVzkR6fH1Z7OCMb4HFw2L9Tt1LJ4owuwlIsmiGGXkvdtNf9d8dCqhb98Rrv_qLbnCVaxBHfcjJfYyWXJ_m9mj6qweCZITpbhZXKg2TH5XTXYMHmX-BTWr2Rf4XBbzW1lBrJ-nUyHxs65h5K0PTUp-RKAggxsmnlVSAzhHcxZSUJ7MfS03NGq0DDxggaf8sUK5IycXKsILlmRQ2db3B9dnp10vGrmgq-CVutsU9FxsLIuCBInKHQOG6apjYY2AiLvogWKhGWC215FppIJRndGusM_YpIC-Ns-B0a-TC3P4EFmRMaFYaOdEasgUnbOUOMgKatrUpCD_br_ZX3JXWGLEKOOJDP5eDBLm6-rP6d0XttatFIPP_0qKFyO5yMZBiEbU5Ik8iDH6WoZqMJcoexgQfJnBBnDYhbe_5L3v9bcGxz4sFPWsKDg5m8_7uK9Q-sYgeWO1fppby86P3ZgM8B-kdkBnlzExrjh4ndQv9mrLerY_wEIvz6bw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgSMCF96O8FCTgVljatMuOgAYIaYgDk-BUJWkCE6ObRic0fj1xH9PG-1xXaWonduLPnwEOPKWpsb7AjRUVLuMsdoXdKV1JdU0Jhrk8PCg2b8KrFru-D-6n4KCshRnP39PQO2m_iMdIRJktTsNMGNiIuwIzrZvb0wfsG8exys068RLT_umVCW8z_dJOvwskv-Ih5wZJTwzfRKcz5mwuFqFRfmaOMXk-HqTyWL1_YnD8ax5LsFBEm-Q0N49lmNLJCsw2i3z6KnTOxFBjGSVpl4V_pGuI6ecA66GLhZgIJiLo__JrQ6IQG6PyrhP2PdJsXBIc2DpBgjD6RyJIVsBpJ0kyQmyS9dtZg9ZF4-78yi36L7jKr9VSFxuS-YEynseNwmN0WFVVqewhiGkbt0gmONOUSU1jXwWCx3jDLGMbgwSSKaP9dagk3URvAvFiw6TdXGQgY2QY5HVjFLIHqrrUgvsOHJZ6ino5zUaUHU9CLxr_dQ7sWyVGxTp7_UmmVHFk1womQESiu4PXyPf8OkVUSuDARq7y0WgMQ2cr4ACfMIaRAPJwTz5J2k8ZHzdFznxeYw4cjezm11ls_VdwG-Y9G0Shr6TVHaik_YHetUFQKveKNfABIhkHYg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+inference+of+frequency-specific+functional+connectivity+in+MEG+imaging+using+a+spectral+graph+model&rft.jtitle=Imaging+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Jin%2C+Huaqing&rft.au=Abdelnour%2C+Farras&rft.au=Verma%2C+Parul&rft.au=Sipes%2C+Benjamin+S.&rft.date=2024-10-10&rft.pub=MIT+Press&rft.eissn=2837-6056&rft.volume=2&rft_id=info:doi/10.1162%2Fimag_a_00307&rft.externalDBID=n%2Fa&rft.externalDocID=imag_a_00307.pdf | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-6056&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-6056&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-6056&client=summon |