Controlling motion prediction errors in radiotherapy with relevance vector machines
Purpose Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage...
Saved in:
Published in | International journal for computer assisted radiology and surgery Vol. 10; no. 4; pp. 363 - 371 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-6410 1861-6429 1861-6429 |
DOI | 10.1007/s11548-014-1008-x |
Cover
Abstract | Purpose
Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms.
Methods
First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (
HYB
RVM
) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (
HYB
wLMS
-
RVM
). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance.
Results
Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm,
HYB
RVM
, can decrease the mean RMSE over all 304 motion traces from
0.18
mm for a linear RVM to
0.17
mm.
Conclusions
The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm
HYB
RVM
could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended. |
---|---|
AbstractList | Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms.PURPOSERobotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms.First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance.METHODSFirst, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance.Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm.RESULTSLimiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm.The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.CONCLUSIONSThe predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended. Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended. Purpose Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. Methods First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs ( HYB RVM ) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM ( HYB wLMS - RVM ). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Results Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB RVM , can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. Conclusions The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB RVM could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended. |
Author | Schweikard, Achim Wissel, Tobias Dürichen, Robert |
Author_xml | – sequence: 1 givenname: Robert surname: Dürichen fullname: Dürichen, Robert email: duerichen@rob.uni-luebeck.de organization: Institute for Robotics and Cognitive Systems, University of Luebeck – sequence: 2 givenname: Tobias surname: Wissel fullname: Wissel, Tobias organization: Institute for Robotics and Cognitive Systems, University of Luebeck – sequence: 3 givenname: Achim surname: Schweikard fullname: Schweikard, Achim organization: Institute for Robotics and Cognitive Systems, University of Luebeck |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24830524$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1v2zAQQInCQZ2vH9Cl0NhFLSl-SWNhtEmBABmazMSZOscMJNI90mny7yvHcYYOnu4OeO-Gd8ZmMUVk7JPgXwXn9lsWQqu25kLV093Wzx_YqWiNqI1qutn7LvicneX8yLnSVuqPbN6oVnLdqFP2e5FioTQMIT5UYyohxWpD2Af_uiJRolyFWBH0IZU1Emxeqr-hrCvCAZ8geqye0JdE1Qh-HSLmC3aygiHj5ds8Z_c_f9wtruub26tfi-83tZfWlrq1PSCsrJICEQQY4buu97IV0PWNBt-ANlyggV5JCVobBNSrJVdLNHrZyXP2Zf93Q-nPFnNxY8gehwEipm12wpi2kZ2VdkI_v6Hb5Yi921AYgV7cIcQE2D3gKeVMuHI-FNg1KARhcIK7XXK3T-6m5Lu7dc-TKf4zD8-POc3eyRMbH5DcY9pSnGIdkf4BjD-VgQ |
CitedBy_id | crossref_primary_10_1002_mp_15691 crossref_primary_10_1016_j_asoc_2020_106528 crossref_primary_10_3938_jkps_73_368 |
Cites_doi | 10.1088/0031-9155/55/13/021 10.1016/S0360-3016(02)02803-1 10.1049/ic.2010.0291 10.1007/978-3-642-40763-5_14 10.1088/0031-9155/58/11/3911 10.1007/978-3-540-69886-9_2 10.1155/2008/784292 10.1007/978-3-540-75759-7_81 10.1016/S0360-3016(01)01766-7 10.1118/1.2739811 |
ContentType | Journal Article |
Copyright | CARS 2014 |
Copyright_xml | – notice: CARS 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s11548-014-1008-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1861-6429 |
EndPage | 371 |
ExternalDocumentID | 24830524 10_1007_s11548_014_1008_x |
Genre | Journal Article |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c377t-87daeaf7431eea1a61c99dc381a9d25ac2a5601e6ad433a556eae5fb04be65b93 |
IEDL.DBID | U2A |
ISSN | 1861-6410 1861-6429 |
IngestDate | Fri Sep 05 10:43:47 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Tue Jul 01 00:15:02 EDT 2025 Fri Feb 21 02:42:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Computer-assisted radiation therapy Relevance vector machines Respiratory motion compensation Uncertainty measures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-87daeaf7431eea1a61c99dc381a9d25ac2a5601e6ad433a556eae5fb04be65b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24830524 |
PQID | 1668239737 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1668239737 pubmed_primary_24830524 crossref_citationtrail_10_1007_s11548_014_1008_x crossref_primary_10_1007_s11548_014_1008_x springer_journals_10_1007_s11548_014_1008_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
PublicationTitle | International journal for computer assisted radiology and surgery |
PublicationTitleAbbrev | Int J CARS |
PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression. In: Medical image computing and computer-assisted intervention MICCAI 2007, vol 4792. Springer, Berlin, pp 668–675 Liu W, Prncipe J (2008) Kernel affine projection algorithms. EURASIP J Adv Signal Process 2008(1):784292 RasmussenCEWilliamsCKIGaussian processes in machine learning2006CambridgeMIT Press ErnstFDürichenRSchlaeferASchweikardAEvaluating and comparing algorithms for respiratory motion predictionPhys Med Biol201358113911392910.1088/0031-9155/58/11/39111:STN:280:DC%2BC3snktlOqtQ%3D%3D23681310 Ruan D (2010) Prospective detection of large prediction errors: a hypothesis testing approach. Phys Med Biol 55(13):3885 Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774 Sayeh S, Wang J, Main WT, Kilby W, Calvin RM (2007) Respiratory motion tracking for robotic radiosurgery. In: Treating tumors that move with respiration. Springer, Berlin, pp 15–29 Depuydt T, Haas O, Verellen D, Erbel S, De Ridder M, Storme G (2010) Geometric accuracy evaluation of the new VERO stereotactic body radiation therapy system. In: Burnham KJ, Ersanilli VE (eds) Proceedings of the UKACC international conference on control. Cambridge, UK, pp 613–619 GiraudPDe RyckeYDubrayBHelfreSVoicanDGuoLRosenwaldJCKeraudyKHoussetMTouboulECossetJMConformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathingInt J Radiat Oncol* Biol* Phys20015141081109210.1016/S0360-3016(01)01766-71:STN:280:DC%2BD3Mnlt1Cmuw%3D%3D Dürichen R, Wissel T, Ernst F, Schweikard A (2013) Respiratory motion compensation with relevance vector machines. In: Medical image computing and computer-assisted intervention MICCAI 2013. Lecture notes in computer science, vol 8150. Springer, Berlin, pp 108–115 SeppenwooldeYShiratoHKitamuraKShimizuSvan HerkMLebesqueJVMiyasakaKPrecise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapyInt J Radiat Oncol * Biol * Phys200253482283410.1016/S0360-3016(02)02803-1 TippingMESparse bayesian learning and the relevance vector machineJ Mach Learn Res20011211244 1008_CR10 Y Seppenwoolde (1008_CR11) 2002; 53 1008_CR6 1008_CR4 1008_CR1 1008_CR2 ME Tipping (1008_CR12) 2001; 1 F Ernst (1008_CR3) 2013; 58 CE Rasmussen (1008_CR7) 2006 1008_CR9 P Giraud (1008_CR5) 2001; 51 1008_CR8 23681310 - Phys Med Biol. 2013 Jun 7;58(11):3911-29 17821984 - Med Phys. 2007 Jul;34(7):2774-84 11704333 - Int J Radiat Oncol Biol Phys. 2001 Nov 15;51(4):1081-92 12095547 - Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):822-34 24579130 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):108-15 18044626 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):668-75 20571211 - Phys Med Biol. 2010 Jul 7;55(13):3885-904 |
References_xml | – reference: SeppenwooldeYShiratoHKitamuraKShimizuSvan HerkMLebesqueJVMiyasakaKPrecise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapyInt J Radiat Oncol * Biol * Phys200253482283410.1016/S0360-3016(02)02803-1 – reference: Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression. In: Medical image computing and computer-assisted intervention MICCAI 2007, vol 4792. Springer, Berlin, pp 668–675 – reference: RasmussenCEWilliamsCKIGaussian processes in machine learning2006CambridgeMIT Press – reference: Ruan D (2010) Prospective detection of large prediction errors: a hypothesis testing approach. Phys Med Biol 55(13):3885 – reference: GiraudPDe RyckeYDubrayBHelfreSVoicanDGuoLRosenwaldJCKeraudyKHoussetMTouboulECossetJMConformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathingInt J Radiat Oncol* Biol* Phys20015141081109210.1016/S0360-3016(01)01766-71:STN:280:DC%2BD3Mnlt1Cmuw%3D%3D – reference: ErnstFDürichenRSchlaeferASchweikardAEvaluating and comparing algorithms for respiratory motion predictionPhys Med Biol201358113911392910.1088/0031-9155/58/11/39111:STN:280:DC%2BC3snktlOqtQ%3D%3D23681310 – reference: Depuydt T, Haas O, Verellen D, Erbel S, De Ridder M, Storme G (2010) Geometric accuracy evaluation of the new VERO stereotactic body radiation therapy system. In: Burnham KJ, Ersanilli VE (eds) Proceedings of the UKACC international conference on control. Cambridge, UK, pp 613–619 – reference: Dürichen R, Wissel T, Ernst F, Schweikard A (2013) Respiratory motion compensation with relevance vector machines. In: Medical image computing and computer-assisted intervention MICCAI 2013. Lecture notes in computer science, vol 8150. Springer, Berlin, pp 108–115 – reference: Liu W, Prncipe J (2008) Kernel affine projection algorithms. EURASIP J Adv Signal Process 2008(1):784292 – reference: TippingMESparse bayesian learning and the relevance vector machineJ Mach Learn Res20011211244 – reference: Sayeh S, Wang J, Main WT, Kilby W, Calvin RM (2007) Respiratory motion tracking for robotic radiosurgery. In: Treating tumors that move with respiration. Springer, Berlin, pp 15–29 – reference: Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774 – ident: 1008_CR8 doi: 10.1088/0031-9155/55/13/021 – volume: 53 start-page: 822 issue: 4 year: 2002 ident: 1008_CR11 publication-title: Int J Radiat Oncol * Biol * Phys doi: 10.1016/S0360-3016(02)02803-1 – volume: 1 start-page: 211 year: 2001 ident: 1008_CR12 publication-title: J Mach Learn Res – ident: 1008_CR1 doi: 10.1049/ic.2010.0291 – ident: 1008_CR2 doi: 10.1007/978-3-642-40763-5_14 – volume: 58 start-page: 3911 issue: 11 year: 2013 ident: 1008_CR3 publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/11/3911 – ident: 1008_CR9 doi: 10.1007/978-3-540-69886-9_2 – ident: 1008_CR6 doi: 10.1155/2008/784292 – ident: 1008_CR4 doi: 10.1007/978-3-540-75759-7_81 – volume: 51 start-page: 1081 issue: 4 year: 2001 ident: 1008_CR5 publication-title: Int J Radiat Oncol* Biol* Phys doi: 10.1016/S0360-3016(01)01766-7 – ident: 1008_CR10 doi: 10.1118/1.2739811 – volume-title: Gaussian processes in machine learning year: 2006 ident: 1008_CR7 – reference: 23681310 - Phys Med Biol. 2013 Jun 7;58(11):3911-29 – reference: 18044626 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):668-75 – reference: 12095547 - Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):822-34 – reference: 20571211 - Phys Med Biol. 2010 Jul 7;55(13):3885-904 – reference: 11704333 - Int J Radiat Oncol Biol Phys. 2001 Nov 15;51(4):1081-92 – reference: 24579130 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):108-15 – reference: 17821984 - Med Phys. 2007 Jul;34(7):2774-84 |
SSID | ssj0045735 |
Score | 2.0175314 |
Snippet | Purpose
Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a... Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 363 |
SubjectTerms | Algorithms Computer Imaging Computer Science Health Informatics Humans Imaging Medicine Medicine & Public Health Motion Original Article Pattern Recognition and Graphics Probability Radiology Radiotherapy, Computer-Assisted - methods Regression Analysis Respiration Robotics Surgery Vision |
Title | Controlling motion prediction errors in radiotherapy with relevance vector machines |
URI | https://link.springer.com/article/10.1007/s11548-014-1008-x https://www.ncbi.nlm.nih.gov/pubmed/24830524 https://www.proquest.com/docview/1668239737 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6ygfjiZd7mZUTwSQmszaXN4xibQ5kvOphP5bTJYKDdaDfRf2-SthsyFXzrJb2Qk5zzJefyIXSdcKBUSUYm0G4TY_E4AZlowqkCFVqSQJcLM3wUgxG7H_NxmcedV9HulUvSaep1sptF12bpy4gtSEMMcKxzW07KDOKR36nUL-OBY9X0QuERwbyVK_OnV3w3RhsIc8M76oxOfx_tlmgRdwrxHqAtnTbQXsXEgMuJ2UDbw9JFfoieukXwuU0zxwVHD55n9rY71Fk2y3I8TXEGalqmX31iux2LLX-KiwjA724vH7-5SEudH6FRv_fcHZCSOYEkNAgWRsUp0DCx6EBr8EB4iZQqMdYZpPI5JD7YlZgWoBilwLnQoPkkbrNYCx5Leoxq6SzVpwibS0ZrxkK6sj1KxmaNFgCX1mMaa481Ubvqwigpy4pbdovXaF0Q2fZ6ZHrdnofRRxPdrB6ZFzU1_mp8VcklMiPfujMg1bNlHnlChL6BUzRoopNCYKvX-Sw0isw3f3dbSTAqJ2f--7fO_tX6HO0Y9MSL_ZgLVFtkS31pEMoibqF65-7loddyI_MLQlzeqg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQX3xMm_zGsEnJdBLkjaPYzimbntxg72V0yaDgXaj3UT_vUnabshU8K2XNCk5yTnfybkhdJsw8H0pKBmD4xAt8RgBkSjCfAkyNEUCbSxMr887Q_o0YqMyjjuvvN0rk6Tl1KtgN4OutepLiUlIQzRw3DRWRqNxDb1mxX4pC2xVTTfkLuHUXZoyf-riuzBaQ5hr1lErdNr7aLdEi7hZkPcAbai0jvaqSgy43Jh1tNUrTeSH6KVVOJ-bMHNc1OjBs8y8tpcqy6ZZjicpzkBOyvCrT2yOY7Gpn2I9AvC7PcvHb9bTUuVHaNh-GLQ6pKycQBI_COaaxUlQMDboQClwgbuJEDLR0hmE9BgkHhhNTHGQ1PeBMa5AsXHs0FhxFgv_GNXSaapOEdaPNNeMubBpe6SItY4WABPGYhorlzaQU01hlJRpxU11i9dolRDZzHqkZ93ch9FHA90tP5kVOTX-anxT0SXSK9-YMyBV00UeuZyHnoZTftBAJwXBlt15NNSMzNN_d19RMCo3Z_77WGf_an2NtjuDXjfqPvafz9GORlKscOm5QLV5tlCXGq3M4yu7Or8Avxff_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CrVTthbILrMCYJ-1pyFuT2E78OI12Y5dq0lapPIWT2JUmIK2SFLH9euzE6QQdSIi3XBzH8eWczzmXD2A_5RgESjI6xX6fGo3HKcpUUx4oVJElCaxiYa5G4mzMzid84nhOi8bbvTFJ1jENNktTVh7N1fToMfDNIm2zDWbUJqehBkS2maWQaEH7-PTTxaARxoyHFcemFwmPCuYtDZtPVfKralrBmyu20koFDbvwuWl87Xny5XBRJofpw295Hf_j617AcwdPyXE9n9bhmc42oNtQPxAnCTagc-Vs8ptwc1J7u9u4dlKTApF5bm9XhzrPZ3lB7jKSo7pz8V73xP7_JZawpXJBIN8r4wH5Vrl26mILxsPB7ckZdVQNNA3CsDQyVaHGqYUjWqOHwkulVKmBAyiVzzH10W79tEDFggA5Fxo1nyZ9lmjBExm8hFY2y_Q2EHPJiOlEyCpPkJKJ2RSGyKU10SbaYz3oN6MUpy6PuaXT-Bo_ZmC2_Reb_rPnUfyjBwfLR-Z1Eo-_Fd5rhj42S83aTzDTs0URe0JEvsFvQdiDV_WcWFbns8hITt-07n0zvrGTBsWf3_X6n0rvQuf6wzC-_Di6eANrBrnx2oXoLbTKfKF3DDoqk3duBfwENhcF7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+motion+prediction+errors+in+radiotherapy+with+relevance+vector+machines&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=D%C3%BCrichen%2C+Robert&rft.au=Wissel%2C+Tobias&rft.au=Schweikard%2C+Achim&rft.date=2015-04-01&rft.issn=1861-6429&rft.eissn=1861-6429&rft.volume=10&rft.issue=4&rft.spage=363&rft_id=info:doi/10.1007%2Fs11548-014-1008-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |