Controlling motion prediction errors in radiotherapy with relevance vector machines

Purpose Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 10; no. 4; pp. 363 - 371
Main Authors Dürichen, Robert, Wissel, Tobias, Schweikard, Achim
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2015
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-014-1008-x

Cover

Abstract Purpose Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. Methods First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs ( HYB RVM ) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM ( HYB wLMS - RVM ). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Results Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB RVM , can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. Conclusions The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB RVM could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.
AbstractList Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms.PURPOSERobotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms.First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance.METHODSFirst, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance.Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm.RESULTSLimiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm.The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.CONCLUSIONSThe predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.
Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.
Purpose Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. Methods First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs ( HYB RVM ) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM ( HYB wLMS - RVM ). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Results Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB RVM , can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. Conclusions The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB RVM could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.
Author Schweikard, Achim
Wissel, Tobias
Dürichen, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Dürichen
  fullname: Dürichen, Robert
  email: duerichen@rob.uni-luebeck.de
  organization: Institute for Robotics and Cognitive Systems, University of Luebeck
– sequence: 2
  givenname: Tobias
  surname: Wissel
  fullname: Wissel, Tobias
  organization: Institute for Robotics and Cognitive Systems, University of Luebeck
– sequence: 3
  givenname: Achim
  surname: Schweikard
  fullname: Schweikard, Achim
  organization: Institute for Robotics and Cognitive Systems, University of Luebeck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24830524$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1v2zAQQInCQZ2vH9Cl0NhFLSl-SWNhtEmBABmazMSZOscMJNI90mny7yvHcYYOnu4OeO-Gd8ZmMUVk7JPgXwXn9lsWQqu25kLV093Wzx_YqWiNqI1qutn7LvicneX8yLnSVuqPbN6oVnLdqFP2e5FioTQMIT5UYyohxWpD2Af_uiJRolyFWBH0IZU1Emxeqr-hrCvCAZ8geqye0JdE1Qh-HSLmC3aygiHj5ds8Z_c_f9wtruub26tfi-83tZfWlrq1PSCsrJICEQQY4buu97IV0PWNBt-ANlyggV5JCVobBNSrJVdLNHrZyXP2Zf93Q-nPFnNxY8gehwEipm12wpi2kZ2VdkI_v6Hb5Yi921AYgV7cIcQE2D3gKeVMuHI-FNg1KARhcIK7XXK3T-6m5Lu7dc-TKf4zD8-POc3eyRMbH5DcY9pSnGIdkf4BjD-VgQ
CitedBy_id crossref_primary_10_1002_mp_15691
crossref_primary_10_1016_j_asoc_2020_106528
crossref_primary_10_3938_jkps_73_368
Cites_doi 10.1088/0031-9155/55/13/021
10.1016/S0360-3016(02)02803-1
10.1049/ic.2010.0291
10.1007/978-3-642-40763-5_14
10.1088/0031-9155/58/11/3911
10.1007/978-3-540-69886-9_2
10.1155/2008/784292
10.1007/978-3-540-75759-7_81
10.1016/S0360-3016(01)01766-7
10.1118/1.2739811
ContentType Journal Article
Copyright CARS 2014
Copyright_xml – notice: CARS 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s11548-014-1008-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 371
ExternalDocumentID 24830524
10_1007_s11548_014_1008_x
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c377t-87daeaf7431eea1a61c99dc381a9d25ac2a5601e6ad433a556eae5fb04be65b93
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Fri Sep 05 10:43:47 EDT 2025
Mon Jul 21 06:04:01 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Tue Jul 01 00:15:02 EDT 2025
Fri Feb 21 02:42:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Computer-assisted radiation therapy
Relevance vector machines
Respiratory motion compensation
Uncertainty measures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-87daeaf7431eea1a61c99dc381a9d25ac2a5601e6ad433a556eae5fb04be65b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24830524
PQID 1668239737
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1668239737
pubmed_primary_24830524
crossref_citationtrail_10_1007_s11548_014_1008_x
crossref_primary_10_1007_s11548_014_1008_x
springer_journals_10_1007_s11548_014_1008_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression. In: Medical image computing and computer-assisted intervention MICCAI 2007, vol 4792. Springer, Berlin, pp 668–675
Liu W, Prncipe J (2008) Kernel affine projection algorithms. EURASIP J Adv Signal Process 2008(1):784292
RasmussenCEWilliamsCKIGaussian processes in machine learning2006CambridgeMIT Press
ErnstFDürichenRSchlaeferASchweikardAEvaluating and comparing algorithms for respiratory motion predictionPhys Med Biol201358113911392910.1088/0031-9155/58/11/39111:STN:280:DC%2BC3snktlOqtQ%3D%3D23681310
Ruan D (2010) Prospective detection of large prediction errors: a hypothesis testing approach. Phys Med Biol 55(13):3885
Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774
Sayeh S, Wang J, Main WT, Kilby W, Calvin RM (2007) Respiratory motion tracking for robotic radiosurgery. In: Treating tumors that move with respiration. Springer, Berlin, pp 15–29
Depuydt T, Haas O, Verellen D, Erbel S, De Ridder M, Storme G (2010) Geometric accuracy evaluation of the new VERO stereotactic body radiation therapy system. In: Burnham KJ, Ersanilli VE (eds) Proceedings of the UKACC international conference on control. Cambridge, UK, pp 613–619
GiraudPDe RyckeYDubrayBHelfreSVoicanDGuoLRosenwaldJCKeraudyKHoussetMTouboulECossetJMConformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathingInt J Radiat Oncol* Biol* Phys20015141081109210.1016/S0360-3016(01)01766-71:STN:280:DC%2BD3Mnlt1Cmuw%3D%3D
Dürichen R, Wissel T, Ernst F, Schweikard A (2013) Respiratory motion compensation with relevance vector machines. In: Medical image computing and computer-assisted intervention MICCAI 2013. Lecture notes in computer science, vol 8150. Springer, Berlin, pp 108–115
SeppenwooldeYShiratoHKitamuraKShimizuSvan HerkMLebesqueJVMiyasakaKPrecise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapyInt J Radiat Oncol * Biol * Phys200253482283410.1016/S0360-3016(02)02803-1
TippingMESparse bayesian learning and the relevance vector machineJ Mach Learn Res20011211244
1008_CR10
Y Seppenwoolde (1008_CR11) 2002; 53
1008_CR6
1008_CR4
1008_CR1
1008_CR2
ME Tipping (1008_CR12) 2001; 1
F Ernst (1008_CR3) 2013; 58
CE Rasmussen (1008_CR7) 2006
1008_CR9
P Giraud (1008_CR5) 2001; 51
1008_CR8
23681310 - Phys Med Biol. 2013 Jun 7;58(11):3911-29
17821984 - Med Phys. 2007 Jul;34(7):2774-84
11704333 - Int J Radiat Oncol Biol Phys. 2001 Nov 15;51(4):1081-92
12095547 - Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):822-34
24579130 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):108-15
18044626 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):668-75
20571211 - Phys Med Biol. 2010 Jul 7;55(13):3885-904
References_xml – reference: SeppenwooldeYShiratoHKitamuraKShimizuSvan HerkMLebesqueJVMiyasakaKPrecise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapyInt J Radiat Oncol * Biol * Phys200253482283410.1016/S0360-3016(02)02803-1
– reference: Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression. In: Medical image computing and computer-assisted intervention MICCAI 2007, vol 4792. Springer, Berlin, pp 668–675
– reference: RasmussenCEWilliamsCKIGaussian processes in machine learning2006CambridgeMIT Press
– reference: Ruan D (2010) Prospective detection of large prediction errors: a hypothesis testing approach. Phys Med Biol 55(13):3885
– reference: GiraudPDe RyckeYDubrayBHelfreSVoicanDGuoLRosenwaldJCKeraudyKHoussetMTouboulECossetJMConformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathingInt J Radiat Oncol* Biol* Phys20015141081109210.1016/S0360-3016(01)01766-71:STN:280:DC%2BD3Mnlt1Cmuw%3D%3D
– reference: ErnstFDürichenRSchlaeferASchweikardAEvaluating and comparing algorithms for respiratory motion predictionPhys Med Biol201358113911392910.1088/0031-9155/58/11/39111:STN:280:DC%2BC3snktlOqtQ%3D%3D23681310
– reference: Depuydt T, Haas O, Verellen D, Erbel S, De Ridder M, Storme G (2010) Geometric accuracy evaluation of the new VERO stereotactic body radiation therapy system. In: Burnham KJ, Ersanilli VE (eds) Proceedings of the UKACC international conference on control. Cambridge, UK, pp 613–619
– reference: Dürichen R, Wissel T, Ernst F, Schweikard A (2013) Respiratory motion compensation with relevance vector machines. In: Medical image computing and computer-assisted intervention MICCAI 2013. Lecture notes in computer science, vol 8150. Springer, Berlin, pp 108–115
– reference: Liu W, Prncipe J (2008) Kernel affine projection algorithms. EURASIP J Adv Signal Process 2008(1):784292
– reference: TippingMESparse bayesian learning and the relevance vector machineJ Mach Learn Res20011211244
– reference: Sayeh S, Wang J, Main WT, Kilby W, Calvin RM (2007) Respiratory motion tracking for robotic radiosurgery. In: Treating tumors that move with respiration. Springer, Berlin, pp 15–29
– reference: Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774
– ident: 1008_CR8
  doi: 10.1088/0031-9155/55/13/021
– volume: 53
  start-page: 822
  issue: 4
  year: 2002
  ident: 1008_CR11
  publication-title: Int J Radiat Oncol * Biol * Phys
  doi: 10.1016/S0360-3016(02)02803-1
– volume: 1
  start-page: 211
  year: 2001
  ident: 1008_CR12
  publication-title: J Mach Learn Res
– ident: 1008_CR1
  doi: 10.1049/ic.2010.0291
– ident: 1008_CR2
  doi: 10.1007/978-3-642-40763-5_14
– volume: 58
  start-page: 3911
  issue: 11
  year: 2013
  ident: 1008_CR3
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/11/3911
– ident: 1008_CR9
  doi: 10.1007/978-3-540-69886-9_2
– ident: 1008_CR6
  doi: 10.1155/2008/784292
– ident: 1008_CR4
  doi: 10.1007/978-3-540-75759-7_81
– volume: 51
  start-page: 1081
  issue: 4
  year: 2001
  ident: 1008_CR5
  publication-title: Int J Radiat Oncol* Biol* Phys
  doi: 10.1016/S0360-3016(01)01766-7
– ident: 1008_CR10
  doi: 10.1118/1.2739811
– volume-title: Gaussian processes in machine learning
  year: 2006
  ident: 1008_CR7
– reference: 23681310 - Phys Med Biol. 2013 Jun 7;58(11):3911-29
– reference: 18044626 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):668-75
– reference: 12095547 - Int J Radiat Oncol Biol Phys. 2002 Jul 15;53(4):822-34
– reference: 20571211 - Phys Med Biol. 2010 Jul 7;55(13):3885-904
– reference: 11704333 - Int J Radiat Oncol Biol Phys. 2001 Nov 15;51(4):1081-92
– reference: 24579130 - Med Image Comput Comput Assist Interv. 2013;16(Pt 2):108-15
– reference: 17821984 - Med Phys. 2007 Jul;34(7):2774-84
SSID ssj0045735
Score 2.0175314
Snippet Purpose Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a...
Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms Algorithms
Computer Imaging
Computer Science
Health Informatics
Humans
Imaging
Medicine
Medicine & Public Health
Motion
Original Article
Pattern Recognition and Graphics
Probability
Radiology
Radiotherapy, Computer-Assisted - methods
Regression Analysis
Respiration
Robotics
Surgery
Vision
Title Controlling motion prediction errors in radiotherapy with relevance vector machines
URI https://link.springer.com/article/10.1007/s11548-014-1008-x
https://www.ncbi.nlm.nih.gov/pubmed/24830524
https://www.proquest.com/docview/1668239737
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6ygfjiZd7mZUTwSQmszaXN4xibQ5kvOphP5bTJYKDdaDfRf2-SthsyFXzrJb2Qk5zzJefyIXSdcKBUSUYm0G4TY_E4AZlowqkCFVqSQJcLM3wUgxG7H_NxmcedV9HulUvSaep1sptF12bpy4gtSEMMcKxzW07KDOKR36nUL-OBY9X0QuERwbyVK_OnV3w3RhsIc8M76oxOfx_tlmgRdwrxHqAtnTbQXsXEgMuJ2UDbw9JFfoieukXwuU0zxwVHD55n9rY71Fk2y3I8TXEGalqmX31iux2LLX-KiwjA724vH7-5SEudH6FRv_fcHZCSOYEkNAgWRsUp0DCx6EBr8EB4iZQqMdYZpPI5JD7YlZgWoBilwLnQoPkkbrNYCx5Leoxq6SzVpwibS0ZrxkK6sj1KxmaNFgCX1mMaa481Ubvqwigpy4pbdovXaF0Q2fZ6ZHrdnofRRxPdrB6ZFzU1_mp8VcklMiPfujMg1bNlHnlChL6BUzRoopNCYKvX-Sw0isw3f3dbSTAqJ2f--7fO_tX6HO0Y9MSL_ZgLVFtkS31pEMoibqF65-7loddyI_MLQlzeqg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQX3xMm_zGsEnJdBLkjaPYzimbntxg72V0yaDgXaj3UT_vUnabshU8K2XNCk5yTnfybkhdJsw8H0pKBmD4xAt8RgBkSjCfAkyNEUCbSxMr887Q_o0YqMyjjuvvN0rk6Tl1KtgN4OutepLiUlIQzRw3DRWRqNxDb1mxX4pC2xVTTfkLuHUXZoyf-riuzBaQ5hr1lErdNr7aLdEi7hZkPcAbai0jvaqSgy43Jh1tNUrTeSH6KVVOJ-bMHNc1OjBs8y8tpcqy6ZZjicpzkBOyvCrT2yOY7Gpn2I9AvC7PcvHb9bTUuVHaNh-GLQ6pKycQBI_COaaxUlQMDboQClwgbuJEDLR0hmE9BgkHhhNTHGQ1PeBMa5AsXHs0FhxFgv_GNXSaapOEdaPNNeMubBpe6SItY4WABPGYhorlzaQU01hlJRpxU11i9dolRDZzHqkZ93ch9FHA90tP5kVOTX-anxT0SXSK9-YMyBV00UeuZyHnoZTftBAJwXBlt15NNSMzNN_d19RMCo3Z_77WGf_an2NtjuDXjfqPvafz9GORlKscOm5QLV5tlCXGq3M4yu7Or8Avxff_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CrVTthbILrMCYJ-1pyFuT2E78OI12Y5dq0lapPIWT2JUmIK2SFLH9euzE6QQdSIi3XBzH8eWczzmXD2A_5RgESjI6xX6fGo3HKcpUUx4oVJElCaxiYa5G4mzMzid84nhOi8bbvTFJ1jENNktTVh7N1fToMfDNIm2zDWbUJqehBkS2maWQaEH7-PTTxaARxoyHFcemFwmPCuYtDZtPVfKralrBmyu20koFDbvwuWl87Xny5XBRJofpw295Hf_j617AcwdPyXE9n9bhmc42oNtQPxAnCTagc-Vs8ptwc1J7u9u4dlKTApF5bm9XhzrPZ3lB7jKSo7pz8V73xP7_JZawpXJBIN8r4wH5Vrl26mILxsPB7ckZdVQNNA3CsDQyVaHGqYUjWqOHwkulVKmBAyiVzzH10W79tEDFggA5Fxo1nyZ9lmjBExm8hFY2y_Q2EHPJiOlEyCpPkJKJ2RSGyKU10SbaYz3oN6MUpy6PuaXT-Bo_ZmC2_Reb_rPnUfyjBwfLR-Z1Eo-_Fd5rhj42S83aTzDTs0URe0JEvsFvQdiDV_WcWFbns8hITt-07n0zvrGTBsWf3_X6n0rvQuf6wzC-_Di6eANrBrnx2oXoLbTKfKF3DDoqk3duBfwENhcF7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+motion+prediction+errors+in+radiotherapy+with+relevance+vector+machines&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=D%C3%BCrichen%2C+Robert&rft.au=Wissel%2C+Tobias&rft.au=Schweikard%2C+Achim&rft.date=2015-04-01&rft.issn=1861-6429&rft.eissn=1861-6429&rft.volume=10&rft.issue=4&rft.spage=363&rft_id=info:doi/10.1007%2Fs11548-014-1008-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon