Spectral graph model for fMRI: A biophysical, connectivity-based generative model for the analysis of frequency-resolved resting-state fMRI
Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations be...
        Saved in:
      
    
          | Published in | Imaging neuroscience (Cambridge, Mass.) Vol. 2 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
          MIT Press
    
        09.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2837-6056 2837-6056  | 
| DOI | 10.1162/imag_a_00381 | 
Cover
| Abstract | Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure–function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal’s spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure–function relationships in a variety of brain disorders. | 
    
|---|---|
| AbstractList | Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure–function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal’s spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure–function relationships in a variety of brain disorders. Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure-function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal's spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure-function relationships in a variety of brain disorders.Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure-function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal's spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure-function relationships in a variety of brain disorders.  | 
    
| Author | Mathalon, Daniel H. Raj, Ashish Verma, Parul Biswal, Bharat Nagarajan, Srikantan Sipes, Benjamin S.  | 
    
| AuthorAffiliation | Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, and Veterans Affairs San Francisco Health Care System, San Francisco, CA, United States Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States  | 
    
| AuthorAffiliation_xml | – name: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States – name: Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, and Veterans Affairs San Francisco Health Care System, San Francisco, CA, United States – name: Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States  | 
    
| Author_xml | – sequence: 1 givenname: Ashish surname: Raj fullname: Raj, Ashish email: ashish.raj@ucsf.edu organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States – sequence: 2 givenname: Benjamin S. surname: Sipes fullname: Sipes, Benjamin S. organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States – sequence: 3 givenname: Parul surname: Verma fullname: Verma, Parul organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States – sequence: 4 givenname: Daniel H. surname: Mathalon fullname: Mathalon, Daniel H. – sequence: 5 givenname: Bharat surname: Biswal fullname: Biswal, Bharat organization: Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States – sequence: 6 givenname: Srikantan surname: Nagarajan fullname: Nagarajan, Srikantan organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40800294$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUU1v1DAQtVARLUtvnJGPHBrwRzZOuKCqolCpCImPs-U4k6wrxw62s1V-A3-6XnapFgmJk8cz780bvfccnTjvAKGXlLyhtGJvzagGqSQhvKZP0BmruSgqsq5OjupTdB7jHSGENQ2pxfoZOi1JvfuWZ-jXtwl0CsriIahpg0ffgcW9D7j__PXmHb7ErfHTZolGK3uBtXcu483WpKVoVYQOD-AgqNyCI3LaAFZO2cyL2Pe4D_BzBqeXIkD0dpt5uUjGDUVMKsFvtRfoaa9shPPDu0I_rj98v_pU3H75eHN1eVtoLkQqRK87oYggdUugzD3SVQpqzVreky7PGs1JzXgLTVcJ0VS8bFij2p7SNWNM8BUq9ntnN6nlXlkrp5CdDIukRO58lce-Zvz7PX6a2xE6DW5n2CPHKyP_njizkYPfSso4XYscxAq9PmwIPvsQkxxN1GCtcuDnKDnjDWW0zLeu0KtjsUeVP5FlwMUeoIOPMUD_v-MP0qNJ8s7PIacS_w19AO6fuaM | 
    
| Cites_doi | 10.1126/science.1238411 10.1162/netn_a_00166 10.1016/j.neuroimage.2018.02.016 10.1523/JNEUROSCI.4434-07.2008 10.1016/j.neuroimage.2014.12.012 10.1016/j.neuroimage.2017.02.090 10.1016/j.neuroimage.2015.07.043 10.1016/j.neuroimage.2013.11.009 10.1073/pnas.1315529111 10.1073/pnas.87.24.9868 10.1038/s41598-017-03073-5 10.3389/fnins.2022.810111 10.1016/j.neuroimage.2013.06.018 10.1038/35067550 10.1016/j.nicl.2016.04.006 10.1007/BF00288786 10.1016/j.neuroimage.2017.11.033 10.3389/fnins.2017.00441 10.1038/nrn2201 10.3389/fninf.2011.00013 10.1016/j.neuroimage.2006.01.021 10.1016/S1361-8415(01)00036-6 10.1016/j.neuroimage.2013.12.009 10.1016/j.neuroimage.2019.116137 10.1016/S0167-2789(96)00166-2 10.1038/s41467-018-05316-z 10.1038/nrn2575 10.1016/j.neuroimage.2016.04.050 10.1523/JNEUROSCI.0141-08.2008 10.3389/fnins.2019.00900 10.1016/j.neuroimage.2021.118190 10.1016/j.neuroimage.2005.01.040 10.1016/j.neuroimage.2003.09.056 10.1109/42.906424 10.1063/1.3553181 10.1016/j.neuroimage.2013.11.047 10.1016/j.neuroimage.2010.08.042 10.1371/journal.pone.0085843 10.1016/j.neuroimage.2017.03.023 10.1016/j.neuroimage.2015.02.064 10.1109/TMI.2010.2046908 10.1371/journal.pcbi.1005550 10.1089/brain.2012.0073 10.1038/s42005-024-01748-w 10.1113/jphysiol.2012.243469 10.1038/s41597-022-01682-y 10.1038/npp.2015.119 10.1016/j.neuroimage.2022.118919 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2017.03.020 10.1016/j.neuroimage.2013.12.039 10.1016/j.neuroimage.2013.04.002 10.1038/s41592-018-0235-4 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2014.10.004 10.1162/NETN_a_00015 10.1073/pnas.0901831106 10.1038/nrn1650 10.1016/j.nicl.2018.04.017 10.1038/ncomms10340 10.1097/WCO.0b013e32832d93dd 10.1016/j.neuroimage.2023.120278 10.1007/s11571-008-9044-2 10.1007/s004220050572 10.1016/j.neuroimage.2016.04.049 10.1016/j.neuroimage.2020.117705 10.1016/j.neuroimage.2022.119612 10.1002/hbm.24991 10.1016/j.neuroimage.2014.11.027 10.1016/j.neuroimage.2012.06.007 10.1016/j.neuroimage.2020.116805 10.1016/S0006-3495(72)86068-5 10.1016/j.neuroimage.2009.06.060 10.1371/journal.pcbi.1000196 10.1016/j.neuroimage.2003.07.015 10.1073/pnas.0701519104 10.1016/j.neuroimage.2016.12.061 10.3389/fninf.2014.00014 10.1016/j.tics.2005.08.011 10.1016/j.neuroimage.2017.06.077 10.3389/fninf.2014.00008 10.1371/journal.pone.0093375 10.1038/s41467-019-12765-7 10.1073/pnas.0811168106 10.1109/JPROC.2018.2798928 10.1088/1741-2552/aba5cc 10.1016/j.neuroimage.2018.05.058 10.1089/brain.2012.0120 10.1016/j.neuroimage.2020.116603 10.1016/j.tins.2019.02.001 10.1016/j.media.2007.06.004 10.1002/hbm.25547 10.1016/j.media.2020.101799 10.1016/j.ijpsycho.2015.02.011 10.1016/S0925-2312(02)00740-3 10.1038/nrn3901 10.1089/brain.2015.0408 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 10.1109/MSP.2015.2482121 10.1109/ISBI.2015.7163912 10.1016/0025-5564(74)90020-0 10.1089/brain.2013.0210  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.  | 
    
| Copyright_xml | – notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. – notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.  | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1162/imag_a_00381 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2837-6056 | 
    
| ExternalDocumentID | 10.1162/imag_a_00381 PMC12315728 40800294 10_1162_imag_a_00381 imag_a_00381.pdf  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: ; grantid: R01EB022717; RF1AG062196; R01AG072753  | 
    
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ JMNJE M~E AAYXX CITATION RPM NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c377t-7fcd7a0708b0e4c370d6ae8c2b3f0dcd79c30823be9d6779634929abf11522273 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2837-6056 | 
    
| IngestDate | Sun Oct 26 04:11:26 EDT 2025 Thu Aug 21 18:29:09 EDT 2025 Fri Sep 05 15:11:38 EDT 2025 Thu Aug 28 04:50:40 EDT 2025 Wed Oct 01 05:35:48 EDT 2025 Tue Aug 12 12:10:33 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | structural connectivity fMRI graph harmonics functional networks graph Laplacian spectral graph theory  | 
    
| Language | English | 
    
| License | 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/ . cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c377t-7fcd7a0708b0e4c370d6ae8c2b3f0dcd79c30823be9d6779634929abf11522273 | 
    
| Notes | 2024 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1162/imag_a_00381 | 
    
| PMID | 40800294 | 
    
| PQID | 3239121496 | 
    
| PQPubID | 23479 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | crossref_primary_10_1162_imag_a_00381 mit_journals_10_1162_imag_a_00381 unpaywall_primary_10_1162_imag_a_00381 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12315728 proquest_miscellaneous_3239121496 pubmed_primary_40800294  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-09 | 
    
| PublicationDateYYYYMMDD | 2024-12-09 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-09 day: 09  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA | 
    
| PublicationPlace_xml | – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA – name: United States – name: One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu  | 
    
| PublicationTitle | Imaging neuroscience (Cambridge, Mass.) | 
    
| PublicationTitleAlternate | Imaging Neurosci (Camb) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MIT Press | 
    
| Publisher_xml | – name: MIT Press | 
    
| References | Nicolini (2025081119500126000_b67) 2020; 211 Ogawa (2025081119500126000_b70) 1990; 87 Whitfield-Gabrieli (2025081119500126000_b103) 2012; 2 Zhang (2025081119500126000_b108) 2001; 20 Razi (2025081119500126000_b79) 2016; 33 Jenkinson (2025081119500126000_b54) 2002; 17 Tournier (2025081119500126000_b94) 2019; 202 Deco (2025081119500126000_b28) 2009; 106 Desikan (2025081119500126000_b30) 2006; 31 Jirsa (2025081119500126000_b59) 1997; 99 Alexander-Bloch (2025081119500126000_b6) 2013; 23 Rehme (2025081119500126000_b82) 2013; 591 Curtis (2025081119500126000_b24) 2005; 26 Ghosh (2025081119500126000_b41) 2008; 2 Friston (2025081119500126000_b36) 2014; 94 Becker (2025081119500126000_b10) 2018; 8 Honey (2025081119500126000_b52) 2009; 106 Hartman (2025081119500126000_b48) 2011; 21 Park (2025081119500126000_b71) 2013; 342 Sengupta (2025081119500126000_b88) 2016; 125 Bassett (2025081119500126000_b9) 2009; 22 Verma (2025081119500126000_b99) 2022; 249 Zimmermann (2025081119500126000_b109) 2018; 19 Frässle (2025081119500126000_b38) 2017; 155 Coan (2025081119500126000_b20) 2014; 9 Esteban (2025081119500126000_b32) 2019; 16 Robinson (2025081119500126000_b84) 2016; 142 Raftery (2025081119500126000_b76) 1996 Jirsa (2025081119500126000_b61) 2010; 148 Vidaurre (2025081119500126000_b101) 2018; 9 Spiegler (2025081119500126000_b90) 2013; 83 Preti (2025081119500126000_b74) 2019; 10 Rubinov (2025081119500126000_b86) 2010; 52 Abdelnour (2025081119500126000_b2) 2021; 228 Fryer (2025081119500126000_b39) 2015; 40 Pruim (2025081119500126000_b75) 2015; 112 Tustison (2025081119500126000_b95) 2010; 29 Liégeois (2025081119500126000_b64) 2020; 4 Preti (2025081119500126000_b73) 2017; 160 Jiang (2025081119500126000_b57) 2013; 80 Greaves (2025081119500126000_b46) 2024 Cummings (2025081119500126000_b23) 2022; 16 Park (2025081119500126000_b72) 2018; 180 Bordier (2025081119500126000_b12) 2017; 11 Deco (2025081119500126000_b27) 2017; 152 Jenkinson (2025081119500126000_b55) 2012; 62 Upadhyay (2025081119500126000_b96) 2008; 28 Vidaurre (2025081119500126000_b100) 2018; 180 Cruces (2025081119500126000_b22) 2022; 263 Ciric (2025081119500126000_b19) 2017; 154 Goñi (2025081119500126000_b44) 2014; 111 Kalcher (2025081119500126000_b62) 2014; 9 Tewarie (2025081119500126000_b93) 2020; 216 Deslauriers-Gauthier (2025081119500126000_b31) 2020; 66 Abdelnour (2025081119500126000_b3) 2015 Nakagawa (2025081119500126000_b66) 2014; 87 Bernardo (2025081119500126000_b11) 2024; 7 Meier (2025081119500126000_b65) 2016; 6 Wang (2025081119500126000_b102) 2017; 13 Hlinka (2025081119500126000_b50) 2011; 54 Kuceyeski (2025081119500126000_b63) 2016; 11 Cox (2025081119500126000_b21) 1997; 10 Razi (2025081119500126000_b80) 2015; 106 He (2025081119500126000_b49) 2008; 28 Gorgolewski (2025081119500126000_b45) 2011; 5 Jirsa (2025081119500126000_b60) 2017; 145 Bullmore (2025081119500126000_b14) 2009; 10 Yuen (2025081119500126000_b107) 2019; 13 Nozari (2025081119500126000_b68) 2020 Stam (2025081119500126000_b91) 2016; 103 Abdelnour (2025081119500126000_b1) 2018; 172 Bzdok (2025081119500126000_b15) 2019; 42 Fries (2025081119500126000_b35) 2005; 9 Wilson (2025081119500126000_b105) 1973; 13 Cabral (2025081119500126000_b16) 2012; 62 Raitamaa (2025081119500126000_b77) 2021; 42 De Blasi (2025081119500126000_b26) 2020; 17 Garyfallidis (2025081119500126000_b40) 2014; 8 Valdes (2025081119500126000_b97) 1999; 81 Frässle (2025081119500126000_b37) 2018; 179 Smith (2025081119500126000_b89) 2015; 104 Raj (2025081119500126000_b78) 2020; 41 Atasoy (2025081119500126000_b7) 2016; 7 Jenkinson (2025081119500126000_b56) 2001; 5 Deco (2025081119500126000_b29) 2017; 7 Nunez (2025081119500126000_b69) 1974; 21 Royer (2025081119500126000_b85) 2022; 9 Fornito (2025081119500126000_b33) 2015; 16 Avants (2025081119500126000_b8) 2008; 12 Cabral (2025081119500126000_b17) 2014; 90 Abraham (2025081119500126000_b5) 2014; 8 Varela (2025081119500126000_b98) 2001; 2 Gohel (2025081119500126000_b43) 2015; 5 Honey (2025081119500126000_b51) 2007; 104 Abdelnour (2025081119500126000_b4) 2014; 90 Schnitzler (2025081119500126000_b87) 2005; 6 Xie (2025081119500126000_b106) 2021; 237 Breakspear (2025081119500126000_b13) 2003 Chen (2025081119500126000_b18) 2015; 107 Huang (2025081119500126000_b53) 2018; 106 Jin (2025081119500126000_b58) 2023; 279 Sun (2025081119500126000_b92) 2004; 21 Wilson (2025081119500126000_b104) 1972; 12 Ghosh (2025081119500126000_b42) 2008; 4 Razi (2025081119500126000_b81) 2017; 1 Ritter (2025081119500126000_b83) 2013; 3 Greve (2025081119500126000_b47) 2009; 48 David (2025081119500126000_b25) 2003; 20 Fox (2025081119500126000_b34) 2007; 8 38586057 - bioRxiv. 2024 Mar 27:2024.03.22.586305. doi: 10.1101/2024.03.22.586305.  | 
    
| References_xml | – volume: 8 start-page: 1 issue: 1411 year: 2018 ident: 2025081119500126000_b10 article-title: Spectral mapping of brain functional connectivity from diffusion imaging publication-title: Nature Scientific Reports – volume: 342 start-page: 1238411 issue: 6158 year: 2013 ident: 2025081119500126000_b71 article-title: Structural and functional brain networks: From connections to cognition publication-title: Science doi: 10.1126/science.1238411 – volume: 4 start-page: 1235 issue: 4 year: 2020 ident: 2025081119500126000_b64 article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity publication-title: Network Neuroscience doi: 10.1162/netn_a_00166 – volume: 172 start-page: 728 year: 2018 ident: 2025081119500126000_b1 article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.02.016 – volume: 28 start-page: 3341 issue: 13 year: 2008 ident: 2025081119500126000_b96 article-title: Effective and structural connectivity in the human auditory cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4434-07.2008 – volume: 107 start-page: 207 year: 2015 ident: 2025081119500126000_b18 article-title: Bold fractional contribution to resting-state functional connectivity above 0.1 Hz publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.012 – volume: 155 start-page: 406 year: 2017 ident: 2025081119500126000_b38 article-title: Regression DCM for fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.090 – volume: 125 start-page: 1107 year: 2016 ident: 2025081119500126000_b88 article-title: Gradient-based MCMC samplers for dynamic causal modelling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.043 – volume: 87 start-page: 383 year: 2014 ident: 2025081119500126000_b66 article-title: How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.009 – volume: 111 start-page: 833 issue: 2 year: 2014 ident: 2025081119500126000_b44 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1315529111 – volume: 87 start-page: 9868 issue: 24 year: 1990 ident: 2025081119500126000_b70 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.87.24.9868 – volume: 7 start-page: 3095 year: 2017 ident: 2025081119500126000_b29 article-title: The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core publication-title: Scientific Reports doi: 10.1038/s41598-017-03073-5 – volume: 16 start-page: 810111 year: 2022 ident: 2025081119500126000_b23 article-title: Predicting functional connectivity from observed and latent structural connectivity via eigenvalue mapping publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2022.810111 – volume: 83 start-page: 704 year: 2013 ident: 2025081119500126000_b90 article-title: Systematic approximations of neural fields through networks of neural masses in the virtual brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.06.018 – volume: 2 start-page: 229 issue: 4 year: 2001 ident: 2025081119500126000_b98 article-title: The brainweb: Phase synchronization and large-scale integration publication-title: Nature Reviews Neuroscience doi: 10.1038/35067550 – volume: 11 start-page: 635 year: 2016 ident: 2025081119500126000_b63 article-title: The application of a mathematical model linking structural and functional connectomes in severe brain injury publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2016.04.006 – volume: 13 start-page: 55 issue: 2 year: 1973 ident: 2025081119500126000_b105 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Kybernetik doi: 10.1007/BF00288786 – volume: 180 start-page: 594 year: 2018 ident: 2025081119500126000_b72 article-title: Dynamic effective connectivity in resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.11.033 – volume: 11 start-page: 441 year: 2017 ident: 2025081119500126000_b12 article-title: Graph analysis and modularity of brain functional connectivity networks: Searching for the optimal threshold publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00441 – volume: 8 start-page: 700 issue: 9 year: 2007 ident: 2025081119500126000_b34 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2201 – volume: 5 start-page: 13 year: 2011 ident: 2025081119500126000_b45 article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2011.00013 – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 2025081119500126000_b30 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 5 start-page: 143 issue: 2 year: 2001 ident: 2025081119500126000_b56 article-title: A global optimisation method for robust affine registration of brain images publication-title: Medical Image Analysis doi: 10.1016/S1361-8415(01)00036-6 – volume: 94 start-page: 396 year: 2014 ident: 2025081119500126000_b36 article-title: A DCM for resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.009 – volume: 202 start-page: 116137 year: 2019 ident: 2025081119500126000_b94 article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116137 – volume: 99 start-page: 503 issue: 4 year: 1997 ident: 2025081119500126000_b59 article-title: A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/S0167-2789(96)00166-2 – volume: 9 start-page: 2987 issue: 1 year: 2018 ident: 2025081119500126000_b101 article-title: Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks publication-title: Nature Communications doi: 10.1038/s41467-018-05316-z – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 2025081119500126000_b14 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2575 – year: 2024 ident: 2025081119500126000_b46 article-title: Structurally informed resting-state effective connectivity recapitulates cortical hierarchy publication-title: bioRxiv – volume: 142 start-page: 79 year: 2016 ident: 2025081119500126000_b84 article-title: Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.050 – volume: 28 start-page: 4756 issue: 18 year: 2008 ident: 2025081119500126000_b49 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0141-08.2008 – volume: 13 start-page: 900 year: 2019 ident: 2025081119500126000_b107 article-title: Intrinsic frequencies of the resting-state fMRI signal: The frequency dependence of functional connectivity and the effect of mode mixing publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2019.00900 – volume: 237 start-page: 118190 year: 2021 ident: 2025081119500126000_b106 article-title: Emergence of canonical functional networks from the structural connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118190 – volume: 26 start-page: 177 issue: 1 year: 2005 ident: 2025081119500126000_b24 article-title: Coherence between fMRI time-series distinguishes two spatial working memory networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.040 – volume: 21 start-page: 647 issue: 2 year: 2004 ident: 2025081119500126000_b92 article-title: Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.09.056 – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 2025081119500126000_b108 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.906424 – volume: 21 start-page: 013119 issue: 1 year: 2011 ident: 2025081119500126000_b48 article-title: The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks publication-title: Chaos (Woodbury, N.Y.) doi: 10.1063/1.3553181 – volume: 90 start-page: 423 year: 2014 ident: 2025081119500126000_b17 article-title: Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.047 – volume: 54 start-page: 2218 issue: 3 year: 2011 ident: 2025081119500126000_b50 article-title: Functional connectivity in resting-state fMRI: Is linear correlation sufficient? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.042 – volume: 148 start-page: 189 year: 2010 ident: 2025081119500126000_b61 article-title: Towards the virtual brain: Network modeling of the intact and the damaged brain publication-title: Archives Italiennes de Biologie – volume: 9 start-page: e85843 issue: 1 year: 2014 ident: 2025081119500126000_b20 article-title: Frequent seizures are associated with a network of gray matter atrophy in temporal lobe epilepsy with or without hippocampal sclerosis publication-title: PLoS One doi: 10.1371/journal.pone.0085843 – volume: 152 start-page: 538 year: 2017 ident: 2025081119500126000_b27 article-title: Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.023 – volume: 112 start-page: 267 year: 2015 ident: 2025081119500126000_b75 article-title: ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.064 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 2025081119500126000_b95 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2046908 – volume: 13 start-page: e1005550 issue: 6 year: 2017 ident: 2025081119500126000_b102 article-title: Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005550 – volume: 2 start-page: 125 issue: 3 year: 2012 ident: 2025081119500126000_b103 article-title: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connectivity doi: 10.1089/brain.2012.0073 – volume: 7 start-page: 255 year: 2024 ident: 2025081119500126000_b11 article-title: Simulation-based inference of developmental EEG maturation with the spectral graph model publication-title: Communications Physics doi: 10.1038/s42005-024-01748-w – volume: 591 start-page: 17 issue: 1 year: 2013 ident: 2025081119500126000_b82 article-title: Cerebral network disorders after stroke: Evidence from imaging-based connectivity analyses of active and resting brain states in humans publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2012.243469 – volume: 9 start-page: 1 issue: 1 year: 2022 ident: 2025081119500126000_b85 article-title: An open MRI dataset for multiscale neuroscience publication-title: Scientific Data doi: 10.1038/s41597-022-01682-y – volume: 40 start-page: 2705 issue: 12 year: 2015 ident: 2025081119500126000_b39 article-title: Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology doi: 10.1038/npp.2015.119 – volume: 249 start-page: 118919 year: 2022 ident: 2025081119500126000_b99 article-title: Spectral graph theory of brain oscillations—Revisited and improved publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118919 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 2025081119500126000_b55 article-title: FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 2025081119500126000_b86 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 154 start-page: 174 year: 2017 ident: 2025081119500126000_b19 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.020 – volume: 90 start-page: 335 year: 2014 ident: 2025081119500126000_b4 article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.039 – volume: 80 start-page: 263 year: 2013 ident: 2025081119500126000_b57 article-title: Brainnetome: A new -ome to understand the brain and its disorders publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.002 – volume: 16 start-page: 111 issue: 1 year: 2019 ident: 2025081119500126000_b32 article-title: fMRIPrep: A robust preprocessing pipeline for functional MRI publication-title: Nature Methods doi: 10.1038/s41592-018-0235-4 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 2025081119500126000_b54 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 104 start-page: 253 year: 2015 ident: 2025081119500126000_b89 article-title: The effects of sift on the reproducibility and biological accuracy of the structural connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.004 – volume: 1 start-page: 222 issue: 3 year: 2017 ident: 2025081119500126000_b81 article-title: Large-scale DCMs for resting-state fMRI publication-title: Network Neuroscience doi: 10.1162/NETN_a_00015 – volume: 23 start-page: 127 issue: 1 year: 2013 ident: 2025081119500126000_b6 article-title: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia publication-title: Cerebral Cortex (New York, NY) – volume: 106 start-page: 10302 issue: 25 year: 2009 ident: 2025081119500126000_b28 article-title: Key role of coupling, delay, and noise in resting brain fluctuations publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0901831106 – volume: 6 start-page: 285 issue: 4 year: 2005 ident: 2025081119500126000_b87 article-title: Normal and pathological oscillatory communication in the brain publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1650 – volume: 19 start-page: 240 year: 2018 ident: 2025081119500126000_b109 article-title: Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2018.04.017 – volume: 7 start-page: 10340 year: 2016 ident: 2025081119500126000_b7 article-title: Human brain networks function in connectome-specific harmonic waves publication-title: Nature Communications doi: 10.1038/ncomms10340 – volume: 22 start-page: 340 issue: 4 year: 2009 ident: 2025081119500126000_b9 article-title: Human brain networks in health and disease publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0b013e32832d93dd – volume: 279 start-page: 120278 year: 2023 ident: 2025081119500126000_b58 article-title: Bayesian inference of a spectral graph model for brain oscillations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.120278 – volume: 2 start-page: 115 issue: 2 year: 2008 ident: 2025081119500126000_b41 article-title: Cortical network dynamics with time delays reveals functional connectivity in the resting brain publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-008-9044-2 – volume: 81 start-page: 415 issue: 5 year: 1999 ident: 2025081119500126000_b97 article-title: Nonlinear EEG analysis based on a neural mass model publication-title: Biological Cybernetics doi: 10.1007/s004220050572 – volume: 145 start-page: 377 year: 2017 ident: 2025081119500126000_b60 article-title: The virtual epileptic patient: Individualized whole-brain models of epilepsy spread publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.049 – volume: 228 start-page: 117705 year: 2021 ident: 2025081119500126000_b2 article-title: Algebraic relationship between the structural network’s Laplacian and functional network’s adjacency matrix is preserved in temporal lobe epilepsy subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117705 – volume: 263 start-page: 119612 year: 2022 ident: 2025081119500126000_b22 article-title: Micapipe: A pipeline for multimodal neuroimaging and connectome analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119612 – volume: 41 start-page: 2980 issue: 11 year: 2020 ident: 2025081119500126000_b78 article-title: Spectral graph theory of brain oscillations publication-title: Human Brain Mapping doi: 10.1002/hbm.24991 – volume: 106 start-page: 1 year: 2015 ident: 2025081119500126000_b80 article-title: Construct validation of a DCM for resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.027 – volume: 62 start-page: 1342 issue: 3 year: 2012 ident: 2025081119500126000_b16 article-title: Modeling the outcome of structural disconnection on resting-state functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.007 – volume: 216 start-page: 116805 year: 2020 ident: 2025081119500126000_b93 article-title: Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116805 – volume: 12 start-page: 1 issue: 1 year: 1972 ident: 2025081119500126000_b104 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophysical Journal doi: 10.1016/S0006-3495(72)86068-5 – year: 2020 ident: 2025081119500126000_b68 article-title: Is the brain macroscopically linear? A system identification of resting state dynamics publication-title: bioRxiv – volume: 48 start-page: 63 issue: 1 year: 2009 ident: 2025081119500126000_b47 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 4 start-page: 1 issue: 10 year: 2008 ident: 2025081119500126000_b42 article-title: Noise during rest enables the exploration of the brain’s dynamic repertoire publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000196 – volume: 20 start-page: 1743 issue: 3 year: 2003 ident: 2025081119500126000_b25 article-title: A neural mass model for MEG/EEG: Coupling and neuronal dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.07.015 – start-page: 115 volume-title: Markov chain Monte Carlo in practice year: 1996 ident: 2025081119500126000_b76 article-title: Implementing MCMC – volume: 104 start-page: 10240 issue: 24 year: 2007 ident: 2025081119500126000_b51 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0701519104 – volume: 160 start-page: 41 year: 2017 ident: 2025081119500126000_b73 article-title: The dynamic functional connectome: State-of-the-art and perspectives publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.061 – volume: 8 start-page: 14 year: 2014 ident: 2025081119500126000_b5 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2014.00014 – volume: 9 start-page: 474 issue: 10 year: 2005 ident: 2025081119500126000_b35 article-title: A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2005.08.011 – volume: 180 start-page: 646 year: 2018 ident: 2025081119500126000_b100 article-title: Discovering dynamic brain networks from big data in rest and task publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.077 – volume: 8 start-page: 8 year: 2014 ident: 2025081119500126000_b40 article-title: DiPy, a library for the analysis of diffusion MRI data publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2014.00008 – volume: 9 start-page: e93375 issue: 4 year: 2014 ident: 2025081119500126000_b62 article-title: The spectral diversity of resting-state fluctuations in the human brain publication-title: PLoS One doi: 10.1371/journal.pone.0093375 – volume: 10 start-page: 4747 issue: 1 year: 2019 ident: 2025081119500126000_b74 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nature Communications doi: 10.1038/s41467-019-12765-7 – volume: 106 start-page: 2035 issue: 6 year: 2009 ident: 2025081119500126000_b52 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0811168106 – volume: 106 start-page: 868 issue: 5 year: 2018 ident: 2025081119500126000_b53 article-title: A graph signal processing perspective on functional brain imaging publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2018.2798928 – volume: 17 start-page: 046040 issue: 4 year: 2020 ident: 2025081119500126000_b26 article-title: Noise removal in resting-state and task fMRI: Functional connectivity and activation maps publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aba5cc – volume: 179 start-page: 505 year: 2018 ident: 2025081119500126000_b37 article-title: A generative model of whole-brain effective connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.05.058 – volume: 3 start-page: 121 issue: 2 year: 2013 ident: 2025081119500126000_b83 article-title: The virtual brain integrates computational modeling and multimodal neuroimaging publication-title: Brain Connectivity doi: 10.1089/brain.2012.0120 – volume: 211 start-page: 116603 year: 2020 ident: 2025081119500126000_b67 article-title: Scale-resolved analysis of brain functional connectivity networks with spectral entropy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116603 – volume: 42 start-page: 251 issue: 4 year: 2019 ident: 2025081119500126000_b15 article-title: Exploration, inference, and prediction in neuroscience and biomedicine publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2019.02.001 – volume: 12 start-page: 26 issue: 1 year: 2008 ident: 2025081119500126000_b8 article-title: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.06.004 – volume: 42 start-page: 4298 issue: 13 year: 2021 ident: 2025081119500126000_b77 article-title: Spectral analysis of physiological brain pulsations affecting the bold signal publication-title: Human Brain Mapping doi: 10.1002/hbm.25547 – volume: 66 start-page: 101799 year: 2020 ident: 2025081119500126000_b31 article-title: A unified framework for multimodal structure-function mapping based on eigenmodes publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101799 – volume: 103 start-page: 149 year: 2016 ident: 2025081119500126000_b91 article-title: The relation between structural and functional connectivity patterns in complex brain networks publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2015.02.011 – start-page: 151 year: 2003 ident: 2025081119500126000_b13 article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics publication-title: Neurocomputing, 52–54 doi: 10.1016/S0925-2312(02)00740-3 – volume: 16 start-page: 159 issue: 3 year: 2015 ident: 2025081119500126000_b33 article-title: The connectomics of brain disorders publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn3901 – volume: 6 start-page: 298 issue: 4 year: 2016 ident: 2025081119500126000_b65 article-title: A mapping between structural and functional brain networks publication-title: Brain Connectivity doi: 10.1089/brain.2015.0408 – volume: 10 start-page: 171 issue: 4–5 year: 1997 ident: 2025081119500126000_b21 article-title: Software tools for analysis and visualization of fMRI data publication-title: NMR in Biomedicine doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L – volume: 33 start-page: 14 issue: 3 year: 2016 ident: 2025081119500126000_b79 article-title: The connected brain: Causality, models, and intrinsic dynamics publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2015.2482121 – start-page: 466 volume-title: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) year: 2015 ident: 2025081119500126000_b3 article-title: Estimating function from structure in epileptics using graph diffusion model doi: 10.1109/ISBI.2015.7163912 – volume: 21 start-page: 279 issue: 3 year: 1974 ident: 2025081119500126000_b69 article-title: The brain wave equation: A model for the EEG publication-title: Mathematical Biosciences doi: 10.1016/0025-5564(74)90020-0 – volume: 5 start-page: 23 issue: 1 year: 2015 ident: 2025081119500126000_b43 article-title: Functional integration between brain regions at rest occurs in multiple-frequency bands publication-title: Brain connectivity doi: 10.1089/brain.2013.0210 – reference: 38586057 - bioRxiv. 2024 Mar 27:2024.03.22.586305. doi: 10.1101/2024.03.22.586305.  | 
    
| SSID | ssj0002990875 | 
    
| Score | 2.285723 | 
    
| Snippet | Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is... Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine whether it is...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref mit  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | fMRI functional networks graph harmonics graph Laplacian spectral graph theory structural connectivity  | 
    
| Title | Spectral graph model for fMRI: A biophysical, connectivity-based generative model for the analysis of frequency-resolved resting-state fMRI | 
    
| URI | https://direct.mit.edu/IMAG/article/doi/10.1162/imag_a_00381 https://www.ncbi.nlm.nih.gov/pubmed/40800294 https://www.proquest.com/docview/3239121496 https://pubmed.ncbi.nlm.nih.gov/PMC12315728 https://doi.org/10.1162/imag_a_00381  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 issn: 2837-6056 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 issn: 2837-6056 databaseCode: M~E dateStart: 20230101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAPP databaseName: MIT Press Direct OA Journals issn: 2837-6056 databaseCode: JMNJE dateStart: 20230810 customDbUrl: isFulltext: true eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 providerName: MIT – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2837-6056 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002990875 issn: 2837-6056 databaseCode: RPM dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61Wwm4UN6EwspIhRNuE8d59bZCrQrSVgixUjlFfpYV22TVZkHlL_CnO3aS1W55XmNbtjMznm884xmA3cIaE0XK0gwpTnksNUVWjqnmTPI4Nir0JVnGJ-nxhL8_TU43YLd_C7Pqv49Stj89F2elKL1DaxO20gQR9wC2JicfRp9d3bjcvXJDJd7HtN8YsqZtNs-nze-A5K_xkLcX1VxcfRez2YqyOdqGw36ZbYzJ171FI_fUjxsZHP-1j3twt0ObZNSyx33YMNUDuDXu_OkP4acrP-8WQ3ziauLr4hDEscSOP747ICMip_W8I-UbolxUjGrrTVCn_zQ582mr3Zm5MhhBJRFdthNSW2Iv2oDtK4rGfT37huNcSRDUmtQ_aPKzPYLJ0eGnt8e0K89AVZxlDc2s0pnAIyOXoeH4LdSpMLliMrahxrZC-Vw40hQ6zTKUdI5YTEiLINS9wI0fw6CqK_MUiDaFYVImaKkrbqQWRSE0V6mMTB6mNgngVU_Gct5m4Si99ZKycvXPBvASaVx2Ynj5pz49B5QoSs4_IipTLy7LmMVFxNBkTAN40nLEcjbukXXBA8jXeGXZwaXpXm-ppl98um7EBlGSsTyA10u2-usunv1vxx24wxBj-eia4jkMmouFeYEYqZFDf7cw9JdXw05crgEyuBUv | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRWJ7QdzJuBkJeMIsiV0nQbxUiNGWpQ9ok_YW-ToqdUm1taD9Bv40x05aWm7iNbbj2Mc-5zvx8XcAXhTO2iTRjmYoccqZMhSXMqOGp4ozZnUcUrKUYzE45aOz3tkWvFvehWkV-ZuLSRtFMyz7Hw-7OVyRDSQiPZxcyPNKVuGgaxt2BY8Zul67o3I8-vmPxataxOPLePdfmm1Yom3s8U8g8_dYyb1FPZPX3-R0umaIjm7BzQ5Bkn77ubdhy9Z34EbZnZHfhe8-pbx_CQlk1CTkuiGITYkrPw_fkj5Rk2bWiec10T7SRbc5JKi3aYacBypqrwfXGiNQJLJjMCGNI-6yDcK-puiwN9Ov2M6n-UBLSMMlpdDbPTg9-nDyfkC7lAtUsyyb08xpk0lUA7mKLcdnsRHS5jpVzMUGywod-G2ULYzIMty9HPGVVA6Bpb9Vy-7DTt3U9iEQYwubKtVD71tzq4wsCmm4FiqxeSxcL4KXy-mvZi2zRhU8EpFW62KK4DnKpuq21tXf6iwlV-H28GcesrbN4qpiKSuSFN1AEcGDVpKr3nhAywWPIN-Q8aqCp97eLKknXwIFN9r7pJeleQSvVsvhn6M4-I9RPIO9wUl5XB0Px58ewX6K8CkEzhSPYWd-ubBPEP7M1dNulf8A8l8GRA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB61Wwl44T7CJSMVnnBJYsdJeFuhVgVpK4RYqTxFPsuKbbJqs6DyF_jTjJ1ktVvO19iW7cyM5xvNBbBbOmuTRDuaI8UpZ8pQZGVGDU8VZ8zqOLRkmRyJwyl_d5wdb8HukAuz7r9PRPpqdipPKlkFh9Y27IgMEfcIdqZH78effN-4wme5oRIfYtovLdnQNtuns_Z3QPLXeMiry3ohL77J-XxN2RzcgP3hmF2MyZe9Zav29PdLFRz_dY-bcL1Hm2Tcscct2LL1bbgy6f3pd-CHbz_vD0NC4WoS-uIQxLHETT68fU3GRM2aRU_Kl0T7qBjd9ZugXv8ZchLKVvs3c20xgkoi-2onpHHEnXUB2xcUjftm_hXX-ZYgqDVpSGgKu92F6cH-xzeHtG_PQDXL85bmTptc4pNRqNhy_BYbIW2hU8VcbHCs1KEWjrKlEXmOks4Ri0nlEIT6DFx2D0Z1U9sHQIwtbapUhpa65lYZWZbScC1UYotYuCyC5wMZq0VXhaMK1otIq_U_G8EzpHHVi-H5n-YMHFChKHn_iKxtszyvWMrKJEWTUURwv-OI1W48IOuSR1Bs8Mpqgi_TvTlSzz6Hct2IDZIsT4sIXqzY6q-3ePi_Ex_BtRQxVoiuKR_DqD1b2ieIkVr1tBeRn0X9Eyo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+graph+model+for+fMRI%3A+A+biophysical%2C+connectivity-based+generative+model+for+the+analysis+of+frequency-resolved+resting-state+fMRI&rft.jtitle=Imaging+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Raj%2C+Ashish&rft.au=Sipes%2C+Benjamin+S&rft.au=Verma%2C+Parul&rft.au=Mathalon%2C+Daniel+H&rft.date=2024-12-09&rft.eissn=2837-6056&rft.volume=2&rft_id=info:doi/10.1162%2Fimag_a_00381&rft_id=info%3Apmid%2F40800294&rft.externalDocID=40800294 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-6056&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-6056&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-6056&client=summon |