Spectral graph model for fMRI: A biophysical, connectivity-based generative model for the analysis of frequency-resolved resting-state fMRI

Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations be...

Full description

Saved in:
Bibliographic Details
Published inImaging neuroscience (Cambridge, Mass.) Vol. 2
Main Authors Raj, Ashish, Sipes, Benjamin S., Verma, Parul, Mathalon, Daniel H., Biswal, Bharat, Nagarajan, Srikantan
Format Journal Article
LanguageEnglish
Published 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA MIT Press 09.12.2024
Subjects
Online AccessGet full text
ISSN2837-6056
2837-6056
DOI10.1162/imag_a_00381

Cover

Abstract Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure–function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal’s spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure–function relationships in a variety of brain disorders.
AbstractList Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure–function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal’s spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure–function relationships in a variety of brain disorders.
Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure-function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal's spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure-function relationships in a variety of brain disorders.Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine whether it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being underutilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysics-informed signal generation model followed by graph spectral (i.e., eigen) decomposition. We call this model a spectral graph model (SGM) for fMRI, using which we can not only quantify the structure-function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal's spectral and spatial features into a small number of biophysically interpretable parameters. We expect this model-based analysis of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure-function relationships in a variety of brain disorders.
Author Mathalon, Daniel H.
Raj, Ashish
Verma, Parul
Biswal, Bharat
Nagarajan, Srikantan
Sipes, Benjamin S.
AuthorAffiliation Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, and Veterans Affairs San Francisco Health Care System, San Francisco, CA, United States
Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
AuthorAffiliation_xml – name: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
– name: Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, and Veterans Affairs San Francisco Health Care System, San Francisco, CA, United States
– name: Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
Author_xml – sequence: 1
  givenname: Ashish
  surname: Raj
  fullname: Raj, Ashish
  email: ashish.raj@ucsf.edu
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
– sequence: 2
  givenname: Benjamin S.
  surname: Sipes
  fullname: Sipes, Benjamin S.
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
– sequence: 3
  givenname: Parul
  surname: Verma
  fullname: Verma, Parul
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
– sequence: 4
  givenname: Daniel H.
  surname: Mathalon
  fullname: Mathalon, Daniel H.
– sequence: 5
  givenname: Bharat
  surname: Biswal
  fullname: Biswal, Bharat
  organization: Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
– sequence: 6
  givenname: Srikantan
  surname: Nagarajan
  fullname: Nagarajan, Srikantan
  organization: Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40800294$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVARLUtvnJGPHBrwRzZOuKCqolCpCImPs-U4k6wrxw62s1V-A3-6XnapFgmJk8cz780bvfccnTjvAKGXlLyhtGJvzagGqSQhvKZP0BmruSgqsq5OjupTdB7jHSGENQ2pxfoZOi1JvfuWZ-jXtwl0CsriIahpg0ffgcW9D7j__PXmHb7ErfHTZolGK3uBtXcu483WpKVoVYQOD-AgqNyCI3LaAFZO2cyL2Pe4D_BzBqeXIkD0dpt5uUjGDUVMKsFvtRfoaa9shPPDu0I_rj98v_pU3H75eHN1eVtoLkQqRK87oYggdUugzD3SVQpqzVreky7PGs1JzXgLTVcJ0VS8bFij2p7SNWNM8BUq9ntnN6nlXlkrp5CdDIukRO58lce-Zvz7PX6a2xE6DW5n2CPHKyP_njizkYPfSso4XYscxAq9PmwIPvsQkxxN1GCtcuDnKDnjDWW0zLeu0KtjsUeVP5FlwMUeoIOPMUD_v-MP0qNJ8s7PIacS_w19AO6fuaM
Cites_doi 10.1126/science.1238411
10.1162/netn_a_00166
10.1016/j.neuroimage.2018.02.016
10.1523/JNEUROSCI.4434-07.2008
10.1016/j.neuroimage.2014.12.012
10.1016/j.neuroimage.2017.02.090
10.1016/j.neuroimage.2015.07.043
10.1016/j.neuroimage.2013.11.009
10.1073/pnas.1315529111
10.1073/pnas.87.24.9868
10.1038/s41598-017-03073-5
10.3389/fnins.2022.810111
10.1016/j.neuroimage.2013.06.018
10.1038/35067550
10.1016/j.nicl.2016.04.006
10.1007/BF00288786
10.1016/j.neuroimage.2017.11.033
10.3389/fnins.2017.00441
10.1038/nrn2201
10.3389/fninf.2011.00013
10.1016/j.neuroimage.2006.01.021
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2013.12.009
10.1016/j.neuroimage.2019.116137
10.1016/S0167-2789(96)00166-2
10.1038/s41467-018-05316-z
10.1038/nrn2575
10.1016/j.neuroimage.2016.04.050
10.1523/JNEUROSCI.0141-08.2008
10.3389/fnins.2019.00900
10.1016/j.neuroimage.2021.118190
10.1016/j.neuroimage.2005.01.040
10.1016/j.neuroimage.2003.09.056
10.1109/42.906424
10.1063/1.3553181
10.1016/j.neuroimage.2013.11.047
10.1016/j.neuroimage.2010.08.042
10.1371/journal.pone.0085843
10.1016/j.neuroimage.2017.03.023
10.1016/j.neuroimage.2015.02.064
10.1109/TMI.2010.2046908
10.1371/journal.pcbi.1005550
10.1089/brain.2012.0073
10.1038/s42005-024-01748-w
10.1113/jphysiol.2012.243469
10.1038/s41597-022-01682-y
10.1038/npp.2015.119
10.1016/j.neuroimage.2022.118919
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2017.03.020
10.1016/j.neuroimage.2013.12.039
10.1016/j.neuroimage.2013.04.002
10.1038/s41592-018-0235-4
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2014.10.004
10.1162/NETN_a_00015
10.1073/pnas.0901831106
10.1038/nrn1650
10.1016/j.nicl.2018.04.017
10.1038/ncomms10340
10.1097/WCO.0b013e32832d93dd
10.1016/j.neuroimage.2023.120278
10.1007/s11571-008-9044-2
10.1007/s004220050572
10.1016/j.neuroimage.2016.04.049
10.1016/j.neuroimage.2020.117705
10.1016/j.neuroimage.2022.119612
10.1002/hbm.24991
10.1016/j.neuroimage.2014.11.027
10.1016/j.neuroimage.2012.06.007
10.1016/j.neuroimage.2020.116805
10.1016/S0006-3495(72)86068-5
10.1016/j.neuroimage.2009.06.060
10.1371/journal.pcbi.1000196
10.1016/j.neuroimage.2003.07.015
10.1073/pnas.0701519104
10.1016/j.neuroimage.2016.12.061
10.3389/fninf.2014.00014
10.1016/j.tics.2005.08.011
10.1016/j.neuroimage.2017.06.077
10.3389/fninf.2014.00008
10.1371/journal.pone.0093375
10.1038/s41467-019-12765-7
10.1073/pnas.0811168106
10.1109/JPROC.2018.2798928
10.1088/1741-2552/aba5cc
10.1016/j.neuroimage.2018.05.058
10.1089/brain.2012.0120
10.1016/j.neuroimage.2020.116603
10.1016/j.tins.2019.02.001
10.1016/j.media.2007.06.004
10.1002/hbm.25547
10.1016/j.media.2020.101799
10.1016/j.ijpsycho.2015.02.011
10.1016/S0925-2312(02)00740-3
10.1038/nrn3901
10.1089/brain.2015.0408
10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1109/MSP.2015.2482121
10.1109/ISBI.2015.7163912
10.1016/0025-5564(74)90020-0
10.1089/brain.2013.0210
ContentType Journal Article
Copyright 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.
Copyright_xml – notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
– notice: 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2024 The Authors.
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1162/imag_a_00381
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2837-6056
ExternalDocumentID 10.1162/imag_a_00381
PMC12315728
40800294
10_1162_imag_a_00381
imag_a_00381.pdf
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: R01EB022717; RF1AG062196; R01AG072753
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JMNJE
M~E
AAYXX
CITATION
RPM
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c377t-7fcd7a0708b0e4c370d6ae8c2b3f0dcd79c30823be9d6779634929abf11522273
IEDL.DBID UNPAY
ISSN 2837-6056
IngestDate Sun Oct 26 04:11:26 EDT 2025
Thu Aug 21 18:29:09 EDT 2025
Fri Sep 05 15:11:38 EDT 2025
Thu Aug 28 04:50:40 EDT 2025
Wed Oct 01 05:35:48 EDT 2025
Tue Aug 12 12:10:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords structural connectivity
fMRI
graph harmonics
functional networks
graph Laplacian
spectral graph theory
Language English
License 2024 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/ .
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-7fcd7a0708b0e4c370d6ae8c2b3f0dcd79c30823be9d6779634929abf11522273
Notes 2024
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1162/imag_a_00381
PMID 40800294
PQID 3239121496
PQPubID 23479
PageCount 24
ParticipantIDs crossref_primary_10_1162_imag_a_00381
mit_journals_10_1162_imag_a_00381
unpaywall_primary_10_1162_imag_a_00381
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12315728
proquest_miscellaneous_3239121496
pubmed_primary_40800294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-09
PublicationDateYYYYMMDD 2024-12-09
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-09
  day: 09
PublicationDecade 2020
PublicationPlace 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
PublicationPlace_xml – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
– name: United States
– name: One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu
PublicationTitle Imaging neuroscience (Cambridge, Mass.)
PublicationTitleAlternate Imaging Neurosci (Camb)
PublicationYear 2024
Publisher MIT Press
Publisher_xml – name: MIT Press
References Nicolini (2025081119500126000_b67) 2020; 211
Ogawa (2025081119500126000_b70) 1990; 87
Whitfield-Gabrieli (2025081119500126000_b103) 2012; 2
Zhang (2025081119500126000_b108) 2001; 20
Razi (2025081119500126000_b79) 2016; 33
Jenkinson (2025081119500126000_b54) 2002; 17
Tournier (2025081119500126000_b94) 2019; 202
Deco (2025081119500126000_b28) 2009; 106
Desikan (2025081119500126000_b30) 2006; 31
Jirsa (2025081119500126000_b59) 1997; 99
Alexander-Bloch (2025081119500126000_b6) 2013; 23
Rehme (2025081119500126000_b82) 2013; 591
Curtis (2025081119500126000_b24) 2005; 26
Ghosh (2025081119500126000_b41) 2008; 2
Friston (2025081119500126000_b36) 2014; 94
Becker (2025081119500126000_b10) 2018; 8
Honey (2025081119500126000_b52) 2009; 106
Hartman (2025081119500126000_b48) 2011; 21
Park (2025081119500126000_b71) 2013; 342
Sengupta (2025081119500126000_b88) 2016; 125
Bassett (2025081119500126000_b9) 2009; 22
Verma (2025081119500126000_b99) 2022; 249
Zimmermann (2025081119500126000_b109) 2018; 19
Frässle (2025081119500126000_b38) 2017; 155
Coan (2025081119500126000_b20) 2014; 9
Esteban (2025081119500126000_b32) 2019; 16
Robinson (2025081119500126000_b84) 2016; 142
Raftery (2025081119500126000_b76) 1996
Jirsa (2025081119500126000_b61) 2010; 148
Vidaurre (2025081119500126000_b101) 2018; 9
Spiegler (2025081119500126000_b90) 2013; 83
Preti (2025081119500126000_b74) 2019; 10
Rubinov (2025081119500126000_b86) 2010; 52
Abdelnour (2025081119500126000_b2) 2021; 228
Fryer (2025081119500126000_b39) 2015; 40
Pruim (2025081119500126000_b75) 2015; 112
Tustison (2025081119500126000_b95) 2010; 29
Liégeois (2025081119500126000_b64) 2020; 4
Preti (2025081119500126000_b73) 2017; 160
Jiang (2025081119500126000_b57) 2013; 80
Greaves (2025081119500126000_b46) 2024
Cummings (2025081119500126000_b23) 2022; 16
Park (2025081119500126000_b72) 2018; 180
Bordier (2025081119500126000_b12) 2017; 11
Deco (2025081119500126000_b27) 2017; 152
Jenkinson (2025081119500126000_b55) 2012; 62
Upadhyay (2025081119500126000_b96) 2008; 28
Vidaurre (2025081119500126000_b100) 2018; 180
Cruces (2025081119500126000_b22) 2022; 263
Ciric (2025081119500126000_b19) 2017; 154
Goñi (2025081119500126000_b44) 2014; 111
Kalcher (2025081119500126000_b62) 2014; 9
Tewarie (2025081119500126000_b93) 2020; 216
Deslauriers-Gauthier (2025081119500126000_b31) 2020; 66
Abdelnour (2025081119500126000_b3) 2015
Nakagawa (2025081119500126000_b66) 2014; 87
Bernardo (2025081119500126000_b11) 2024; 7
Meier (2025081119500126000_b65) 2016; 6
Wang (2025081119500126000_b102) 2017; 13
Hlinka (2025081119500126000_b50) 2011; 54
Kuceyeski (2025081119500126000_b63) 2016; 11
Cox (2025081119500126000_b21) 1997; 10
Razi (2025081119500126000_b80) 2015; 106
He (2025081119500126000_b49) 2008; 28
Gorgolewski (2025081119500126000_b45) 2011; 5
Jirsa (2025081119500126000_b60) 2017; 145
Bullmore (2025081119500126000_b14) 2009; 10
Yuen (2025081119500126000_b107) 2019; 13
Nozari (2025081119500126000_b68) 2020
Stam (2025081119500126000_b91) 2016; 103
Abdelnour (2025081119500126000_b1) 2018; 172
Bzdok (2025081119500126000_b15) 2019; 42
Fries (2025081119500126000_b35) 2005; 9
Wilson (2025081119500126000_b105) 1973; 13
Cabral (2025081119500126000_b16) 2012; 62
Raitamaa (2025081119500126000_b77) 2021; 42
De Blasi (2025081119500126000_b26) 2020; 17
Garyfallidis (2025081119500126000_b40) 2014; 8
Valdes (2025081119500126000_b97) 1999; 81
Frässle (2025081119500126000_b37) 2018; 179
Smith (2025081119500126000_b89) 2015; 104
Raj (2025081119500126000_b78) 2020; 41
Atasoy (2025081119500126000_b7) 2016; 7
Jenkinson (2025081119500126000_b56) 2001; 5
Deco (2025081119500126000_b29) 2017; 7
Nunez (2025081119500126000_b69) 1974; 21
Royer (2025081119500126000_b85) 2022; 9
Fornito (2025081119500126000_b33) 2015; 16
Avants (2025081119500126000_b8) 2008; 12
Cabral (2025081119500126000_b17) 2014; 90
Abraham (2025081119500126000_b5) 2014; 8
Varela (2025081119500126000_b98) 2001; 2
Gohel (2025081119500126000_b43) 2015; 5
Honey (2025081119500126000_b51) 2007; 104
Abdelnour (2025081119500126000_b4) 2014; 90
Schnitzler (2025081119500126000_b87) 2005; 6
Xie (2025081119500126000_b106) 2021; 237
Breakspear (2025081119500126000_b13) 2003
Chen (2025081119500126000_b18) 2015; 107
Huang (2025081119500126000_b53) 2018; 106
Jin (2025081119500126000_b58) 2023; 279
Sun (2025081119500126000_b92) 2004; 21
Wilson (2025081119500126000_b104) 1972; 12
Ghosh (2025081119500126000_b42) 2008; 4
Razi (2025081119500126000_b81) 2017; 1
Ritter (2025081119500126000_b83) 2013; 3
Greve (2025081119500126000_b47) 2009; 48
David (2025081119500126000_b25) 2003; 20
Fox (2025081119500126000_b34) 2007; 8
38586057 - bioRxiv. 2024 Mar 27:2024.03.22.586305. doi: 10.1101/2024.03.22.586305.
References_xml – volume: 8
  start-page: 1
  issue: 1411
  year: 2018
  ident: 2025081119500126000_b10
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Nature Scientific Reports
– volume: 342
  start-page: 1238411
  issue: 6158
  year: 2013
  ident: 2025081119500126000_b71
  article-title: Structural and functional brain networks: From connections to cognition
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 4
  start-page: 1235
  issue: 4
  year: 2020
  ident: 2025081119500126000_b64
  article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00166
– volume: 172
  start-page: 728
  year: 2018
  ident: 2025081119500126000_b1
  article-title: Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.02.016
– volume: 28
  start-page: 3341
  issue: 13
  year: 2008
  ident: 2025081119500126000_b96
  article-title: Effective and structural connectivity in the human auditory cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4434-07.2008
– volume: 107
  start-page: 207
  year: 2015
  ident: 2025081119500126000_b18
  article-title: Bold fractional contribution to resting-state functional connectivity above 0.1 Hz
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.012
– volume: 155
  start-page: 406
  year: 2017
  ident: 2025081119500126000_b38
  article-title: Regression DCM for fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.090
– volume: 125
  start-page: 1107
  year: 2016
  ident: 2025081119500126000_b88
  article-title: Gradient-based MCMC samplers for dynamic causal modelling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.043
– volume: 87
  start-page: 383
  year: 2014
  ident: 2025081119500126000_b66
  article-title: How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.009
– volume: 111
  start-page: 833
  issue: 2
  year: 2014
  ident: 2025081119500126000_b44
  article-title: Resting-brain functional connectivity predicted by analytic measures of network communication
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1315529111
– volume: 87
  start-page: 9868
  issue: 24
  year: 1990
  ident: 2025081119500126000_b70
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.87.24.9868
– volume: 7
  start-page: 3095
  year: 2017
  ident: 2025081119500126000_b29
  article-title: The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-03073-5
– volume: 16
  start-page: 810111
  year: 2022
  ident: 2025081119500126000_b23
  article-title: Predicting functional connectivity from observed and latent structural connectivity via eigenvalue mapping
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2022.810111
– volume: 83
  start-page: 704
  year: 2013
  ident: 2025081119500126000_b90
  article-title: Systematic approximations of neural fields through networks of neural masses in the virtual brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.018
– volume: 2
  start-page: 229
  issue: 4
  year: 2001
  ident: 2025081119500126000_b98
  article-title: The brainweb: Phase synchronization and large-scale integration
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/35067550
– volume: 11
  start-page: 635
  year: 2016
  ident: 2025081119500126000_b63
  article-title: The application of a mathematical model linking structural and functional connectomes in severe brain injury
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.04.006
– volume: 13
  start-page: 55
  issue: 2
  year: 1973
  ident: 2025081119500126000_b105
  article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
  publication-title: Kybernetik
  doi: 10.1007/BF00288786
– volume: 180
  start-page: 594
  year: 2018
  ident: 2025081119500126000_b72
  article-title: Dynamic effective connectivity in resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.033
– volume: 11
  start-page: 441
  year: 2017
  ident: 2025081119500126000_b12
  article-title: Graph analysis and modularity of brain functional connectivity networks: Searching for the optimal threshold
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00441
– volume: 8
  start-page: 700
  issue: 9
  year: 2007
  ident: 2025081119500126000_b34
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2201
– volume: 5
  start-page: 13
  year: 2011
  ident: 2025081119500126000_b45
  article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2011.00013
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 2025081119500126000_b30
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  ident: 2025081119500126000_b56
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Medical Image Analysis
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 94
  start-page: 396
  year: 2014
  ident: 2025081119500126000_b36
  article-title: A DCM for resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.009
– volume: 202
  start-page: 116137
  year: 2019
  ident: 2025081119500126000_b94
  article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 99
  start-page: 503
  issue: 4
  year: 1997
  ident: 2025081119500126000_b59
  article-title: A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/S0167-2789(96)00166-2
– volume: 9
  start-page: 2987
  issue: 1
  year: 2018
  ident: 2025081119500126000_b101
  article-title: Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-05316-z
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 2025081119500126000_b14
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2575
– year: 2024
  ident: 2025081119500126000_b46
  article-title: Structurally informed resting-state effective connectivity recapitulates cortical hierarchy
  publication-title: bioRxiv
– volume: 142
  start-page: 79
  year: 2016
  ident: 2025081119500126000_b84
  article-title: Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.050
– volume: 28
  start-page: 4756
  issue: 18
  year: 2008
  ident: 2025081119500126000_b49
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0141-08.2008
– volume: 13
  start-page: 900
  year: 2019
  ident: 2025081119500126000_b107
  article-title: Intrinsic frequencies of the resting-state fMRI signal: The frequency dependence of functional connectivity and the effect of mode mixing
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2019.00900
– volume: 237
  start-page: 118190
  year: 2021
  ident: 2025081119500126000_b106
  article-title: Emergence of canonical functional networks from the structural connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118190
– volume: 26
  start-page: 177
  issue: 1
  year: 2005
  ident: 2025081119500126000_b24
  article-title: Coherence between fMRI time-series distinguishes two spatial working memory networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.040
– volume: 21
  start-page: 647
  issue: 2
  year: 2004
  ident: 2025081119500126000_b92
  article-title: Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.09.056
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 2025081119500126000_b108
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.906424
– volume: 21
  start-page: 013119
  issue: 1
  year: 2011
  ident: 2025081119500126000_b48
  article-title: The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks
  publication-title: Chaos (Woodbury, N.Y.)
  doi: 10.1063/1.3553181
– volume: 90
  start-page: 423
  year: 2014
  ident: 2025081119500126000_b17
  article-title: Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.047
– volume: 54
  start-page: 2218
  issue: 3
  year: 2011
  ident: 2025081119500126000_b50
  article-title: Functional connectivity in resting-state fMRI: Is linear correlation sufficient?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.042
– volume: 148
  start-page: 189
  year: 2010
  ident: 2025081119500126000_b61
  article-title: Towards the virtual brain: Network modeling of the intact and the damaged brain
  publication-title: Archives Italiennes de Biologie
– volume: 9
  start-page: e85843
  issue: 1
  year: 2014
  ident: 2025081119500126000_b20
  article-title: Frequent seizures are associated with a network of gray matter atrophy in temporal lobe epilepsy with or without hippocampal sclerosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085843
– volume: 152
  start-page: 538
  year: 2017
  ident: 2025081119500126000_b27
  article-title: Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.023
– volume: 112
  start-page: 267
  year: 2015
  ident: 2025081119500126000_b75
  article-title: ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.064
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 2025081119500126000_b95
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 13
  start-page: e1005550
  issue: 6
  year: 2017
  ident: 2025081119500126000_b102
  article-title: Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005550
– volume: 2
  start-page: 125
  issue: 3
  year: 2012
  ident: 2025081119500126000_b103
  article-title: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2012.0073
– volume: 7
  start-page: 255
  year: 2024
  ident: 2025081119500126000_b11
  article-title: Simulation-based inference of developmental EEG maturation with the spectral graph model
  publication-title: Communications Physics
  doi: 10.1038/s42005-024-01748-w
– volume: 591
  start-page: 17
  issue: 1
  year: 2013
  ident: 2025081119500126000_b82
  article-title: Cerebral network disorders after stroke: Evidence from imaging-based connectivity analyses of active and resting brain states in humans
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2012.243469
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  ident: 2025081119500126000_b85
  article-title: An open MRI dataset for multiscale neuroscience
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01682-y
– volume: 40
  start-page: 2705
  issue: 12
  year: 2015
  ident: 2025081119500126000_b39
  article-title: Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia
  publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
  doi: 10.1038/npp.2015.119
– volume: 249
  start-page: 118919
  year: 2022
  ident: 2025081119500126000_b99
  article-title: Spectral graph theory of brain oscillations—Revisited and improved
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118919
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 2025081119500126000_b55
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 2025081119500126000_b86
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 154
  start-page: 174
  year: 2017
  ident: 2025081119500126000_b19
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.020
– volume: 90
  start-page: 335
  year: 2014
  ident: 2025081119500126000_b4
  article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.039
– volume: 80
  start-page: 263
  year: 2013
  ident: 2025081119500126000_b57
  article-title: Brainnetome: A new -ome to understand the brain and its disorders
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.002
– volume: 16
  start-page: 111
  issue: 1
  year: 2019
  ident: 2025081119500126000_b32
  article-title: fMRIPrep: A robust preprocessing pipeline for functional MRI
  publication-title: Nature Methods
  doi: 10.1038/s41592-018-0235-4
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 2025081119500126000_b54
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 104
  start-page: 253
  year: 2015
  ident: 2025081119500126000_b89
  article-title: The effects of sift on the reproducibility and biological accuracy of the structural connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.004
– volume: 1
  start-page: 222
  issue: 3
  year: 2017
  ident: 2025081119500126000_b81
  article-title: Large-scale DCMs for resting-state fMRI
  publication-title: Network Neuroscience
  doi: 10.1162/NETN_a_00015
– volume: 23
  start-page: 127
  issue: 1
  year: 2013
  ident: 2025081119500126000_b6
  article-title: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia
  publication-title: Cerebral Cortex (New York, NY)
– volume: 106
  start-page: 10302
  issue: 25
  year: 2009
  ident: 2025081119500126000_b28
  article-title: Key role of coupling, delay, and noise in resting brain fluctuations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0901831106
– volume: 6
  start-page: 285
  issue: 4
  year: 2005
  ident: 2025081119500126000_b87
  article-title: Normal and pathological oscillatory communication in the brain
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1650
– volume: 19
  start-page: 240
  year: 2018
  ident: 2025081119500126000_b109
  article-title: Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2018.04.017
– volume: 7
  start-page: 10340
  year: 2016
  ident: 2025081119500126000_b7
  article-title: Human brain networks function in connectome-specific harmonic waves
  publication-title: Nature Communications
  doi: 10.1038/ncomms10340
– volume: 22
  start-page: 340
  issue: 4
  year: 2009
  ident: 2025081119500126000_b9
  article-title: Human brain networks in health and disease
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0b013e32832d93dd
– volume: 279
  start-page: 120278
  year: 2023
  ident: 2025081119500126000_b58
  article-title: Bayesian inference of a spectral graph model for brain oscillations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120278
– volume: 2
  start-page: 115
  issue: 2
  year: 2008
  ident: 2025081119500126000_b41
  article-title: Cortical network dynamics with time delays reveals functional connectivity in the resting brain
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-008-9044-2
– volume: 81
  start-page: 415
  issue: 5
  year: 1999
  ident: 2025081119500126000_b97
  article-title: Nonlinear EEG analysis based on a neural mass model
  publication-title: Biological Cybernetics
  doi: 10.1007/s004220050572
– volume: 145
  start-page: 377
  year: 2017
  ident: 2025081119500126000_b60
  article-title: The virtual epileptic patient: Individualized whole-brain models of epilepsy spread
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.049
– volume: 228
  start-page: 117705
  year: 2021
  ident: 2025081119500126000_b2
  article-title: Algebraic relationship between the structural network’s Laplacian and functional network’s adjacency matrix is preserved in temporal lobe epilepsy subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117705
– volume: 263
  start-page: 119612
  year: 2022
  ident: 2025081119500126000_b22
  article-title: Micapipe: A pipeline for multimodal neuroimaging and connectome analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119612
– volume: 41
  start-page: 2980
  issue: 11
  year: 2020
  ident: 2025081119500126000_b78
  article-title: Spectral graph theory of brain oscillations
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.24991
– volume: 106
  start-page: 1
  year: 2015
  ident: 2025081119500126000_b80
  article-title: Construct validation of a DCM for resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.027
– volume: 62
  start-page: 1342
  issue: 3
  year: 2012
  ident: 2025081119500126000_b16
  article-title: Modeling the outcome of structural disconnection on resting-state functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.007
– volume: 216
  start-page: 116805
  year: 2020
  ident: 2025081119500126000_b93
  article-title: Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116805
– volume: 12
  start-page: 1
  issue: 1
  year: 1972
  ident: 2025081119500126000_b104
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(72)86068-5
– year: 2020
  ident: 2025081119500126000_b68
  article-title: Is the brain macroscopically linear? A system identification of resting state dynamics
  publication-title: bioRxiv
– volume: 48
  start-page: 63
  issue: 1
  year: 2009
  ident: 2025081119500126000_b47
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.060
– volume: 4
  start-page: 1
  issue: 10
  year: 2008
  ident: 2025081119500126000_b42
  article-title: Noise during rest enables the exploration of the brain’s dynamic repertoire
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000196
– volume: 20
  start-page: 1743
  issue: 3
  year: 2003
  ident: 2025081119500126000_b25
  article-title: A neural mass model for MEG/EEG: Coupling and neuronal dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.07.015
– start-page: 115
  volume-title: Markov chain Monte Carlo in practice
  year: 1996
  ident: 2025081119500126000_b76
  article-title: Implementing MCMC
– volume: 104
  start-page: 10240
  issue: 24
  year: 2007
  ident: 2025081119500126000_b51
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0701519104
– volume: 160
  start-page: 41
  year: 2017
  ident: 2025081119500126000_b73
  article-title: The dynamic functional connectome: State-of-the-art and perspectives
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.061
– volume: 8
  start-page: 14
  year: 2014
  ident: 2025081119500126000_b5
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2014.00014
– volume: 9
  start-page: 474
  issue: 10
  year: 2005
  ident: 2025081119500126000_b35
  article-title: A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2005.08.011
– volume: 180
  start-page: 646
  year: 2018
  ident: 2025081119500126000_b100
  article-title: Discovering dynamic brain networks from big data in rest and task
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.077
– volume: 8
  start-page: 8
  year: 2014
  ident: 2025081119500126000_b40
  article-title: DiPy, a library for the analysis of diffusion MRI data
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2014.00008
– volume: 9
  start-page: e93375
  issue: 4
  year: 2014
  ident: 2025081119500126000_b62
  article-title: The spectral diversity of resting-state fluctuations in the human brain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093375
– volume: 10
  start-page: 4747
  issue: 1
  year: 2019
  ident: 2025081119500126000_b74
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-12765-7
– volume: 106
  start-page: 2035
  issue: 6
  year: 2009
  ident: 2025081119500126000_b52
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0811168106
– volume: 106
  start-page: 868
  issue: 5
  year: 2018
  ident: 2025081119500126000_b53
  article-title: A graph signal processing perspective on functional brain imaging
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2018.2798928
– volume: 17
  start-page: 046040
  issue: 4
  year: 2020
  ident: 2025081119500126000_b26
  article-title: Noise removal in resting-state and task fMRI: Functional connectivity and activation maps
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aba5cc
– volume: 179
  start-page: 505
  year: 2018
  ident: 2025081119500126000_b37
  article-title: A generative model of whole-brain effective connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.058
– volume: 3
  start-page: 121
  issue: 2
  year: 2013
  ident: 2025081119500126000_b83
  article-title: The virtual brain integrates computational modeling and multimodal neuroimaging
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2012.0120
– volume: 211
  start-page: 116603
  year: 2020
  ident: 2025081119500126000_b67
  article-title: Scale-resolved analysis of brain functional connectivity networks with spectral entropy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116603
– volume: 42
  start-page: 251
  issue: 4
  year: 2019
  ident: 2025081119500126000_b15
  article-title: Exploration, inference, and prediction in neuroscience and biomedicine
  publication-title: Trends in Neurosciences
  doi: 10.1016/j.tins.2019.02.001
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  ident: 2025081119500126000_b8
  article-title: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.06.004
– volume: 42
  start-page: 4298
  issue: 13
  year: 2021
  ident: 2025081119500126000_b77
  article-title: Spectral analysis of physiological brain pulsations affecting the bold signal
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.25547
– volume: 66
  start-page: 101799
  year: 2020
  ident: 2025081119500126000_b31
  article-title: A unified framework for multimodal structure-function mapping based on eigenmodes
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101799
– volume: 103
  start-page: 149
  year: 2016
  ident: 2025081119500126000_b91
  article-title: The relation between structural and functional connectivity patterns in complex brain networks
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2015.02.011
– start-page: 151
  year: 2003
  ident: 2025081119500126000_b13
  article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics
  publication-title: Neurocomputing, 52–54
  doi: 10.1016/S0925-2312(02)00740-3
– volume: 16
  start-page: 159
  issue: 3
  year: 2015
  ident: 2025081119500126000_b33
  article-title: The connectomics of brain disorders
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn3901
– volume: 6
  start-page: 298
  issue: 4
  year: 2016
  ident: 2025081119500126000_b65
  article-title: A mapping between structural and functional brain networks
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2015.0408
– volume: 10
  start-page: 171
  issue: 4–5
  year: 1997
  ident: 2025081119500126000_b21
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR in Biomedicine
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
– volume: 33
  start-page: 14
  issue: 3
  year: 2016
  ident: 2025081119500126000_b79
  article-title: The connected brain: Causality, models, and intrinsic dynamics
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2015.2482121
– start-page: 466
  volume-title: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI)
  year: 2015
  ident: 2025081119500126000_b3
  article-title: Estimating function from structure in epileptics using graph diffusion model
  doi: 10.1109/ISBI.2015.7163912
– volume: 21
  start-page: 279
  issue: 3
  year: 1974
  ident: 2025081119500126000_b69
  article-title: The brain wave equation: A model for the EEG
  publication-title: Mathematical Biosciences
  doi: 10.1016/0025-5564(74)90020-0
– volume: 5
  start-page: 23
  issue: 1
  year: 2015
  ident: 2025081119500126000_b43
  article-title: Functional integration between brain regions at rest occurs in multiple-frequency bands
  publication-title: Brain connectivity
  doi: 10.1089/brain.2013.0210
– reference: 38586057 - bioRxiv. 2024 Mar 27:2024.03.22.586305. doi: 10.1101/2024.03.22.586305.
SSID ssj0002990875
Score 2.285723
Snippet Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain’s functional organization and to examine whether it is...
Resting-state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine whether it is...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms fMRI
functional networks
graph harmonics
graph Laplacian
spectral graph theory
structural connectivity
Title Spectral graph model for fMRI: A biophysical, connectivity-based generative model for the analysis of frequency-resolved resting-state fMRI
URI https://direct.mit.edu/IMAG/article/doi/10.1162/imag_a_00381
https://www.ncbi.nlm.nih.gov/pubmed/40800294
https://www.proquest.com/docview/3239121496
https://pubmed.ncbi.nlm.nih.gov/PMC12315728
https://doi.org/10.1162/imag_a_00381
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  issn: 2837-6056
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  issn: 2837-6056
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAPP
  databaseName: MIT Press Direct OA Journals
  issn: 2837-6056
  databaseCode: JMNJE
  dateStart: 20230810
  customDbUrl:
  isFulltext: true
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  providerName: MIT
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2837-6056
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002990875
  issn: 2837-6056
  databaseCode: RPM
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61Wwm4UN6EwspIhRNuE8d59bZCrQrSVgixUjlFfpYV22TVZkHlL_CnO3aS1W55XmNbtjMznm884xmA3cIaE0XK0gwpTnksNUVWjqnmTPI4Nir0JVnGJ-nxhL8_TU43YLd_C7Pqv49Stj89F2elKL1DaxO20gQR9wC2JicfRp9d3bjcvXJDJd7HtN8YsqZtNs-nze-A5K_xkLcX1VxcfRez2YqyOdqGw36ZbYzJ171FI_fUjxsZHP-1j3twt0ObZNSyx33YMNUDuDXu_OkP4acrP-8WQ3ziauLr4hDEscSOP747ICMip_W8I-UbolxUjGrrTVCn_zQ582mr3Zm5MhhBJRFdthNSW2Iv2oDtK4rGfT37huNcSRDUmtQ_aPKzPYLJ0eGnt8e0K89AVZxlDc2s0pnAIyOXoeH4LdSpMLliMrahxrZC-Vw40hQ6zTKUdI5YTEiLINS9wI0fw6CqK_MUiDaFYVImaKkrbqQWRSE0V6mMTB6mNgngVU_Gct5m4Si99ZKycvXPBvASaVx2Ynj5pz49B5QoSs4_IipTLy7LmMVFxNBkTAN40nLEcjbukXXBA8jXeGXZwaXpXm-ppl98um7EBlGSsTyA10u2-usunv1vxx24wxBj-eia4jkMmouFeYEYqZFDf7cw9JdXw05crgEyuBUv
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRWJ7QdzJuBkJeMIsiV0nQbxUiNGWpQ9ok_YW-ToqdUm1taD9Bv40x05aWm7iNbbj2Mc-5zvx8XcAXhTO2iTRjmYoccqZMhSXMqOGp4ozZnUcUrKUYzE45aOz3tkWvFvehWkV-ZuLSRtFMyz7Hw-7OVyRDSQiPZxcyPNKVuGgaxt2BY8Zul67o3I8-vmPxataxOPLePdfmm1Yom3s8U8g8_dYyb1FPZPX3-R0umaIjm7BzQ5Bkn77ubdhy9Z34EbZnZHfhe8-pbx_CQlk1CTkuiGITYkrPw_fkj5Rk2bWiec10T7SRbc5JKi3aYacBypqrwfXGiNQJLJjMCGNI-6yDcK-puiwN9Ov2M6n-UBLSMMlpdDbPTg9-nDyfkC7lAtUsyyb08xpk0lUA7mKLcdnsRHS5jpVzMUGywod-G2ULYzIMty9HPGVVA6Bpb9Vy-7DTt3U9iEQYwubKtVD71tzq4wsCmm4FiqxeSxcL4KXy-mvZi2zRhU8EpFW62KK4DnKpuq21tXf6iwlV-H28GcesrbN4qpiKSuSFN1AEcGDVpKr3nhAywWPIN-Q8aqCp97eLKknXwIFN9r7pJeleQSvVsvhn6M4-I9RPIO9wUl5XB0Px58ewX6K8CkEzhSPYWd-ubBPEP7M1dNulf8A8l8GRA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB61Wwl44T7CJSMVnnBJYsdJeFuhVgVpK4RYqTxFPsuKbbJqs6DyF_jTjJ1ktVvO19iW7cyM5xvNBbBbOmuTRDuaI8UpZ8pQZGVGDU8VZ8zqOLRkmRyJwyl_d5wdb8HukAuz7r9PRPpqdipPKlkFh9Y27IgMEfcIdqZH78effN-4wme5oRIfYtovLdnQNtuns_Z3QPLXeMiry3ohL77J-XxN2RzcgP3hmF2MyZe9Zav29PdLFRz_dY-bcL1Hm2Tcscct2LL1bbgy6f3pd-CHbz_vD0NC4WoS-uIQxLHETT68fU3GRM2aRU_Kl0T7qBjd9ZugXv8ZchLKVvs3c20xgkoi-2onpHHEnXUB2xcUjftm_hXX-ZYgqDVpSGgKu92F6cH-xzeHtG_PQDXL85bmTptc4pNRqNhy_BYbIW2hU8VcbHCs1KEWjrKlEXmOks4Ri0nlEIT6DFx2D0Z1U9sHQIwtbapUhpa65lYZWZbScC1UYotYuCyC5wMZq0VXhaMK1otIq_U_G8EzpHHVi-H5n-YMHFChKHn_iKxtszyvWMrKJEWTUURwv-OI1W48IOuSR1Bs8Mpqgi_TvTlSzz6Hct2IDZIsT4sIXqzY6q-3ePi_Ex_BtRQxVoiuKR_DqD1b2ieIkVr1tBeRn0X9Eyo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+graph+model+for+fMRI%3A+A+biophysical%2C+connectivity-based+generative+model+for+the+analysis+of+frequency-resolved+resting-state+fMRI&rft.jtitle=Imaging+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Raj%2C+Ashish&rft.au=Sipes%2C+Benjamin+S&rft.au=Verma%2C+Parul&rft.au=Mathalon%2C+Daniel+H&rft.date=2024-12-09&rft.eissn=2837-6056&rft.volume=2&rft_id=info:doi/10.1162%2Fimag_a_00381&rft_id=info%3Apmid%2F40800294&rft.externalDocID=40800294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2837-6056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2837-6056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2837-6056&client=summon