Fractional-Order Control Method Based on Twin-Delayed Deep Deterministic Policy Gradient Algorithm

In this paper, a fractional-order control method based on the twin-delayed deep deterministic policy gradient (TD3) algorithm in reinforcement learning is proposed. A fractional-order disturbance observer is designed to estimate the disturbances, and the radial basis function network is selected to...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 8; no. 2; p. 99
Main Authors Jiao, Guangxin, An, Zhengcai, Shao, Shuyi, Sun, Dong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text
ISSN2504-3110
2504-3110
DOI10.3390/fractalfract8020099

Cover

Abstract In this paper, a fractional-order control method based on the twin-delayed deep deterministic policy gradient (TD3) algorithm in reinforcement learning is proposed. A fractional-order disturbance observer is designed to estimate the disturbances, and the radial basis function network is selected to approximate system uncertainties in the system. Then, a fractional-order sliding-mode controller is constructed to control the system, and the parameters of the controller are tuned using the TD3 algorithm, which can optimize the control effect. The results show that the fractional-order control method based on the TD3 algorithm can not only improve the closed-loop system performance under different operating conditions but also enhance the signal tracking capability.
AbstractList In this paper, a fractional-order control method based on the twin-delayed deep deterministic policy gradient (TD3) algorithm in reinforcement learning is proposed. A fractional-order disturbance observer is designed to estimate the disturbances, and the radial basis function network is selected to approximate system uncertainties in the system. Then, a fractional-order sliding-mode controller is constructed to control the system, and the parameters of the controller are tuned using the TD3 algorithm, which can optimize the control effect. The results show that the fractional-order control method based on the TD3 algorithm can not only improve the closed-loop system performance under different operating conditions but also enhance the signal tracking capability.
Audience Academic
Author An, Zhengcai
Jiao, Guangxin
Sun, Dong
Shao, Shuyi
Author_xml – sequence: 1
  givenname: Guangxin
  surname: Jiao
  fullname: Jiao, Guangxin
– sequence: 2
  givenname: Zhengcai
  surname: An
  fullname: An, Zhengcai
– sequence: 3
  givenname: Shuyi
  orcidid: 0000-0001-9458-661X
  surname: Shao
  fullname: Shao, Shuyi
– sequence: 4
  givenname: Dong
  surname: Sun
  fullname: Sun, Dong
BookMark eNqNkUFv3CAQha0qlZqm-QW9WOrZKQZszHG7adJIiZJDerYGGDasWNgCq2j_fUhcVT30UCExMJrv8fT42JyEGLBpPvfkgjFJvtoEuoB_KxOhhEj5rjmlA-Ed63ty8tf5Q3Oe85YQQoVkAxGnjbp6xVwM4Lv7ZDC16xhKir69w_IUTfsNMpo2hvbx2YXuEj0c6_0ScV-3gmnngsvF6fYheqeP7XUC4zCUduU3MbnytPvUvLfgM57_rmfNz6vvj-sf3e399c16ddtpJkTphASCFOjEea8EA6I5tVKPrHodBRlMj4wzM07GoqSgyDQaTdFSOygwI7Kz5mbRNRG28z65HaTjHMHNb42YNjOk6tTjjIwpIXouahBcT1xpqYRmVBoDSg1j1eKL1iHs4fgM3v8R7Mn8Gvv8j9gr9mXB9in-OmAu8zYeUs02z1QyIuuDktWpi2VqA9WLCzaWKlKXwZ3T9XOtq_2VmDhhchimCrAF0CnmnND-l5kXojCoxw
Cites_doi 10.1016/j.compchemeng.2022.107760
10.1162/089976600300015961
10.1002/rnc.6154
10.1109/TNNLS.2017.2773458
10.1177/00202940231194115
10.1109/ACCESS.2020.2966253
10.1016/j.asr.2023.01.025
10.1016/j.camwa.2009.08.039
10.1016/j.neucom.2021.01.096
10.1109/TNNLS.2022.3169518
10.3390/asi4030050
10.1016/j.isatra.2021.05.036
10.1109/TNNLS.2021.3107600
10.1109/ITSC48978.2021.9564494
10.1155/2017/3815146
10.1016/j.engappai.2006.10.009
10.1145/3387168.3387199
10.1109/TMECH.2017.2766279
10.1007/s42235-022-00309-7
10.1016/j.matcom.2021.10.022
10.1177/1077546320982453
10.1109/TSMC.2021.3071360
10.1016/j.physa.2018.03.056
10.1016/j.probengmech.2020.103043
10.1155/2011/562494
10.1109/CarpathianCC.2015.7145064
10.1016/j.cnsns.2009.05.025
10.1049/iet-cta.2015.0769
10.1109/TNN.2002.1000134
10.1016/j.compchemeng.2020.106886
10.1016/j.compeleceng.2022.108059
10.1109/87.998034
10.1109/ACCESS.2022.3226446
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/fractalfract8020099
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_e33b771470274c84bc9b7c329ddabb56
10.3390/fractalfract8020099
A784039558
10_3390_fractalfract8020099
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c377t-79a0e2a28441b73a0c42f9c632796705d1e343d68dfe92ab086dc2ef2f5bad6e3
IEDL.DBID DOA
ISSN 2504-3110
IngestDate Fri Oct 03 12:25:35 EDT 2025
Tue Aug 19 20:33:57 EDT 2025
Fri Jul 25 10:32:26 EDT 2025
Mon Oct 20 17:08:45 EDT 2025
Thu Oct 16 04:41:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-79a0e2a28441b73a0c42f9c632796705d1e343d68dfe92ab086dc2ef2f5bad6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9458-661X
OpenAccessLink https://doaj.org/article/e33b771470274c84bc9b7c329ddabb56
PQID 2930947093
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_e33b771470274c84bc9b7c329ddabb56
unpaywall_primary_10_3390_fractalfract8020099
proquest_journals_2930947093
gale_infotracacademiconefile_A784039558
crossref_primary_10_3390_fractalfract8020099
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Spanos (ref_1) 2020; 59
Delavari (ref_11) 2010; 15
Deepika (ref_10) 2022; 123
Yan (ref_30) 2022; 101
Nian (ref_25) 2020; 139
Li (ref_33) 2011; 2011
Fei (ref_37) 2021; 34
Chen (ref_19) 2022; 32
ref_32
Karthikeyan (ref_14) 2017; 2017
Duraisamy (ref_22) 2023; 20
Atangana (ref_3) 2018; 505
Wei (ref_23) 2023; 71
Fei (ref_7) 2023; 34
Mirrezapour (ref_9) 2022; 28
Dogru (ref_28) 2022; 161
Katz (ref_20) 2022; 19
Han (ref_15) 2020; 8
Er (ref_35) 2002; 13
Liu (ref_18) 2023; 34
Syafiie (ref_27) 2007; 20
Yu (ref_17) 2021; 438
Fei (ref_36) 2021; 52
Duan (ref_39) 2024; 57
ref_24
Salman (ref_16) 2019; 10
Sun (ref_12) 2017; 22
Kiumarsi (ref_21) 2017; 29
Walsh (ref_34) 2002; 10
Djari (ref_13) 2014; 16
Wu (ref_31) 2022; 10
ref_29
Razzaghian (ref_6) 2022; 193
Pisano (ref_8) 2016; 24
Magin (ref_2) 2010; 36
Zhu (ref_26) 2016; 10
ref_5
ref_4
Doya (ref_38) 2000; 12
References_xml – volume: 161
  start-page: 107760
  year: 2022
  ident: ref_28
  article-title: Reinforcement learning approach to autonomous PID tuning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107760
– volume: 12
  start-page: 219
  year: 2000
  ident: ref_38
  article-title: Reinforcement learning in continuous time and space
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015961
– volume: 32
  start-page: 6507
  year: 2022
  ident: ref_19
  article-title: Command filtering-based adaptive neural network control for uncertain switched nonlinear systems using event-triggered communication
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.6154
– volume: 29
  start-page: 2042
  year: 2017
  ident: ref_21
  article-title: Optimal and autonomous control using reinforcement learning: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2773458
– ident: ref_24
– volume: 57
  start-page: 113
  year: 2024
  ident: ref_39
  article-title: Research on servo valve-controlled hydraulic motor system based on active disturbance rejection control
  publication-title: Meas. Control.
  doi: 10.1177/00202940231194115
– volume: 8
  start-page: 18337
  year: 2020
  ident: ref_15
  article-title: Modified grey-wolf algorithm optimized fractional-order sliding mode control for unknown manipulators with a fractional-order disturbance observer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966253
– volume: 71
  start-page: 4534
  year: 2023
  ident: ref_23
  article-title: On adaptive attitude tracking control of spacecraft: A reinforcement learning based gain tuning way with guaranteed performance
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2023.01.025
– volume: 36
  start-page: 1586
  year: 2010
  ident: ref_2
  article-title: Fractional calculus models of complex dynamics in biological tissues
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.039
– volume: 438
  start-page: 145
  year: 2021
  ident: ref_17
  article-title: Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: An overview
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.096
– volume: 34
  start-page: 10600
  year: 2023
  ident: ref_7
  article-title: Self-Constructing Fuzzy Neural Fractional-Order Sliding Mode Control of Active Power Filter
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3169518
– ident: ref_5
  doi: 10.3390/asi4030050
– volume: 123
  start-page: 76
  year: 2022
  ident: ref_10
  article-title: Hyperbolic uncertainty estimator based fractional-order sliding mode control framework for uncertain fractional-order chaos stabilization and synchronization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.05.036
– volume: 34
  start-page: 2732
  year: 2023
  ident: ref_18
  article-title: Adaptive neural network control for a class of nonlinear systems with function constraints on states
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3107600
– ident: ref_29
  doi: 10.1109/ITSC48978.2021.9564494
– volume: 2017
  start-page: 3815146
  year: 2017
  ident: ref_14
  article-title: Chaos control in fractional-order smart grid with adaptive sliding mode control and genetically optimized PID control and its FPGA implementation
  publication-title: Complexity
  doi: 10.1155/2017/3815146
– volume: 10
  start-page: 1694
  year: 2019
  ident: ref_16
  article-title: Application of artificial intelligence techniques for LFC and AVR systems using PID controller
  publication-title: Int. J. Power Electron. Drive Syst.
– volume: 20
  start-page: 767
  year: 2007
  ident: ref_27
  article-title: Model-free learning control of neutralization processes using reinforcement learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.10.009
– ident: ref_32
  doi: 10.1145/3387168.3387199
– volume: 34
  start-page: 20436
  year: 2021
  ident: ref_37
  article-title: Exponential bellman equation and improved regret bounds for risk-sensitive reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 2643
  year: 2017
  ident: ref_12
  article-title: Practical tracking control of linear motor with adaptive fractional-order terminal sliding mode control
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2766279
– volume: 20
  start-page: 953
  year: 2023
  ident: ref_22
  article-title: Design of deep reinforcement learning controller through data-assisted model for robotic fish speed tracking
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-022-00309-7
– volume: 16
  start-page: 46
  year: 2014
  ident: ref_13
  article-title: Design of fractional-order sliding mode controller (FSMC) for a class of fractional-order non-linear commensurate systems using a particle swarm optimization (PSO) Algorithm
  publication-title: J. Control Eng. Appl. Inform.
– volume: 193
  start-page: 567
  year: 2022
  ident: ref_6
  article-title: A fuzzy neural network-based fractional-order Lyapunov-based robust control strategy for exoskeleton robots: Application in upper-limb rehabilitation
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.10.022
– volume: 28
  start-page: 773
  year: 2022
  ident: ref_9
  article-title: A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances
  publication-title: J. Vib. Control
  doi: 10.1177/1077546320982453
– volume: 52
  start-page: 3508
  year: 2021
  ident: ref_36
  article-title: Novel neural network fractional-order sliding-mode control with application to active power filter
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2021.3071360
– volume: 505
  start-page: 688
  year: 2018
  ident: ref_3
  article-title: Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2018.03.056
– volume: 59
  start-page: 142
  year: 2020
  ident: ref_1
  article-title: Nonlinear vibrations of beams and plates with fractional derivative elements subject to combined harmonic and random excitations
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2020.103043
– volume: 2011
  start-page: 562494
  year: 2011
  ident: ref_33
  article-title: On Riemann-Liouville and caputo derivatives
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2011/562494
– ident: ref_4
  doi: 10.1109/CarpathianCC.2015.7145064
– volume: 24
  start-page: 782
  year: 2016
  ident: ref_8
  article-title: On the sliding-mode control of fractional-order nonlinear uncertain dynamics
  publication-title: Int. J. Robust Nonlinear Control
– volume: 15
  start-page: 963
  year: 2010
  ident: ref_11
  article-title: Fuzzy fractional-order sliding mode controller for nonlinear systems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.05.025
– volume: 10
  start-page: 1339
  year: 2016
  ident: ref_26
  article-title: Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2015.0769
– volume: 13
  start-page: 697
  year: 2002
  ident: ref_35
  article-title: Face recognition with radial basis function (RBF) neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.1000134
– volume: 139
  start-page: 106886
  year: 2020
  ident: ref_25
  article-title: A review on reinforcement learning: Introduction and applications in industrial process control
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106886
– volume: 101
  start-page: 108059
  year: 2022
  ident: ref_30
  article-title: Distributed optimization of heterogeneous UAV cluster PID controller based on machine learning
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108059
– volume: 10
  start-page: 438
  year: 2002
  ident: ref_34
  article-title: Stability analysis of networked control systems
  publication-title: IEEETrans. Control Syst. Technol.
  doi: 10.1109/87.998034
– volume: 10
  start-page: 128077
  year: 2022
  ident: ref_31
  article-title: A-TD3: An Adaptive Asynchronous Twin Delayed Deep Deterministic for Continuous Action Spaces
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3226446
– volume: 19
  start-page: 574
  year: 2022
  ident: ref_20
  article-title: Verification of image-based neural network controllers using generative models
  publication-title: J. Aerosp. Inf. Syst.
SSID ssj0002793507
Score 2.2626204
Snippet In this paper, a fractional-order control method based on the twin-delayed deep deterministic policy gradient (TD3) algorithm in reinforcement learning is...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 99
SubjectTerms Algorithms
Approximation
Closed loops
Control methods
Controllers
Design
Disturbance observers
Eigenvalues
Feedback control
FODOB
FOSMC
Machine learning
Mathematical functions
Methods
Neural networks
Optimization
Radial basis function
radial basis function network
Signal processing
Simulation
Sliding mode control
TD3 algorithm
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_q9UH7IH5iapV9EHxxabIf2eShyF3bswg9RVroW9ivtELMndeU0v_e2WxyKor4kpAQljAzuzO_3ZnfALxBp-M015wqqQQVyuS0kMJT7eqU6ayofWT7XOQn5-LjhbzYgsVYCxPSKsc1sV-o3dKGPfJ9dEuIRBQC8Per7zR0jQqnq2MLDT20VnAHPcXYPdhmgRlrAtuz48XnL5tdF4bmiBFQpB_iiPf361CMpJv-VqThrKD8zUX1TP5_rtc7cP-mXem7W900vzik-SN4OESSZBpV_xi2fPsEdk43NKzXT8HM17FuQTf0U-DYJIcxM52c9o2jyQx9mCPLlpzdfm3pkW_0HT4feb_CS8yT6YmcSaQPJh_WfYZYR6bNJQqnu_r2DM7nx2eHJ3RoqkAtV6qjqtSpZxq9ksiM4jq1gtWlzTmKJlepdJnngru8cLUvmTYIeZxlvma1NNrlnj-HSbts_QsgtkTsVEsnnPIiU4Vm0kocM5DKealtAu9GOVaryJ1RIeYIYq_-IvYEZkHWm08D8XX_Yrm-rIZ5VHnOjVIZGgLCaVsIY0ujLGelc9oYmSfwNmiqCtOzw8H1UGWAfxyIrqqpQkTLSymLBPZGZVbDvL2uflpZAnSj4P_5-91_D_cSHjAMh2K-9x5MuvWNf4XhTGdeDzb6A7eT9vY
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QF64I0aKMgHJC64SfyIYwkJbVuWCqmFQ1cqBxT5lbIiZFdplqr8esZ5rHgdgEuiRI410Yxn5ktmPiP0DIKO00wzIoXkhEuTkVxwT7QrE6rTvPQ92-dpdjznb8_F-RZ6OfbChLJKgOKLzkkHei1wEmkS5zGNlYpXrnz1dfiOlMpA7UUzCYB9OxOQiU_Q9vz0_fRD2E9ufLInGmKA7OMytB3pqjvlSfgroH4KRh1n_--eeQfdWNcrfX2lq-qH0DO7jT6OQvcVJ5_3163Zt99-4XP837e6g24NOSme9kZ0F235-h7aOdkQul7eR2bW9B0QuiLvAlsnPuxr3PFJtwU1PoBo6PCyxmdXi5oc-Upfw_WR9ys49BU3HSU07omI8ZumqzVr8bS6WDaL9tOXB2g-e312eEyG7RmIZVK2RCqdeKohvvHUSKYTy2mpbMaoVCC_cKlnnLksd6VXVBsAT85SX9JSGO0yzx6iSb2s_S7CVgEKK4XjTnqeylxTYQXMGejpvNA2Qi9GPRWrnoWjAPQS1Fr8Qa0ROgi63AwNFNrdjWVzUQwrsvCMGSlTLgMwtzk3VhlpGVXOaWNEFqHnwRKKsNBbmFwP_QogcaDMKqYSsDFTQuQR2huNpRg8wGUBaRQgZ5koFiGyMaC_kf7RP45_jG5SyLT6UvI9NGmbtX8CmVJrng4L4jsOSxCV
  priority: 102
  providerName: Unpaywall
Title Fractional-Order Control Method Based on Twin-Delayed Deep Deterministic Policy Gradient Algorithm
URI https://www.proquest.com/docview/2930947093
https://www.mdpi.com/2504-3110/8/2/99/pdf?version=1707212670
https://doaj.org/article/e33b771470274c84bc9b7c329ddabb56
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: BENPR
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: 8FG
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a5NDmUJp-ULfpokOhl4rYlmRZx90km1DINpQspCejL7cprnfZOIT8-44sZ9nSQHroxUbGiGGe5ZmHZp4APmDQcZppRqWQnHJpCloK7ql2dZrrrKx9VPucFSdz_vlCXGwc9RVqwqI8cHTcvmfMSJlxGfiTLbmxykjLcuWcNkb0YttpqTbI1M9-O00xzHSizBBDXr9fh6Yj3fS3Mg17AuqPUNQr9v_9X96BJ9ftUt_e6KbZCDzT5_BsyBjJOFq6C498-wJ2Ttdyq1cvwUxXsT9BN_RL0NIkB7ECnZz2B0STCcYqRxYtOb-5bOmhb_Qtjg-9X-Il1sP0gs0kygST41VfCdaRcfN9sbrsfvx6BfPp0fnBCR0OT6CWSdlRqXTqc43Rh2dGMp1antfKFgxdU8hUuMwzzlxRutqrXBukNs7mvs5rYbQrPHsNW-2i9W-AWIUcqRaOO-l5JkudCytwziAe54W2CXy682O1jBoZFXKL4PbqHrcnMAm-Xr8aBK77Bwh7NcBePQR7Ah8DUlVYhh1OroduArQ4CFpVY4nMlSkhygT27sCshvV5VWGSg7xWpoolQNcA_4v1b_-H9e_gaY7JUaz-3oOtbnXt32Ny05kRPC6nxyPYnhzNzr6O-q8aR_PZ2fjbb9qT_Tc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lB6QDxFoMAeQFxY1d6H13uoUNI0pLQJCKVSb-6-XJCMExJXUf4cv41Z2wkgEOLSiy1b1sia2Z3Zb3fmG4ReQtBxmmlGpJCccGkSkgruiXZ5RHWc5r5h-xwnw3P-_kJcbKHv61qYkFa59om1o3ZTG_bIDyAsARKRAMDfzr6R0DUqnK6uW2jotrWCO6wpxtrCjlO_WgKEWxye9MHerygdHE-OhqTtMkAsk7IiUunIUw1umsdGMh1ZTnNlE0alSmQkXOwZZy5JXe4V1QYwgLPU5zQXRrvEM5B7C-1wxhWAv53e8fjjp80uD8hgsOJq6I4YU9FBHoqfdFHf0iicTajfQmLdOeDP-LCHdq_LmV4tdVH8EgAHd9GdduWKu81Qu4e2fHkf7Y02tK-LB8gM5k2dhC7Ih8DpiY-aTHg8qhtV4x7ETIenJZ4sv5Sk7wu9gue-9zO4NHk5NXE0buiK8bt5nZFW4W5xBcaoPn99iM5vRL2P0HY5Lf1jhK0CrJYLx530PJappsIKkBlI7LzQtoPerPWYzRqujgwwTlB79he1d1Av6HrzaSDarl9M51dZO28zz5iRMoaBB_DdptxYZaRlVDmnjRFJB70OlsqCO6hAuG6rGuCPA7FW1pWAoJkSIu2g_bUxs9ZPLLKfo7qDyMbA__P3T_4t7gXaHU5GZ9nZyfj0KbpNYSnW5Jrvo-1qfu2fwVKqMs_b8YrR5U1PkR8V-zQt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMAHEBesTew4Tg4IbbukLaWFQyv1lvqVghSyy26q1f41fh3jPBYQCHHpJVGiaBTNjOdhz3wD8AKdjlVccSqFjGksdUJTETuqbBkyFaWl69A-j5P90_j9mTjbgO9DL4wvqxxsYmuo7dT4PfIRuiXMRCQm4KOyL4v4NMnfzr5RP0HKn7QO4zQ6FTl0qyWmb4s3BxOU9UvG8ncnu_u0nzBADZeyoTJToWMKTXQcaclVaGJWZibhTGaJDIWNHI-5TVJbuowpjfG_NcyVrBRa2cRxpHsNrkuP4u671PO99f4OUuAYa3VAR5xn4aj0bU-qam9p6E8lst-cYTsz4E_PsAU3L-uZWi1VVf3i-vI7cLuPWcm4U7K7sOHqe7B1tAZ8XdwHnc-7DglV0Y8ezZPsdjXw5KgdUU120FtaMq3JyfJLTSeuUit8njg3w0tXkdNCRpMOqJjszdtatIaMqwtkffP56wM4vRLmPoTNelq7R0BMhllaKWxspYsjmSomjECaHr7OCWUCeD3wsZh1KB0FZjee7cVf2B7Ajuf1-lMPsd2-mM4vin7FFo5zLWWEKoeJu0ljbTItDWeZtUprkQTwykuq8IagQeKq72fAP_aQWsVYYu7MMyHSALYHYRa9hVgUP_U5ALoW8P_8_eN_k3sON3BhFB8Ojg-fwC2GMVhXZL4Nm8380j3FGKrRz1plJXB-1avjB7bJMcc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QF64I0aKMgHJC64SfyIYwkJbVuWCqmFQ1cqBxT5lbIiZFdplqr8esZ5rHgdgEuiRI410Yxn5ktmPiP0DIKO00wzIoXkhEuTkVxwT7QrE6rTvPQ92-dpdjznb8_F-RZ6OfbChLJKgOKLzkkHei1wEmkS5zGNlYpXrnz1dfiOlMpA7UUzCYB9OxOQiU_Q9vz0_fRD2E9ufLInGmKA7OMytB3pqjvlSfgroH4KRh1n_--eeQfdWNcrfX2lq-qH0DO7jT6OQvcVJ5_3163Zt99-4XP837e6g24NOSme9kZ0F235-h7aOdkQul7eR2bW9B0QuiLvAlsnPuxr3PFJtwU1PoBo6PCyxmdXi5oc-Upfw_WR9ys49BU3HSU07omI8ZumqzVr8bS6WDaL9tOXB2g-e312eEyG7RmIZVK2RCqdeKohvvHUSKYTy2mpbMaoVCC_cKlnnLksd6VXVBsAT85SX9JSGO0yzx6iSb2s_S7CVgEKK4XjTnqeylxTYQXMGejpvNA2Qi9GPRWrnoWjAPQS1Fr8Qa0ROgi63AwNFNrdjWVzUQwrsvCMGSlTLgMwtzk3VhlpGVXOaWNEFqHnwRKKsNBbmFwP_QogcaDMKqYSsDFTQuQR2huNpRg8wGUBaRQgZ5koFiGyMaC_kf7RP45_jG5SyLT6UvI9NGmbtX8CmVJrng4L4jsOSxCV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional-Order+Control+Method+Based+on+Twin-Delayed+Deep+Deterministic+Policy+Gradient+Algorithm&rft.jtitle=Fractal+and+fractional&rft.au=Jiao%2C+Guangxin&rft.au=An%2C+Zhengcai&rft.au=Shao%2C+Shuyi&rft.au=Sun%2C+Dong&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=8&rft.issue=2&rft_id=info:doi/10.3390%2Ffractalfract8020099&rft.externalDocID=A784039558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon