Joint generalized estimating equations for longitudinal binary data

Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect stat...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 155; p. 107110
Main Authors Huang, Youjun, Pan, Jianxin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
1872-7352
DOI10.1016/j.csda.2020.107110

Cover

Abstract Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect statistical inferences for longitudinal binary data. A novel method is proposed to model the mean and within-subject correlation coefficients for longitudinal binary data, simultaneously, by taking into account the constraints of the upper bounds. By introducing latent normally distributed random variables, the correlation coefficients of binary responses are connected to those for the latent variables, of which the correlation coefficients are modeled accordingly. A joint generalized estimating equation (GEE) method is developed for this purpose and the resulting correlation coefficients are shown to satisfy the constraints. Asymptotic normality of the parameter estimators is derived and simulation studies are made under various scenarios, showing that the proposed joint GEE method works very well even if the working covariance structures are misspecified. For illustration, the proposed method is applied to two real data practices to assess the effects of covariates on the mean and within-subject correlation coefficients.
AbstractList Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect statistical inferences for longitudinal binary data. A novel method is proposed to model the mean and within-subject correlation coefficients for longitudinal binary data, simultaneously, by taking into account the constraints of the upper bounds. By introducing latent normally distributed random variables, the correlation coefficients of binary responses are connected to those for the latent variables, of which the correlation coefficients are modeled accordingly. A joint generalized estimating equation (GEE) method is developed for this purpose and the resulting correlation coefficients are shown to satisfy the constraints. Asymptotic normality of the parameter estimators is derived and simulation studies are made under various scenarios, showing that the proposed joint GEE method works very well even if the working covariance structures are misspecified. For illustration, the proposed method is applied to two real data practices to assess the effects of covariates on the mean and within-subject correlation coefficients.
ArticleNumber 107110
Author Huang, Youjun
Pan, Jianxin
Author_xml – sequence: 1
  givenname: Youjun
  surname: Huang
  fullname: Huang, Youjun
  organization: Mathematical College, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Jianxin
  surname: Pan
  fullname: Pan, Jianxin
  email: jianxin.pan@manchester.ac.uk
  organization: Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK
BookMark eNqNkE1LAzEQhoMoWKt_wNMevWzNx3azAS9S_ETwoueQJrMlJU1qklXqrzd1PXkQL5kwvM8w85ygQx88IHRO8Ixg0l6uZzoZNaOY7hucEHyAJqTjtOZsTg_RpIR4LRrOjtFJSmuMMW14N0GLx2B9rlbgISpnP8FUkLLdqGz9qoK3oXyCT1UfYuWCX9k8GOuVq5bljbvKqKxO0VGvXIKznzpFr7c3L4v7-un57mFx_VRrxnmu2561mrFlJ5Rq8By3WvQ9FoRwTXBpg2nVXBCBW0WM0N1cmYYR0gsDQvdNw6aIjXMHv1W7D-Wc3MayatxJguXeg1zLvQe59yBHD4W6GKltDG9DOU5ubNLgnPIQhiRpIzraMEZpidIxqmNIKUL_v_ndL0jb_G0tR2Xd3-jViEKx9m4hyqQteA3GRtBZmmD_wr8AfRaZUg
CitedBy_id crossref_primary_10_1016_j_jmva_2021_104940
crossref_primary_10_1088_1742_6596_1978_1_012056
Cites_doi 10.1093/biomet/88.1.287
10.2307/2531733
10.2307/3109751
10.1111/j.1541-0420.2011.01678.x
10.2307/2532642
10.1002/sim.1470
10.1093/biomet/90.4.765
10.1111/j.0006-341X.2001.00120.x
10.1111/j.0006-341X.2000.00622.x
10.1093/biomet/93.4.927
10.1111/j.1467-9868.2004.05741.x
10.1111/j.0006-341X.1999.00688.x
10.1093/biomet/80.3.517
10.1093/biomet/80.1.141
10.1214/10-AOAS390
10.1093/biomet/82.2.407
10.1093/biomet/86.2.459
10.1093/biomet/73.1.13
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.csda.2020.107110
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
ExternalDocumentID oai:pure.atira.dk:publications/ed153450-1b2b-4642-8bfb-3e7b23c581ea
10_1016_j_csda_2020_107110
S0167947320302012
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c377t-6f36c33b89aa40506c9ff09117c103b8ed6a591906a1d9c85ad4311f9de9cf443
IEDL.DBID UNPAY
ISSN 0167-9473
1872-7352
IngestDate Tue Aug 19 18:01:15 EDT 2025
Sat Sep 27 18:25:54 EDT 2025
Wed Oct 01 03:05:16 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 23 02:46:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Longitudinally correlated binary data
Joint mean and correlation parameter estimation
Correlation coefficients
Generalized estimating equations
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-6f36c33b89aa40506c9ff09117c103b8ed6a591906a1d9c85ad4311f9de9cf443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.research.manchester.ac.uk/portal/en/publications/joint-generalized-estimating-equations-for-longitudinal-binary-data(ed153450-1b2b-4642-8bfb-3e7b23c581ea).html
PQID 2498243322
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_csda_2020_107110
proquest_miscellaneous_2498243322
crossref_primary_10_1016_j_csda_2020_107110
crossref_citationtrail_10_1016_j_csda_2020_107110
elsevier_sciencedirect_doi_10_1016_j_csda_2020_107110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Daniels, Zhao (b4) 2003; 22
Diggle, Verbyla (b5) 1998; 54
Sutradhar, Das (b16) 1999; 86
Carey, Zeger, Diggle (b1) 1993; 80
Sutradhar, Das (b17) 2000; 56
Chaganty, Joe (b2) 2004; 66
Dziak (b6) 2006
Prentice (b14) 1988; 44
Prentice, Zhao (b15) 1991; 47
Wang, Zhou, Qu (b19) 2012; 68
Ye, Pan (b21) 2006; 93
Liang, Zeger (b10) 1986; 73
Pan (b12) 2001; 57
Wang, Louis (b18) 2003; 90
Ware, Dockery, Spiro, Speizer, Ferris (b20) 1984; 129
Oman, Zucker (b11) 2001; 88
Crowder (b3) 1995; 82
Højsgaard, Halekoh, Yan (b9) 2006; 15
Fitzmaurice, Laird (b7) 1993; 80
Heagerty (b8) 1999; 55
Parzen, Ghosh, Lipsitz, Sinha, Fitzmaurice, Mallick, Ibrahim (b13) 2011; 5
Dziak (10.1016/j.csda.2020.107110_b6) 2006
Oman (10.1016/j.csda.2020.107110_b11) 2001; 88
Ware (10.1016/j.csda.2020.107110_b20) 1984; 129
Daniels (10.1016/j.csda.2020.107110_b4) 2003; 22
Parzen (10.1016/j.csda.2020.107110_b13) 2011; 5
Pan (10.1016/j.csda.2020.107110_b12) 2001; 57
Heagerty (10.1016/j.csda.2020.107110_b8) 1999; 55
Crowder (10.1016/j.csda.2020.107110_b3) 1995; 82
Fitzmaurice (10.1016/j.csda.2020.107110_b7) 1993; 80
Prentice (10.1016/j.csda.2020.107110_b14) 1988; 44
Prentice (10.1016/j.csda.2020.107110_b15) 1991; 47
Sutradhar (10.1016/j.csda.2020.107110_b17) 2000; 56
Wang (10.1016/j.csda.2020.107110_b18) 2003; 90
Wang (10.1016/j.csda.2020.107110_b19) 2012; 68
Ye (10.1016/j.csda.2020.107110_b21) 2006; 93
Højsgaard (10.1016/j.csda.2020.107110_b9) 2006; 15
Diggle (10.1016/j.csda.2020.107110_b5) 1998; 54
Sutradhar (10.1016/j.csda.2020.107110_b16) 1999; 86
Chaganty (10.1016/j.csda.2020.107110_b2) 2004; 66
Liang (10.1016/j.csda.2020.107110_b10) 1986; 73
Carey (10.1016/j.csda.2020.107110_b1) 1993; 80
References_xml – volume: 44
  start-page: 1033
  year: 1988
  end-page: 1048
  ident: b14
  article-title: Correlated binary regression with covariates specific to each binary observation
  publication-title: Biometrics
– volume: 15
  start-page: 1
  year: 2006
  end-page: 11
  ident: b9
  article-title: The r package geepack for generalized estimating equations
  publication-title: J. Stat. Softw.
– volume: 80
  start-page: 141
  year: 1993
  end-page: 151
  ident: b7
  article-title: A likelihood-based method for analysing longitudinal binary responses
  publication-title: Biometrika
– volume: 55
  start-page: 688
  year: 1999
  end-page: 698
  ident: b8
  article-title: Marginally specified logistic-normal models for longitudinal binary data
  publication-title: Biometrics
– volume: 56
  start-page: 622
  year: 2000
  end-page: 625
  ident: b17
  article-title: On the accuracy of efficiency of estimating equation approach
  publication-title: Biometrics
– volume: 93
  start-page: 927
  year: 2006
  end-page: 941
  ident: b21
  article-title: Modelling of covariance structures in generalised estimating equations for longitudinal data
  publication-title: Biometrika
– volume: 66
  start-page: 851
  year: 2004
  end-page: 860
  ident: b2
  article-title: Efficiency of generalized estimating equations for binary responses
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 5
  start-page: 449
  year: 2011
  end-page: 467
  ident: b13
  article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function
  publication-title: Ann. Appl. Stat.
– volume: 90
  start-page: 765
  year: 2003
  end-page: 775
  ident: b18
  article-title: Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution function
  publication-title: Biometrika
– volume: 80
  start-page: 517
  year: 1993
  end-page: 526
  ident: b1
  article-title: Modelling multivariate binary data with alternating logistic regression
  publication-title: Biometrika
– volume: 22
  start-page: 1631
  year: 2003
  end-page: 1647
  ident: b4
  article-title: Modelling the random effects covariance matrix in longitudinal data
  publication-title: Stat. Med.
– volume: 47
  start-page: 825
  year: 1991
  end-page: 839
  ident: b15
  article-title: Estimating equations for generalised linear models for multivariate normal covariance matrix
  publication-title: Biometrics
– volume: 82
  start-page: 407
  year: 1995
  end-page: 410
  ident: b3
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
– volume: 54
  start-page: 401
  year: 1998
  end-page: 415
  ident: b5
  article-title: Nonparametric estimation of covariance structure in longitudinal data
  publication-title: Biometrics
– volume: 88
  start-page: 287
  year: 2001
  end-page: 290
  ident: b11
  article-title: Modelling and generating correlated binary data
  publication-title: Biometrika
– year: 2006
  ident: b6
  article-title: Variable Selection for Longitudinal Data by Penalized Quadratic Inference Functions
– volume: 86
  start-page: 459
  year: 1999
  end-page: 465
  ident: b16
  article-title: On the efficiency of regression estimators in generalized linear models for longitudinal data
  publication-title: Biometrika
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  ident: b10
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 57
  start-page: 120
  year: 2001
  end-page: 125
  ident: b12
  article-title: Akaike’s information criterion in generalized estimating equations
  publication-title: Biometrics
– volume: 129
  start-page: 366
  year: 1984
  end-page: 374
  ident: b20
  article-title: Passive smoking, gas cooking and respiratory health in children living in six cities
  publication-title: Am. Rev. Respir. Dis.
– volume: 68
  start-page: 353
  year: 2012
  end-page: 360
  ident: b19
  article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis
  publication-title: Biometrics
– volume: 88
  start-page: 287
  year: 2001
  ident: 10.1016/j.csda.2020.107110_b11
  article-title: Modelling and generating correlated binary data
  publication-title: Biometrika
  doi: 10.1093/biomet/88.1.287
– volume: 44
  start-page: 1033
  year: 1988
  ident: 10.1016/j.csda.2020.107110_b14
  article-title: Correlated binary regression with covariates specific to each binary observation
  publication-title: Biometrics
  doi: 10.2307/2531733
– volume: 54
  start-page: 401
  year: 1998
  ident: 10.1016/j.csda.2020.107110_b5
  article-title: Nonparametric estimation of covariance structure in longitudinal data
  publication-title: Biometrics
  doi: 10.2307/3109751
– volume: 68
  start-page: 353
  year: 2012
  ident: 10.1016/j.csda.2020.107110_b19
  article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01678.x
– volume: 47
  start-page: 825
  year: 1991
  ident: 10.1016/j.csda.2020.107110_b15
  article-title: Estimating equations for generalised linear models for multivariate normal covariance matrix
  publication-title: Biometrics
  doi: 10.2307/2532642
– volume: 22
  start-page: 1631
  issue: 10
  year: 2003
  ident: 10.1016/j.csda.2020.107110_b4
  article-title: Modelling the random effects covariance matrix in longitudinal data
  publication-title: Stat. Med.
  doi: 10.1002/sim.1470
– volume: 90
  start-page: 765
  year: 2003
  ident: 10.1016/j.csda.2020.107110_b18
  article-title: Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution function
  publication-title: Biometrika
  doi: 10.1093/biomet/90.4.765
– year: 2006
  ident: 10.1016/j.csda.2020.107110_b6
– volume: 15
  start-page: 1
  year: 2006
  ident: 10.1016/j.csda.2020.107110_b9
  article-title: The r package geepack for generalized estimating equations
  publication-title: J. Stat. Softw.
– volume: 57
  start-page: 120
  year: 2001
  ident: 10.1016/j.csda.2020.107110_b12
  article-title: Akaike’s information criterion in generalized estimating equations
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00120.x
– volume: 56
  start-page: 622
  issue: 2
  year: 2000
  ident: 10.1016/j.csda.2020.107110_b17
  article-title: On the accuracy of efficiency of estimating equation approach
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00622.x
– volume: 129
  start-page: 366
  year: 1984
  ident: 10.1016/j.csda.2020.107110_b20
  article-title: Passive smoking, gas cooking and respiratory health in children living in six cities
  publication-title: Am. Rev. Respir. Dis.
– volume: 93
  start-page: 927
  year: 2006
  ident: 10.1016/j.csda.2020.107110_b21
  article-title: Modelling of covariance structures in generalised estimating equations for longitudinal data
  publication-title: Biometrika
  doi: 10.1093/biomet/93.4.927
– volume: 66
  start-page: 851
  year: 2004
  ident: 10.1016/j.csda.2020.107110_b2
  article-title: Efficiency of generalized estimating equations for binary responses
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2004.05741.x
– volume: 55
  start-page: 688
  year: 1999
  ident: 10.1016/j.csda.2020.107110_b8
  article-title: Marginally specified logistic-normal models for longitudinal binary data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00688.x
– volume: 80
  start-page: 517
  year: 1993
  ident: 10.1016/j.csda.2020.107110_b1
  article-title: Modelling multivariate binary data with alternating logistic regression
  publication-title: Biometrika
  doi: 10.1093/biomet/80.3.517
– volume: 80
  start-page: 141
  year: 1993
  ident: 10.1016/j.csda.2020.107110_b7
  article-title: A likelihood-based method for analysing longitudinal binary responses
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.141
– volume: 5
  start-page: 449
  issue: 1
  year: 2011
  ident: 10.1016/j.csda.2020.107110_b13
  article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS390
– volume: 82
  start-page: 407
  year: 1995
  ident: 10.1016/j.csda.2020.107110_b3
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
  doi: 10.1093/biomet/82.2.407
– volume: 86
  start-page: 459
  year: 1999
  ident: 10.1016/j.csda.2020.107110_b16
  article-title: On the efficiency of regression estimators in generalized linear models for longitudinal data
  publication-title: Biometrika
  doi: 10.1093/biomet/86.2.459
– volume: 73
  start-page: 13
  year: 1986
  ident: 10.1016/j.csda.2020.107110_b10
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
SSID ssj0002478
Score 2.3265696
Snippet Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107110
SubjectTerms correlation
Correlation coefficients
covariance
data analysis
equations
Generalized estimating equations
Joint mean and correlation parameter estimation
lead
Longitudinally correlated binary data
methodology
statistical inference
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection Journals
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA2yPagP4ifOLyL4pmVN0qbN4xiOqeiLDvYW0iYdk9FNtyH66713bccEGeJr2pRwk5ycknPPJeTKxT6wisz3bAjbLUhU7BnM5IqVEXgtJtlCVfn4JLu94L4f9jdIu8qFQVllif0Fpi_QumxpltFsTobD5jMK6FUQCQ7rFI4xwOE6F4rxGqm37h66T0tA5kEByGjxjR3K3JlC5pVOLdoPcWyIGCbS_n4-rfDPzXk-MZ8fZjRaOYo6u2Sn5JC0VQxzj2y4fJ9sPy4NWKcHpH0_HuYzOihMpYdfzlK008DH-YC6t8Lge0qBstLRGGsWzS3Wx6LJIj-XonD0kPQ6ty_trlfWS_BSEUUzT2ZCpkIkEGcDPMyXqcoy4AMsSpkPzc5KEypgANIwq9I4NBboA8uUdSrNgkAckVo-zt0xoYkwcWRDaSOVBUomhjP4bAZ8ybcmjkWDsCpKOi3NxLGmxUhXqrFXjZHVGFldRLZBrpd9JoWVxtq3wyr4-seC0ID1a_tdVjOlYafg9YfJ3Xg-1fCjGXO0a-MNcrOcwj8M5eSfQzklWxwVMAvF2hmpzd7n7hwozCy5KJfoN8GP69c
  priority: 102
  providerName: Elsevier
Title Joint generalized estimating equations for longitudinal binary data
URI https://dx.doi.org/10.1016/j.csda.2020.107110
https://www.proquest.com/docview/2498243322
https://www.research.manchester.ac.uk/portal/en/publications/joint-generalized-estimating-equations-for-longitudinal-binary-data(ed153450-1b2b-4642-8bfb-3e7b23c581ea).html
UnpaywallVersion submittedVersion
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3Pb9MwFMetrT0gDvxGFEEVJA4gcBvHiWMfq4mprFqFEBXjFNmxMzZCWtZUaDvwD_Gv8Efx3pyUCKEJjpwiRUn1VfJcfxy_932EPHUyBKooQmoTGG6xUZJqrOSSSnPcFhPsMqvycC6mi_jgKDnaId_bWhhMq2xsbj6OMGu-6RrlC6s8ko5dNV51PmqNT5cnVU2PvU_zyYWzFB0qkPiqY-q-eM_sNQUKpOUS2wBtLLacwrWnPjunmIv5zFkY-3ESUmYiQ2PAcipNYSh3qYl4nkjm9HNYz34ud0lfJLBU75H-Yv5m8qF1D1fx5X42kykwK3BNU6Ljs8nytUWXowhPpAzrdf88DXYw99qmWunzr7osOzPe_k3yo31WPtHl02hTm1F-8ZuN5H_yMG-RGw15BxM_VG6THVfdIdcPt7a167tk7wBVBR1VwS9VwVZVAKqCrqrAqwpQ1T2y2H_1bm9Kmy4TNOdpWlNRcJFzbiA6NdBrKHJVFEBRLM1ZCKedFTpRwE1CM6tymWgL0MUKZZ3Kizjm90mvWlbuAQkM1zK1ibCpKmIljI4Y_GwBlBlaLSUfENa-9CxvLNixE0iZtbl2pxkGSoaBkvlAGZAX23tW3oDkyquTNpayBqE8GmUwQ15535M28DL4f8FNI1255WadwfJcRmhyFw3Iy21E_oWUh_92-SPSq8827jEgXm2GZHf0jQ1Jf_J6Np3jcfb2_WzYDLifsNxbkA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3IfFAfxE-cnxF807K2adPkUYYyP7YXFXwLaZPKZHTTbYj-eu9d26EgIr6mTQk3yckpOfdcgBMnfWQVue_ZGLdblCrpGcrkkspwuhYTwUxV2e2JzkN0_Rg_LkC7zoUhWWWF_SWmz9C6amlV0WyN-v3WHQnoVZTwENcpHmOIw4tRzJVswOL51U2nNwfkMCoBmSy-qUOVO1PKvLKxJfuhkBqSgBJpfz6fvvDPpWkxMu9vZjD4chRdrsFqxSHZeTnMdVhwxQasdOcGrONNaF8P-8WEPZWm0v0PZxnZadDj4om5l9Lge8yQsrLBkGoWTS3Vx2LpLD-XkXB0Cx4uL-7bHa-ql-BlPEkmnsi5yDhPMc4GeZgvMpXnyAeCJAt8bHZWmFghAxAmsCqTsbFIH4JcWaeyPIr4NjSKYeF2gKXcyMTGwiYqj5RITRjgZ3PkS741UvImBHWUdFaZiVNNi4GuVWPPmiKrKbK6jGwTTud9RqWVxq9vx3Xw9bcFoRHrf-13XM-Uxp1C1x-mcMPpWOOPpgzJri1swtl8Cv8wlN1_DuUIljr33Vt9e9W72YPlkNQwM_XaPjQmr1N3gHRmkh5Wy_UTES_uzQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Nb9QwEIatsj0gDnwjFgEyEgcQeDeOE8c-VhVVVakVB1Yqp8hfKS0hu3QTofYv8Vf4UczUyRIhVMGRa5REr5Jx_DieeYeQl0ElQBVVwnwOwy2zWjGDlVxKG4HbYpJfZVUeHsn9RXZwnB9vke9DLQymVfY2N59mmDXfd42KhVURSeehma9GP7XmZ8vTpmUn0af59DJ4hg4VSHzNCQtfo2f2mgEFsnqJbYA6jy2ncO1pzi8Y5mK-Ch7GfpYnjNvUsgywnClbWSZCYVPhcsWDeQ3r2S_1DbItc1iqT8j24uj9zsfBPVxnV_vZXBXArMA1fYlOzCZza48uRykeKDjW6_55Ghxh7s2uWZmLb6auRzPe3h3yY3hWMdHl86xr7cxd_mYj-Z88zLvkdk_edCcOlXtkKzT3ya3DjW3t-gHZPUBVdKSK_lJFN6ooqKJjVTSqoqjqIVnsvfuwu8_6LhPMiaJomayEdEJYiE4D9JpIp6sKKIoXjidwOHhpcg3cJA332qnceIAuXmkftKuyTDwik2bZhMeEWmFU4XPpC11lWlqTcrhtBZSZeKOUmBI-vPTS9Rbs2AmkLodcu7MSA6XEQCljoEzJm801q2hAcu3Z-RBLZY9QEY1KmCGvve7FEHglfF9w08g0YdmtS1ieqxRN7tIpebuJyL-Q8uTfTn9KJu15F54B4rX2eT-0fgIIWldh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+generalized+estimating+equations+for+longitudinal+binary+data&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Huang%2C+Youjun&rft.au=Pan%2C+Jianxin&rft.date=2021-03-01&rft.issn=0167-9473&rft.volume=155+p.107110-&rft_id=info:doi/10.1016%2Fj.csda.2020.107110&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon