Joint generalized estimating equations for longitudinal binary data
Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect stat...
Saved in:
Published in | Computational statistics & data analysis Vol. 155; p. 107110 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 1872-7352 1872-7352 |
DOI | 10.1016/j.csda.2020.107110 |
Cover
Abstract | Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect statistical inferences for longitudinal binary data. A novel method is proposed to model the mean and within-subject correlation coefficients for longitudinal binary data, simultaneously, by taking into account the constraints of the upper bounds. By introducing latent normally distributed random variables, the correlation coefficients of binary responses are connected to those for the latent variables, of which the correlation coefficients are modeled accordingly. A joint generalized estimating equation (GEE) method is developed for this purpose and the resulting correlation coefficients are shown to satisfy the constraints. Asymptotic normality of the parameter estimators is derived and simulation studies are made under various scenarios, showing that the proposed joint GEE method works very well even if the working covariance structures are misspecified. For illustration, the proposed method is applied to two real data practices to assess the effects of covariates on the mean and within-subject correlation coefficients. |
---|---|
AbstractList | Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the correlation coefficient of binary responses must have an upper bound which is smaller than one. Ignoring this fact can lead to incorrect statistical inferences for longitudinal binary data. A novel method is proposed to model the mean and within-subject correlation coefficients for longitudinal binary data, simultaneously, by taking into account the constraints of the upper bounds. By introducing latent normally distributed random variables, the correlation coefficients of binary responses are connected to those for the latent variables, of which the correlation coefficients are modeled accordingly. A joint generalized estimating equation (GEE) method is developed for this purpose and the resulting correlation coefficients are shown to satisfy the constraints. Asymptotic normality of the parameter estimators is derived and simulation studies are made under various scenarios, showing that the proposed joint GEE method works very well even if the working covariance structures are misspecified. For illustration, the proposed method is applied to two real data practices to assess the effects of covariates on the mean and within-subject correlation coefficients. |
ArticleNumber | 107110 |
Author | Huang, Youjun Pan, Jianxin |
Author_xml | – sequence: 1 givenname: Youjun surname: Huang fullname: Huang, Youjun organization: Mathematical College, Sichuan University, Chengdu 610065, China – sequence: 2 givenname: Jianxin surname: Pan fullname: Pan, Jianxin email: jianxin.pan@manchester.ac.uk organization: Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK |
BookMark | eNqNkE1LAzEQhoMoWKt_wNMevWzNx3azAS9S_ETwoueQJrMlJU1qklXqrzd1PXkQL5kwvM8w85ygQx88IHRO8Ixg0l6uZzoZNaOY7hucEHyAJqTjtOZsTg_RpIR4LRrOjtFJSmuMMW14N0GLx2B9rlbgISpnP8FUkLLdqGz9qoK3oXyCT1UfYuWCX9k8GOuVq5bljbvKqKxO0VGvXIKznzpFr7c3L4v7-un57mFx_VRrxnmu2561mrFlJ5Rq8By3WvQ9FoRwTXBpg2nVXBCBW0WM0N1cmYYR0gsDQvdNw6aIjXMHv1W7D-Wc3MayatxJguXeg1zLvQe59yBHD4W6GKltDG9DOU5ubNLgnPIQhiRpIzraMEZpidIxqmNIKUL_v_ndL0jb_G0tR2Xd3-jViEKx9m4hyqQteA3GRtBZmmD_wr8AfRaZUg |
CitedBy_id | crossref_primary_10_1016_j_jmva_2021_104940 crossref_primary_10_1088_1742_6596_1978_1_012056 |
Cites_doi | 10.1093/biomet/88.1.287 10.2307/2531733 10.2307/3109751 10.1111/j.1541-0420.2011.01678.x 10.2307/2532642 10.1002/sim.1470 10.1093/biomet/90.4.765 10.1111/j.0006-341X.2001.00120.x 10.1111/j.0006-341X.2000.00622.x 10.1093/biomet/93.4.927 10.1111/j.1467-9868.2004.05741.x 10.1111/j.0006-341X.1999.00688.x 10.1093/biomet/80.3.517 10.1093/biomet/80.1.141 10.1214/10-AOAS390 10.1093/biomet/82.2.407 10.1093/biomet/86.2.459 10.1093/biomet/73.1.13 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
DOI | 10.1016/j.csda.2020.107110 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-7352 |
ExternalDocumentID | oai:pure.atira.dk:publications/ed153450-1b2b-4642-8bfb-3e7b23c581ea 10_1016_j_csda_2020_107110 S0167947320302012 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 ADTOC AGCQF UNPAY |
ID | FETCH-LOGICAL-c377t-6f36c33b89aa40506c9ff09117c103b8ed6a591906a1d9c85ad4311f9de9cf443 |
IEDL.DBID | UNPAY |
ISSN | 0167-9473 1872-7352 |
IngestDate | Tue Aug 19 18:01:15 EDT 2025 Sat Sep 27 18:25:54 EDT 2025 Wed Oct 01 03:05:16 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 23 02:46:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Longitudinally correlated binary data Joint mean and correlation parameter estimation Correlation coefficients Generalized estimating equations |
Language | English |
License | cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377t-6f36c33b89aa40506c9ff09117c103b8ed6a591906a1d9c85ad4311f9de9cf443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.research.manchester.ac.uk/portal/en/publications/joint-generalized-estimating-equations-for-longitudinal-binary-data(ed153450-1b2b-4642-8bfb-3e7b23c581ea).html |
PQID | 2498243322 |
PQPubID | 24069 |
ParticipantIDs | unpaywall_primary_10_1016_j_csda_2020_107110 proquest_miscellaneous_2498243322 crossref_primary_10_1016_j_csda_2020_107110 crossref_citationtrail_10_1016_j_csda_2020_107110 elsevier_sciencedirect_doi_10_1016_j_csda_2020_107110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Daniels, Zhao (b4) 2003; 22 Diggle, Verbyla (b5) 1998; 54 Sutradhar, Das (b16) 1999; 86 Carey, Zeger, Diggle (b1) 1993; 80 Sutradhar, Das (b17) 2000; 56 Chaganty, Joe (b2) 2004; 66 Dziak (b6) 2006 Prentice (b14) 1988; 44 Prentice, Zhao (b15) 1991; 47 Wang, Zhou, Qu (b19) 2012; 68 Ye, Pan (b21) 2006; 93 Liang, Zeger (b10) 1986; 73 Pan (b12) 2001; 57 Wang, Louis (b18) 2003; 90 Ware, Dockery, Spiro, Speizer, Ferris (b20) 1984; 129 Oman, Zucker (b11) 2001; 88 Crowder (b3) 1995; 82 Højsgaard, Halekoh, Yan (b9) 2006; 15 Fitzmaurice, Laird (b7) 1993; 80 Heagerty (b8) 1999; 55 Parzen, Ghosh, Lipsitz, Sinha, Fitzmaurice, Mallick, Ibrahim (b13) 2011; 5 Dziak (10.1016/j.csda.2020.107110_b6) 2006 Oman (10.1016/j.csda.2020.107110_b11) 2001; 88 Ware (10.1016/j.csda.2020.107110_b20) 1984; 129 Daniels (10.1016/j.csda.2020.107110_b4) 2003; 22 Parzen (10.1016/j.csda.2020.107110_b13) 2011; 5 Pan (10.1016/j.csda.2020.107110_b12) 2001; 57 Heagerty (10.1016/j.csda.2020.107110_b8) 1999; 55 Crowder (10.1016/j.csda.2020.107110_b3) 1995; 82 Fitzmaurice (10.1016/j.csda.2020.107110_b7) 1993; 80 Prentice (10.1016/j.csda.2020.107110_b14) 1988; 44 Prentice (10.1016/j.csda.2020.107110_b15) 1991; 47 Sutradhar (10.1016/j.csda.2020.107110_b17) 2000; 56 Wang (10.1016/j.csda.2020.107110_b18) 2003; 90 Wang (10.1016/j.csda.2020.107110_b19) 2012; 68 Ye (10.1016/j.csda.2020.107110_b21) 2006; 93 Højsgaard (10.1016/j.csda.2020.107110_b9) 2006; 15 Diggle (10.1016/j.csda.2020.107110_b5) 1998; 54 Sutradhar (10.1016/j.csda.2020.107110_b16) 1999; 86 Chaganty (10.1016/j.csda.2020.107110_b2) 2004; 66 Liang (10.1016/j.csda.2020.107110_b10) 1986; 73 Carey (10.1016/j.csda.2020.107110_b1) 1993; 80 |
References_xml | – volume: 44 start-page: 1033 year: 1988 end-page: 1048 ident: b14 article-title: Correlated binary regression with covariates specific to each binary observation publication-title: Biometrics – volume: 15 start-page: 1 year: 2006 end-page: 11 ident: b9 article-title: The r package geepack for generalized estimating equations publication-title: J. Stat. Softw. – volume: 80 start-page: 141 year: 1993 end-page: 151 ident: b7 article-title: A likelihood-based method for analysing longitudinal binary responses publication-title: Biometrika – volume: 55 start-page: 688 year: 1999 end-page: 698 ident: b8 article-title: Marginally specified logistic-normal models for longitudinal binary data publication-title: Biometrics – volume: 56 start-page: 622 year: 2000 end-page: 625 ident: b17 article-title: On the accuracy of efficiency of estimating equation approach publication-title: Biometrics – volume: 93 start-page: 927 year: 2006 end-page: 941 ident: b21 article-title: Modelling of covariance structures in generalised estimating equations for longitudinal data publication-title: Biometrika – volume: 66 start-page: 851 year: 2004 end-page: 860 ident: b2 article-title: Efficiency of generalized estimating equations for binary responses publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 5 start-page: 449 year: 2011 end-page: 467 ident: b13 article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function publication-title: Ann. Appl. Stat. – volume: 90 start-page: 765 year: 2003 end-page: 775 ident: b18 article-title: Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution function publication-title: Biometrika – volume: 80 start-page: 517 year: 1993 end-page: 526 ident: b1 article-title: Modelling multivariate binary data with alternating logistic regression publication-title: Biometrika – volume: 22 start-page: 1631 year: 2003 end-page: 1647 ident: b4 article-title: Modelling the random effects covariance matrix in longitudinal data publication-title: Stat. Med. – volume: 47 start-page: 825 year: 1991 end-page: 839 ident: b15 article-title: Estimating equations for generalised linear models for multivariate normal covariance matrix publication-title: Biometrics – volume: 82 start-page: 407 year: 1995 end-page: 410 ident: b3 article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures publication-title: Biometrika – volume: 54 start-page: 401 year: 1998 end-page: 415 ident: b5 article-title: Nonparametric estimation of covariance structure in longitudinal data publication-title: Biometrics – volume: 88 start-page: 287 year: 2001 end-page: 290 ident: b11 article-title: Modelling and generating correlated binary data publication-title: Biometrika – year: 2006 ident: b6 article-title: Variable Selection for Longitudinal Data by Penalized Quadratic Inference Functions – volume: 86 start-page: 459 year: 1999 end-page: 465 ident: b16 article-title: On the efficiency of regression estimators in generalized linear models for longitudinal data publication-title: Biometrika – volume: 73 start-page: 13 year: 1986 end-page: 22 ident: b10 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 57 start-page: 120 year: 2001 end-page: 125 ident: b12 article-title: Akaike’s information criterion in generalized estimating equations publication-title: Biometrics – volume: 129 start-page: 366 year: 1984 end-page: 374 ident: b20 article-title: Passive smoking, gas cooking and respiratory health in children living in six cities publication-title: Am. Rev. Respir. Dis. – volume: 68 start-page: 353 year: 2012 end-page: 360 ident: b19 article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis publication-title: Biometrics – volume: 88 start-page: 287 year: 2001 ident: 10.1016/j.csda.2020.107110_b11 article-title: Modelling and generating correlated binary data publication-title: Biometrika doi: 10.1093/biomet/88.1.287 – volume: 44 start-page: 1033 year: 1988 ident: 10.1016/j.csda.2020.107110_b14 article-title: Correlated binary regression with covariates specific to each binary observation publication-title: Biometrics doi: 10.2307/2531733 – volume: 54 start-page: 401 year: 1998 ident: 10.1016/j.csda.2020.107110_b5 article-title: Nonparametric estimation of covariance structure in longitudinal data publication-title: Biometrics doi: 10.2307/3109751 – volume: 68 start-page: 353 year: 2012 ident: 10.1016/j.csda.2020.107110_b19 article-title: Penalized generalized estimating equations for high-dimensional longitudinal data analysis publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01678.x – volume: 47 start-page: 825 year: 1991 ident: 10.1016/j.csda.2020.107110_b15 article-title: Estimating equations for generalised linear models for multivariate normal covariance matrix publication-title: Biometrics doi: 10.2307/2532642 – volume: 22 start-page: 1631 issue: 10 year: 2003 ident: 10.1016/j.csda.2020.107110_b4 article-title: Modelling the random effects covariance matrix in longitudinal data publication-title: Stat. Med. doi: 10.1002/sim.1470 – volume: 90 start-page: 765 year: 2003 ident: 10.1016/j.csda.2020.107110_b18 article-title: Matching conditional and marginal shapes in binary mixed-effects models using a bridge distribution function publication-title: Biometrika doi: 10.1093/biomet/90.4.765 – year: 2006 ident: 10.1016/j.csda.2020.107110_b6 – volume: 15 start-page: 1 year: 2006 ident: 10.1016/j.csda.2020.107110_b9 article-title: The r package geepack for generalized estimating equations publication-title: J. Stat. Softw. – volume: 57 start-page: 120 year: 2001 ident: 10.1016/j.csda.2020.107110_b12 article-title: Akaike’s information criterion in generalized estimating equations publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00120.x – volume: 56 start-page: 622 issue: 2 year: 2000 ident: 10.1016/j.csda.2020.107110_b17 article-title: On the accuracy of efficiency of estimating equation approach publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00622.x – volume: 129 start-page: 366 year: 1984 ident: 10.1016/j.csda.2020.107110_b20 article-title: Passive smoking, gas cooking and respiratory health in children living in six cities publication-title: Am. Rev. Respir. Dis. – volume: 93 start-page: 927 year: 2006 ident: 10.1016/j.csda.2020.107110_b21 article-title: Modelling of covariance structures in generalised estimating equations for longitudinal data publication-title: Biometrika doi: 10.1093/biomet/93.4.927 – volume: 66 start-page: 851 year: 2004 ident: 10.1016/j.csda.2020.107110_b2 article-title: Efficiency of generalized estimating equations for binary responses publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2004.05741.x – volume: 55 start-page: 688 year: 1999 ident: 10.1016/j.csda.2020.107110_b8 article-title: Marginally specified logistic-normal models for longitudinal binary data publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00688.x – volume: 80 start-page: 517 year: 1993 ident: 10.1016/j.csda.2020.107110_b1 article-title: Modelling multivariate binary data with alternating logistic regression publication-title: Biometrika doi: 10.1093/biomet/80.3.517 – volume: 80 start-page: 141 year: 1993 ident: 10.1016/j.csda.2020.107110_b7 article-title: A likelihood-based method for analysing longitudinal binary responses publication-title: Biometrika doi: 10.1093/biomet/80.1.141 – volume: 5 start-page: 449 issue: 1 year: 2011 ident: 10.1016/j.csda.2020.107110_b13 article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS390 – volume: 82 start-page: 407 year: 1995 ident: 10.1016/j.csda.2020.107110_b3 article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures publication-title: Biometrika doi: 10.1093/biomet/82.2.407 – volume: 86 start-page: 459 year: 1999 ident: 10.1016/j.csda.2020.107110_b16 article-title: On the efficiency of regression estimators in generalized linear models for longitudinal data publication-title: Biometrika doi: 10.1093/biomet/86.2.459 – volume: 73 start-page: 13 year: 1986 ident: 10.1016/j.csda.2020.107110_b10 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 |
SSID | ssj0002478 |
Score | 2.3265696 |
Snippet | Modeling longitudinal binary data is challenging but common in practice. Existing methods on modeling of binary responses take no account of the fact that the... |
SourceID | unpaywall proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107110 |
SubjectTerms | correlation Correlation coefficients covariance data analysis equations Generalized estimating equations Joint mean and correlation parameter estimation lead Longitudinally correlated binary data methodology statistical inference |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection Journals dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA2yPagP4ifOLyL4pmVN0qbN4xiOqeiLDvYW0iYdk9FNtyH66713bccEGeJr2pRwk5ycknPPJeTKxT6wisz3bAjbLUhU7BnM5IqVEXgtJtlCVfn4JLu94L4f9jdIu8qFQVllif0Fpi_QumxpltFsTobD5jMK6FUQCQ7rFI4xwOE6F4rxGqm37h66T0tA5kEByGjxjR3K3JlC5pVOLdoPcWyIGCbS_n4-rfDPzXk-MZ8fZjRaOYo6u2Sn5JC0VQxzj2y4fJ9sPy4NWKcHpH0_HuYzOihMpYdfzlK008DH-YC6t8Lge0qBstLRGGsWzS3Wx6LJIj-XonD0kPQ6ty_trlfWS_BSEUUzT2ZCpkIkEGcDPMyXqcoy4AMsSpkPzc5KEypgANIwq9I4NBboA8uUdSrNgkAckVo-zt0xoYkwcWRDaSOVBUomhjP4bAZ8ybcmjkWDsCpKOi3NxLGmxUhXqrFXjZHVGFldRLZBrpd9JoWVxtq3wyr4-seC0ID1a_tdVjOlYafg9YfJ3Xg-1fCjGXO0a-MNcrOcwj8M5eSfQzklWxwVMAvF2hmpzd7n7hwozCy5KJfoN8GP69c priority: 102 providerName: Elsevier |
Title | Joint generalized estimating equations for longitudinal binary data |
URI | https://dx.doi.org/10.1016/j.csda.2020.107110 https://www.proquest.com/docview/2498243322 https://www.research.manchester.ac.uk/portal/en/publications/joint-generalized-estimating-equations-for-longitudinal-binary-data(ed153450-1b2b-4642-8bfb-3e7b23c581ea).html |
UnpaywallVersion | submittedVersion |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3Pb9MwFMetrT0gDvxGFEEVJA4gcBvHiWMfq4mprFqFEBXjFNmxMzZCWtZUaDvwD_Gv8Efx3pyUCKEJjpwiRUn1VfJcfxy_932EPHUyBKooQmoTGG6xUZJqrOSSSnPcFhPsMqvycC6mi_jgKDnaId_bWhhMq2xsbj6OMGu-6RrlC6s8ko5dNV51PmqNT5cnVU2PvU_zyYWzFB0qkPiqY-q-eM_sNQUKpOUS2wBtLLacwrWnPjunmIv5zFkY-3ESUmYiQ2PAcipNYSh3qYl4nkjm9HNYz34ud0lfJLBU75H-Yv5m8qF1D1fx5X42kykwK3BNU6Ljs8nytUWXowhPpAzrdf88DXYw99qmWunzr7osOzPe_k3yo31WPtHl02hTm1F-8ZuN5H_yMG-RGw15BxM_VG6THVfdIdcPt7a167tk7wBVBR1VwS9VwVZVAKqCrqrAqwpQ1T2y2H_1bm9Kmy4TNOdpWlNRcJFzbiA6NdBrKHJVFEBRLM1ZCKedFTpRwE1CM6tymWgL0MUKZZ3Kizjm90mvWlbuAQkM1zK1ibCpKmIljI4Y_GwBlBlaLSUfENa-9CxvLNixE0iZtbl2pxkGSoaBkvlAGZAX23tW3oDkyquTNpayBqE8GmUwQ15535M28DL4f8FNI1255WadwfJcRmhyFw3Iy21E_oWUh_92-SPSq8827jEgXm2GZHf0jQ1Jf_J6Np3jcfb2_WzYDLifsNxbkA |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3IfFAfxE-cnxF807K2adPkUYYyP7YXFXwLaZPKZHTTbYj-eu9d26EgIr6mTQk3yckpOfdcgBMnfWQVue_ZGLdblCrpGcrkkspwuhYTwUxV2e2JzkN0_Rg_LkC7zoUhWWWF_SWmz9C6amlV0WyN-v3WHQnoVZTwENcpHmOIw4tRzJVswOL51U2nNwfkMCoBmSy-qUOVO1PKvLKxJfuhkBqSgBJpfz6fvvDPpWkxMu9vZjD4chRdrsFqxSHZeTnMdVhwxQasdOcGrONNaF8P-8WEPZWm0v0PZxnZadDj4om5l9Lge8yQsrLBkGoWTS3Vx2LpLD-XkXB0Cx4uL-7bHa-ql-BlPEkmnsi5yDhPMc4GeZgvMpXnyAeCJAt8bHZWmFghAxAmsCqTsbFIH4JcWaeyPIr4NjSKYeF2gKXcyMTGwiYqj5RITRjgZ3PkS741UvImBHWUdFaZiVNNi4GuVWPPmiKrKbK6jGwTTud9RqWVxq9vx3Xw9bcFoRHrf-13XM-Uxp1C1x-mcMPpWOOPpgzJri1swtl8Cv8wlN1_DuUIljr33Vt9e9W72YPlkNQwM_XaPjQmr1N3gHRmkh5Wy_UTES_uzQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Nb9QwEIatsj0gDnwjFgEyEgcQeDeOE8c-VhVVVakVB1Yqp8hfKS0hu3QTofYv8Vf4UczUyRIhVMGRa5REr5Jx_DieeYeQl0ElQBVVwnwOwy2zWjGDlVxKG4HbYpJfZVUeHsn9RXZwnB9vke9DLQymVfY2N59mmDXfd42KhVURSeehma9GP7XmZ8vTpmUn0af59DJ4hg4VSHzNCQtfo2f2mgEFsnqJbYA6jy2ncO1pzi8Y5mK-Ch7GfpYnjNvUsgywnClbWSZCYVPhcsWDeQ3r2S_1DbItc1iqT8j24uj9zsfBPVxnV_vZXBXArMA1fYlOzCZza48uRykeKDjW6_55Ghxh7s2uWZmLb6auRzPe3h3yY3hWMdHl86xr7cxd_mYj-Z88zLvkdk_edCcOlXtkKzT3ya3DjW3t-gHZPUBVdKSK_lJFN6ooqKJjVTSqoqjqIVnsvfuwu8_6LhPMiaJomayEdEJYiE4D9JpIp6sKKIoXjidwOHhpcg3cJA332qnceIAuXmkftKuyTDwik2bZhMeEWmFU4XPpC11lWlqTcrhtBZSZeKOUmBI-vPTS9Rbs2AmkLodcu7MSA6XEQCljoEzJm801q2hAcu3Z-RBLZY9QEY1KmCGvve7FEHglfF9w08g0YdmtS1ieqxRN7tIpebuJyL-Q8uTfTn9KJu15F54B4rX2eT-0fgIIWldh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+generalized+estimating+equations+for+longitudinal+binary+data&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Huang%2C+Youjun&rft.au=Pan%2C+Jianxin&rft.date=2021-03-01&rft.issn=0167-9473&rft.volume=155+p.107110-&rft_id=info:doi/10.1016%2Fj.csda.2020.107110&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |