IMine: Index Support for Item Set Mining
This paper presents the IMine index, a general and compact structure which provides tight integration of item set extraction in a relational DBMS. Since no constraint is enforced during the index creation phase, IMine provides a complete representation of the original database. To reduce the I/O cos...
Saved in:
| Published in | IEEE transactions on knowledge and data engineering Vol. 21; no. 4; pp. 493 - 506 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.04.2009
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1041-4347 1558-2191 |
| DOI | 10.1109/TKDE.2008.180 |
Cover
| Abstract | This paper presents the IMine index, a general and compact structure which provides tight integration of item set extraction in a relational DBMS. Since no constraint is enforced during the index creation phase, IMine provides a complete representation of the original database. To reduce the I/O cost, data accessed together during the same extraction phase are clustered on the same disk block. The IMine index structure can be efficiently exploited by different item set extraction algorithms. In particular, IMine data access methods currently support the FP-growth and LCM v.2 algorithms, but they can straightforwardly support the enforcement of various constraint categories. The IMine index has been integrated into the PostgreSQL DBMS and exploits its physical level access methods. Experiments, run for both sparse and dense data distributions, show the efficiency of the proposed index and its linear scalability also for large datasets. Item set mining supported by the IMine index shows performance always comparable with, and sometimes better than, state of the art algorithms accessing data on flat file. |
|---|---|
| AbstractList | This paper presents the IMine index, a general and compact structure which provides tight integration of item set extraction in a relational DBMS. Since no constraint is enforced during the index creation phase, IMine provides a complete representation of the original database. To reduce the I/O cost, data accessed together during the same extraction phase are clustered on the same disk block. The IMine index structure can be efficiently exploited by different item set extraction algorithms. In particular, IMine data access methods currently support the FP-growth and LCM v.2 algorithms, but they can straightforwardly support the enforcement of various constraint categories. The IMine index has been integrated into the PostgreSQL DBMS and exploits its physical level access methods. Experiments, run for both sparse and dense data distributions, show the efficiency of the proposed index and its linear scalability also for large datasets. Item set mining supported by the IMine index shows performance always comparable with, and sometimes better than, state of the art algorithms accessing data on flat file. Since no constraint is enforced during the index creation phase, IMine provides a complete representation of the original database. |
| Author | Baralis, E. Chiusano, S. Cerquitelli, T. |
| Author_xml | – sequence: 1 givenname: E. surname: Baralis fullname: Baralis, E. organization: Dipt. di Autom. e Inf., Politec. di Torino, Torino – sequence: 2 givenname: T. surname: Cerquitelli fullname: Cerquitelli, T. organization: Dipt. di Autom. e Inf., Politec. di Torino, Torino – sequence: 3 givenname: S. surname: Chiusano fullname: Chiusano, S. organization: Dipt. di Autom. e Inf., Politec. di Torino, Torino |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21474196$$DView record in Pascal Francis |
| BookMark | eNp90U1LAzEQBuAgCtbq0ZOXRfDjsjWTZHcTb1KrFhUP6jmEdCKRbbYmW9B_b0qLB0FPmcMzMxnePbIduoCEHAIdAVB18XJ_PRkxSuUIJN0iA6gqWTJQsJ1rKqAUXDS7ZC-ld5pVI2FAzqePPuBlMQ0z_Cyel4tFF_vCdbGY9jgvnrEvMvDhbZ_sONMmPNi8Q_J6M3kZ35UPT7fT8dVDaXnT9CXHmlFE6mzNLNSVkRTYDGayMWiFM0yBEKiUMNQoC-jAceEqi2ihQQp8SM7Wcxex-1hi6vXcJ4ttawJ2y6RlU1GWL2NZnv4ruahBSLGCx7_ge7eMIV-hFTDKgUme0ckGmWRN66IJ1ie9iH5u4pdmIBoBqs6uXDsbu5Qiuh8CVK9i0KsY9CoGnWPInv_y1vem913oo_Htn11H6y6PiD8bRE0Vz3_9BolHki8 |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_4018_ijgc_2014010101 crossref_primary_10_1016_j_eswa_2013_06_002 crossref_primary_10_1016_j_ins_2014_08_073 crossref_primary_10_1007_s00778_020_00633_6 crossref_primary_10_1016_j_ins_2010_04_013 crossref_primary_10_14778_3297753_3297761 crossref_primary_10_1007_s11042_022_13225_z crossref_primary_10_1016_j_eswa_2011_08_018 |
| Cites_doi | 10.1145/956750.956766 10.1145/276305.276335 10.1145/568574.568581 10.1023/B:DAMI.0000023674.74932.4c 10.1109/69.250074 10.1109/ICDE.2002.994758 10.1145/335191.335372 10.1109/ICDE.2005.80 10.1007/3-540-46145-0_1 10.1145/956750.956827 10.1007/BF00288683 10.1007/3-540-48521-X_23 10.1109/69.846291 10.1109/ICDE.1999.754960 10.1109/ICDE.2002.994772 10.1145/170036.170072 10.1109/ICDM.2004.10116 10.1109/ICDM.2002.1183892 10.1109/TKDE.2004.44 |
| ContentType | Journal Article |
| Copyright | 2009 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TKDE.2008.180 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1558-2191 |
| EndPage | 506 |
| ExternalDocumentID | 2543465641 21474196 10_1109_TKDE_2008_180 4609383 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c377t-3e620ee0fc62c165a8012d1d87aec4fa29144e994a0a9c1ef1f34f5ceec17e013 |
| IEDL.DBID | RIE |
| ISSN | 1041-4347 |
| IngestDate | Thu Oct 02 06:33:46 EDT 2025 Sat Sep 27 16:08:47 EDT 2025 Sun Jun 29 16:28:22 EDT 2025 Mon Jul 21 09:14:19 EDT 2025 Wed Oct 01 06:41:34 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Wed Aug 27 02:52:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Data Mining Itemset Extraction Indexing Content access Data analysis Scalability Database Very large databases Data distribution Information extraction Data mining item set extraction Database management system |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-3e620ee0fc62c165a8012d1d87aec4fa29144e994a0a9c1ef1f34f5ceec17e013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 912031283 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | pascalfrancis_primary_21474196 crossref_primary_10_1109_TKDE_2008_180 crossref_citationtrail_10_1109_TKDE_2008_180 proquest_miscellaneous_875021552 proquest_miscellaneous_34614842 ieee_primary_4609383 proquest_journals_912031283 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-01 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2009 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 Srikant (ref13) ref34 ref15 ref31 ref30 ref11 ref33 Ramesh (ref9) ref10 ref32 Grahne (ref17) Pietracaprina (ref20) ref2 ref19 Mannila (ref4) (ref22) 2008 Uno (ref14) ref24 ref23 ref26 Savasere (ref5) ref21 Moerkotte (ref18) Agrawal (ref25) Agrawal (ref1) Toivonen (ref6) ref29 ref8 ref7 ref3 Meo (ref28) Han (ref27) (ref16) 2008 |
| References_xml | – ident: ref7 doi: 10.1145/956750.956766 – volume-title: Proc. IEEE ICDM Workshop Frequent Itemset Mining Implementations (FIMI) ident: ref20 article-title: Mining Frequent Itemsets Using Patricia Tries – ident: ref26 doi: 10.1145/276305.276335 – volume-title: Proc. IEEE ICDM Workshop Frequent Itemset Mining Implementations (FIMI ’03) ident: ref17 article-title: Efficiently Using Prefix-Trees in Mining Frequent Itemsets – ident: ref12 doi: 10.1145/568574.568581 – start-page: 134 volume-title: Proc. 22nd Int’l Conf. Very Large Data Bases (VLDB ’96) ident: ref6 article-title: Sampling Large Databases for Association Rules – start-page: 476 volume-title: Proc. 24th Int’l Conf. Very Large Data Bases (VLDB ’98) ident: ref18 article-title: Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing – ident: ref15 doi: 10.1023/B:DAMI.0000023674.74932.4c – ident: ref23 doi: 10.1109/69.250074 – volume-title: Proc. Second Int’l Conf. Knowledge Discovery in Databases and Data Mining (KDD) ident: ref25 article-title: Developing Tightly-Coupled Data Mining Applications on a Relational Database System – volume-title: POSTGRESQL year: 2008 ident: ref16 – ident: ref32 doi: 10.1109/ICDE.2002.994758 – ident: ref3 doi: 10.1145/335191.335372 – volume-title: Proc. ACM SIGMOD Workshop Data Mining and Knowledge Discovery (DMKD) ident: ref9 article-title: Indexing and Data Access Methods for Database Mining – ident: ref33 doi: 10.1109/ICDE.2005.80 – ident: ref29 doi: 10.1007/3-540-46145-0_1 – ident: ref34 doi: 10.1145/956750.956827 – start-page: 181 volume-title: Proc. AAAI Workshop Knowledge Discovery in Databases (KDD ’94) ident: ref4 article-title: Efficient Algorithms for Discovering Association Rules – ident: ref21 doi: 10.1007/BF00288683 – volume-title: Proc. 20th Int’l Conf. Very Large Data Bases (VLDB ’94) ident: ref1 article-title: Fast Algorithm for Mining Association Rules – start-page: 432 volume-title: Proc. 21st Int’l Conf. Very Large Data Bases (VLDB ’95) ident: ref5 article-title: An Efficient Algorithm for Mining Association Rules in Large Databases – start-page: 67 volume-title: Proc. Third Int’l Conf. Knowledge Discovery and Data Mining (KDD ’97) ident: ref13 article-title: Mining Association Rules with Item Constraints – volume-title: FIMI year: 2008 ident: ref22 – ident: ref24 doi: 10.1007/3-540-48521-X_23 – volume-title: Proc. ACM SIGMOD Workshop Data Mining and Knowledge Discovery (DMKD) ident: ref27 article-title: DMQL: A Data Mining Query Language for Relational Databases – ident: ref31 doi: 10.1109/69.846291 – volume-title: Proc. IEEE ICDM Workshop Frequent Itemset Mining Implementations (FIMI) ident: ref14 article-title: LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets – ident: ref19 doi: 10.1109/ICDE.1999.754960 – ident: ref30 doi: 10.1109/ICDE.2002.994772 – ident: ref2 doi: 10.1145/170036.170072 – ident: ref8 doi: 10.1109/ICDM.2004.10116 – ident: ref11 doi: 10.1109/ICDM.2002.1183892 – volume-title: Proc. 22nd Int’l Conf. Very Large Data Bases (VLDB) ident: ref28 article-title: A New SQL-Like Operator for Mining Association Rules – ident: ref10 doi: 10.1109/TKDE.2004.44 |
| SSID | ssj0008781 |
| Score | 2.0123827 |
| Snippet | This paper presents the IMine index, a general and compact structure which provides tight integration of item set extraction in a relational DBMS. Since no... Since no constraint is enforced during the index creation phase, IMine provides a complete representation of the original database. |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 493 |
| SubjectTerms | Algorithms Applied sciences Association rules Blocking Categories Clustering algorithms Computer science; control theory; systems Computer systems and distributed systems. User interface Costs Data base management systems Data mining Data processing. List processing. Character string processing Data structures Exact sciences and technology Extraction Imines Indexes Indexing Itemset Extraction Memory organisation. Data processing Mining Relational data bases Relational databases Scalability Software Studies Transaction databases |
| Title | IMine: Index Support for Item Set Mining |
| URI | https://ieeexplore.ieee.org/document/4609383 https://www.proquest.com/docview/912031283 https://www.proquest.com/docview/34614842 https://www.proquest.com/docview/875021552 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-wwDLaAExxYH6KsOSD0DnRom7RpuCEWsWi4PJC4VWnqXkAziOlc-PXY3VgeSNxaxZVSO3H8JY4_gH0lXYJWSz9h6gBVGPKDhHf8mKxfYJCnUvJt5OFtcnmvrh_ihxk47O_CIGKdfIYDfqzP8ouxm_JW2ZFKCH-nchZmdZo0d7V6r5vqmpCU0AVhIqn0ez3No7ubs_MmazLk6o8f1p-aUIXTIe2ENFI2VBb_eeV6qblYgmHXySbD5HEwrfKBe_1Sv_G3f7EMi23MKU6aQbICMzhahaWOz0G003sVFj4UJ1yDv1dDejkWV1xPUTD7J0XqgmJcwdv74h9WYlizS_yB-4vzu9NLv-VV8J3UuvIlJlGAGJQuiVyYxJZXqSIsUm3RqdJGhlAWGqNsYI0LsQxLqcqYllMXaiSbrsPcaDzCDRCpsdLkTnGcp7AwNgrKgiye5pZwX649OOy0nbm26DhzXzxlNfgITMbGabgwyTgeHPTiz021jZ8E11ixvVCrUw92P5myb2c2JkXOxoOtzrZZO1knmQkjcm0Rf77Xt9Is46MTO8LxdJJJxQVTVeSB-EGCcB-HT3G0-X3XtmC-O4gKwm2Yq16muEPxTJXv1gP5DSLC78I |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tcCgcyrNqugV8QBUHsiSx83BviId2gXBhkbhFjjO5UO1WbPbSX9-ZvEpbkLgl8kRyZuzxfPZ4PoAjJW2EJpZuxNQBqtDkBwnvuCFZv0AvT6Tk28jpXTR-UNeP4eMATvq7MIhYJ5_hiB_rs_xibpe8VXaqIsLfiVyBtVApFTa3tXq_m8Q1JSnhC0JFUsV_KmqeTm8uLpu8SZ_rP75YgWpKFU6INAvSSdmQWfznl-vF5moT0q6bTY7J02hZ5SP7658Kju_9jy342Ead4qwZJtswwNkObHaMDqKd4Duw8aI84S4cT1J6-S4mXFFRMP8nxeqColzBG_ziHiuR1vwSe_BwdTk9H7sts4JrZRxXrsQo8BC90kaB9aPQ8DpV-EUSG7SqNIEmnIVaK-MZbX0s_VKqMqQF1foxklU_wepsPsPPIBJtpM6t4khPYaFN4JUF2TzJDSG_PHbgpNN2Ztuy48x-8SOr4YenMzZOw4ZJxnHgWy_-s6m38ZbgLiu2F2p16sDBX6bs25mPSZG7cWDY2TZrp-si035Azi3gzw_7VppnfHhiZjhfLjKpuGSqChwQb0gQ8uMAKgy-vN61Q_gwnqa32e3k7mYI692xlOd_hdXqeYn7FN1U-UE9qH8D1EzzDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMine%3A+Index+Support+for+Item+Set+Mining&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=BARALIS%2C+Elena&rft.au=CERQUITELLI%2C+Tania&rft.au=CHIUSANO%2C+Silvia&rft.date=2009-04-01&rft.pub=IEEE+Computer+Society&rft.issn=1041-4347&rft.volume=21&rft.issue=4&rft.spage=493&rft.epage=506&rft_id=info:doi/10.1109%2FTKDE.2008.180&rft.externalDBID=n%2Fa&rft.externalDocID=21474196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |