Enhancing the students’ perception of machine learning methods-based drug formulation using R_programming educational protocols
Background Recently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and more grounds. Moreover, providing pharmaceutical and related schools with non-commercial, free-to-use programming languages, software and tool...
Saved in:
| Published in | Future journal of pharmaceutical sciences Vol. 11; no. 1; pp. 102 - 11 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2025
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2314-7253 2314-7245 2314-7253 |
| DOI | 10.1186/s43094-025-00856-w |
Cover
| Abstract | Background
Recently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and more grounds. Moreover, providing pharmaceutical and related schools with non-commercial, free-to-use programming languages, software and tools is becoming an unavoidable need. The R programming language can be easily used, through the correct and simplified codes and packages, in conducting unsupervised ML methods, such as principal component analysis (PCA) and hierarchical clustering analysis (HCA), after calculating relevant descriptors of drugs and molecules.
Objective
The objective of this study was to assess the enhancement of non-computer sciences-based students’ perception of the use of machine learning methods such as PCA and HCA using R-programming in drug formulation.
Results
Undergraduate students were taught to use R program to derive PCA distinguishable plots such as score, loading and scree, in addition to HCA dendrograms, in the context of developing new pharmaceutical formulations. Surveys conducted pre- and post-teaching the course proved that implementation of such ML methods can help in better understanding and exploring the data, in order to derive meaningful conclusions, and make informed decisions that help develop pharmaceutical formulations of premium quality, with minimal resources consumption.
Conclusion
We hereby report the easy use of R-programming in applications and activities that introduce undergraduate Pharmaceutical Engineering and Biotechnology students to ML methods. Student surveys showed better student satisfaction and understanding of AI applications in solving pharmaceutical problems. We claim that these students and early_career researchers, who are non-specialists in computer science, can utilize R-programming to perform important pharmaceutical applications through the step-by-step guide and codes provided in this article.
Graphical Abstract |
|---|---|
| AbstractList | BackgroundRecently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and more grounds. Moreover, providing pharmaceutical and related schools with non-commercial, free-to-use programming languages, software and tools is becoming an unavoidable need. The R programming language can be easily used, through the correct and simplified codes and packages, in conducting unsupervised ML methods, such as principal component analysis (PCA) and hierarchical clustering analysis (HCA), after calculating relevant descriptors of drugs and molecules.ObjectiveThe objective of this study was to assess the enhancement of non-computer sciences-based students’ perception of the use of machine learning methods such as PCA and HCA using R-programming in drug formulation.ResultsUndergraduate students were taught to use R program to derive PCA distinguishable plots such as score, loading and scree, in addition to HCA dendrograms, in the context of developing new pharmaceutical formulations. Surveys conducted pre- and post-teaching the course proved that implementation of such ML methods can help in better understanding and exploring the data, in order to derive meaningful conclusions, and make informed decisions that help develop pharmaceutical formulations of premium quality, with minimal resources consumption.ConclusionWe hereby report the easy use of R-programming in applications and activities that introduce undergraduate Pharmaceutical Engineering and Biotechnology students to ML methods. Student surveys showed better student satisfaction and understanding of AI applications in solving pharmaceutical problems. We claim that these students and early_career researchers, who are non-specialists in computer science, can utilize R-programming to perform important pharmaceutical applications through the step-by-step guide and codes provided in this article. Background Recently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and more grounds. Moreover, providing pharmaceutical and related schools with non-commercial, free-to-use programming languages, software and tools is becoming an unavoidable need. The R programming language can be easily used, through the correct and simplified codes and packages, in conducting unsupervised ML methods, such as principal component analysis (PCA) and hierarchical clustering analysis (HCA), after calculating relevant descriptors of drugs and molecules. Objective The objective of this study was to assess the enhancement of non-computer sciences-based students’ perception of the use of machine learning methods such as PCA and HCA using R-programming in drug formulation. Results Undergraduate students were taught to use R program to derive PCA distinguishable plots such as score, loading and scree, in addition to HCA dendrograms, in the context of developing new pharmaceutical formulations. Surveys conducted pre- and post-teaching the course proved that implementation of such ML methods can help in better understanding and exploring the data, in order to derive meaningful conclusions, and make informed decisions that help develop pharmaceutical formulations of premium quality, with minimal resources consumption. Conclusion We hereby report the easy use of R-programming in applications and activities that introduce undergraduate Pharmaceutical Engineering and Biotechnology students to ML methods. Student surveys showed better student satisfaction and understanding of AI applications in solving pharmaceutical problems. We claim that these students and early_career researchers, who are non-specialists in computer science, can utilize R-programming to perform important pharmaceutical applications through the step-by-step guide and codes provided in this article. Graphical Abstract Abstract Background Recently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and more grounds. Moreover, providing pharmaceutical and related schools with non-commercial, free-to-use programming languages, software and tools is becoming an unavoidable need. The R programming language can be easily used, through the correct and simplified codes and packages, in conducting unsupervised ML methods, such as principal component analysis (PCA) and hierarchical clustering analysis (HCA), after calculating relevant descriptors of drugs and molecules. Objective The objective of this study was to assess the enhancement of non-computer sciences-based students’ perception of the use of machine learning methods such as PCA and HCA using R-programming in drug formulation. Results Undergraduate students were taught to use R program to derive PCA distinguishable plots such as score, loading and scree, in addition to HCA dendrograms, in the context of developing new pharmaceutical formulations. Surveys conducted pre- and post-teaching the course proved that implementation of such ML methods can help in better understanding and exploring the data, in order to derive meaningful conclusions, and make informed decisions that help develop pharmaceutical formulations of premium quality, with minimal resources consumption. Conclusion We hereby report the easy use of R-programming in applications and activities that introduce undergraduate Pharmaceutical Engineering and Biotechnology students to ML methods. Student surveys showed better student satisfaction and understanding of AI applications in solving pharmaceutical problems. We claim that these students and early_career researchers, who are non-specialists in computer science, can utilize R-programming to perform important pharmaceutical applications through the step-by-step guide and codes provided in this article. Graphical Abstract |
| ArticleNumber | 102 |
| Author | Hathout, Rania M. Ibrahim, Shaimaa S. |
| Author_xml | – sequence: 1 givenname: Rania M. orcidid: 0000-0001-9153-4355 surname: Hathout fullname: Hathout, Rania M. email: rania.hathout@pharma.asu.edu.eg organization: Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Faculty of Pharmaceutical Engineering and Technology, German International University (GIU), New Administrative Capital – sequence: 2 givenname: Shaimaa S. surname: Ibrahim fullname: Ibrahim, Shaimaa S. organization: Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University |
| BookMark | eNqNkc-K1TAYxYuM4DjOC7gKuK7mb5suZRh1YEAQXYevydfeXtrkmqRcZqeP4ev5JObeDupKXCX5cs6Pk5zn1YUPHqvqJaOvGdPNmyQF7WRNuaop1aqpj0-qSy6YrFuuxMVf-2fVdUp7SinTUvKGXlbfb_0OvJ38SPIOScqrQ5_Tz28_yAGjxUOegidhIAvY3eSRzAjRn-QL5l1wqe4hoSMuriMZQlzWGc6WNZ1En8whhjHCspxO6FZ7voWZlHkONszpRfV0gDnh9eN6VX15d_v55kN9__H93c3b-9qKts21sK4EFlZ2qrUd9Eq4rqGt5arvO4qKyU444Bx71BJ7p4VDBUrrHluqGRdX1d3GdQH2Jda0QHwwASZzHoQ4Goh5sjMaZE0LVFvHQMqmZ5oztErwQQ-OusEWlthYqz_AwxHm-TeQUXMqxWylmFKKOZdijsX1anOVt39dMWWzD2ssn5GM4EIp0XWcFhXfVDaGlCIO_4d-DJSK2I8Y_6D_4foFGsSyMg |
| Cites_doi | 10.1146/annurev-anchem-061622-041922 10.1021/acs.jchemed.2c00395 10.1007/978-981-16-5180-9_24 10.1016/B978-0-12-814421-3.00021-X 10.1007/978-3-030-22475-2_1 10.1007/978-981-16-5180-9 10.1208/s12249-024-02766-1 10.3109/10837450.2013.813544 10.1021/acs.jchemed.0c01363 10.1007/978-981-16-5180-9_11 10.1016/j.ajpe.2023.100135 10.1007/s10876-021-02126-0 10.1021/acs.jchemed.1c00456 10.3109/03639040903585143 10.5688/ajpe81346 10.1186/1029-242X-2013-203 10.2217/nnm.15.123 10.1515/jib-2022-0006 10.3390/pharmaceutics14112257 10.1016/B978-0-12-821092-5.00007-3 10.1038/s43586-022-00184-w 10.1080/10618600.1996.10474713 10.1021/acsomega.9b03487 10.3109/10837450903286537 10.1016/j.ajpe.2023.100615 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8AO 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.1186/s43094-025-00856-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology Education |
| EISSN | 2314-7253 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_e167a08cd1a446b1821ec532f8fd0dfc 10.1186/s43094-025-00856-w 10_1186_s43094_025_00856_w |
| GroupedDBID | 0R~ 457 5VS 7X7 8AO 8FI 8FJ AAFWJ AAKKN ABDBF ABEEZ ABMAC ABUWG ACACY ACGFS ACULB ADBBV ADEZE AFGXO AFKRA AFPKN AGHFR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR C24 C6C CCPQU EBS FDB FYUFA GROUPED_DOAJ HMCUK IAO IHR ITC KQ8 M~E O9- OK1 PHGZM PHGZT PIMPY SOJ UKHRP AAYXX CITATION PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADTOC ADVLN AEUPX AEXQZ AFPUW AIGII AITUG AKBMS AKYEP AMRAJ EJD H13 IPNFZ RIG ROL SSZ UNPAY |
| ID | FETCH-LOGICAL-c377t-3cd2603c4957c9ab53d9607c25bb90e51493da22ebe84ebd83de5a588be708123 |
| IEDL.DBID | UNPAY |
| ISSN | 2314-7253 2314-7245 |
| IngestDate | Fri Oct 03 12:45:40 EDT 2025 Tue Aug 19 09:14:44 EDT 2025 Sat Oct 11 13:41:21 EDT 2025 Wed Oct 01 05:29:24 EDT 2025 Sat Aug 02 01:10:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Pharmaceutical education research Chemoinformatics Prinicipal component Machine learning R programming |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-3cd2603c4957c9ab53d9607c25bb90e51493da22ebe84ebd83de5a588be708123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9153-4355 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00856-w |
| PQID | 3235539920 |
| PQPubID | 5642771 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e167a08cd1a446b1821ec532f8fd0dfc unpaywall_primary_10_1186_s43094_025_00856_w proquest_journals_3235539920 crossref_primary_10_1186_s43094_025_00856_w springer_journals_10_1186_s43094_025_00856_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: New Cairo |
| PublicationTitle | Future journal of pharmaceutical sciences |
| PublicationTitleAbbrev | Futur J Pharm Sci |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | J Cain (856_CR4) 2023; 87 CA Challener (856_CR28) 2024; 48 DO De Haan (856_CR7) 2021; 98 M Greenacre (856_CR15) 2022; 2 W Fagir (856_CR22) 2015; 10 JG Hardy (856_CR26) 2021; 98 SK Singh (856_CR25) 2010; 36 X Wang (856_CR29) 2025; 44 856_CR2 SK Singh (856_CR24) 2010; 15 MH Abdel Aziz (856_CR6) 2024; 88 R Mortlock (856_CR3) 2024; 15 SD Weaver (856_CR8) 2022; 99 RM Hathout (856_CR13) 2022; 33 RM Hathout (856_CR16) 2014; 19 E Muratov (856_CR5) 2017; 81 AM Hupp (856_CR9) 2024; 17 B Chandrasekaran (856_CR12) 2018 RM Hathout (856_CR21) 2020; 5 MM Aly (856_CR30) 2025; 9 RM Hathout (856_CR11) 2022 RM Hathout (856_CR18) 2021 D Banerjee (856_CR1) 2022 M Alloghani (856_CR14) 2020 S Saraçli (856_CR19) 2013; 1 R Ihaka (856_CR20) 1996; 5 N Nasser (856_CR23) 2024; 25 J Jiang (856_CR27) 2022; 14 IT Jolliffe (856_CR17) 2002 VA Saharan (856_CR10) 2022 |
| References_xml | – volume: 17 start-page: 197 issue: 1 year: 2024 ident: 856_CR9 publication-title: Annu Rev Anal Chem doi: 10.1146/annurev-anchem-061622-041922 – volume: 99 start-page: 3068 issue: 8 year: 2022 ident: 856_CR8 publication-title: J Chem Educ doi: 10.1021/acs.jchemed.2c00395 – start-page: 705 volume-title: Computer aided pharmaceutics and drug delivery: an application guide for students and researchers of pharmaceutical sciences year: 2022 ident: 856_CR11 doi: 10.1007/978-981-16-5180-9_24 – start-page: 731 volume-title: Dosage form design parameters year: 2018 ident: 856_CR12 doi: 10.1016/B978-0-12-814421-3.00021-X – start-page: 3 volume-title: Supervised and unsupervised learning for data science year: 2020 ident: 856_CR14 doi: 10.1007/978-3-030-22475-2_1 – start-page: 1 volume-title: Computer aided pharmaceutics and drug delivery: an application guide for students and researchers of pharmaceutical sciences year: 2022 ident: 856_CR10 doi: 10.1007/978-981-16-5180-9 – volume: 25 start-page: 56 issue: 3 year: 2024 ident: 856_CR23 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-024-02766-1 – volume: 19 start-page: 598 issue: 5 year: 2014 ident: 856_CR16 publication-title: Pharm Dev Technol doi: 10.3109/10837450.2013.813544 – volume: 98 start-page: 1124 year: 2021 ident: 856_CR26 publication-title: J Chem Educ doi: 10.1021/acs.jchemed.0c01363 – start-page: 309 volume-title: Computer aided pharmaceutics and drug delivery: an application guide for students and researchers of pharmaceutical sciences year: 2022 ident: 856_CR1 doi: 10.1007/978-981-16-5180-9_11 – volume: 87 issue: 10 year: 2023 ident: 856_CR4 publication-title: Am J Pharm Educ doi: 10.1016/j.ajpe.2023.100135 – volume: 33 start-page: 2031 issue: 5 year: 2022 ident: 856_CR13 publication-title: J Cluster Sci doi: 10.1007/s10876-021-02126-0 – volume: 98 start-page: 3245 issue: 10 year: 2021 ident: 856_CR7 publication-title: J Chem Educ doi: 10.1021/acs.jchemed.1c00456 – volume: 36 start-page: 933 issue: 8 year: 2010 ident: 856_CR25 publication-title: Drug Dev Ind Pharm doi: 10.3109/03639040903585143 – volume: 15 year: 2024 ident: 856_CR3 publication-title: Explor Res Clin Soc Pharm – volume: 81 start-page: 46 issue: 3 year: 2017 ident: 856_CR5 publication-title: Am J Pharm Educ doi: 10.5688/ajpe81346 – volume: 1 start-page: 203 year: 2013 ident: 856_CR19 publication-title: J Inequal Appl doi: 10.1186/1029-242X-2013-203 – volume: 10 start-page: 3373 issue: 22 year: 2015 ident: 856_CR22 publication-title: Nanomedicine doi: 10.2217/nnm.15.123 – ident: 856_CR2 doi: 10.1515/jib-2022-0006 – start-page: 78 volume-title: Principal component analysis year: 2002 ident: 856_CR17 – volume: 14 start-page: 2257 year: 2022 ident: 856_CR27 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14112257 – start-page: 361 volume-title: Applications of artificial intelligence in process systems engineering year: 2021 ident: 856_CR18 doi: 10.1016/B978-0-12-821092-5.00007-3 – volume: 2 start-page: 100 issue: 1 year: 2022 ident: 856_CR15 publication-title: Nat Rev Methods Primers doi: 10.1038/s43586-022-00184-w – volume: 5 start-page: 299 issue: 3 year: 1996 ident: 856_CR20 publication-title: J Comput Graph Stat doi: 10.1080/10618600.1996.10474713 – volume: 5 start-page: 1549 issue: 3 year: 2020 ident: 856_CR21 publication-title: ACS Omega doi: 10.1021/acsomega.9b03487 – volume: 15 start-page: 469 issue: 5 year: 2010 ident: 856_CR24 publication-title: Pharm Dev Technol doi: 10.3109/10837450903286537 – volume: 9 start-page: 60 year: 2025 ident: 856_CR30 publication-title: Chem Eng – volume: 88 issue: 1 year: 2024 ident: 856_CR6 publication-title: Am J Pharm Educ doi: 10.1016/j.ajpe.2023.100615 – volume: 44 year: 2025 ident: 856_CR29 publication-title: J Ind Inf Integr – volume: 48 start-page: 14 year: 2024 ident: 856_CR28 publication-title: Pharm Technol |
| SSID | ssj0001844260 |
| Score | 2.3014333 |
| Snippet | Background
Recently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and... BackgroundRecently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high concern and... Abstract Background Recently, the need for artificial intelligence (AI) and machine learning (ML) methods in drug development and research is gaining high... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 102 |
| SubjectTerms | Algorithms Artificial intelligence Chemoinformatics Datasets Education Eigenvalues Linear algebra Machine learning Medicine Medicine & Public Health Pharmaceutical education research Pharmaceuticals Pharmacy Physicochemical properties Prinicipal component Python R programming Skills Students Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQF-gBldKqSynyoeLStUjsOHaOLQKhSq0QAomb5Y_Z7QGyK7Kr1d7an9G_11_SsZPsLpe2B45JfBjnjT1vkvEbQj5kua9U0DnLbSZYobxgFcYBVgYlobLOWYgHhb9-Ky9viy938m6j1VesCWvlgdsXdwp5qWymfcgtZi4O6XAOXgo-0qOQhZGPu2-mq41kKn1d0UWUXu9PyejytClEFlVwuWSRZpRs8SQSJcH-Jyxz9WP0BdmZ11O7XNj7-43Yc_GS7HWkkX5qjd0nW1C_IidXrer0ckhv1oeomiE9oVdrPerlAfl5Xn-Pqhr1mCLbo02rZtn8_vGLTldlLXQyog-psBJo10liTNv20g2LoS7Q8Dgf08hxu45fNNbMj-m16Wq8HuIV9AUjaG_UgJigFc1rcntxfnN2ybrOC8wLpWZM-IBvT3jMnpRHxKQImOkoz6VzVQZIsioRLOfoAboAF7QIIK3U2oFCjsHFG7JdT2p4SyjuiA7BUgC6xKG6cgBceJsrb0GGYkA-9iiguUlgw6TERJemxcwgZiZhZhYD8jkCtRoZxbHTDXQZ07mM-ZfLDMhRD7PpVmxjBEfmFVV6swEZ9tCvH__NpOHKPf5jBofPMYN3ZJcnT46FiEdke_Y4h_dIjmbuOK2DP5V-D3U priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFLZGdwAOCAaIjoF8QLtQa4kdx84BIYY6TUhU1bRJu1mO7ZbDlpSmVdXb-Bn8PX4Jz47TsMvEMYmlvOQ9-71nv_d9CH1IUlMIK1OS6oSRTBhGCvADJLeCu0KXpXa-Ufj7JD-_yr5d8-s9NOl6YXxZZbcmhoXa1sbvkZ8wCp7Ro6gmnxc_iWeN8qerHYWGjtQK9lOAGHuE9qlHxhqg_dPxZHrR77rIzEOyB8a5NCOCZrzrpJH5SZOxxCPlUk58KJKTzT1vFUD970Wiu8PTp-jxulro7Ubf3Pzjn86eo2cxsMRfWkt4gfZcdeA5mWP9xgE6nrYo1dsRvuybrpoRPsbTHr96-xL9Glc_PApHNccQHeKmRb9s_tz9xotdGQyuZ_g2FGI6HJkn5rilo26Id40W2-V6jn1MHBnCsK-xn-MLFWvCbv2V6wQE2T1mRA1SNK_Q1dn48us5iUwNxDAhVoQZC3-VGci2hAENc2YhMxKG8rIsEgdBWcGsphQsRmautJJZxzWXsnQCYhLKXqNBVVfuDcKwgpZ0JoVzMoehsiido8zoVBjtuM2G6GOnERA3AHKokMjIXLX6U6A_FfSnNkN06pW2G-nBtMONejlXcW4ql-ZCJ9LYVENyXELGlTrDGUgxs4mdmSE66lSu4gxvVG-PQzTqzKB__JBIo52p_McXHD788rfoCQ326ksSj9BgtVy7dxAmrcr30fb_AlP6EkA priority: 102 providerName: ProQuest – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5Bkfg5IChULG2RD6gX1iKxk9g50qpVhVRUoVbqzfLfhkObrTa7Wu0NHoPX40kYO84ulVAFxyRONMmMPd_EM98AvM9yWwsnc5rrjNNCWE5r9AO0cqL0tTZG-1AofPalOr0sPl-VV6korBuy3YctybhSx2ktq49dwbNAY8tKGnBCRZcP4RHiDxYaNhylGof4Z0UWgXZ9qJD56613vFAk67-DMNebos_gyaK91aulvr7-w--cvIDnCTCST72GX8ID327D47O0Jb4NB-c9-fRqTC42tVTdmByQ8w0t9eoV_DhuvwVyjbYhCPpI15Nadr--_yS36-wWMp2Qm5hf6UlqKNGQvst0R4PHc8TNFg0JUDc1_iIhdb4hX1VK9boJR37IG0HRAxXEFKXoXsPlyfHF0SlNDRio5ULMKbcOPyS3GEQJi4orucOAR1hWGlNnHrFWzZ1mDA1BFt44yZ0vdSml8QKhBuM7sNVOW_8GCC6Mhk2k8F5WOFTWxnvGrc6F1b50xQg-DApBcSPPhorxiaxUrz6F6lNRfWo5gsOgs_XIwJEdT0xnjUpTTvm8EjqT1uUaY16DgVTubclRionL3MSOYG_QuEoTt1OcIQALZL3ZCMaDFWwu3yfSeG0p__AGb__v6bvwlEXzDZmHe7A1ny38PqKhuXkXjf83CoEGsA priority: 102 providerName: Springer Nature |
| Title | Enhancing the students’ perception of machine learning methods-based drug formulation using R_programming educational protocols |
| URI | https://link.springer.com/article/10.1186/s43094-025-00856-w https://www.proquest.com/docview/3235539920 https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00856-w https://doaj.org/article/e167a08cd1a446b1821ec532f8fd0dfc |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: KQ8 dateStart: 20150601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: ABDBF dateStart: 20230731 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: 7X7 dateStart: 20191201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals Complete - Open Access customDbUrl: eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: C24 dateStart: 20191201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2314-7253 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001844260 issn: 2314-7253 databaseCode: C6C dateStart: 20191201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfggTuiMCo_oL1Qb4kdx87jVjpNSFTVtErlKfItnWBLq6ZVVZ7gZ_D3-CXYubQMIQTiJYoTKzq2j-3vxOd8B-B1EOqEGxHiUAYUR1xTnLh9AMeGM5tIpaT1gcLvh_H5OHo3YZM9eNvEwmQf58VRcyTpE0hVcQ0-b4JdHM9NVk1zER8XEQ08rS1h2OOGGK_3oR0zh8hb0B4PRycfyrxyYYQ5KXMV1_eMNrEzv_3Irf2ppPG_hT23x6X34M4qn8vNWl5f_7QjnT0A27SlckT5dLRaqiP9-Reax_9t7EO4X0NWdFLp2CPYs_ljOBxVnNebHrrchXAVPXSIRjs27M0T-DrIrzynRz5FDmuiouLSLL5_-YbmW6caNMvQTenWaVGdx2KKquTWBfYbrUFmsZoij7DrfGPIe-xP0UVae5jd-JJt3FWcvJ6BYuakKJ7C-Gxw2T_Hdd4HrCnnS0y1cVYW1c5249rpC6PGjSrXhCmVBNZBvIQaSYjTPxFZZQQ1lkkmhLLcIRxCn0Ern-X2OSC3HiuSCW6tiF1VkShrCdUy5FpaZqIOvGlG24lb0nukpVkk4rTq89T1eVr2ebruwKlXiG1NT81dPpgtpmk901MbxlwGQptQOlNbOfsttJpRJ0VmApPpDhw06pTW60WRUuJwn-cIDjrQazRi9_pPIvW2avgXLXjxb9Vfwl1S6px3eDyA1nKxsq8cCFuqLuzzCe9C-3QwHF24Up9E_hr3u-VvjW49B38APgozdA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEF1V7aFwQFBABArsAXohq9q7tnd9qBCFVClto6hKpd6W9e7GPbR2iBNFucFn8DN8DF_CrL1O6KXi0qNjSxlrxjNv7Jn3EHoXhDrlRoQkVAEjEdeMpFAHSGJ4bFOVZcq6ReGzQdK_iL5expcb6He7C-PGKtucWCdqU2r3jnyfUaiMjkU1-Dj5TpxqlPu62kpoKC-tYA5qijG_2HFilwto4aqD4y_g7_eUHvVGn_vEqwwQzTifEaYNYHqmoVPgGqyLmQFUzzWNsywNLACKlBlFKdytiGxmBDM2VrEQmeVQTx3xAZSArYhFKTR_W4e9wfB8_ZZHRI4Cvla4CyPCaRS3mzsi2a8iFjhmXhoTB30SsrhVHWsRgVvId_Wx9iHanhcTtVyo6-t_6uHRY_TIA1n8qYm8J2jDFjtOA9rPi-ygvWHDir3s4tF6yavq4j08XPNlL5-in73iyrF-FDkGNIqrhm2z-vPjF56sxm5wOcY39eCnxV7pIseN_HVFXCk22EznOXYY3CuSYTfTn-Nz6WfQbtyRbQ0E2x1HRQlWVM_Qxb347DnaLMrCvkAYMnZGx4JbKxK4VKSZtZRpFXKtbGyiDvrQegTMrQlAZN04iUQ2_pPgP1n7Ty466NA5bXWlI--ufyinufS5QNow4SoQ2oQKmvEMOrzQ6piBFWMTmLHuoN3W5dJnlEqu47-Dum0YrE_fZVJ3FSr_cQcv7_7zt2i7Pzo7lafHg5NX6AGtY9eNQ-6izdl0bl8DRJtlb_xzgNG3-370_gIrsE8O |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB1VReKxQFBABArMAroho9gztme8QAhoo5ZCFaFWym4Yz0zCorVDnCjKDj6DX-Fz-BLu9SOmm4pNl35Ivta9cx_2mXMIeRmENpVOhSw0gWCRtIKlUAdY4mTsU5NlxuNG4c8nyeFZ9HEcj7fI73YvDMIq25xYJWpXWPxGPhAcKiOyqAaDSQOLGO0P386-M1SQwj-trZxGHSLHfr2C8a18c7QPvn7F-fDg9MMhaxQGmBVSLpiwDvp5YWFKkBYsi4WDjl5aHmdZGnhoJlLhDOfwpirymVPC-djESmVeQi1F0gNI_zekECnCCeVYdt93VITk75W2XRgxyaO43bOjkkEZiQA5eXnMsOlJ2OpSXazkAy71vJvftHfIrWU-M-uVOT__pxIO75G7TQtL39Uxd59s-XwH1Z8bpMgO2RvVfNjrPj3ttneVfbpHRx1T9voB-XmQf0O-j3xKoQ-lZc2zWf758YvONoAbWkzoRQX59LTRuJjSWvi6ZFiEHXXz5ZRi991okVFE80_pF92gzy7wyLcGgu3ITlGAFeVDcnYtHntEtvMi948JhVyd8YmS3qsEblVp5j0X1oTSGh-7qEdetx4BcyvqD12NTCrRtf80-E9X_tOrHnmPTtvcibTd1YliPtVNFtA-TKQJlHWhgTE8g9ku9DYWYMXEBW5ie2S3dbluckmpu8jvkX4bBt3lq0zqb0LlP97gydUPf0FuwoLTn45Ojp-S27wKXcRB7pLtxXzpn0FvtsieV4uAkq_Xver-AgJLTKg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6V9AAceCMCBfmAeiFOd-312nss0KpCoopQI5XTyq8NgnYTZRNF4QQ_g7_HL2G8j4QihEDc9mGtxvbn9TfyzDcAz6PYZtKpmMY64jSRltMM9wGaOil8po3RPiQKvz1NT8bJm3NxvgOvu1yY4uOsGnZHkqGAVJPXEOom-PnBzBXNMlfpQZXwKMjaMkEDb0jp6hrspgIZeQ92x6ejw_d1Xbk4oZLVtYrba8G73JnffuTK_lTL-F_hnpvj0ptwfVnO9HqlLy5-2pGOb4Pv-tIEonwaLhdmaD__IvP4v529A7daykoOG4zdhR1f3oP9UaN5vR6Qs20KVzUg-2S0VcNe34evR-WHoOlRTghyTVI1WprV9y_fyGwTVEOmBbmswzo9aetYTEhT3LqiYaN1xM2XExIYdltvjISI_Ql5l7cRZpfhznfhKmhvUKCYohXVAxgfH529OqFt3QdquZQLyq1DL4tb9N2kRbwI7nBWpWXCmCzySPEy7jRjiD-VeOMUd15ooZTxEhkO4w-hV05L_wgI_o8NK5T0XqXYVGXGe8atjqXVXrikDy-62UZza3mPvHaLVJo3Y57jmOf1mOerPrwMgNi0DNLc9YPpfJK3Kz33cSp1pKyLNbraBv232FvB0YrCRa6wfdjr4JS3_4sq5wx5X9AIjvow6BCxff0nkwYbGP5FDx7_W_MncIPVmAsBj3vQW8yX_imSsIV51q6xHy6gLlc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+students%E2%80%99+perception+of+machine+learning+methods-based+drug+formulation+using+R_programming+educational+protocols&rft.jtitle=Future+journal+of+pharmaceutical+sciences&rft.au=Hathout%2C+Rania+M.&rft.au=Ibrahim%2C+Shaimaa+S.&rft.date=2025-08-01&rft.issn=2314-7253&rft.eissn=2314-7253&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs43094-025-00856-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s43094_025_00856_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-7253&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-7253&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-7253&client=summon |