Tomato Stem and Leaf Segmentation and Phenotype Parameter Extraction Based on Improved Red Billed Blue Magpie Optimization Algorithm
In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segme...
Saved in:
| Published in | Agriculture (Basel) Vol. 15; no. 2; p. 180 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2077-0472 2077-0472 |
| DOI | 10.3390/agriculture15020180 |
Cover
| Abstract | In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R2) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production. |
|---|---|
| AbstractList | In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R2) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production. In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R[sup.2]) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production. |
| Audience | Academic |
| Author | Li, Xinying Yu, Helong Zhang, Xingrui Yang, Zhiyin Zhao, Shuai Huang, Ziyi Yang, Bo Yu, Shengpeng Yang, Han Lin, Yixing Zhang, Lina |
| Author_xml | – sequence: 1 givenname: Lina orcidid: 0000-0002-4093-1171 surname: Zhang fullname: Zhang, Lina – sequence: 2 givenname: Ziyi surname: Huang fullname: Huang, Ziyi – sequence: 3 givenname: Zhiyin surname: Yang fullname: Yang, Zhiyin – sequence: 4 givenname: Bo surname: Yang fullname: Yang, Bo – sequence: 5 givenname: Shengpeng surname: Yu fullname: Yu, Shengpeng – sequence: 6 givenname: Shuai surname: Zhao fullname: Zhao, Shuai – sequence: 7 givenname: Xingrui surname: Zhang fullname: Zhang, Xingrui – sequence: 8 givenname: Xinying surname: Li fullname: Li, Xinying – sequence: 9 givenname: Han surname: Yang fullname: Yang, Han – sequence: 10 givenname: Yixing surname: Lin fullname: Lin, Yixing – sequence: 11 givenname: Helong orcidid: 0000-0003-1800-3739 surname: Yu fullname: Yu, Helong |
| BookMark | eNqNUU1v1DAQjVCRKKW_gIslzlv8kWyc47YqsNKiVrSco4k9Tr2K7eA4wHLmh-PdIMSBA7aseXqa9_Q887I488FjUbxm9EqIhr6FPlo1D2mOyCrKKZP0WXHOaV2vaFnzs7_wi-JymvY0n4YJSdfnxc_H4CAF8pDQEfCa7BAMecDeoU-QbPAn9v4JfUiHEck9RHCYMJLb7ymCOrVcw4SaZLB1YwxfM_6U37UdhmMZZiQfoR8tkrsxWWd_LMaboQ_Rpif3qnhuYJjw8ne9KD6_u328-bDa3b3f3mx2KyXqOq246qqqxhIrxlFplLWmoqkMM50yujSKM6EVlrwUXAojmWSdBkChhJAGubgotouvDrBvx2gdxEMbwLYnIsS-hZisGrBtSpQNik6Luiuh402NlK6NLDnlhmKVvcrFa_YjHL7BMPwxZLQ9Lqb9x2Ky7M0iy3P6MuOU2n2Yo8-_bgWrGlZJzo_mV0tXDzmL9SYcR52vRmdVXr-xmd9I3shmnTNlgVgEKoZpimj-K8wvnva1ig |
| Cites_doi | 10.3390/rs9030281 10.1109/TIP.2020.3019649 10.3390/technologies12090156 10.1093/beheco/8.3.307 10.1007/s11042-021-11792-1 10.34133/plantphenomics.0080 10.1016/j.rineng.2024.103292 10.1007/s12293-024-00406-6 10.1016/j.biosystemseng.2023.08.010 10.1016/j.optcom.2020.126567 10.1016/j.compag.2021.106310 10.1016/j.compag.2018.09.034 10.3390/app10113712 10.3390/rs14225751 10.3390/computers13110282 10.1201/9781003201694 10.3390/rs14153809 10.1016/j.heliyon.2023.e21650 10.1007/s11042-024-20374-w 10.3390/agriculture14020228 10.1016/j.cageo.2024.105775 10.1109/TMM.2018.2869278 10.3390/agriculture14020220 10.1016/j.compag.2023.107940 10.1007/s10462-024-10716-3 10.3390/plants13030372 10.1016/j.engappai.2024.109383 10.3390/agronomy14010198 10.1016/j.asoc.2024.111981 10.1016/j.patcog.2024.111067 10.3389/fpls.2021.608732 10.1016/j.neucom.2024.127273 10.1088/1361-6501/ad1817 10.1016/j.agrformet.2021.108773 10.3390/s23249846 10.1007/s00371-023-03203-3 10.1016/j.knosys.2022.109346 10.1002/nme.1014 10.1007/s11227-024-06553-4 10.1007/s10586-024-04265-1 10.1007/s11704-023-3455-4 10.1007/s12293-017-0237-2 10.1016/j.ijleo.2023.171511 10.1016/j.cropro.2024.106665 10.3390/agronomy13112723 10.3389/fpls.2023.1268098 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI ADTOC UNPAY DOA |
| DOI | 10.3390/agriculture15020180 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2077-0472 |
| ExternalDocumentID | oai_doaj_org_article_94e89e3bd37b4ab297e006f84202f0e5 10.3390/agriculture15020180 A829896842 10_3390_agriculture15020180 |
| GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PUEGO SOI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c377t-2cb557e4e512ecde87d0395f1fbcfd4fc213dce4243283f8181bdaae3c338fe23 |
| IEDL.DBID | BENPR |
| ISSN | 2077-0472 |
| IngestDate | Tue Oct 14 19:07:35 EDT 2025 Tue Aug 19 23:44:18 EDT 2025 Wed Sep 03 15:11:24 EDT 2025 Mon Oct 20 16:57:30 EDT 2025 Thu Oct 16 04:35:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-2cb557e4e512ecde87d0395f1fbcfd4fc213dce4243283f8181bdaae3c338fe23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4093-1171 0000-0003-1800-3739 |
| OpenAccessLink | https://www.proquest.com/docview/3159158225?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3159158225 |
| PQPubID | 2032441 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_94e89e3bd37b4ab297e006f84202f0e5 unpaywall_primary_10_3390_agriculture15020180 proquest_journals_3159158225 gale_infotracacademiconefile_A829896842 crossref_primary_10_3390_agriculture15020180 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agriculture (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Xiaodan (ref_26) 2022; 2022 Alkadri (ref_14) 2024; 24 Boogaard (ref_1) 2023; 234 ref_11 Yonatan (ref_12) 2020; 41 ref_10 Wang (ref_36) 2024; 35 Alighaleh (ref_2) 2024; 11 ref_16 Sun (ref_22) 2024; 575 Shengwei (ref_23) 2024; 57 Zhang (ref_30) 2018; 10 Yao (ref_13) 2021; 482 Peyman (ref_46) 2022; 314 Hassen (ref_24) 2024; 16 Yu (ref_38) 2023; 40 Samoaa (ref_20) 2024; 138 Gan (ref_33) 2024; 81 Tianyuan (ref_45) 2021; 62 ref_28 Zhihua (ref_48) 2023; 210 Li (ref_31) 2004; 60 Miao (ref_17) 2021; 187 ref_35 ref_32 Yang (ref_42) 2022; 5 Xiang (ref_51) 2018; 154 Wu (ref_19) 2025; 158 ref_39 ref_37 Bicheng (ref_21) 2022; 252 Wang (ref_29) 2024; 164 Jing (ref_15) 2025; 194 Zeng (ref_52) 2024; 180 Anderson (ref_27) 1997; 8 Chaudhury (ref_44) 2020; 29 Zhu (ref_47) 2019; 21 Baljon (ref_25) 2023; 14 ref_43 ref_40 Gasmi (ref_41) 2024; 27 ref_49 ref_9 ref_8 ref_5 Shen (ref_18) 2021; 81 ref_4 Fang (ref_34) 2023; 295 ref_7 Anshori (ref_3) 2023; 9 ref_6 |
| References_xml | – ident: ref_37 doi: 10.3390/rs9030281 – volume: 29 start-page: 8735 year: 2020 ident: ref_44 article-title: Multilevel Optimization for Registration of Deformable Point Clouds publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3019649 – ident: ref_28 doi: 10.3390/technologies12090156 – volume: 8 start-page: 307 year: 1997 ident: ref_27 article-title: Saltatory search: A theoretical analysis publication-title: Behav. Ecol. doi: 10.1093/beheco/8.3.307 – volume: 81 start-page: 5443 year: 2021 ident: ref_18 article-title: Dual semantic-guided model for weakly-supervised zero-shot semantic segmentation publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11792-1 – ident: ref_9 doi: 10.34133/plantphenomics.0080 – volume: 24 start-page: 103292 year: 2024 ident: ref_14 article-title: Enhancing preservation: Addressing humidity challenges in Indonesian heritage buildings through advanced detection methods point cloud data publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103292 – volume: 16 start-page: 71 year: 2024 ident: ref_24 article-title: Joint filter and channel pruning of convolutional neural networks as a bi-level optimization problem publication-title: Memetic Comput. doi: 10.1007/s12293-024-00406-6 – volume: 234 start-page: 1 year: 2023 ident: ref_1 article-title: The added value of 3D point clouds for digital plant phenotyping—A case study on internode length measurements in cucumber publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.08.010 – volume: 482 start-page: 126567 year: 2021 ident: ref_13 article-title: Low-complexity point cloud denoising for LiDAR by PCA-based dimension reduction publication-title: Opt. Commun. doi: 10.1016/j.optcom.2020.126567 – volume: 187 start-page: 106310 year: 2021 ident: ref_17 article-title: Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106310 – volume: 154 start-page: 434 year: 2018 ident: ref_51 article-title: Image segmentation for whole tomato plant recognition at night publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.09.034 – ident: ref_32 doi: 10.3390/app10113712 – ident: ref_35 doi: 10.3390/rs14225751 – ident: ref_40 doi: 10.3390/computers13110282 – ident: ref_39 doi: 10.1201/9781003201694 – ident: ref_50 doi: 10.3390/rs14153809 – volume: 9 start-page: e21650 year: 2023 ident: ref_3 article-title: An overview of image-based phenotyping as an adaptive 4. 0 technology for studying plant abiotic stress: A bibliometric and literature review publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e21650 – volume: 2022 start-page: 2904625 year: 2022 ident: ref_26 article-title: A Whale Optimization Algorithm with Convergence and Exploitability Enhancement and Its Application publication-title: Math. Probl. Eng. – ident: ref_43 doi: 10.1007/s11042-024-20374-w – volume: 41 start-page: 757 year: 2020 ident: ref_12 article-title: Dissecting the roles of supervised and unsupervised learning in perceptual discrimination judgments publication-title: J. Neurosci. – ident: ref_4 doi: 10.3390/agriculture14020228 – volume: 194 start-page: 105775 year: 2025 ident: ref_15 article-title: Multimodal feature integration network for lithology identification from point cloud data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2024.105775 – volume: 21 start-page: 1011 year: 2019 ident: ref_47 article-title: Continuous Gesture Segmentation and Recognition Using 3DCNN and Convolutional LSTM publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2869278 – ident: ref_5 doi: 10.3390/agriculture14020220 – volume: 210 start-page: 107940 year: 2023 ident: ref_48 article-title: Maize crop row recognition algorithm based on improved UNet network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107940 – volume: 57 start-page: 134 year: 2024 ident: ref_23 article-title: Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10716-3 – volume: 14 start-page: 1098 year: 2023 ident: ref_25 article-title: A Framework for Agriculture Plant Disease Prediction using Deep Learning Classifier publication-title: Int. J. Adv. Comput. Sci. Appl. IJACSA – ident: ref_6 doi: 10.3390/plants13030372 – volume: 138 start-page: 109383 year: 2024 ident: ref_20 article-title: A unified active learning framework for annotating graph data for regression task publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109383 – ident: ref_10 doi: 10.3390/agronomy14010198 – volume: 62 start-page: 811 year: 2021 ident: ref_45 article-title: 3DSMDA-Net: An improved 3DCNN with separable structure and multi-dimensional attention for welding status recognition publication-title: J. Manuf. Syst. – volume: 164 start-page: 111981 year: 2024 ident: ref_29 article-title: Graph generative adversarial networks with evolutionary algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111981 – volume: 158 start-page: 111067 year: 2025 ident: ref_19 article-title: Class agnostic and specific consistency learning for weakly-supervised point cloud semantic segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2024.111067 – volume: 5 start-page: 35 year: 2022 ident: ref_42 article-title: An improved particle swarm optimization algorithm for parameter optimization publication-title: Comput. Informatiz. Mech. Syst. – ident: ref_11 doi: 10.3389/fpls.2021.608732 – volume: 575 start-page: 127273 year: 2024 ident: ref_22 article-title: GraphMoCo: A graph momentum contrast model for large-scale binary function representation learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127273 – volume: 35 start-page: 035024 year: 2024 ident: ref_36 article-title: High-precision point cloud registration method based on volume image correlation publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad1817 – volume: 314 start-page: 108773 year: 2022 ident: ref_46 article-title: Bayesian Multi-modeling of Deep Neural Nets for Probabilistic Crop Yield Prediction publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108773 – ident: ref_7 doi: 10.3390/s23249846 – volume: 40 start-page: 7719 year: 2023 ident: ref_38 article-title: Redundant same sequence point cloud registration publication-title: Vis. Comput. doi: 10.1007/s00371-023-03203-3 – volume: 252 start-page: 109346 year: 2022 ident: ref_21 article-title: Active deep image clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109346 – volume: 60 start-page: 1301 year: 2004 ident: ref_31 article-title: Optimization by random search with jumps publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1014 – volume: 81 start-page: 124 year: 2024 ident: ref_33 article-title: Many-objective optimization algorithm based on the similarity principle and multi-mechanism collaborative search publication-title: J. Supercomput. doi: 10.1007/s11227-024-06553-4 – volume: 27 start-page: 6579 year: 2024 ident: ref_41 article-title: Dataflow-based automatic parallelization of MATLAB/Simulink models for fitting modern multicore architectures publication-title: Clust. Comput. doi: 10.1007/s10586-024-04265-1 – volume: 11 start-page: 228 year: 2024 ident: ref_2 article-title: Feasibility and reliability of agricultural crop height measurement using the laser sensor array publication-title: Inf. Process. Agric. – ident: ref_16 doi: 10.1007/s11704-023-3455-4 – volume: 10 start-page: 199 year: 2018 ident: ref_30 article-title: Hybrid multi-objective cuckoo search with dynamical local search publication-title: Memetic Comput. doi: 10.1007/s12293-017-0237-2 – volume: 295 start-page: 171511 year: 2023 ident: ref_34 article-title: A point cloud registration method based on multiple-local-feature matching publication-title: Optik doi: 10.1016/j.ijleo.2023.171511 – volume: 180 start-page: 106665 year: 2024 ident: ref_52 article-title: Rice disease segmentation method based on CBAM-CARAFE-DeepLabv3+ publication-title: Crop Prot. doi: 10.1016/j.cropro.2024.106665 – ident: ref_8 doi: 10.3390/agronomy13112723 – ident: ref_49 doi: 10.3389/fpls.2023.1268098 |
| SSID | ssj0000913806 |
| Score | 2.295114 |
| Snippet | In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 180 |
| SubjectTerms | Accuracy Agricultural management Agricultural production Agriculture Algorithms Analysis Area Artificial neural networks Automation Business metrics convolutional neural network Data processing Deep learning elite strategy Geospatial data Image processing Image segmentation Labeling Leaf area Leaves Mathematical optimization Methods Neural networks Occlusion Optimization Optimization algorithms Parameters phenotype extraction analysis Phenotypes Phenotyping Plant extracts Plants Plants (botany) point cloud segmentation red-billed blue magpie optimization algorithm Root-mean-square errors Seedlings Segmentation Semantics Stems Swarm intelligence Thickness measurement Three dimensional models tomato plants Tomatoes |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzaHkr7opmnQodBLTWxLjqTjbkkIpWlDk0BuQtKMNoFde9l6SXvPD8_IdpItLbSHHoyN8GOYGWm-kTWfGHtHEQoF5DLTUFSZTDSE2gFmsgSjPEF23RXSHn_ZPzqXny6qi7WtvtKasJ4euFfcnpGoDQoPQnnpfGkUkqNELSlrjzl27KW5NmvJVDcGm0LofL-nGRKU1--56XIgs0DCQGXirfolFHWM_b-Py5vs8apeuJ_XbjZbCzyHW-zpgBj5uJf0GXuE9XO2OX740At2c9YQ8Gz4aYtz7mrgn9FFforT-VBZVHetJ5dYN2nOlZ-4tCaLVMoPfrTLvraBTyigAaeLfqKBrr_RMUnFgnSarZAfu-niCvlXGmbmQ_0mH8-mzfKqvZy_ZOeHB2cfj7Jhe4UsCKXarAy-qhRKpJiPAVAryIWpYhF9iCBjKAsBAWUpBWGQSJG98OAcikBpbcRSvGIbdVPja8YrE-hR70GqKA1ETfZX0qgIYIKHfMQ-3GnaLnoWDUvZRzKM_YNhRmySrHF_a6LA7hrIMezgGPZvjjFi75MtbeqoSZNuqDcgiRPllR3rRD6ffkOO2M6due3Qg79bQTivqAg-0Yuyexf4F-m3_4f0b9iTMu003E327LCNdrnCtwR_Wr_befotrWUFvQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeCMWCvIBiQvpJrZTJye0i1pViJYV7UrlFPkxTlfsJqs0y-vMD2eceMvzABySWJYd2Znx-PPE85mQpzhDAbexiDKbpJHwNISZshAJZnOpEbJnXSDt0fHe4Uy8OkvPgsPtImyrxKX4vDPSLJYy8nSGoyQd4S2LRyvrXnwInqREctnxiWRXydZeilh8QLZmx9PxO3-i3KZuTzXEcW0_UmUTCC0AcRDz3FU_TUcda__vtnmbXFtXK_X5o1osfph8Dm6SYtPsfs_J-911q3fNl18YHf-_X7fIjYBL6bhXpNvkClR3yPb4e1fukq-nNcLbmp60sKSqsvQ1KEdPoFyG-KWqy52eQ1V7zy6dKr_zCwVH9z-1TR9BQSc4bVqKid6dgem3eE18SCI-FmugR6pczYG-QWO2DFGidLwo62beni_vkdnB_unLwygc4hAZLmUbMaPTVIIARBZgLGTSxjxPXeK0cVY4wxJuDQgmOCIdh_gh0VYp4AYXzw4Yv08GVV3BA0LT3GBVra2QTuTWZahlUuTSWZsbbeMheb6RZbHquToKXON40Rd_EP2QTLy8L4t6ou0uo27KIozbIheQ5cC15VILpVkuAUXjMsFi5mJIh-SZ15bCmwP_JVWIasAWe2KtYpx5inv_s3NIdjYKVQQ7cVFwRJNJiiANXxRdKtnftP7hP5Z_RK4zf3Rx5z3aIYO2WcNjxFOtfhIGzTfwPh5O priority: 102 providerName: Unpaywall |
| Title | Tomato Stem and Leaf Segmentation and Phenotype Parameter Extraction Based on Improved Red Billed Blue Magpie Optimization Algorithm |
| URI | https://www.proquest.com/docview/3159158225 https://www.mdpi.com/2077-0472/15/2/180/pdf?version=1737006018 https://doaj.org/article/94e89e3bd37b4ab297e006f84202f0e5 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gA9IJ4iUCofkLgQNbGdJjkglEVbVYguq7YrlVNkx-MUaTdZtlkV7vxwZvLYgkCIQ5TEysOaGc-Mx55vGHuFFgqkDZSf2DDyFcEQJtqCr4RNY4Mue9Im0p5Oj07m6sNldLnDpkMuDG2rHHRiq6htXVCM_FCi3Q0jNGfRu9VXn6pG0erqUEJD96UV7NsWYuwO2xWEjDViu-PJdHa2jboQCmYSHHXwQxLn-4e6XPcgF4C-kSA8q99MVIvk_6e-3mN3N9VKf7_Ri8UvBun4Abvfe5I861j_kO1A9YjtZbc_esx-XNTokNb8vIEl15XlH0E7fg7lss84qtrW2RVUNcVi-UzTXi0kNZ98a9ZdzgMfo6GzHC-6AARen-ExpiRCPC02wE91ufoC_BOqn2Wf18mzRYnka66WT9j8eHLx_sTvyy74hYzjxheFiaIYFKAvAIWFJLaBTCMXOlM4q1whQmkLUEJJ9E0cWvzQWK1BFjjddSDkUzaq6gqeMR6lBb5qjFWxU6l1CcpFrNLYWZsWxgYeezNQOl916Bo5zkqIMflfGOOxMXFj-yhBY7cN9brM-5GWpwqSFKSxMjZKG5HGgJrFJUoEwgUQeew18TKnAUyU1H0eAvaYoLDyLCFQelqe9Nj-wO68H9nX-a0ceszfisD_9P75vz_3gt0TVFu4De_ss1Gz3sBLdHgac9BL8UEbMMC7-XSWff4JSogGnw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1V7aH0gPgUgQJ7AHHBqrO7ru1DhRJIldIkRG0q9WZ2vbMpUmKH1FHpnd_Fb2PG2aQgEOLSg2Vr5S_5jefNjj1vGHuFDAXShipIbDMKFMkQJtpCoIRNY4Mhe1IX0vYH-90z9fE8Ot9gP1a1MPRb5con1o7aljnlyPck8m4zQjqL3s2-BtQ1ir6urlpoaN9awR7UEmO-sOMYrq9wCnd5cPQB8X4txGFn9L4b-C4DQS7juApEbqIoBgVIfZBbSGIbyjRyTWdyZ5XLRVPaHJRQEqnYIcE1jdUaZI6zOwckfIAUsKWkSnHyt9XuDIYn6ywPqW4m4f5S7kjKNNzT47kX1QCMxQTpZ_1GiXXngD_5YYdtL4qZvr7Sk8kvBHh4j931kStvLU3tPtuA4gHbad1c6CH7PioxAC75aQVTrgvLe6AdP4Xx1Fc4FfXo8AKKknK_fKjp3zCElne-VfNljQVvI7FajhvLhAdun-DSpqJFXE0WwPt6PPsC_BO6u6mvI-WtyRjhqi6mj9jZrQDwmG0WZQFPGI_SHA81xqrYqdS6BO0wRlyctWlubNhgb1dPOpst1TwynAURMNlfgGmwNqGx3pWkuOuBcj7O_JudpQqSFKSxMjZKG5HGgJ7MJUqEwoUQNdgbwjIjh0FPUvu6B7xjkt7KWgmJ4NPn0AbbXcGdeU9ymd3YfYMFaxP4n7t_-u_TvWTb3VG_l_WOBsfP2B1BfY3r1NIu26zmC3iOwVZlXniL5uzzbb9EPwHP_EKU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQT0gHiKlAJ7AHHBirO7ru1DhRKaqKVtiPqQenN3vbMpUmKnqaPSO7-OX8WMs0lBIMSlB8uW5Zf87c43O7vzDWNvkaFA2lAFiW1FgSIZwkRbCJSwaWzQZU_qRNrD_tbuqfp8Fp2tsB-LXBhaVrmwibWhtmVOMfKmRN5tRUhnUdP5ZRGDnd7HyWVAFaRopnVRTkP7Mgt2u5Yb80ke-3BzjcO5q-29HcT-nRC97smn3cBXHAhyGcdVIHITRTEoQBqE3EIS21CmkWs5kzurXC5a0uaghJJIyw7JrmWs1iBzHOk5IBEEpIM1mvxCI7HW6fYHR8uIDylwJuHWXPpIyjRs6uHUC2wA-mWCtLR-o8e6isCfXLHO7s-Kib651qPRL2TYe8Qeei-Wt-fN7jFbgeIJW2_fvugp-35SojNc8uMKxlwXlh-AdvwYhmOf7VTUZwcXUJQUB-YDTevEEGbe_VZN5_kWvIMkazkezIMfeHyEW4cSGHE3mgE_1MPJV-Bf0PSNfU4pb4-GCFd1MX7GTu8EgOdstSgLeMF4lOZ4qzFWxU6l1iXYJmOVxs7aNDc2bLAPiz-dTebKHhmOiAiY7C_ANFiH0FheSrLc9YlyOsx8L89SBUkK0lgZG6WNSGNAq-YSJULhQoga7D1hmZHxoD-pfQ4EfjHJcGXthATxaWq0wTYXcGfeqlxlt32gwYJlE_ifr9_49-PesHvYmbKDvf7-S_ZAUInjOsq0yVar6Qxeod9Vmde-QXN2ftd96CdY1kbD |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeCMWCvIBiQvpJrZTJye0i1pViJYV7UrlFPkxTlfsJqs0y-vMD2eceMvzABySWJYd2Znx-PPE85mQpzhDAbexiDKbpJHwNISZshAJZnOpEbJnXSDt0fHe4Uy8OkvPgsPtImyrxKX4vDPSLJYy8nSGoyQd4S2LRyvrXnwInqREctnxiWRXydZeilh8QLZmx9PxO3-i3KZuTzXEcW0_UmUTCC0AcRDz3FU_TUcda__vtnmbXFtXK_X5o1osfph8Dm6SYtPsfs_J-911q3fNl18YHf-_X7fIjYBL6bhXpNvkClR3yPb4e1fukq-nNcLbmp60sKSqsvQ1KEdPoFyG-KWqy52eQ1V7zy6dKr_zCwVH9z-1TR9BQSc4bVqKid6dgem3eE18SCI-FmugR6pczYG-QWO2DFGidLwo62beni_vkdnB_unLwygc4hAZLmUbMaPTVIIARBZgLGTSxjxPXeK0cVY4wxJuDQgmOCIdh_gh0VYp4AYXzw4Yv08GVV3BA0LT3GBVra2QTuTWZahlUuTSWZsbbeMheb6RZbHquToKXON40Rd_EP2QTLy8L4t6ou0uo27KIozbIheQ5cC15VILpVkuAUXjMsFi5mJIh-SZ15bCmwP_JVWIasAWe2KtYpx5inv_s3NIdjYKVQQ7cVFwRJNJiiANXxRdKtnftP7hP5Z_RK4zf3Rx5z3aIYO2WcNjxFOtfhIGzTfwPh5O |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tomato+Stem+and+Leaf+Segmentation+and+Phenotype+Parameter+Extraction+Based+on+Improved+Red+Billed+Blue+Magpie+Optimization+Algorithm&rft.jtitle=Agriculture+%28Basel%29&rft.au=Zhang%2C+Lina&rft.au=Huang%2C+Ziyi&rft.au=Yang%2C+Zhiyin&rft.au=Yang%2C+Bo&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=15&rft.issue=2&rft.spage=180&rft_id=info:doi/10.3390%2Fagriculture15020180&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |