Tomato Stem and Leaf Segmentation and Phenotype Parameter Extraction Based on Improved Red Billed Blue Magpie Optimization Algorithm

In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segme...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 15; no. 2; p. 180
Main Authors Zhang, Lina, Huang, Ziyi, Yang, Zhiyin, Yang, Bo, Yu, Shengpeng, Zhao, Shuai, Zhang, Xingrui, Li, Xinying, Yang, Han, Lin, Yixing, Yu, Helong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text
ISSN2077-0472
2077-0472
DOI10.3390/agriculture15020180

Cover

Abstract In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R2) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production.
AbstractList In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R2) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production.
In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such as leaf area, internode length, and mutual occlusion between organs. Therefore, this paper proposes a tomato point cloud stem and leaf segmentation framework based on Elite Strategy-based Improved Red-billed Blue Magpie Optimization (ES-RBMO) Algorithm. The framework uses a four-layer Convolutional Neural Network (CNN) for stem and leaf segmentation by incorporating an improved swarm intelligence algorithm with an accuracy of 0.965. Four key phenotypic parameters of the plant were extracted. The phenotypic parameters of plant height, stem thickness, leaf area and leaf inclination were analyzed by comparing the values extracted by manual measurements with the values extracted by the 3D point cloud technique. The results showed that the coefficients of determination (R[sup.2]) for these parameters were 0.932, 0.741, 0.938 and 0.935, respectively, indicating high correlation. The root mean square error (RMSE) was 0.511, 0.135, 0.989 and 3.628, reflecting the level of error between the measured and extracted values. The absolute percentage errors (APE) were 1.970, 4.299, 4.365 and 5.531, which further quantified the measurement accuracy. In this study, an efficient and adaptive intelligent optimization framework was constructed, which is capable of optimizing data processing strategies to achieve efficient and accurate processing of tomato point cloud data. This study provides a new technical tool for plant phenotyping and helps to improve the intelligent management in agricultural production.
Audience Academic
Author Li, Xinying
Yu, Helong
Zhang, Xingrui
Yang, Zhiyin
Zhao, Shuai
Huang, Ziyi
Yang, Bo
Yu, Shengpeng
Yang, Han
Lin, Yixing
Zhang, Lina
Author_xml – sequence: 1
  givenname: Lina
  orcidid: 0000-0002-4093-1171
  surname: Zhang
  fullname: Zhang, Lina
– sequence: 2
  givenname: Ziyi
  surname: Huang
  fullname: Huang, Ziyi
– sequence: 3
  givenname: Zhiyin
  surname: Yang
  fullname: Yang, Zhiyin
– sequence: 4
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
– sequence: 5
  givenname: Shengpeng
  surname: Yu
  fullname: Yu, Shengpeng
– sequence: 6
  givenname: Shuai
  surname: Zhao
  fullname: Zhao, Shuai
– sequence: 7
  givenname: Xingrui
  surname: Zhang
  fullname: Zhang, Xingrui
– sequence: 8
  givenname: Xinying
  surname: Li
  fullname: Li, Xinying
– sequence: 9
  givenname: Han
  surname: Yang
  fullname: Yang, Han
– sequence: 10
  givenname: Yixing
  surname: Lin
  fullname: Lin, Yixing
– sequence: 11
  givenname: Helong
  orcidid: 0000-0003-1800-3739
  surname: Yu
  fullname: Yu, Helong
BookMark eNqNUU1v1DAQjVCRKKW_gIslzlv8kWyc47YqsNKiVrSco4k9Tr2K7eA4wHLmh-PdIMSBA7aseXqa9_Q887I488FjUbxm9EqIhr6FPlo1D2mOyCrKKZP0WXHOaV2vaFnzs7_wi-JymvY0n4YJSdfnxc_H4CAF8pDQEfCa7BAMecDeoU-QbPAn9v4JfUiHEck9RHCYMJLb7ymCOrVcw4SaZLB1YwxfM_6U37UdhmMZZiQfoR8tkrsxWWd_LMaboQ_Rpif3qnhuYJjw8ne9KD6_u328-bDa3b3f3mx2KyXqOq246qqqxhIrxlFplLWmoqkMM50yujSKM6EVlrwUXAojmWSdBkChhJAGubgotouvDrBvx2gdxEMbwLYnIsS-hZisGrBtSpQNik6Luiuh402NlK6NLDnlhmKVvcrFa_YjHL7BMPwxZLQ9Lqb9x2Ky7M0iy3P6MuOU2n2Yo8-_bgWrGlZJzo_mV0tXDzmL9SYcR52vRmdVXr-xmd9I3shmnTNlgVgEKoZpimj-K8wvnva1ig
Cites_doi 10.3390/rs9030281
10.1109/TIP.2020.3019649
10.3390/technologies12090156
10.1093/beheco/8.3.307
10.1007/s11042-021-11792-1
10.34133/plantphenomics.0080
10.1016/j.rineng.2024.103292
10.1007/s12293-024-00406-6
10.1016/j.biosystemseng.2023.08.010
10.1016/j.optcom.2020.126567
10.1016/j.compag.2021.106310
10.1016/j.compag.2018.09.034
10.3390/app10113712
10.3390/rs14225751
10.3390/computers13110282
10.1201/9781003201694
10.3390/rs14153809
10.1016/j.heliyon.2023.e21650
10.1007/s11042-024-20374-w
10.3390/agriculture14020228
10.1016/j.cageo.2024.105775
10.1109/TMM.2018.2869278
10.3390/agriculture14020220
10.1016/j.compag.2023.107940
10.1007/s10462-024-10716-3
10.3390/plants13030372
10.1016/j.engappai.2024.109383
10.3390/agronomy14010198
10.1016/j.asoc.2024.111981
10.1016/j.patcog.2024.111067
10.3389/fpls.2021.608732
10.1016/j.neucom.2024.127273
10.1088/1361-6501/ad1817
10.1016/j.agrformet.2021.108773
10.3390/s23249846
10.1007/s00371-023-03203-3
10.1016/j.knosys.2022.109346
10.1002/nme.1014
10.1007/s11227-024-06553-4
10.1007/s10586-024-04265-1
10.1007/s11704-023-3455-4
10.1007/s12293-017-0237-2
10.1016/j.ijleo.2023.171511
10.1016/j.cropro.2024.106665
10.3390/agronomy13112723
10.3389/fpls.2023.1268098
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
ADTOC
UNPAY
DOA
DOI 10.3390/agriculture15020180
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_94e89e3bd37b4ab297e006f84202f0e5
10.3390/agriculture15020180
A829896842
10_3390_agriculture15020180
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
SOI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c377t-2cb557e4e512ecde87d0395f1fbcfd4fc213dce4243283f8181bdaae3c338fe23
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Tue Oct 14 19:07:35 EDT 2025
Tue Aug 19 23:44:18 EDT 2025
Wed Sep 03 15:11:24 EDT 2025
Mon Oct 20 16:57:30 EDT 2025
Thu Oct 16 04:35:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-2cb557e4e512ecde87d0395f1fbcfd4fc213dce4243283f8181bdaae3c338fe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4093-1171
0000-0003-1800-3739
OpenAccessLink https://www.proquest.com/docview/3159158225?pq-origsite=%requestingapplication%&accountid=15518
PQID 3159158225
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_94e89e3bd37b4ab297e006f84202f0e5
unpaywall_primary_10_3390_agriculture15020180
proquest_journals_3159158225
gale_infotracacademiconefile_A829896842
crossref_primary_10_3390_agriculture15020180
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Xiaodan (ref_26) 2022; 2022
Alkadri (ref_14) 2024; 24
Boogaard (ref_1) 2023; 234
ref_11
Yonatan (ref_12) 2020; 41
ref_10
Wang (ref_36) 2024; 35
Alighaleh (ref_2) 2024; 11
ref_16
Sun (ref_22) 2024; 575
Shengwei (ref_23) 2024; 57
Zhang (ref_30) 2018; 10
Yao (ref_13) 2021; 482
Peyman (ref_46) 2022; 314
Hassen (ref_24) 2024; 16
Yu (ref_38) 2023; 40
Samoaa (ref_20) 2024; 138
Gan (ref_33) 2024; 81
Tianyuan (ref_45) 2021; 62
ref_28
Zhihua (ref_48) 2023; 210
Li (ref_31) 2004; 60
Miao (ref_17) 2021; 187
ref_35
ref_32
Yang (ref_42) 2022; 5
Xiang (ref_51) 2018; 154
Wu (ref_19) 2025; 158
ref_39
ref_37
Bicheng (ref_21) 2022; 252
Wang (ref_29) 2024; 164
Jing (ref_15) 2025; 194
Zeng (ref_52) 2024; 180
Anderson (ref_27) 1997; 8
Chaudhury (ref_44) 2020; 29
Zhu (ref_47) 2019; 21
Baljon (ref_25) 2023; 14
ref_43
ref_40
Gasmi (ref_41) 2024; 27
ref_49
ref_9
ref_8
ref_5
Shen (ref_18) 2021; 81
ref_4
Fang (ref_34) 2023; 295
ref_7
Anshori (ref_3) 2023; 9
ref_6
References_xml – ident: ref_37
  doi: 10.3390/rs9030281
– volume: 29
  start-page: 8735
  year: 2020
  ident: ref_44
  article-title: Multilevel Optimization for Registration of Deformable Point Clouds
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3019649
– ident: ref_28
  doi: 10.3390/technologies12090156
– volume: 8
  start-page: 307
  year: 1997
  ident: ref_27
  article-title: Saltatory search: A theoretical analysis
  publication-title: Behav. Ecol.
  doi: 10.1093/beheco/8.3.307
– volume: 81
  start-page: 5443
  year: 2021
  ident: ref_18
  article-title: Dual semantic-guided model for weakly-supervised zero-shot semantic segmentation
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11792-1
– ident: ref_9
  doi: 10.34133/plantphenomics.0080
– volume: 24
  start-page: 103292
  year: 2024
  ident: ref_14
  article-title: Enhancing preservation: Addressing humidity challenges in Indonesian heritage buildings through advanced detection methods point cloud data
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103292
– volume: 16
  start-page: 71
  year: 2024
  ident: ref_24
  article-title: Joint filter and channel pruning of convolutional neural networks as a bi-level optimization problem
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-024-00406-6
– volume: 234
  start-page: 1
  year: 2023
  ident: ref_1
  article-title: The added value of 3D point clouds for digital plant phenotyping—A case study on internode length measurements in cucumber
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.08.010
– volume: 482
  start-page: 126567
  year: 2021
  ident: ref_13
  article-title: Low-complexity point cloud denoising for LiDAR by PCA-based dimension reduction
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2020.126567
– volume: 187
  start-page: 106310
  year: 2021
  ident: ref_17
  article-title: Automatic stem-leaf segmentation of maize shoots using three-dimensional point cloud
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106310
– volume: 154
  start-page: 434
  year: 2018
  ident: ref_51
  article-title: Image segmentation for whole tomato plant recognition at night
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.09.034
– ident: ref_32
  doi: 10.3390/app10113712
– ident: ref_35
  doi: 10.3390/rs14225751
– ident: ref_40
  doi: 10.3390/computers13110282
– ident: ref_39
  doi: 10.1201/9781003201694
– ident: ref_50
  doi: 10.3390/rs14153809
– volume: 9
  start-page: e21650
  year: 2023
  ident: ref_3
  article-title: An overview of image-based phenotyping as an adaptive 4. 0 technology for studying plant abiotic stress: A bibliometric and literature review
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e21650
– volume: 2022
  start-page: 2904625
  year: 2022
  ident: ref_26
  article-title: A Whale Optimization Algorithm with Convergence and Exploitability Enhancement and Its Application
  publication-title: Math. Probl. Eng.
– ident: ref_43
  doi: 10.1007/s11042-024-20374-w
– volume: 41
  start-page: 757
  year: 2020
  ident: ref_12
  article-title: Dissecting the roles of supervised and unsupervised learning in perceptual discrimination judgments
  publication-title: J. Neurosci.
– ident: ref_4
  doi: 10.3390/agriculture14020228
– volume: 194
  start-page: 105775
  year: 2025
  ident: ref_15
  article-title: Multimodal feature integration network for lithology identification from point cloud data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2024.105775
– volume: 21
  start-page: 1011
  year: 2019
  ident: ref_47
  article-title: Continuous Gesture Segmentation and Recognition Using 3DCNN and Convolutional LSTM
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2869278
– ident: ref_5
  doi: 10.3390/agriculture14020220
– volume: 210
  start-page: 107940
  year: 2023
  ident: ref_48
  article-title: Maize crop row recognition algorithm based on improved UNet network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107940
– volume: 57
  start-page: 134
  year: 2024
  ident: ref_23
  article-title: Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10716-3
– volume: 14
  start-page: 1098
  year: 2023
  ident: ref_25
  article-title: A Framework for Agriculture Plant Disease Prediction using Deep Learning Classifier
  publication-title: Int. J. Adv. Comput. Sci. Appl. IJACSA
– ident: ref_6
  doi: 10.3390/plants13030372
– volume: 138
  start-page: 109383
  year: 2024
  ident: ref_20
  article-title: A unified active learning framework for annotating graph data for regression task
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109383
– ident: ref_10
  doi: 10.3390/agronomy14010198
– volume: 62
  start-page: 811
  year: 2021
  ident: ref_45
  article-title: 3DSMDA-Net: An improved 3DCNN with separable structure and multi-dimensional attention for welding status recognition
  publication-title: J. Manuf. Syst.
– volume: 164
  start-page: 111981
  year: 2024
  ident: ref_29
  article-title: Graph generative adversarial networks with evolutionary algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111981
– volume: 158
  start-page: 111067
  year: 2025
  ident: ref_19
  article-title: Class agnostic and specific consistency learning for weakly-supervised point cloud semantic segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.111067
– volume: 5
  start-page: 35
  year: 2022
  ident: ref_42
  article-title: An improved particle swarm optimization algorithm for parameter optimization
  publication-title: Comput. Informatiz. Mech. Syst.
– ident: ref_11
  doi: 10.3389/fpls.2021.608732
– volume: 575
  start-page: 127273
  year: 2024
  ident: ref_22
  article-title: GraphMoCo: A graph momentum contrast model for large-scale binary function representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127273
– volume: 35
  start-page: 035024
  year: 2024
  ident: ref_36
  article-title: High-precision point cloud registration method based on volume image correlation
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad1817
– volume: 314
  start-page: 108773
  year: 2022
  ident: ref_46
  article-title: Bayesian Multi-modeling of Deep Neural Nets for Probabilistic Crop Yield Prediction
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108773
– ident: ref_7
  doi: 10.3390/s23249846
– volume: 40
  start-page: 7719
  year: 2023
  ident: ref_38
  article-title: Redundant same sequence point cloud registration
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-023-03203-3
– volume: 252
  start-page: 109346
  year: 2022
  ident: ref_21
  article-title: Active deep image clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109346
– volume: 60
  start-page: 1301
  year: 2004
  ident: ref_31
  article-title: Optimization by random search with jumps
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1014
– volume: 81
  start-page: 124
  year: 2024
  ident: ref_33
  article-title: Many-objective optimization algorithm based on the similarity principle and multi-mechanism collaborative search
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-024-06553-4
– volume: 27
  start-page: 6579
  year: 2024
  ident: ref_41
  article-title: Dataflow-based automatic parallelization of MATLAB/Simulink models for fitting modern multicore architectures
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-024-04265-1
– volume: 11
  start-page: 228
  year: 2024
  ident: ref_2
  article-title: Feasibility and reliability of agricultural crop height measurement using the laser sensor array
  publication-title: Inf. Process. Agric.
– ident: ref_16
  doi: 10.1007/s11704-023-3455-4
– volume: 10
  start-page: 199
  year: 2018
  ident: ref_30
  article-title: Hybrid multi-objective cuckoo search with dynamical local search
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-017-0237-2
– volume: 295
  start-page: 171511
  year: 2023
  ident: ref_34
  article-title: A point cloud registration method based on multiple-local-feature matching
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.171511
– volume: 180
  start-page: 106665
  year: 2024
  ident: ref_52
  article-title: Rice disease segmentation method based on CBAM-CARAFE-DeepLabv3+
  publication-title: Crop Prot.
  doi: 10.1016/j.cropro.2024.106665
– ident: ref_8
  doi: 10.3390/agronomy13112723
– ident: ref_49
  doi: 10.3389/fpls.2023.1268098
SSID ssj0000913806
Score 2.295114
Snippet In response to the structural changes of tomato seedlings, traditional image techniques are difficult to accurately quantify key morphological parameters, such...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 180
SubjectTerms Accuracy
Agricultural management
Agricultural production
Agriculture
Algorithms
Analysis
Area
Artificial neural networks
Automation
Business metrics
convolutional neural network
Data processing
Deep learning
elite strategy
Geospatial data
Image processing
Image segmentation
Labeling
Leaf area
Leaves
Mathematical optimization
Methods
Neural networks
Occlusion
Optimization
Optimization algorithms
Parameters
phenotype extraction analysis
Phenotypes
Phenotyping
Plant extracts
Plants
Plants (botany)
point cloud segmentation
red-billed blue magpie optimization algorithm
Root-mean-square errors
Seedlings
Segmentation
Semantics
Stems
Swarm intelligence
Thickness measurement
Three dimensional models
tomato plants
Tomatoes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYllzaHkr7opmnQodBLTWxLjqTjbkkIpWlDk0BuQtKMNoFde9l6SXvPD8_IdpItLbSHHoyN8GOYGWm-kTWfGHtHEQoF5DLTUFSZTDSE2gFmsgSjPEF23RXSHn_ZPzqXny6qi7WtvtKasJ4euFfcnpGoDQoPQnnpfGkUkqNELSlrjzl27KW5NmvJVDcGm0LofL-nGRKU1--56XIgs0DCQGXirfolFHWM_b-Py5vs8apeuJ_XbjZbCzyHW-zpgBj5uJf0GXuE9XO2OX740At2c9YQ8Gz4aYtz7mrgn9FFforT-VBZVHetJ5dYN2nOlZ-4tCaLVMoPfrTLvraBTyigAaeLfqKBrr_RMUnFgnSarZAfu-niCvlXGmbmQ_0mH8-mzfKqvZy_ZOeHB2cfj7Jhe4UsCKXarAy-qhRKpJiPAVAryIWpYhF9iCBjKAsBAWUpBWGQSJG98OAcikBpbcRSvGIbdVPja8YrE-hR70GqKA1ETfZX0qgIYIKHfMQ-3GnaLnoWDUvZRzKM_YNhRmySrHF_a6LA7hrIMezgGPZvjjFi75MtbeqoSZNuqDcgiRPllR3rRD6ffkOO2M6due3Qg79bQTivqAg-0Yuyexf4F-m3_4f0b9iTMu003E327LCNdrnCtwR_Wr_befotrWUFvQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeCMWCvIBiQvpJrZTJye0i1pViJYV7UrlFPkxTlfsJqs0y-vMD2eceMvzABySWJYd2Znx-PPE85mQpzhDAbexiDKbpJHwNISZshAJZnOpEbJnXSDt0fHe4Uy8OkvPgsPtImyrxKX4vDPSLJYy8nSGoyQd4S2LRyvrXnwInqREctnxiWRXydZeilh8QLZmx9PxO3-i3KZuTzXEcW0_UmUTCC0AcRDz3FU_TUcda__vtnmbXFtXK_X5o1osfph8Dm6SYtPsfs_J-911q3fNl18YHf-_X7fIjYBL6bhXpNvkClR3yPb4e1fukq-nNcLbmp60sKSqsvQ1KEdPoFyG-KWqy52eQ1V7zy6dKr_zCwVH9z-1TR9BQSc4bVqKid6dgem3eE18SCI-FmugR6pczYG-QWO2DFGidLwo62beni_vkdnB_unLwygc4hAZLmUbMaPTVIIARBZgLGTSxjxPXeK0cVY4wxJuDQgmOCIdh_gh0VYp4AYXzw4Yv08GVV3BA0LT3GBVra2QTuTWZahlUuTSWZsbbeMheb6RZbHquToKXON40Rd_EP2QTLy8L4t6ou0uo27KIozbIheQ5cC15VILpVkuAUXjMsFi5mJIh-SZ15bCmwP_JVWIasAWe2KtYpx5inv_s3NIdjYKVQQ7cVFwRJNJiiANXxRdKtnftP7hP5Z_RK4zf3Rx5z3aIYO2WcNjxFOtfhIGzTfwPh5O
  priority: 102
  providerName: Unpaywall
Title Tomato Stem and Leaf Segmentation and Phenotype Parameter Extraction Based on Improved Red Billed Blue Magpie Optimization Algorithm
URI https://www.proquest.com/docview/3159158225
https://www.mdpi.com/2077-0472/15/2/180/pdf?version=1737006018
https://doaj.org/article/94e89e3bd37b4ab297e006f84202f0e5
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gA9IJ4iUCofkLgQNbGdJjkglEVbVYguq7YrlVNkx-MUaTdZtlkV7vxwZvLYgkCIQ5TEysOaGc-Mx55vGHuFFgqkDZSf2DDyFcEQJtqCr4RNY4Mue9Im0p5Oj07m6sNldLnDpkMuDG2rHHRiq6htXVCM_FCi3Q0jNGfRu9VXn6pG0erqUEJD96UV7NsWYuwO2xWEjDViu-PJdHa2jboQCmYSHHXwQxLn-4e6XPcgF4C-kSA8q99MVIvk_6e-3mN3N9VKf7_Ri8UvBun4Abvfe5I861j_kO1A9YjtZbc_esx-XNTokNb8vIEl15XlH0E7fg7lss84qtrW2RVUNcVi-UzTXi0kNZ98a9ZdzgMfo6GzHC-6AARen-ExpiRCPC02wE91ufoC_BOqn2Wf18mzRYnka66WT9j8eHLx_sTvyy74hYzjxheFiaIYFKAvAIWFJLaBTCMXOlM4q1whQmkLUEJJ9E0cWvzQWK1BFjjddSDkUzaq6gqeMR6lBb5qjFWxU6l1CcpFrNLYWZsWxgYeezNQOl916Bo5zkqIMflfGOOxMXFj-yhBY7cN9brM-5GWpwqSFKSxMjZKG5HGgJrFJUoEwgUQeew18TKnAUyU1H0eAvaYoLDyLCFQelqe9Nj-wO68H9nX-a0ceszfisD_9P75vz_3gt0TVFu4De_ss1Gz3sBLdHgac9BL8UEbMMC7-XSWff4JSogGnw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1V7aH0gPgUgQJ7AHHBqrO7ru1DhRJIldIkRG0q9WZ2vbMpUmKH1FHpnd_Fb2PG2aQgEOLSg2Vr5S_5jefNjj1vGHuFDAXShipIbDMKFMkQJtpCoIRNY4Mhe1IX0vYH-90z9fE8Ot9gP1a1MPRb5con1o7aljnlyPck8m4zQjqL3s2-BtQ1ir6urlpoaN9awR7UEmO-sOMYrq9wCnd5cPQB8X4txGFn9L4b-C4DQS7juApEbqIoBgVIfZBbSGIbyjRyTWdyZ5XLRVPaHJRQEqnYIcE1jdUaZI6zOwckfIAUsKWkSnHyt9XuDIYn6ywPqW4m4f5S7kjKNNzT47kX1QCMxQTpZ_1GiXXngD_5YYdtL4qZvr7Sk8kvBHh4j931kStvLU3tPtuA4gHbad1c6CH7PioxAC75aQVTrgvLe6AdP4Xx1Fc4FfXo8AKKknK_fKjp3zCElne-VfNljQVvI7FajhvLhAdun-DSpqJFXE0WwPt6PPsC_BO6u6mvI-WtyRjhqi6mj9jZrQDwmG0WZQFPGI_SHA81xqrYqdS6BO0wRlyctWlubNhgb1dPOpst1TwynAURMNlfgGmwNqGx3pWkuOuBcj7O_JudpQqSFKSxMjZKG5HGgJ7MJUqEwoUQNdgbwjIjh0FPUvu6B7xjkt7KWgmJ4NPn0AbbXcGdeU9ymd3YfYMFaxP4n7t_-u_TvWTb3VG_l_WOBsfP2B1BfY3r1NIu26zmC3iOwVZlXniL5uzzbb9EPwHP_EKU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQT0gHiKlAJ7AHHBirO7ru1DhRKaqKVtiPqQenN3vbMpUmKnqaPSO7-OX8WMs0lBIMSlB8uW5Zf87c43O7vzDWNvkaFA2lAFiW1FgSIZwkRbCJSwaWzQZU_qRNrD_tbuqfp8Fp2tsB-LXBhaVrmwibWhtmVOMfKmRN5tRUhnUdP5ZRGDnd7HyWVAFaRopnVRTkP7Mgt2u5Yb80ke-3BzjcO5q-29HcT-nRC97smn3cBXHAhyGcdVIHITRTEoQBqE3EIS21CmkWs5kzurXC5a0uaghJJIyw7JrmWs1iBzHOk5IBEEpIM1mvxCI7HW6fYHR8uIDylwJuHWXPpIyjRs6uHUC2wA-mWCtLR-o8e6isCfXLHO7s-Kib651qPRL2TYe8Qeei-Wt-fN7jFbgeIJW2_fvugp-35SojNc8uMKxlwXlh-AdvwYhmOf7VTUZwcXUJQUB-YDTevEEGbe_VZN5_kWvIMkazkezIMfeHyEW4cSGHE3mgE_1MPJV-Bf0PSNfU4pb4-GCFd1MX7GTu8EgOdstSgLeMF4lOZ4qzFWxU6l1iXYJmOVxs7aNDc2bLAPiz-dTebKHhmOiAiY7C_ANFiH0FheSrLc9YlyOsx8L89SBUkK0lgZG6WNSGNAq-YSJULhQoga7D1hmZHxoD-pfQ4EfjHJcGXthATxaWq0wTYXcGfeqlxlt32gwYJlE_ifr9_49-PesHvYmbKDvf7-S_ZAUInjOsq0yVar6Qxeod9Vmde-QXN2ftd96CdY1kbD
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4AeeCMWCvIBiQvpJrZTJye0i1pViJYV7UrlFPkxTlfsJqs0y-vMD2eceMvzABySWJYd2Znx-PPE85mQpzhDAbexiDKbpJHwNISZshAJZnOpEbJnXSDt0fHe4Uy8OkvPgsPtImyrxKX4vDPSLJYy8nSGoyQd4S2LRyvrXnwInqREctnxiWRXydZeilh8QLZmx9PxO3-i3KZuTzXEcW0_UmUTCC0AcRDz3FU_TUcda__vtnmbXFtXK_X5o1osfph8Dm6SYtPsfs_J-911q3fNl18YHf-_X7fIjYBL6bhXpNvkClR3yPb4e1fukq-nNcLbmp60sKSqsvQ1KEdPoFyG-KWqy52eQ1V7zy6dKr_zCwVH9z-1TR9BQSc4bVqKid6dgem3eE18SCI-FmugR6pczYG-QWO2DFGidLwo62beni_vkdnB_unLwygc4hAZLmUbMaPTVIIARBZgLGTSxjxPXeK0cVY4wxJuDQgmOCIdh_gh0VYp4AYXzw4Yv08GVV3BA0LT3GBVra2QTuTWZahlUuTSWZsbbeMheb6RZbHquToKXON40Rd_EP2QTLy8L4t6ou0uo27KIozbIheQ5cC15VILpVkuAUXjMsFi5mJIh-SZ15bCmwP_JVWIasAWe2KtYpx5inv_s3NIdjYKVQQ7cVFwRJNJiiANXxRdKtnftP7hP5Z_RK4zf3Rx5z3aIYO2WcNjxFOtfhIGzTfwPh5O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tomato+Stem+and+Leaf+Segmentation+and+Phenotype+Parameter+Extraction+Based+on+Improved+Red+Billed+Blue+Magpie+Optimization+Algorithm&rft.jtitle=Agriculture+%28Basel%29&rft.au=Zhang%2C+Lina&rft.au=Huang%2C+Ziyi&rft.au=Yang%2C+Zhiyin&rft.au=Yang%2C+Bo&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=15&rft.issue=2&rft.spage=180&rft_id=info:doi/10.3390%2Fagriculture15020180&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon