Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles
The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield im...
        Saved in:
      
    
          | Published in | Nanoscale advances Vol. 4; no. 1; pp. 3 - 38 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            RSC
    
        21.12.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2516-0230 2516-0230  | 
| DOI | 10.1039/d1na00765c | 
Cover
| Abstract | The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society.
We report a tailor-made multiplexed super-resolution imaging method using the lifetime fingerprints from luminescent nanoparticles, which can resolve the particles within the diffraction-limited spots and enable higher multiplexing capacity in space. | 
    
|---|---|
| AbstractList | The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. We report a tailor-made multiplexed super-resolution imaging method using the lifetime fingerprints from luminescent nanoparticles, which can resolve the particles within the diffraction-limited spots and enable higher multiplexing capacity in space. The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society.The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. We report a tailor-made multiplexed super-resolution imaging method using the lifetime fingerprints from luminescent nanoparticles, which can resolve the particles within the diffraction-limited spots and enable higher multiplexing capacity in space.  | 
    
| Author | Liao, Jiayan Lu, Jie Song, Yiliao Zhou, Jiajia Ding, Lei Wang, Fan Liu, Baolei Chen, Chaohao  | 
    
| AuthorAffiliation | University of Technology Sydney Faculty of Engineering and IT Institute for Biomedical Materials and Devices (IBMD) Faculty of Science Centre for Artificial Intelligence School of Electrical and Data Engineering  | 
    
| AuthorAffiliation_xml | – name: School of Electrical and Data Engineering – name: Centre for Artificial Intelligence – name: Faculty of Engineering and IT – name: Institute for Biomedical Materials and Devices (IBMD) – name: University of Technology Sydney – name: Faculty of Science  | 
    
| Author_xml | – sequence: 1 givenname: Baolei surname: Liu fullname: Liu, Baolei – sequence: 2 givenname: Jiayan surname: Liao fullname: Liao, Jiayan – sequence: 3 givenname: Yiliao surname: Song fullname: Song, Yiliao – sequence: 4 givenname: Chaohao surname: Chen fullname: Chen, Chaohao – sequence: 5 givenname: Lei surname: Ding fullname: Ding, Lei – sequence: 6 givenname: Jie surname: Lu fullname: Lu, Jie – sequence: 7 givenname: Jiajia surname: Zhou fullname: Zhou, Jiajia – sequence: 8 givenname: Fan surname: Wang fullname: Wang, Fan  | 
    
| BookMark | eNptkd1PFTEQxRuDiYi8-G5yH4lmsR-7XfpCQi4oJqgv-tyU6eylpNuu_QD579l7LxEUn2Yy_Z2T05nXZCfEgIS8ZfSQUaE-WhYMpb3s4AXZ5R2TDeWC7jzpX5H9nK8ppZy1bdurXTJ9rb64yeNvtItcUoVS09w67-vogikuhkWuE6YmYY6-bgZuNCsXVotbV64W3g1Y3IgNhnmIuJbXCWK4wZTXdDAhTiYVBx7zG_JyMD7j_kPdIz8_nf1YnjcX3z9_WZ5cNCD6vjScqUGB6SSTg0UUFqgBaTnSSxCWgxKqBwVM4REITsG2pgPeWzoMTEkKYo982PrWMJm7W-O9ntKcO91pRvV6X_pxXzN9vKWnejmiBQwlmUdFNE7__RLclV7FG61apvruaDY4eDBI8VfFXPToMqD3JmCsWfOeSSU6LuWMvt-ikGLOCYdnwU7Zt5NNsOUM039gcGVzlTmG8_-XvNtKUoY_1k_-eg-D6rER | 
    
| CitedBy_id | crossref_primary_10_1038_s41566_024_01462_7 crossref_primary_10_1007_s00216_022_03999_4 crossref_primary_10_1002_adma_202308844 crossref_primary_10_1021_acs_chemrev_2c00050 crossref_primary_10_1002_smtd_202401616 crossref_primary_10_1002_advs_202203354 crossref_primary_10_3788_LOP240659 crossref_primary_10_1002_lpor_202400746 crossref_primary_10_1038_s41377_024_01547_6 crossref_primary_10_1016_j_addr_2025_115521 crossref_primary_10_1016_j_cis_2023_102880 crossref_primary_10_1038_s41598_022_27111_z crossref_primary_10_1002_adpr_202200098 crossref_primary_10_1021_acs_nanolett_2c02269  | 
    
| Cites_doi | 10.1038/nmat3149 10.1126/science.aab4097 10.1021/acs.chemrev.7b00218 10.1038/s41565-018-0221-0 10.1073/pnas.1804725115 10.1126/science.1156947 10.1038/s41467-018-03589-y 10.1021/ja710934v 10.1039/D0NR03076G 10.1002/adom.201700416 10.1117/1.JBO.18.6.061215 10.1002/smll.201801882 10.1002/anie.201501193 10.1021/acs.jpclett.1c02923 10.1038/nprot.2006.141 10.1021/acs.analchem.7b03542 10.1002/cphc.201100735 10.1002/anie.201711606 10.1021/acsami.6b03165 10.1002/adma.201604431 10.1038/nphoton.2013.322 10.1021/ja200729w 10.1038/nnano.2013.171 10.1038/nbt1106 10.1038/nmeth.1324 10.1038/s41467-018-05842-w 10.1021/acs.nanolett.1c02404 10.1038/s41592-021-01108-4 10.1046/j.1365-2818.2000.00710.x 10.1016/j.chempr.2018.01.009 10.1002/adma.202008847 10.1021/acs.analchem.8b04330 10.1016/B978-0-12-407761-4.00020-8 10.1364/OE.19.003130 10.1021/acs.nanolett.0c00448 10.1038/ncomms10980 10.1038/nmeth.3740  | 
    
| ContentType | Journal Article | 
    
| Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2022 RSC  | 
    
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2022 RSC  | 
    
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1039/d1na00765c | 
    
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 2516-0230 | 
    
| EndPage | 38 | 
    
| ExternalDocumentID | 10.1039/d1na00765c PMC9419758 10_1039_D1NA00765C d1na00765c  | 
    
| GrantInformation_xml | – fundername: ; grantid: 201706020170; 201508530231; 201809370076 – fundername: ; grantid: DE180100669; DE200100074; DP190101058  | 
    
| GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS ANUXI BCNDV EBS GROUPED_DOAJ OK1 SMJ AAFWJ AAYXX AFPKN C6K CITATION H13 M~E RPM 7X8 5PM ADTOC EJD UNPAY  | 
    
| ID | FETCH-LOGICAL-c377t-219f9ca5616fdee3dc0ac6d2e0bc3d2c9397c9c19e8c320cd4a5c27d0ff1960c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2516-0230 | 
    
| IngestDate | Sun Oct 26 03:53:20 EDT 2025 Tue Sep 30 17:19:14 EDT 2025 Thu Oct 02 11:41:35 EDT 2025 Tue Jul 01 04:28:14 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Mon May 09 04:20:32 EDT 2022  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c377t-219f9ca5616fdee3dc0ac6d2e0bc3d2c9397c9c19e8c320cd4a5c27d0ff1960c3 | 
    
| Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1na00765c ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-7403-3305 0000-0003-4620-7771 0000-0002-9574-5165 0000-0002-4779-4683 0000-0002-6633-2695 0000-0002-0605-5745  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2022/na/d1na00765c | 
    
| PQID | 2716935266 | 
    
| PQPubID | 23479 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_2716935266 unpaywall_primary_10_1039_d1na00765c crossref_citationtrail_10_1039_D1NA00765C pubmedcentral_primary_oai_pubmedcentral_nih_gov_9419758 rsc_primary_d1na00765c crossref_primary_10_1039_D1NA00765C  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-12-21 | 
    
| PublicationDateYYYYMMDD | 2021-12-21 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-21 day: 21  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Nanoscale advances | 
    
| PublicationYear | 2021 | 
    
| Publisher | RSC | 
    
| Publisher_xml | – name: RSC | 
    
| References | Bates (D1NA00765C/cit7/1) 2012; 13 He (D1NA00765C/cit19/1) 2018; 90 Zhang (D1NA00765C/cit1/1) 2017; 29 Zhou (D1NA00765C/cit2/1) 2018; 14 Niehörster (D1NA00765C/cit9/1) 2016; 13 Chen (D1NA00765C/cit26/1) 2013; 114 Wang (D1NA00765C/cit23/1) 2011; 10 Zuo (D1NA00765C/cit29/1) 2018; 57 Tian (D1NA00765C/cit15/1) 2017; 5 Fan (D1NA00765C/cit24/1) 2018; 13 Zhang (D1NA00765C/cit4/1) 2018; 9 Li (D1NA00765C/cit16/1) 2005; 23 Zhou (D1NA00765C/cit18/1) 2016; 8 Müller (D1NA00765C/cit33/1) 2016; 7 Bückers (D1NA00765C/cit8/1) 2011; 19 Chen (D1NA00765C/cit22/1) 2021; 33 Gao (D1NA00765C/cit21/1) 2020; 12 Lu (D1NA00765C/cit6/1) 2014; 8 Gustafsson (D1NA00765C/cit30/1) 2000; 198 Kner (D1NA00765C/cit32/1) 2009; 6 Heintzmann (D1NA00765C/cit35/1) 2017; 117 Lin (D1NA00765C/cit3/1) 2018; 4 Farka (D1NA00765C/cit37/1) 2017; 89 Yang (D1NA00765C/cit12/1) 2008; 130 Li (D1NA00765C/cit34/1) 2015; 349 Gómez-García (D1NA00765C/cit10/1) 2018; 115 Zhao (D1NA00765C/cit5/1) 2013; 8 Zhao (D1NA00765C/cit13/1) 2011; 133 Jiang (D1NA00765C/cit14/1) 2015; 54 Schermelleh (D1NA00765C/cit31/1) 2008; 320 Liao (D1NA00765C/cit25/1) 2021; 21 Liu (D1NA00765C/cit36/1) 2020; 20 Liao (D1NA00765C/cit38/1) 2021; 12 Chen (D1NA00765C/cit20/1) 2018; 9 Scipioni (D1NA00765C/cit27/1) 2021; 18 Song (D1NA00765C/cit28/1) 2012; 18 Han (D1NA00765C/cit11/1) 2001; 19 Um (D1NA00765C/cit17/1) 2006; 1  | 
    
| References_xml | – volume: 10 start-page: 968 year: 2011 ident: D1NA00765C/cit23/1 publication-title: Nat. Mater. doi: 10.1038/nmat3149 – volume: 349 start-page: 6251 year: 2015 ident: D1NA00765C/cit34/1 publication-title: Science doi: 10.1126/science.aab4097 – volume: 19 start-page: 631 year: 2001 ident: D1NA00765C/cit11/1 publication-title: Nat. Nanotechnol. – volume: 117 start-page: 13890 year: 2017 ident: D1NA00765C/cit35/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00218 – volume: 13 start-page: 941 year: 2018 ident: D1NA00765C/cit24/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0221-0 – volume: 115 start-page: 12991 year: 2018 ident: D1NA00765C/cit10/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1804725115 – volume: 320 start-page: 1332 year: 2008 ident: D1NA00765C/cit31/1 publication-title: Science doi: 10.1126/science.1156947 – volume: 9 start-page: 1183 year: 2018 ident: D1NA00765C/cit4/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03589-y – volume: 130 start-page: 5286 year: 2008 ident: D1NA00765C/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja710934v – volume: 12 start-page: 18595 year: 2020 ident: D1NA00765C/cit21/1 publication-title: Nanoscale doi: 10.1039/D0NR03076G – volume: 5 start-page: 1700416 year: 2017 ident: D1NA00765C/cit15/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700416 – volume: 18 start-page: 061215 year: 2012 ident: D1NA00765C/cit28/1 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.18.6.061215 – volume: 14 start-page: 1801882 year: 2018 ident: D1NA00765C/cit2/1 publication-title: Small doi: 10.1002/smll.201801882 – volume: 54 start-page: 5360 year: 2015 ident: D1NA00765C/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501193 – volume: 12 start-page: 10242 year: 2021 ident: D1NA00765C/cit38/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02923 – volume: 1 start-page: 995 year: 2006 ident: D1NA00765C/cit17/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.141 – volume: 89 start-page: 11825 year: 2017 ident: D1NA00765C/cit37/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b03542 – volume: 13 start-page: 99 year: 2012 ident: D1NA00765C/cit7/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201100735 – volume: 57 start-page: 3054 year: 2018 ident: D1NA00765C/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711606 – volume: 8 start-page: 13303 year: 2016 ident: D1NA00765C/cit18/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03165 – volume: 29 start-page: 1604431 year: 2017 ident: D1NA00765C/cit1/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604431 – volume: 8 start-page: 32 year: 2014 ident: D1NA00765C/cit6/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.322 – volume: 133 start-page: 8790 year: 2011 ident: D1NA00765C/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200729w – volume: 8 start-page: 729 year: 2013 ident: D1NA00765C/cit5/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.171 – volume: 23 start-page: 885 year: 2005 ident: D1NA00765C/cit16/1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1106 – volume: 6 start-page: 339 year: 2009 ident: D1NA00765C/cit32/1 publication-title: Nat. Methods doi: 10.1038/nmeth.1324 – volume: 9 start-page: 3290 year: 2018 ident: D1NA00765C/cit20/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05842-w – volume: 21 start-page: 7659 year: 2021 ident: D1NA00765C/cit25/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02404 – volume: 18 start-page: 542 year: 2021 ident: D1NA00765C/cit27/1 publication-title: Nat. Methods doi: 10.1038/s41592-021-01108-4 – volume: 198 start-page: 82 year: 2000 ident: D1NA00765C/cit30/1 publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2000.00710.x – volume: 4 start-page: 997 year: 2018 ident: D1NA00765C/cit3/1 publication-title: Chem doi: 10.1016/j.chempr.2018.01.009 – volume: 33 start-page: 2008847 year: 2021 ident: D1NA00765C/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008847 – volume: 90 start-page: 12356 year: 2018 ident: D1NA00765C/cit19/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04330 – volume: 114 start-page: 457 year: 2013 ident: D1NA00765C/cit26/1 publication-title: Methods Cell Biol. doi: 10.1016/B978-0-12-407761-4.00020-8 – volume: 19 start-page: 3130 year: 2011 ident: D1NA00765C/cit8/1 publication-title: Opt. Express doi: 10.1364/OE.19.003130 – volume: 20 start-page: 4775 year: 2020 ident: D1NA00765C/cit36/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00448 – volume: 7 start-page: 10980 year: 2016 ident: D1NA00765C/cit33/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10980 – volume: 13 start-page: 257 year: 2016 ident: D1NA00765C/cit9/1 publication-title: Nat. Methods doi: 10.1038/nmeth.3740  | 
    
| SSID | ssj0002144479 | 
    
| Score | 2.2966895 | 
    
| Snippet | The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles.... | 
    
| SourceID | unpaywall pubmedcentral proquest crossref rsc  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3 | 
    
| SubjectTerms | Chemistry | 
    
| Title | Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles | 
    
| URI | https://www.proquest.com/docview/2716935266 https://pubmed.ncbi.nlm.nih.gov/PMC9419758 https://pubs.rsc.org/en/content/articlepdf/2022/na/d1na00765c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2516-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002144479 issn: 2516-0230 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2516-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002144479 issn: 2516-0230 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2516-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002144479 issn: 2516-0230 databaseCode: RPM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNw4CFYER5VEHvhkDa286iP1cJqhbQVByotp8i1HRFRvFHbiMevZ8Zx2-3CAXGLlHEy8YyTmfHk-wBOuZGEWmYToYosyZgSicwNSybKCJ0qNlEejuFyVlzMsw9X-VXozaF_YVCJ9Wi17iGCLabvhNHkNuMwj62pKV3nY6fGhjlFG0m5PoLjIsd7DuB4Pvs4_UyEcjmj5lqRbiFJhbwx4PAjtI8sb_dFHqEm9-Fu51r187taLm98es4f9vyqXmnfcfJ11G0WI_3rFp7jfz_VI3gQgtJ42ss9hjvWPYH2MvQa_rAm7mFmuxUeNsSN3PRFxHjdtXaVYMoePDhuvnnao5jqu_GyqS2R1yc2oB7i8K71je6-Shc75TBpD715T2F-_v7T2UUS-BkSLcpyk-DLrpZaYQRW1MZaYdC4ujDcpgstDNcSYx0tNZN2ogVPtclUrnlp0rrGdZ9qcQIDd-3sM4htbjD2Kg2B82S6nlCWg7IGExqToctE8HZrsEoH8HLi0FhWfhNdyOodm039vJ1F8GYn2_aQHX-Ver21e4UrirZJlLPX3briBCBEtAFFBOWBQ-wuR5jch2dc88Vjc8uMSUzBIjhBc-_k90aN4HTnTX9otxd7_m9iL-Aepx4bxtEYL2GAvmBfYZC0WQx9cWHoq1fDsCx-Ax1AGhE | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNw4CFYkeWhIPbCwW0c51Efq4XVCmkrDlRaTpFrOyLa4o3aRiz8emYct90uHBC3SBknjmeczNhfvg_gJDWSWMssE6rIWMaVYDI3nI2VETpRfKw8HcPFtDifZZ8u88uAzaF_YbATq-Fy1VMEWyzfiaPJrUdhHFtTU7mejpwaGe4UbSTl-gAOixzvOYDD2fTz5CsJyuWcwLUi2VCSCnmrwf5HaJdZ3sVFHmBPHsL9zrXq5w-1WNz69Jw97vVVfac94uRq2K3nQ_3rDp_jfz_VE3gUktJ40ts9hXvWPYP2ImANb6yJe5rZbomHDWkjN_0iYrzqWrtkWLKHCI6b7172KKb13XjR1JbE65kNrIfYvGs90N2v0sVOOSzaAzbvOczOPn45PWdBn4FpUZZrhi-7WmqFGVhRG2uFQefqwqQ2mWthUi0x19FSc2nHWqSJNpnKdVqapK5x3idaHMHAXTv7AmKbG8y9SkPkPJmux1TloK3BgsZkGDIRvN84rNKBvJw0NBaV30QXsvrApxM_bqcRvNvatj1lx1-t3m78XuGMom0S5ex1t6pSIhAi2YAignIvILaXI07u_TOu-ea5uWXGJZZgERyhu7f2O6dGcLKNpj96tzM7_jezl_AgJYwNT9EZr2CAsWBfY5K0nr8JU-E39d4YDA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplexed+structured+illumination+super-resolution+imaging+with+lifetime-engineered+upconversion+nanoparticles&rft.jtitle=Nanoscale+advances&rft.au=Liu%2C+Baolei&rft.au=Liao%2C+Jiayan&rft.au=Song%2C+Yiliao&rft.au=Chen%2C+Chaohao&rft.date=2021-12-21&rft.eissn=2516-0230&rft.volume=4&rft.issue=1&rft.spage=3&rft.epage=38&rft_id=info:doi/10.1039%2Fd1na00765c&rft.externalDocID=d1na00765c | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon |