Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles

The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield im...

Full description

Saved in:
Bibliographic Details
Published inNanoscale advances Vol. 4; no. 1; pp. 3 - 38
Main Authors Liu, Baolei, Liao, Jiayan, Song, Yiliao, Chen, Chaohao, Ding, Lei, Lu, Jie, Zhou, Jiajia, Wang, Fan
Format Journal Article
LanguageEnglish
Published RSC 21.12.2021
Subjects
Online AccessGet full text
ISSN2516-0230
2516-0230
DOI10.1039/d1na00765c

Cover

Abstract The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. We report a tailor-made multiplexed super-resolution imaging method using the lifetime fingerprints from luminescent nanoparticles, which can resolve the particles within the diffraction-limited spots and enable higher multiplexing capacity in space.
AbstractList The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. We report a tailor-made multiplexed super-resolution imaging method using the lifetime fingerprints from luminescent nanoparticles, which can resolve the particles within the diffraction-limited spots and enable higher multiplexing capacity in space.
The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society.The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society.
The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society.
The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles. However, the optical diffraction limit compromises the decoding accuracy and throughput of the nanoparticles during conventional widefield imaging. This, in turn, challenges the quality of nanoparticles to afford the modulated excitation condition and further retain the multiplexed optical fingerprints for super-resolution multiplexing. Here we report a tailor-made multiplexed super-resolution imaging method using the lifetime-engineered upconversion nanoparticles. We demonstrate that the nanoparticles are bright, uniform, and stable under structured illumination, which supports a lateral resolution of 185 nm, less than 1/4th of the excitation wavelength. We further develop a deep learning algorithm to coordinate with super-resolution images for more accurate decoding compared to a numeric algorithm. We demonstrate a three-channel super-resolution imaging based optical multiplexing with decoding accuracies above 93% for each channel and larger than 60% accuracy for potential seven-channel multiplexing. The improved resolution provides high throughput by resolving the particles within the diffraction-limited spots, which enables higher multiplexing capacity in space. This lifetime multiplexing super-resolution method opens a new horizon for handling the growing amount of information content, disease source, and security risk in modern society. We report a tailor-made multiplexed super-resolution imaging method using the lifetime fingerprints from luminescent nanoparticles, which can resolve the particles within the diffraction-limited spots and enable higher multiplexing capacity in space.
Author Liao, Jiayan
Lu, Jie
Song, Yiliao
Zhou, Jiajia
Ding, Lei
Wang, Fan
Liu, Baolei
Chen, Chaohao
AuthorAffiliation University of Technology Sydney
Faculty of Engineering and IT
Institute for Biomedical Materials and Devices (IBMD)
Faculty of Science
Centre for Artificial Intelligence
School of Electrical and Data Engineering
AuthorAffiliation_xml – name: School of Electrical and Data Engineering
– name: Centre for Artificial Intelligence
– name: Faculty of Engineering and IT
– name: Institute for Biomedical Materials and Devices (IBMD)
– name: University of Technology Sydney
– name: Faculty of Science
Author_xml – sequence: 1
  givenname: Baolei
  surname: Liu
  fullname: Liu, Baolei
– sequence: 2
  givenname: Jiayan
  surname: Liao
  fullname: Liao, Jiayan
– sequence: 3
  givenname: Yiliao
  surname: Song
  fullname: Song, Yiliao
– sequence: 4
  givenname: Chaohao
  surname: Chen
  fullname: Chen, Chaohao
– sequence: 5
  givenname: Lei
  surname: Ding
  fullname: Ding, Lei
– sequence: 6
  givenname: Jie
  surname: Lu
  fullname: Lu, Jie
– sequence: 7
  givenname: Jiajia
  surname: Zhou
  fullname: Zhou, Jiajia
– sequence: 8
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
BookMark eNptkd1PFTEQxRuDiYi8-G5yH4lmsR-7XfpCQi4oJqgv-tyU6eylpNuu_QD579l7LxEUn2Yy_Z2T05nXZCfEgIS8ZfSQUaE-WhYMpb3s4AXZ5R2TDeWC7jzpX5H9nK8ppZy1bdurXTJ9rb64yeNvtItcUoVS09w67-vogikuhkWuE6YmYY6-bgZuNCsXVotbV64W3g1Y3IgNhnmIuJbXCWK4wZTXdDAhTiYVBx7zG_JyMD7j_kPdIz8_nf1YnjcX3z9_WZ5cNCD6vjScqUGB6SSTg0UUFqgBaTnSSxCWgxKqBwVM4REITsG2pgPeWzoMTEkKYo982PrWMJm7W-O9ntKcO91pRvV6X_pxXzN9vKWnejmiBQwlmUdFNE7__RLclV7FG61apvruaDY4eDBI8VfFXPToMqD3JmCsWfOeSSU6LuWMvt-ikGLOCYdnwU7Zt5NNsOUM039gcGVzlTmG8_-XvNtKUoY_1k_-eg-D6rER
CitedBy_id crossref_primary_10_1038_s41566_024_01462_7
crossref_primary_10_1007_s00216_022_03999_4
crossref_primary_10_1002_adma_202308844
crossref_primary_10_1021_acs_chemrev_2c00050
crossref_primary_10_1002_smtd_202401616
crossref_primary_10_1002_advs_202203354
crossref_primary_10_3788_LOP240659
crossref_primary_10_1002_lpor_202400746
crossref_primary_10_1038_s41377_024_01547_6
crossref_primary_10_1016_j_addr_2025_115521
crossref_primary_10_1016_j_cis_2023_102880
crossref_primary_10_1038_s41598_022_27111_z
crossref_primary_10_1002_adpr_202200098
crossref_primary_10_1021_acs_nanolett_2c02269
Cites_doi 10.1038/nmat3149
10.1126/science.aab4097
10.1021/acs.chemrev.7b00218
10.1038/s41565-018-0221-0
10.1073/pnas.1804725115
10.1126/science.1156947
10.1038/s41467-018-03589-y
10.1021/ja710934v
10.1039/D0NR03076G
10.1002/adom.201700416
10.1117/1.JBO.18.6.061215
10.1002/smll.201801882
10.1002/anie.201501193
10.1021/acs.jpclett.1c02923
10.1038/nprot.2006.141
10.1021/acs.analchem.7b03542
10.1002/cphc.201100735
10.1002/anie.201711606
10.1021/acsami.6b03165
10.1002/adma.201604431
10.1038/nphoton.2013.322
10.1021/ja200729w
10.1038/nnano.2013.171
10.1038/nbt1106
10.1038/nmeth.1324
10.1038/s41467-018-05842-w
10.1021/acs.nanolett.1c02404
10.1038/s41592-021-01108-4
10.1046/j.1365-2818.2000.00710.x
10.1016/j.chempr.2018.01.009
10.1002/adma.202008847
10.1021/acs.analchem.8b04330
10.1016/B978-0-12-407761-4.00020-8
10.1364/OE.19.003130
10.1021/acs.nanolett.0c00448
10.1038/ncomms10980
10.1038/nmeth.3740
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2022 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2022 RSC
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOI 10.1039/d1na00765c
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2516-0230
EndPage 38
ExternalDocumentID 10.1039/d1na00765c
PMC9419758
10_1039_D1NA00765C
d1na00765c
GrantInformation_xml – fundername: ;
  grantid: 201706020170; 201508530231; 201809370076
– fundername: ;
  grantid: DE180100669; DE200100074; DP190101058
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BCNDV
EBS
GROUPED_DOAJ
OK1
SMJ
AAFWJ
AAYXX
AFPKN
C6K
CITATION
H13
M~E
RPM
7X8
5PM
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c377t-219f9ca5616fdee3dc0ac6d2e0bc3d2c9397c9c19e8c320cd4a5c27d0ff1960c3
IEDL.DBID UNPAY
ISSN 2516-0230
IngestDate Sun Oct 26 03:53:20 EDT 2025
Tue Sep 30 17:19:14 EDT 2025
Thu Oct 02 11:41:35 EDT 2025
Tue Jul 01 04:28:14 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Mon May 09 04:20:32 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-219f9ca5616fdee3dc0ac6d2e0bc3d2c9397c9c19e8c320cd4a5c27d0ff1960c3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1na00765c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7403-3305
0000-0003-4620-7771
0000-0002-9574-5165
0000-0002-4779-4683
0000-0002-6633-2695
0000-0002-0605-5745
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2022/na/d1na00765c
PQID 2716935266
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2716935266
unpaywall_primary_10_1039_d1na00765c
crossref_citationtrail_10_1039_D1NA00765C
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9419758
rsc_primary_d1na00765c
crossref_primary_10_1039_D1NA00765C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-21
PublicationDateYYYYMMDD 2021-12-21
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-21
  day: 21
PublicationDecade 2020
PublicationTitle Nanoscale advances
PublicationYear 2021
Publisher RSC
Publisher_xml – name: RSC
References Bates (D1NA00765C/cit7/1) 2012; 13
He (D1NA00765C/cit19/1) 2018; 90
Zhang (D1NA00765C/cit1/1) 2017; 29
Zhou (D1NA00765C/cit2/1) 2018; 14
Niehörster (D1NA00765C/cit9/1) 2016; 13
Chen (D1NA00765C/cit26/1) 2013; 114
Wang (D1NA00765C/cit23/1) 2011; 10
Zuo (D1NA00765C/cit29/1) 2018; 57
Tian (D1NA00765C/cit15/1) 2017; 5
Fan (D1NA00765C/cit24/1) 2018; 13
Zhang (D1NA00765C/cit4/1) 2018; 9
Li (D1NA00765C/cit16/1) 2005; 23
Zhou (D1NA00765C/cit18/1) 2016; 8
Müller (D1NA00765C/cit33/1) 2016; 7
Bückers (D1NA00765C/cit8/1) 2011; 19
Chen (D1NA00765C/cit22/1) 2021; 33
Gao (D1NA00765C/cit21/1) 2020; 12
Lu (D1NA00765C/cit6/1) 2014; 8
Gustafsson (D1NA00765C/cit30/1) 2000; 198
Kner (D1NA00765C/cit32/1) 2009; 6
Heintzmann (D1NA00765C/cit35/1) 2017; 117
Lin (D1NA00765C/cit3/1) 2018; 4
Farka (D1NA00765C/cit37/1) 2017; 89
Yang (D1NA00765C/cit12/1) 2008; 130
Li (D1NA00765C/cit34/1) 2015; 349
Gómez-García (D1NA00765C/cit10/1) 2018; 115
Zhao (D1NA00765C/cit5/1) 2013; 8
Zhao (D1NA00765C/cit13/1) 2011; 133
Jiang (D1NA00765C/cit14/1) 2015; 54
Schermelleh (D1NA00765C/cit31/1) 2008; 320
Liao (D1NA00765C/cit25/1) 2021; 21
Liu (D1NA00765C/cit36/1) 2020; 20
Liao (D1NA00765C/cit38/1) 2021; 12
Chen (D1NA00765C/cit20/1) 2018; 9
Scipioni (D1NA00765C/cit27/1) 2021; 18
Song (D1NA00765C/cit28/1) 2012; 18
Han (D1NA00765C/cit11/1) 2001; 19
Um (D1NA00765C/cit17/1) 2006; 1
References_xml – volume: 10
  start-page: 968
  year: 2011
  ident: D1NA00765C/cit23/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3149
– volume: 349
  start-page: 6251
  year: 2015
  ident: D1NA00765C/cit34/1
  publication-title: Science
  doi: 10.1126/science.aab4097
– volume: 19
  start-page: 631
  year: 2001
  ident: D1NA00765C/cit11/1
  publication-title: Nat. Nanotechnol.
– volume: 117
  start-page: 13890
  year: 2017
  ident: D1NA00765C/cit35/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00218
– volume: 13
  start-page: 941
  year: 2018
  ident: D1NA00765C/cit24/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0221-0
– volume: 115
  start-page: 12991
  year: 2018
  ident: D1NA00765C/cit10/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1804725115
– volume: 320
  start-page: 1332
  year: 2008
  ident: D1NA00765C/cit31/1
  publication-title: Science
  doi: 10.1126/science.1156947
– volume: 9
  start-page: 1183
  year: 2018
  ident: D1NA00765C/cit4/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03589-y
– volume: 130
  start-page: 5286
  year: 2008
  ident: D1NA00765C/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja710934v
– volume: 12
  start-page: 18595
  year: 2020
  ident: D1NA00765C/cit21/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR03076G
– volume: 5
  start-page: 1700416
  year: 2017
  ident: D1NA00765C/cit15/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700416
– volume: 18
  start-page: 061215
  year: 2012
  ident: D1NA00765C/cit28/1
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.18.6.061215
– volume: 14
  start-page: 1801882
  year: 2018
  ident: D1NA00765C/cit2/1
  publication-title: Small
  doi: 10.1002/smll.201801882
– volume: 54
  start-page: 5360
  year: 2015
  ident: D1NA00765C/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501193
– volume: 12
  start-page: 10242
  year: 2021
  ident: D1NA00765C/cit38/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02923
– volume: 1
  start-page: 995
  year: 2006
  ident: D1NA00765C/cit17/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.141
– volume: 89
  start-page: 11825
  year: 2017
  ident: D1NA00765C/cit37/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b03542
– volume: 13
  start-page: 99
  year: 2012
  ident: D1NA00765C/cit7/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201100735
– volume: 57
  start-page: 3054
  year: 2018
  ident: D1NA00765C/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711606
– volume: 8
  start-page: 13303
  year: 2016
  ident: D1NA00765C/cit18/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03165
– volume: 29
  start-page: 1604431
  year: 2017
  ident: D1NA00765C/cit1/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604431
– volume: 8
  start-page: 32
  year: 2014
  ident: D1NA00765C/cit6/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.322
– volume: 133
  start-page: 8790
  year: 2011
  ident: D1NA00765C/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200729w
– volume: 8
  start-page: 729
  year: 2013
  ident: D1NA00765C/cit5/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.171
– volume: 23
  start-page: 885
  year: 2005
  ident: D1NA00765C/cit16/1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1106
– volume: 6
  start-page: 339
  year: 2009
  ident: D1NA00765C/cit32/1
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1324
– volume: 9
  start-page: 3290
  year: 2018
  ident: D1NA00765C/cit20/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05842-w
– volume: 21
  start-page: 7659
  year: 2021
  ident: D1NA00765C/cit25/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02404
– volume: 18
  start-page: 542
  year: 2021
  ident: D1NA00765C/cit27/1
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01108-4
– volume: 198
  start-page: 82
  year: 2000
  ident: D1NA00765C/cit30/1
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2000.00710.x
– volume: 4
  start-page: 997
  year: 2018
  ident: D1NA00765C/cit3/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.009
– volume: 33
  start-page: 2008847
  year: 2021
  ident: D1NA00765C/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008847
– volume: 90
  start-page: 12356
  year: 2018
  ident: D1NA00765C/cit19/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04330
– volume: 114
  start-page: 457
  year: 2013
  ident: D1NA00765C/cit26/1
  publication-title: Methods Cell Biol.
  doi: 10.1016/B978-0-12-407761-4.00020-8
– volume: 19
  start-page: 3130
  year: 2011
  ident: D1NA00765C/cit8/1
  publication-title: Opt. Express
  doi: 10.1364/OE.19.003130
– volume: 20
  start-page: 4775
  year: 2020
  ident: D1NA00765C/cit36/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00448
– volume: 7
  start-page: 10980
  year: 2016
  ident: D1NA00765C/cit33/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10980
– volume: 13
  start-page: 257
  year: 2016
  ident: D1NA00765C/cit9/1
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3740
SSID ssj0002144479
Score 2.2966895
Snippet The emerging optical multiplexing within nanoscale shows super-capacity in encoding information by using lifetime fingerprints from luminescent nanoparticles....
SourceID unpaywall
pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Chemistry
Title Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles
URI https://www.proquest.com/docview/2716935266
https://pubmed.ncbi.nlm.nih.gov/PMC9419758
https://pubs.rsc.org/en/content/articlepdf/2022/na/d1na00765c
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2516-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002144479
  issn: 2516-0230
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2516-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002144479
  issn: 2516-0230
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2516-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002144479
  issn: 2516-0230
  databaseCode: RPM
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNw4CFYER5VEHvhkDa286iP1cJqhbQVByotp8i1HRFRvFHbiMevZ8Zx2-3CAXGLlHEy8YyTmfHk-wBOuZGEWmYToYosyZgSicwNSybKCJ0qNlEejuFyVlzMsw9X-VXozaF_YVCJ9Wi17iGCLabvhNHkNuMwj62pKV3nY6fGhjlFG0m5PoLjIsd7DuB4Pvs4_UyEcjmj5lqRbiFJhbwx4PAjtI8sb_dFHqEm9-Fu51r187taLm98es4f9vyqXmnfcfJ11G0WI_3rFp7jfz_VI3gQgtJ42ss9hjvWPYH2MvQa_rAm7mFmuxUeNsSN3PRFxHjdtXaVYMoePDhuvnnao5jqu_GyqS2R1yc2oB7i8K71je6-Shc75TBpD715T2F-_v7T2UUS-BkSLcpyk-DLrpZaYQRW1MZaYdC4ujDcpgstDNcSYx0tNZN2ogVPtclUrnlp0rrGdZ9qcQIDd-3sM4htbjD2Kg2B82S6nlCWg7IGExqToctE8HZrsEoH8HLi0FhWfhNdyOodm039vJ1F8GYn2_aQHX-Ver21e4UrirZJlLPX3briBCBEtAFFBOWBQ-wuR5jch2dc88Vjc8uMSUzBIjhBc-_k90aN4HTnTX9otxd7_m9iL-Aepx4bxtEYL2GAvmBfYZC0WQx9cWHoq1fDsCx-Ax1AGhE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNw4CFYkeWhIPbCwW0c51Efq4XVCmkrDlRaTpFrOyLa4o3aRiz8emYct90uHBC3SBknjmeczNhfvg_gJDWSWMssE6rIWMaVYDI3nI2VETpRfKw8HcPFtDifZZ8u88uAzaF_YbATq-Fy1VMEWyzfiaPJrUdhHFtTU7mejpwaGe4UbSTl-gAOixzvOYDD2fTz5CsJyuWcwLUi2VCSCnmrwf5HaJdZ3sVFHmBPHsL9zrXq5w-1WNz69Jw97vVVfac94uRq2K3nQ_3rDp_jfz_VE3gUktJ40ts9hXvWPYP2ImANb6yJe5rZbomHDWkjN_0iYrzqWrtkWLKHCI6b7172KKb13XjR1JbE65kNrIfYvGs90N2v0sVOOSzaAzbvOczOPn45PWdBn4FpUZZrhi-7WmqFGVhRG2uFQefqwqQ2mWthUi0x19FSc2nHWqSJNpnKdVqapK5x3idaHMHAXTv7AmKbG8y9SkPkPJmux1TloK3BgsZkGDIRvN84rNKBvJw0NBaV30QXsvrApxM_bqcRvNvatj1lx1-t3m78XuGMom0S5ex1t6pSIhAi2YAignIvILaXI07u_TOu-ea5uWXGJZZgERyhu7f2O6dGcLKNpj96tzM7_jezl_AgJYwNT9EZr2CAsWBfY5K0nr8JU-E39d4YDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplexed+structured+illumination+super-resolution+imaging+with+lifetime-engineered+upconversion+nanoparticles&rft.jtitle=Nanoscale+advances&rft.au=Liu%2C+Baolei&rft.au=Liao%2C+Jiayan&rft.au=Song%2C+Yiliao&rft.au=Chen%2C+Chaohao&rft.date=2021-12-21&rft.eissn=2516-0230&rft.volume=4&rft.issue=1&rft.spage=3&rft.epage=38&rft_id=info:doi/10.1039%2Fd1na00765c&rft.externalDocID=d1na00765c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon