PCA and logistic regression in 2-[18F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer’s disease
Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach. as training data,...
Saved in:
| Published in | Physics in medicine & biology Vol. 69; no. 2; pp. 25003 - 25016 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
21.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/1361-6560/ad0ddd |
Cover
| Abstract | Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach. as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI). Main results. the best combination of hyperparameters was L1 regularization and C ≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD. Significance. our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies. |
|---|---|
| AbstractList | Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach. as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI). Main results. the best combination of hyperparameters was L1 regularization and C ≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD. Significance. our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer's disease (AD). as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI). the best combination of hyperparameters was L1 regularization and ≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD. our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies. |
| Author | Itikawa, Emerson Nobuyuki de Jesus Teixeira, Ana Beatriz Marinho Gonçalves de Oliveira, Carlos Eduardo de Araújo, Whemberton Martins Gonçalves, Gustavo Lopes |
| Author_xml | – sequence: 1 givenname: Carlos Eduardo surname: Gonçalves de Oliveira fullname: Gonçalves de Oliveira, Carlos Eduardo organization: Federal University of Goiás Institute of Physics, Goiânia, Goiás, Brazil – sequence: 2 givenname: Whemberton Martins surname: de Araújo fullname: de Araújo, Whemberton Martins organization: Centro de Diagnóstico por Imagem , Goiânia, Goiás, Brazil – sequence: 3 givenname: Ana Beatriz Marinho surname: de Jesus Teixeira fullname: de Jesus Teixeira, Ana Beatriz Marinho organization: Centro de Diagnóstico por Imagem , Goiânia, Goiás, Brazil – sequence: 4 givenname: Gustavo Lopes surname: Gonçalves fullname: Gonçalves, Gustavo Lopes organization: Federal University of Goiás Institute of Physics, Goiânia, Goiás, Brazil – sequence: 5 givenname: Emerson Nobuyuki orcidid: 0000-0001-5478-6203 surname: Itikawa fullname: Itikawa, Emerson Nobuyuki organization: Federal University of Goiás Institute of Physics, Goiânia, Goiás, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37976549$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1q3DAURkVJaCZJ910V7bqJG_3Ysrwcppm0EEgW6aoEIUvXroJHMpKHktBFX6Ov1yepJk6yKCV0pYv4zgf3cA_Rng8eEHpLyQdKpDylXNBCVIKcakusta_Q4vlrDy0I4bRoaFUdoMOUbgmhVLLyNTrgdVOLqmwW6MfVaom1t3gIvUuTMzhCHyElFzx2HrPiK5Xrm_XHc3x1do09bGNwG90732OdMplDE8QxwqTbAR6qrNO9Dw9lUwgD7kLEy-H-G7gNxN8_f6WcSKATHKP9Tg8J3jy-R-jL-ux69am4uDz_vFpeFIbX9VTQjjEpJW9LUZk81qwxNWlZaTtSgTCWW1ka0tmWaQKNtJXpiIVWCp5nbvkRonPv1o_67rseBjXGvEW8U5SonUm106Z22tRsMjPvZmbcthuwz8CTuhwgc8DEkFKE7n86xV-IcZOesuopaje8BJ7MoAujug3b6LOul-Lv_xEfN60SjWKKsCpfhhptx_8ALyOwKA |
| CODEN | PHMBA7 |
| CitedBy_id | crossref_primary_10_3389_fninf_2024_1495571 |
| Cites_doi | 10.3791/1988 10.1007/s00259-021-05483-0 10.18637/jss.v033.i01 10.1148/rg.343135065 10.1016/j.compmedimag.2017.01.001 10.1001/jama.2019.4782 10.3791/50319 10.1016/j.pscychresns.2012.04.007 10.1016/j.neuroimage.2008.01.056 10.1142/S1793351X16500045 10.1038/nbt1206-1565 10.1097/RLU.0000000000000547 10.1002/wics.101 10.32474/MAMS.2020.02.000138 10.1007/s12013-010-9093-0 10.1590/S1679-45082012000200004 10.1080/03091902.2022.2097326 10.2967/jnumed.118.219097 10.1016/j.procs.2016.07.111 10.1023/A:1010933404324 10.1148/radiol.2018180958 |
| ContentType | Journal Article |
| Copyright | 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. 2024 Institute of Physics and Engineering in Medicine. |
| Copyright_xml | – notice: 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: 2024 Institute of Physics and Engineering in Medicine. |
| CorporateAuthor | For the Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: For the Alzheimer’s Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ADTOC UNPAY |
| DOI | 10.1088/1361-6560/ad0ddd |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| ExternalDocumentID | 10.1088/1361-6560/ad0ddd 37976549 10_1088_1361_6560_ad0ddd pmbad0ddd |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP AAYXX CITATION CGR CUY CVF ECM EIF NPM .GJ .HR 02O 1WK 29O 3O- 53G 5ZI 9BW AAGCF AALHV ACARI ADTOC AERVB AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF H~9 J5H JCGBZ M45 NT- NT. Q02 RKQ S3P T37 UNPAY X7L ZGI ZMT ZXP ZY4 |
| ID | FETCH-LOGICAL-c377t-1f228883b465c228729c70b24df05e6cd3d84c0fdb2a0e98d5cf0deb8638d53d3 |
| IEDL.DBID | IOP |
| ISSN | 0031-9155 1361-6560 |
| IngestDate | Sun Sep 07 11:25:38 EDT 2025 Thu Aug 28 04:24:55 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Oct 01 05:34:52 EDT 2025 Wed Aug 27 01:32:43 EDT 2025 Tue Aug 20 22:16:37 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | neurodegenerative disease logistic regression FDG PET artificial intelligence principal component analysis |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. 2024 Institute of Physics and Engineering in Medicine. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-1f228883b465c228729c70b24df05e6cd3d84c0fdb2a0e98d5cf0deb8638d53d3 |
| Notes | PMB-114992.R2 |
| ORCID | 0000-0001-5478-6203 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6560/ad0ddd |
| PMID | 37976549 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1088_1361_6560_ad0ddd pubmed_primary_37976549 unpaywall_primary_10_1088_1361_6560_ad0ddd iop_journals_10_1088_1361_6560_ad0ddd crossref_citationtrail_10_1088_1361_6560_ad0ddd |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-21 |
| PublicationDateYYYYMMDD | 2024-01-21 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAbbrev | PMB |
| PublicationTitleAlternate | Phys. Med. Biol |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Abdi (pmbad0dddbib1) 2010; 2 Ding (pmbad0dddbib6) 2019; 290 Dukart (pmbad0dddbib7) 2013; 212 Pedregosa (pmbad0dddbib22) 2011; 12 Shinde (pmbad0dddbib26) 2018 Lu (pmbad0dddbib17) 2017; 60 Friedman (pmbad0dddbib9) 2010; 33 Popescu (pmbad0dddbib23) 2009; 8 Lai (pmbad0dddbib15) 2019; 1314 Hao (pmbad0dddbib13) 2016; 10 Etminani (pmbad0dddbib8) 2022; 49 Singh (pmbad0dddbib27) 2017; vol 10572 Zohuri (pmbad0dddbib29) 2020; 2 Habeck (pmbad0dddbib11) 2010; 58 Breiman (pmbad0dddbib4) 2001; 45 Noble (pmbad0dddbib21) 2006; 24 Habeck (pmbad0dddbib12) 2010; 41 Liu (pmbad0dddbib16) 2009 Brown (pmbad0dddbib5) 2014; 34 Santo (pmbad0dddbib25) 2012; 10 Salehi (pmbad0dddbib24) 2019; 32 Nancy Noella (pmbad0dddbib20) 2023; 47 Arvanitakis (pmbad0dddbib2) 2019; 322 Japkowicz (pmbad0dddbib14) 2011 Blazhenets (pmbad0dddbib3) 2019; 60 Miao (pmbad0dddbib19) 2016; 91 Marcus (pmbad0dddbib18) 2014; 39 Spetsieris (pmbad0dddbib28) 2013; 76 Habeck (pmbad0dddbib10) 2008; 40 |
| References_xml | – volume: 41 year: 2010 ident: pmbad0dddbib12 article-title: Basics of Multivariate Analysis in Neuroimaging Data publication-title: J. Vis. Exp. doi: 10.3791/1988 – volume: 8 start-page: 579 year: 2009 ident: pmbad0dddbib23 article-title: Multilayer Perceptron and Neural Networks publication-title: WSEAS Trans. Circ. Syst. – volume: 49 start-page: 563 year: 2022 ident: pmbad0dddbib8 article-title: A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-021-05483-0 – volume: 33 start-page: 1 year: 2010 ident: pmbad0dddbib9 article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 34 start-page: 684 year: 2014 ident: pmbad0dddbib5 article-title: Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism publication-title: Radiographics doi: 10.1148/rg.343135065 – year: 2011 ident: pmbad0dddbib14 – volume: 60 start-page: 35 year: 2017 ident: pmbad0dddbib17 article-title: Early identification of mild cognitive impairment using incomplete random forest-robust support vector machine and FDG-PET imaging publication-title: Comput. Med. Imaging Graph doi: 10.1016/j.compmedimag.2017.01.001 – start-page: 1 year: 2018 ident: pmbad0dddbib26 article-title: A review of machine learning and deep learning applications – volume: 322 start-page: 1589 year: 2019 ident: pmbad0dddbib2 article-title: Diagnosis and Management of Dementia: Review publication-title: Jama doi: 10.1001/jama.2019.4782 – volume: 76 year: 2013 ident: pmbad0dddbib28 article-title: Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data publication-title: J. Vis. Exp. doi: 10.3791/50319 – volume: 12 start-page: 2825 year: 2011 ident: pmbad0dddbib22 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 212 start-page: 230 year: 2013 ident: pmbad0dddbib7 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2012.04.007 – volume: 40 start-page: 1503 year: 2008 ident: pmbad0dddbib10 article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.056 – volume: 10 start-page: 417 year: 2016 ident: pmbad0dddbib13 article-title: Deep Learning publication-title: Int. J. Semant. Comput. doi: 10.1142/S1793351X16500045 – volume: 24 start-page: 1565 year: 2006 ident: pmbad0dddbib21 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: vol 10572 start-page: 143 year: 2017 ident: pmbad0dddbib27 article-title: Deep-learning-based classification of fdg-pet data for alzheimer’s disease categories – volume: 32 start-page: 1 year: 2019 ident: pmbad0dddbib24 article-title: The Impact of Regularization on High-dimensional Logistic Regression publication-title: Adv. Neural Inf. Process. Syst. – volume: 39 start-page: e413–e426 year: 2014 ident: pmbad0dddbib18 article-title: Brain PET in the Diagnosis of Alzheimer’s Disease publication-title: Clin. Nucl. Med. doi: 10.1097/RLU.0000000000000547 – volume: 2 start-page: 433 year: 2010 ident: pmbad0dddbib1 article-title: Principal Component Analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – volume: 2 start-page: 241 year: 2020 ident: pmbad0dddbib29 article-title: Deep learning limitations and flaws publication-title: Mod. Approaches Mater. Sci. doi: 10.32474/MAMS.2020.02.000138 – volume: 58 start-page: 53 year: 2010 ident: pmbad0dddbib11 article-title: Multivariate Data Analysis for Neuroimaging Data: Overview and Application to Alzheimer’s Disease publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-010-9093-0 – volume: 1314 year: 2019 ident: pmbad0dddbib15 article-title: A comparison of traditional machine learning and deep learning in image recognition publication-title: J. Phys.: Conf. Ser. – volume: 10 start-page: 135 year: 2012 ident: pmbad0dddbib25 article-title: Utilização da Análise de Componentes Principais na compressão de imagens digitais publication-title: Einstein (São Paulo) doi: 10.1590/S1679-45082012000200004 – volume: 47 start-page: 35 year: 2023 ident: pmbad0dddbib20 article-title: Machine learning algorithms for the diagnosis of Alzheimer and Parkinson disease publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2022.2097326 – volume: 60 start-page: 837 year: 2019 ident: pmbad0dddbib3 article-title: Principal Components Analysis of Brain Metabolism Predicts Development of Alzheimer Dementia publication-title: J. Nucl. Med. doi: 10.2967/jnumed.118.219097 – volume: 91 start-page: 919 year: 2016 ident: pmbad0dddbib19 article-title: A Survey on Feature Selection publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2016.07.111 – volume: 45 start-page: 5 year: 2001 ident: pmbad0dddbib4 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 290 start-page: 456 year: 2019 ident: pmbad0dddbib6 article-title: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain publication-title: Radiology doi: 10.1148/radiol.2018180958 – start-page: 547 year: 2009 ident: pmbad0dddbib16 article-title: Large-scale sparse logistic regression |
| SSID | ssj0011824 |
| Score | 2.4571445 |
| Snippet | Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using... to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages... |
| SourceID | unpaywall pubmed crossref iop |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 25003 |
| SubjectTerms | Alzheimer Disease - diagnostic imaging artificial intelligence Brain - diagnostic imaging FDG PET Fluorodeoxyglucose F18 Humans Logistic Models logistic regression neurodegenerative disease Neuroimaging Positron-Emission Tomography - methods principal component analysis Radiopharmaceuticals |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbNhj4ufaSv7Qsd2kMLTmzLkq3jkmYbCgl7yEJKKULP1tTrNWsvJSGH_I38vfySSpa6ZEtJ25sxI9mSZ6xPmplvAHiN8xxTTmVEqLWmDIsiEgmlUWYMkbSgIhHOo3twSPan2cdjfBzOO1wuzJr_3m7OEkSSyBHE7HAVK6U2wCbBFnUPwOb0cDL65FkXk8jRnPsUKy8ePJJ_6mJtBdoo582Vxef2sm74yQ9eVVdWmfE9T3nU9uSELrjk-_ayE9vy9Dfqxn8ZwH1wN0BNOPK68QDc0PUWuOmLT55sgVsHwa1ub_ZxoLJ9CM4muyPIawV9ZlAp4UJ_9aGyNSxrmEafk2L8Zfz-A5zsHcGeDbOc9ZWOIG9tS1iuohhFpfuulI_mc51183kFLUyGo-r0my5nenF5ftHC4CV6BKbjvaPd_SgUaIgkyvMuSkya2h00EhnB0l5aoC7zWKSZMjHWRCqkikzGRomUx5oWCksTKy0Ka_QKI4Ueg0E9r_VTACk3FvsQThU1mVaUW5jFUe4k7U9FiCHY-fXRmAzs5a6IRsV6L3pRMDfRzE008xM9BG9XLRrP3HGN7BurByyYb3uNHFyTa2aCEcpS5pBkjFijzBA88cq0eijKLeSz2_AheLfSrr--0bP_EX4O7qQWa7mToTR5AQbdYqlfWqzUiVfBTH4Cg54Jhw priority: 102 providerName: Unpaywall |
| Title | PCA and logistic regression in 2-[18F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer’s disease |
| URI | https://iopscience.iop.org/article/10.1088/1361-6560/ad0ddd https://www.ncbi.nlm.nih.gov/pubmed/37976549 https://doi.org/10.1088/1361-6560/ad0ddd |
| UnpaywallVersion | publishedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH7qIpYLS9mGpfIBDiBlJomz2OI0Kh0qpJY5dKQiQJG30FEzmWgmI9SKA3-Dv8cv4TlOoxahgrhZ0Xu287x99tsAnsdpGnPBlZdwXE1RLJknA869KM8TxRmXgbQa3f2DZG8SvTuKj9bgdecLM6_arb-PRRco2ImwNYhjg4AmgWdjxgyE9rXW67BJGQJj6733ftypEBA4R61e8k9cl86hdWzrwhF0Y1VW4vSrKIoLZ83oNnw676UzMTnpr2rZV2e_BXD8z9-4A7daDEqGjvQurJlyC665rJSnW3B9v9W348fGQFQt78G38c6QiFIT5zI0VWRhvjgb2pJMSxJ6HwM2-jx685aMdw9JEyZzOmtSIBGxRE4y7cwbZWGaqrQz87OV1fN5QRA_k2FxdmymM7P4-f3HkrTqo_swGe0e7ux5beYGT9E0rb0gD0O8WlMZJbHCIiJ4lfoyjHTuxyZRmmoWKT_XMhS-4UzHKve1kQx3Ax1TTR_ARjkvzSMgXOQIihLBNc8jo7lA_CVoailxt5GyB4PzccxUG9bcZtcoska9zlhmBZ1ZQWdO0D142XFULqTHFbQvcPyydl0vr6Ajl-iqmcwSnoWZhZg-zSqd9-Chm19dozRFLIj38x686ibcX3v0-B979ARuhoi_7GtRGDyFjXqxMs8QP9Vyu1kn27A5ORgPP_wCFbMV1A |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoEYULS9mG1Qc4gJSZ7ImPo7ahLC1zaKVKqDJe24hMJprJCLXiwN_g7_FLeI7dqEWoIHGzouclz9tnv-fvIfQiybKEMCK8lMBsihOeezwgxIu1TgXJCQ-4seju7Kbb-_G7g-TAxTnt3sLMGrf0DyFpiYKtCp1DXD4KojTwDGfMiElfSjlqpF5BVzueEvOC7-OkNyMAeI6dbfJPOS_sRStQ37lt6PqybtjJV1ZV5_ab4hb6fNZS62byZbhs-VCc_kbi-B-_chvddFgUj634HXRF1evomo1OebKO1nac3R0-do6iYnEXfZtsjDGrJbZPh0qB5-rI-tLWuKxx6H0K8uKw2HyDJ1t7uKPLLKddKCTMFpATl72bI69UV5S07n6msHY2qzDgaDyuTo9VOVXzn99_LLAzI91D-8XW3sa25yI4eCLKstYLdBjCETvicZoISAKSF5nPw1hqP1GpkJHMY-FryUPmK5LLRGhfKp7DqiCTSEb30Wo9q9VDhAnTAI5SRiTRsZKEAQ5jUWYkYdXhfIBGZ31JhaM3N1E2KtqZ2fOcGmVTo2xqlT1Ar_ocjaX2uET2JfQhdfN7cYkcviDXTDlNCQ2pgZp-RKF_B-iBHWN9pVEGmBDO6QP0uh90f23Ro39s0XO0Ntks6Ie3u-8foxshQDJzgRQGT9BqO1-qpwCpWv6smza_AFm_GYU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbNhj4ufaSv7Qsd2kMLTmzLkq3jkmYbCgl7yEJKKULP1tTrNWsvJSGH_I38vfySSpa6ZEtJ25sxI9mSZ6xPmplvAHiN8xxTTmVEqLWmDIsiEgmlUWYMkbSgIhHOo3twSPan2cdjfBzOO1wuzJr_3m7OEkSSyBHE7HAVK6U2wCbBFnUPwOb0cDL65FkXk8jRnPsUKy8ePJJ_6mJtBdoo582Vxef2sm74yQ9eVVdWmfE9T3nU9uSELrjk-_ayE9vy9Dfqxn8ZwH1wN0BNOPK68QDc0PUWuOmLT55sgVsHwa1ub_ZxoLJ9CM4muyPIawV9ZlAp4UJ_9aGyNSxrmEafk2L8Zfz-A5zsHcGeDbOc9ZWOIG9tS1iuohhFpfuulI_mc51183kFLUyGo-r0my5nenF5ftHC4CV6BKbjvaPd_SgUaIgkyvMuSkya2h00EhnB0l5aoC7zWKSZMjHWRCqkikzGRomUx5oWCksTKy0Ka_QKI4Ueg0E9r_VTACk3FvsQThU1mVaUW5jFUe4k7U9FiCHY-fXRmAzs5a6IRsV6L3pRMDfRzE008xM9BG9XLRrP3HGN7BurByyYb3uNHFyTa2aCEcpS5pBkjFijzBA88cq0eijKLeSz2_AheLfSrr--0bP_EX4O7qQWa7mToTR5AQbdYqlfWqzUiVfBTH4Cg54Jhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCA+and+logistic+regression+in+2-%5B+18+F%5DFDG+PET+neuroimaging+as+an+interpretable+and+diagnostic+tool+for+Alzheimer%27s+disease&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Gon%C3%A7alves+de+Oliveira%2C+Carlos+Eduardo&rft.au=de+Ara%C3%BAjo%2C+Whemberton+Martins&rft.au=de+Jesus+Teixeira%2C+Ana+Beatriz+Marinho&rft.au=Gon%C3%A7alves%2C+Gustavo+Lopes&rft.date=2024-01-21&rft.eissn=1361-6560&rft.volume=69&rft.issue=2&rft_id=info:doi/10.1088%2F1361-6560%2Fad0ddd&rft_id=info%3Apmid%2F37976549&rft.externalDocID=37976549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |