PCA and logistic regression in 2-[18F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer’s disease

Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach. as training data,...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 69; no. 2; pp. 25003 - 25016
Main Authors Gonçalves de Oliveira, Carlos Eduardo, de Araújo, Whemberton Martins, de Jesus Teixeira, Ana Beatriz Marinho, Gonçalves, Gustavo Lopes, Itikawa, Emerson Nobuyuki
Format Journal Article
LanguageEnglish
Published England IOP Publishing 21.01.2024
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/ad0ddd

Cover

Abstract Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach. as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI). Main results. the best combination of hyperparameters was L1 regularization and C ≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD. Significance. our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies.
AbstractList Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer’s disease (AD). Approach. as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI). Main results. the best combination of hyperparameters was L1 regularization and C ≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD. Significance. our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies.
to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[ F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer's disease (AD). as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI). the best combination of hyperparameters was L1 regularization and ≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD. our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies.
Author Itikawa, Emerson Nobuyuki
de Jesus Teixeira, Ana Beatriz Marinho
Gonçalves de Oliveira, Carlos Eduardo
de Araújo, Whemberton Martins
Gonçalves, Gustavo Lopes
Author_xml – sequence: 1
  givenname: Carlos Eduardo
  surname: Gonçalves de Oliveira
  fullname: Gonçalves de Oliveira, Carlos Eduardo
  organization: Federal University of Goiás Institute of Physics, Goiânia, Goiás, Brazil
– sequence: 2
  givenname: Whemberton Martins
  surname: de Araújo
  fullname: de Araújo, Whemberton Martins
  organization: Centro de Diagnóstico por Imagem , Goiânia, Goiás, Brazil
– sequence: 3
  givenname: Ana Beatriz Marinho
  surname: de Jesus Teixeira
  fullname: de Jesus Teixeira, Ana Beatriz Marinho
  organization: Centro de Diagnóstico por Imagem , Goiânia, Goiás, Brazil
– sequence: 4
  givenname: Gustavo Lopes
  surname: Gonçalves
  fullname: Gonçalves, Gustavo Lopes
  organization: Federal University of Goiás Institute of Physics, Goiânia, Goiás, Brazil
– sequence: 5
  givenname: Emerson Nobuyuki
  orcidid: 0000-0001-5478-6203
  surname: Itikawa
  fullname: Itikawa, Emerson Nobuyuki
  organization: Federal University of Goiás Institute of Physics, Goiânia, Goiás, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37976549$$D View this record in MEDLINE/PubMed
BookMark eNqNks1q3DAURkVJaCZJ910V7bqJG_3Ysrwcppm0EEgW6aoEIUvXroJHMpKHktBFX6Ov1yepJk6yKCV0pYv4zgf3cA_Rng8eEHpLyQdKpDylXNBCVIKcakusta_Q4vlrDy0I4bRoaFUdoMOUbgmhVLLyNTrgdVOLqmwW6MfVaom1t3gIvUuTMzhCHyElFzx2HrPiK5Xrm_XHc3x1do09bGNwG90732OdMplDE8QxwqTbAR6qrNO9Dw9lUwgD7kLEy-H-G7gNxN8_f6WcSKATHKP9Tg8J3jy-R-jL-ux69am4uDz_vFpeFIbX9VTQjjEpJW9LUZk81qwxNWlZaTtSgTCWW1ka0tmWaQKNtJXpiIVWCp5nbvkRonPv1o_67rseBjXGvEW8U5SonUm106Z22tRsMjPvZmbcthuwz8CTuhwgc8DEkFKE7n86xV-IcZOesuopaje8BJ7MoAujug3b6LOul-Lv_xEfN60SjWKKsCpfhhptx_8ALyOwKA
CODEN PHMBA7
CitedBy_id crossref_primary_10_3389_fninf_2024_1495571
Cites_doi 10.3791/1988
10.1007/s00259-021-05483-0
10.18637/jss.v033.i01
10.1148/rg.343135065
10.1016/j.compmedimag.2017.01.001
10.1001/jama.2019.4782
10.3791/50319
10.1016/j.pscychresns.2012.04.007
10.1016/j.neuroimage.2008.01.056
10.1142/S1793351X16500045
10.1038/nbt1206-1565
10.1097/RLU.0000000000000547
10.1002/wics.101
10.32474/MAMS.2020.02.000138
10.1007/s12013-010-9093-0
10.1590/S1679-45082012000200004
10.1080/03091902.2022.2097326
10.2967/jnumed.118.219097
10.1016/j.procs.2016.07.111
10.1023/A:1010933404324
10.1148/radiol.2018180958
ContentType Journal Article
Copyright 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 Institute of Physics and Engineering in Medicine.
Copyright_xml – notice: 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 Institute of Physics and Engineering in Medicine.
CorporateAuthor For the Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: For the Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ADTOC
UNPAY
DOI 10.1088/1361-6560/ad0ddd
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 10.1088/1361-6560/ad0ddd
37976549
10_1088_1361_6560_ad0ddd
pmbad0ddd
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
.GJ
.HR
02O
1WK
29O
3O-
53G
5ZI
9BW
AAGCF
AALHV
ACARI
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
H~9
J5H
JCGBZ
M45
NT-
NT.
Q02
RKQ
S3P
T37
UNPAY
X7L
ZGI
ZMT
ZXP
ZY4
ID FETCH-LOGICAL-c377t-1f228883b465c228729c70b24df05e6cd3d84c0fdb2a0e98d5cf0deb8638d53d3
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Sun Sep 07 11:25:38 EDT 2025
Thu Aug 28 04:24:55 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Oct 01 05:34:52 EDT 2025
Wed Aug 27 01:32:43 EDT 2025
Tue Aug 20 22:16:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords neurodegenerative disease
logistic regression
FDG PET
artificial intelligence
principal component analysis
Language English
License This article is available under the terms of the IOP-Standard License.
2024 Institute of Physics and Engineering in Medicine.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377t-1f228883b465c228729c70b24df05e6cd3d84c0fdb2a0e98d5cf0deb8638d53d3
Notes PMB-114992.R2
ORCID 0000-0001-5478-6203
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6560/ad0ddd
PMID 37976549
PageCount 14
ParticipantIDs crossref_primary_10_1088_1361_6560_ad0ddd
pubmed_primary_37976549
unpaywall_primary_10_1088_1361_6560_ad0ddd
iop_journals_10_1088_1361_6560_ad0ddd
crossref_citationtrail_10_1088_1361_6560_ad0ddd
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-21
PublicationDateYYYYMMDD 2024-01-21
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Abdi (pmbad0dddbib1) 2010; 2
Ding (pmbad0dddbib6) 2019; 290
Dukart (pmbad0dddbib7) 2013; 212
Pedregosa (pmbad0dddbib22) 2011; 12
Shinde (pmbad0dddbib26) 2018
Lu (pmbad0dddbib17) 2017; 60
Friedman (pmbad0dddbib9) 2010; 33
Popescu (pmbad0dddbib23) 2009; 8
Lai (pmbad0dddbib15) 2019; 1314
Hao (pmbad0dddbib13) 2016; 10
Etminani (pmbad0dddbib8) 2022; 49
Singh (pmbad0dddbib27) 2017; vol 10572
Zohuri (pmbad0dddbib29) 2020; 2
Habeck (pmbad0dddbib11) 2010; 58
Breiman (pmbad0dddbib4) 2001; 45
Noble (pmbad0dddbib21) 2006; 24
Habeck (pmbad0dddbib12) 2010; 41
Liu (pmbad0dddbib16) 2009
Brown (pmbad0dddbib5) 2014; 34
Santo (pmbad0dddbib25) 2012; 10
Salehi (pmbad0dddbib24) 2019; 32
Nancy Noella (pmbad0dddbib20) 2023; 47
Arvanitakis (pmbad0dddbib2) 2019; 322
Japkowicz (pmbad0dddbib14) 2011
Blazhenets (pmbad0dddbib3) 2019; 60
Miao (pmbad0dddbib19) 2016; 91
Marcus (pmbad0dddbib18) 2014; 39
Spetsieris (pmbad0dddbib28) 2013; 76
Habeck (pmbad0dddbib10) 2008; 40
References_xml – volume: 41
  year: 2010
  ident: pmbad0dddbib12
  article-title: Basics of Multivariate Analysis in Neuroimaging Data
  publication-title: J. Vis. Exp.
  doi: 10.3791/1988
– volume: 8
  start-page: 579
  year: 2009
  ident: pmbad0dddbib23
  article-title: Multilayer Perceptron and Neural Networks
  publication-title: WSEAS Trans. Circ. Syst.
– volume: 49
  start-page: 563
  year: 2022
  ident: pmbad0dddbib8
  article-title: A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-021-05483-0
– volume: 33
  start-page: 1
  year: 2010
  ident: pmbad0dddbib9
  article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 34
  start-page: 684
  year: 2014
  ident: pmbad0dddbib5
  article-title: Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism
  publication-title: Radiographics
  doi: 10.1148/rg.343135065
– year: 2011
  ident: pmbad0dddbib14
– volume: 60
  start-page: 35
  year: 2017
  ident: pmbad0dddbib17
  article-title: Early identification of mild cognitive impairment using incomplete random forest-robust support vector machine and FDG-PET imaging
  publication-title: Comput. Med. Imaging Graph
  doi: 10.1016/j.compmedimag.2017.01.001
– start-page: 1
  year: 2018
  ident: pmbad0dddbib26
  article-title: A review of machine learning and deep learning applications
– volume: 322
  start-page: 1589
  year: 2019
  ident: pmbad0dddbib2
  article-title: Diagnosis and Management of Dementia: Review
  publication-title: Jama
  doi: 10.1001/jama.2019.4782
– volume: 76
  year: 2013
  ident: pmbad0dddbib28
  article-title: Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
  publication-title: J. Vis. Exp.
  doi: 10.3791/50319
– volume: 12
  start-page: 2825
  year: 2011
  ident: pmbad0dddbib22
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 212
  start-page: 230
  year: 2013
  ident: pmbad0dddbib7
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2012.04.007
– volume: 40
  start-page: 1503
  year: 2008
  ident: pmbad0dddbib10
  article-title: Multivariate and univariate neuroimaging biomarkers of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.056
– volume: 10
  start-page: 417
  year: 2016
  ident: pmbad0dddbib13
  article-title: Deep Learning
  publication-title: Int. J. Semant. Comput.
  doi: 10.1142/S1793351X16500045
– volume: 24
  start-page: 1565
  year: 2006
  ident: pmbad0dddbib21
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: vol 10572
  start-page: 143
  year: 2017
  ident: pmbad0dddbib27
  article-title: Deep-learning-based classification of fdg-pet data for alzheimer’s disease categories
– volume: 32
  start-page: 1
  year: 2019
  ident: pmbad0dddbib24
  article-title: The Impact of Regularization on High-dimensional Logistic Regression
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 39
  start-page: e413–e426
  year: 2014
  ident: pmbad0dddbib18
  article-title: Brain PET in the Diagnosis of Alzheimer’s Disease
  publication-title: Clin. Nucl. Med.
  doi: 10.1097/RLU.0000000000000547
– volume: 2
  start-page: 433
  year: 2010
  ident: pmbad0dddbib1
  article-title: Principal Component Analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– volume: 2
  start-page: 241
  year: 2020
  ident: pmbad0dddbib29
  article-title: Deep learning limitations and flaws
  publication-title: Mod. Approaches Mater. Sci.
  doi: 10.32474/MAMS.2020.02.000138
– volume: 58
  start-page: 53
  year: 2010
  ident: pmbad0dddbib11
  article-title: Multivariate Data Analysis for Neuroimaging Data: Overview and Application to Alzheimer’s Disease
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-010-9093-0
– volume: 1314
  year: 2019
  ident: pmbad0dddbib15
  article-title: A comparison of traditional machine learning and deep learning in image recognition
  publication-title: J. Phys.: Conf. Ser.
– volume: 10
  start-page: 135
  year: 2012
  ident: pmbad0dddbib25
  article-title: Utilização da Análise de Componentes Principais na compressão de imagens digitais
  publication-title: Einstein (São Paulo)
  doi: 10.1590/S1679-45082012000200004
– volume: 47
  start-page: 35
  year: 2023
  ident: pmbad0dddbib20
  article-title: Machine learning algorithms for the diagnosis of Alzheimer and Parkinson disease
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2022.2097326
– volume: 60
  start-page: 837
  year: 2019
  ident: pmbad0dddbib3
  article-title: Principal Components Analysis of Brain Metabolism Predicts Development of Alzheimer Dementia
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.118.219097
– volume: 91
  start-page: 919
  year: 2016
  ident: pmbad0dddbib19
  article-title: A Survey on Feature Selection
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2016.07.111
– volume: 45
  start-page: 5
  year: 2001
  ident: pmbad0dddbib4
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 290
  start-page: 456
  year: 2019
  ident: pmbad0dddbib6
  article-title: A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
  publication-title: Radiology
  doi: 10.1148/radiol.2018180958
– start-page: 547
  year: 2009
  ident: pmbad0dddbib16
  article-title: Large-scale sparse logistic regression
SSID ssj0011824
Score 2.4571445
Snippet Objective. to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using...
to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages...
SourceID unpaywall
pubmed
crossref
iop
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 25003
SubjectTerms Alzheimer Disease - diagnostic imaging
artificial intelligence
Brain - diagnostic imaging
FDG PET
Fluorodeoxyglucose F18
Humans
Logistic Models
logistic regression
neurodegenerative disease
Neuroimaging
Positron-Emission Tomography - methods
principal component analysis
Radiopharmaceuticals
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbNhj4ufaSv7Qsd2kMLTmzLkq3jkmYbCgl7yEJKKULP1tTrNWsvJSGH_I38vfySSpa6ZEtJ25sxI9mSZ6xPmplvAHiN8xxTTmVEqLWmDIsiEgmlUWYMkbSgIhHOo3twSPan2cdjfBzOO1wuzJr_3m7OEkSSyBHE7HAVK6U2wCbBFnUPwOb0cDL65FkXk8jRnPsUKy8ePJJ_6mJtBdoo582Vxef2sm74yQ9eVVdWmfE9T3nU9uSELrjk-_ayE9vy9Dfqxn8ZwH1wN0BNOPK68QDc0PUWuOmLT55sgVsHwa1ub_ZxoLJ9CM4muyPIawV9ZlAp4UJ_9aGyNSxrmEafk2L8Zfz-A5zsHcGeDbOc9ZWOIG9tS1iuohhFpfuulI_mc51183kFLUyGo-r0my5nenF5ftHC4CV6BKbjvaPd_SgUaIgkyvMuSkya2h00EhnB0l5aoC7zWKSZMjHWRCqkikzGRomUx5oWCksTKy0Ka_QKI4Ueg0E9r_VTACk3FvsQThU1mVaUW5jFUe4k7U9FiCHY-fXRmAzs5a6IRsV6L3pRMDfRzE008xM9BG9XLRrP3HGN7BurByyYb3uNHFyTa2aCEcpS5pBkjFijzBA88cq0eijKLeSz2_AheLfSrr--0bP_EX4O7qQWa7mToTR5AQbdYqlfWqzUiVfBTH4Cg54Jhw
  priority: 102
  providerName: Unpaywall
Title PCA and logistic regression in 2-[18F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer’s disease
URI https://iopscience.iop.org/article/10.1088/1361-6560/ad0ddd
https://www.ncbi.nlm.nih.gov/pubmed/37976549
https://doi.org/10.1088/1361-6560/ad0ddd
UnpaywallVersion publishedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH7qIpYLS9mGpfIBDiBlJomz2OI0Kh0qpJY5dKQiQJG30FEzmWgmI9SKA3-Dv8cv4TlOoxahgrhZ0Xu287x99tsAnsdpGnPBlZdwXE1RLJknA869KM8TxRmXgbQa3f2DZG8SvTuKj9bgdecLM6_arb-PRRco2ImwNYhjg4AmgWdjxgyE9rXW67BJGQJj6733ftypEBA4R61e8k9cl86hdWzrwhF0Y1VW4vSrKIoLZ83oNnw676UzMTnpr2rZV2e_BXD8z9-4A7daDEqGjvQurJlyC665rJSnW3B9v9W348fGQFQt78G38c6QiFIT5zI0VWRhvjgb2pJMSxJ6HwM2-jx685aMdw9JEyZzOmtSIBGxRE4y7cwbZWGaqrQz87OV1fN5QRA_k2FxdmymM7P4-f3HkrTqo_swGe0e7ux5beYGT9E0rb0gD0O8WlMZJbHCIiJ4lfoyjHTuxyZRmmoWKT_XMhS-4UzHKve1kQx3Ax1TTR_ARjkvzSMgXOQIihLBNc8jo7lA_CVoailxt5GyB4PzccxUG9bcZtcoska9zlhmBZ1ZQWdO0D142XFULqTHFbQvcPyydl0vr6Ajl-iqmcwSnoWZhZg-zSqd9-Chm19dozRFLIj38x686ibcX3v0-B979ARuhoi_7GtRGDyFjXqxMs8QP9Vyu1kn27A5ORgPP_wCFbMV1A
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoEYULS9mG1Qc4gJSZ7ImPo7ahLC1zaKVKqDJe24hMJprJCLXiwN_g7_FLeI7dqEWoIHGzouclz9tnv-fvIfQiybKEMCK8lMBsihOeezwgxIu1TgXJCQ-4seju7Kbb-_G7g-TAxTnt3sLMGrf0DyFpiYKtCp1DXD4KojTwDGfMiElfSjlqpF5BVzueEvOC7-OkNyMAeI6dbfJPOS_sRStQ37lt6PqybtjJV1ZV5_ab4hb6fNZS62byZbhs-VCc_kbi-B-_chvddFgUj634HXRF1evomo1OebKO1nac3R0-do6iYnEXfZtsjDGrJbZPh0qB5-rI-tLWuKxx6H0K8uKw2HyDJ1t7uKPLLKddKCTMFpATl72bI69UV5S07n6msHY2qzDgaDyuTo9VOVXzn99_LLAzI91D-8XW3sa25yI4eCLKstYLdBjCETvicZoISAKSF5nPw1hqP1GpkJHMY-FryUPmK5LLRGhfKp7DqiCTSEb30Wo9q9VDhAnTAI5SRiTRsZKEAQ5jUWYkYdXhfIBGZ31JhaM3N1E2KtqZ2fOcGmVTo2xqlT1Ar_ocjaX2uET2JfQhdfN7cYkcviDXTDlNCQ2pgZp-RKF_B-iBHWN9pVEGmBDO6QP0uh90f23Ro39s0XO0Ntks6Ie3u-8foxshQDJzgRQGT9BqO1-qpwCpWv6smza_AFm_GYU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbNhj4ufaSv7Qsd2kMLTmzLkq3jkmYbCgl7yEJKKULP1tTrNWsvJSGH_I38vfySSpa6ZEtJ25sxI9mSZ6xPmplvAHiN8xxTTmVEqLWmDIsiEgmlUWYMkbSgIhHOo3twSPan2cdjfBzOO1wuzJr_3m7OEkSSyBHE7HAVK6U2wCbBFnUPwOb0cDL65FkXk8jRnPsUKy8ePJJ_6mJtBdoo582Vxef2sm74yQ9eVVdWmfE9T3nU9uSELrjk-_ayE9vy9Dfqxn8ZwH1wN0BNOPK68QDc0PUWuOmLT55sgVsHwa1ub_ZxoLJ9CM4muyPIawV9ZlAp4UJ_9aGyNSxrmEafk2L8Zfz-A5zsHcGeDbOc9ZWOIG9tS1iuohhFpfuulI_mc51183kFLUyGo-r0my5nenF5ftHC4CV6BKbjvaPd_SgUaIgkyvMuSkya2h00EhnB0l5aoC7zWKSZMjHWRCqkikzGRomUx5oWCksTKy0Ka_QKI4Ueg0E9r_VTACk3FvsQThU1mVaUW5jFUe4k7U9FiCHY-fXRmAzs5a6IRsV6L3pRMDfRzE008xM9BG9XLRrP3HGN7BurByyYb3uNHFyTa2aCEcpS5pBkjFijzBA88cq0eijKLeSz2_AheLfSrr--0bP_EX4O7qQWa7mToTR5AQbdYqlfWqzUiVfBTH4Cg54Jhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCA+and+logistic+regression+in+2-%5B+18+F%5DFDG+PET+neuroimaging+as+an+interpretable+and+diagnostic+tool+for+Alzheimer%27s+disease&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Gon%C3%A7alves+de+Oliveira%2C+Carlos+Eduardo&rft.au=de+Ara%C3%BAjo%2C+Whemberton+Martins&rft.au=de+Jesus+Teixeira%2C+Ana+Beatriz+Marinho&rft.au=Gon%C3%A7alves%2C+Gustavo+Lopes&rft.date=2024-01-21&rft.eissn=1361-6560&rft.volume=69&rft.issue=2&rft_id=info:doi/10.1088%2F1361-6560%2Fad0ddd&rft_id=info%3Apmid%2F37976549&rft.externalDocID=37976549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon