Artificial intelligence in parasitic disease control: A paradigm shift in health care
Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control appr...
Saved in:
Published in | Tropical Parasitology Vol. 14; no. 1; pp. 2 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
India
Wolters Kluwer - Medknow
2024
Medknow Publications & Media Pvt. Ltd |
Edition | 2 |
Subjects | |
Online Access | Get full text |
ISSN | 2229-5070 2229-7758 2229-7758 |
DOI | 10.4103/tp.tp_66_23 |
Cover
Abstract | Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios. |
---|---|
AbstractList | Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios. |
Author | Poddar, Abhijit Parija, Subhash Chandra |
AuthorAffiliation | 1 Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India Professor Emeritus, National Academy of Medical Sciences, New Delhi, India |
AuthorAffiliation_xml | – name: 1 Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India – name: Professor Emeritus, National Academy of Medical Sciences, New Delhi, India |
Author_xml | – sequence: 1 givenname: Subhash Chandra surname: Parija fullname: Parija, Subhash Chandra email: subhashparija@gmail.com – sequence: 2 givenname: Abhijit surname: Poddar fullname: Poddar, Abhijit |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38444798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstvEzEQxi1UREvpiTtaiSOk2F4_NnBAUcVLqsSFnq2JdzYxdezF9hL1v8chCS-BONmj-X3z-OyH5CTEgIQ8ZvRSMNq-KONlGY1Shrf3yBnnfD7TWnYnh7ukmp6Si5zdktKuRkyIB-S07YQQet6dkZtFKm5w1oFvXCjovVthsFiDZoQE2RVnm95lhIyNjaGk6F82i-_J3q02TV67oezwNYIv68ZCwkfk_gA-48XhPCc3b998uno_u_747sPV4npmW63dTFjJVKuGfkBrWwucWQ1yaZWUXEoUjCmcdyB0rxSXWiKlnC-7niFoAQrbc_J8X3cKI9xtwXszJreBdGcYNTuDTHXnaFDFX-_xcVpusLdYt4GfkgjO_J4Jbm1W8WstNmeMdaxWeHqokOKXCXMxn-OUQt3RtExI3XGhd9STX_v8aHC0vQLP9oBNMeeEw3_GZn_Q1hUobvcY4Pw_NK_2mm30BVO-9dMWk6nT3Ia4_ZvEcHP8C-03QbW83Q |
CitedBy_id | crossref_primary_10_2174_0122113525319708240606061352 crossref_primary_10_3390_biomedicines13010042 crossref_primary_10_1021_acsinfecdis_4c00693 |
Cites_doi | 10.1016/j.patter.2023.100806 10.3390/tropicalmed3010005 10.3389/fimmu.2019.00549 10.1016/S2589-7500(20)30192-8 10.1042/BST20220618 10.4103/tp.tp_12_23 10.1109/ICSTCEE49637.2020.9277286 10.1007/s11030-021-10217-3 10.1016/S0065-308X(00)47013-2 10.1038/s41579-022-00777-y 10.1098/rsif.2014.1289 10.1002/cmdc.202000685 10.1177/08404704221125368 10.1016/j.apsb.2022.02.002 10.1021/acs.jcim.9b00375 10.1016/S0020-7519(00)00141-7 10.3389/fphar.2019.01526 10.1080/03602532.2020.1726944 10.1109/EMBC46164.2021.9630868 10.1086/669114 10.1016/j.pt.2023.01.010 10.1016/S1473-3099(16)30270-5 10.1016/S0167-6296(02)00126-1 10.1038/nrd4609 10.1038/s41467-019-08616-0 10.1016/j.eswa.2021.115604 10.1136/svn-2017-000101 10.3389/fchem.2021.614073 10.4103/tp.tp_32_22 10.1016/j.ijpharm.2008.09.036 10.4155/fmc-2019-0307 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Tropical Parasitology Copyright: © 2024 Tropical Parasitology. 2024. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2024 Tropical Parasitology 2024 |
Copyright_xml | – notice: Copyright: © 2024 Tropical Parasitology – notice: Copyright: © 2024 Tropical Parasitology. – notice: 2024. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2024 Tropical Parasitology 2024 |
DBID | AAYXX CITATION NPM K9. 5PM ADTOC UNPAY |
DOI | 10.4103/tp.tp_66_23 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Public Health |
EISSN | 2229-7758 |
Edition | 2 |
EndPage | 7 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:10911181 PMC10911181 38444798 10_4103_tp_tp_66_23 TPAR-14-2 |
Genre | Journal Article |
GroupedDBID | 7X7 8FE 8FH 8FI 8FJ AAKDD ABDBF ABJNI ABUWG ACGFS ACPRK ACUHS ADBBV ADRAZ AEGXH AEUYN AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI CCPQU DIK EOJEC ESX FYUFA GX1 H13 HCIFZ HMCUK HYE IAO IHR IL9 ITC KQ8 LK8 M48 M7P OBODZ OK1 OVD PGMZT PHGZM PHGZT PIMPY PMFND PROAC RMW RPM TEORI TUS UKHRP AAYXX ADJBI CITATION PQGLB PUEGO 53G NPM K9. 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c377i-4c51636fdfecc3ca21c7a5bc655255e4116e98a47d662575e0022b8d1ea74a6e3 |
IEDL.DBID | M48 |
ISSN | 2229-5070 2229-7758 |
IngestDate | Wed Aug 20 00:14:15 EDT 2025 Thu Aug 21 18:35:37 EDT 2025 Mon Jun 30 09:55:45 EDT 2025 Thu Jan 02 22:40:30 EST 2025 Thu Apr 24 22:56:02 EDT 2025 Wed Oct 01 04:41:31 EDT 2025 Wed May 28 23:13:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | parasitic diseases machine learning Artificial intelligence health care |
Language | English |
License | Copyright: © 2024 Tropical Parasitology. This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c377i-4c51636fdfecc3ca21c7a5bc655255e4116e98a47d662575e0022b8d1ea74a6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Presidential Oration, delivered by Prof. Subhash Chandra Parija, President, Indian Academy of Tropical Parasitology, during the 17th Annual Congress of the Indian Academy of Tropical Parasitology (Tropacon 2023) held at the All India Institute of Medical Sciences, Jodhpur, Rajasthan. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.4103/tp.tp_66_23 |
PMID | 38444798 |
PQID | 3145782471 |
PQPubID | 2035631 |
PageCount | 6 |
ParticipantIDs | unpaywall_primary_10_4103_tp_tp_66_23 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10911181 proquest_journals_3145782471 pubmed_primary_38444798 crossref_primary_10_4103_tp_tp_66_23 crossref_citationtrail_10_4103_tp_tp_66_23 wolterskluwer_medknow_10_4103_tp_tp_66_23_2_Artifici |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-01-00 2024 Jan-Jun 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | India |
PublicationPlace_xml | – name: India – name: Kurumampet |
PublicationTitle | Tropical Parasitology |
PublicationTitleAlternate | Trop Parasitol |
PublicationYear | 2024 |
Publisher | Wolters Kluwer - Medknow Medknow Publications & Media Pvt. Ltd |
Publisher_xml | – name: Wolters Kluwer - Medknow – name: Medknow Publications & Media Pvt. Ltd |
References | Parija (R31-20240909) 2022; 12 Myers (R8-20240909) 2000; 47 Berdigaliyev (R15-20240909) 2020; 12 DiMasi (R18-20240909) 2003; 22 Oguntimilehin (R13-20240909) 2015; 4 Shabanpour (R14-20240909) 2022; 112 Gupta (R19-20240909) 2021; 25 Urán (R28-20240909) 2023; 51 Lin (R35-20240909) 2021 Liu (R9-20240909) 2021; 185 Winkler (R29-20240909) 2021; 9 Jiang (R1-20240909) 2017; 2 Waring (R17-20240909) 2015; 14 Zhou (R20-20240909) 2020; 2 Sun (R16-20240909) 2022; 12 Liu (R33-20240909) 2023; 4 Maharao (R21-20240909) 2020; 52 Williams (R30-20240909) 2015; 12 Rao (R25-20240909) 2023; 39 Leonardi (R26-20240909) 2009; 367 Bogoch (R11-20240909) 2016; 16 Samimian-Darash (R5-20240909) 2013; 54 Gurevich (R37-20240909) 2023; 36 Patz (R6-20240909) 2000; 30 Martin (R24-20240909) 2019; 59 Scarpino (R7-20240909) 2019; 10 Lima (R22-20240909) 2021; 16 Parija (R32-20240909) 2023; 13 De (R27-20240909) 2023; 21 Laureano-Rosario (R10-20240909) 2018; 3 Raizada (R12-20240909) 2020 Bloom (R4-20240909) 2019; 10 Keshavarzi (R23-20240909) 2019; 10 |
References_xml | – volume: 112 start-page: 102854 year: 2022 ident: R14-20240909 article-title: Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping publication-title: Int J Appl Earth Obs Geoinf – volume: 4 start-page: 100806 year: 2023 ident: R33-20240909 article-title: AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images publication-title: Patterns (N Y) doi: 10.1016/j.patter.2023.100806 – volume: 3 start-page: 5 year: 2018 ident: R10-20240909 article-title: Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of Yucatan, Mexico and San Juan, Puerto Rico publication-title: Trop Med Infect Dis doi: 10.3390/tropicalmed3010005 – volume: 10 start-page: 549 year: 2019 ident: R4-20240909 article-title: Infectious disease threats in the twenty-first century: Strengthening the global response publication-title: Front Immunol doi: 10.3389/fimmu.2019.00549 – volume: 4 start-page: 1087 year: 2015 ident: R13-20240909 article-title: A review of predictive models on diagnosis and treatment of malaria fever publication-title: Int J Comput Sci Mob Comput – volume: 2 start-page: e667 year: 2020 ident: R20-20240909 article-title: Artificial intelligence in COVID-19 drug repurposing publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30192-8 – volume: 51 start-page: 195 year: 2023 ident: R28-20240909 article-title: Targeting trypanosomes: How chemogenomics and artificial intelligence can guide drug discovery publication-title: Biochem Soc Trans doi: 10.1042/BST20220618 – volume: 13 start-page: 3 year: 2023 ident: R32-20240909 article-title: Deep tech innovation for parasite diagnosis: New dimensions and opportunities publication-title: Trop Parasitol doi: 10.4103/tp.tp_12_23 – start-page: 213 year: 2020 ident: R12-20240909 article-title: Vector Borne Disease Outbreak Prediction by Machine Learning publication-title: 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE doi: 10.1109/ICSTCEE49637.2020.9277286 – volume: 25 start-page: 1315 year: 2021 ident: R19-20240909 article-title: Artificial intelligence to deep learning: Machine intelligence approach for drug discovery publication-title: Mol Divers doi: 10.1007/s11030-021-10217-3 – volume: 47 start-page: 309 year: 2000 ident: R8-20240909 article-title: Forecasting disease risk for increased epidemic preparedness in public health publication-title: Adv Parasitol doi: 10.1016/S0065-308X(00)47013-2 – volume: 21 start-page: 35 year: 2023 ident: R27-20240909 article-title: Anti-trypanosomatid drug discovery: Progress and challenges publication-title: Nat Rev Microbiol doi: 10.1038/s41579-022-00777-y – volume: 12 start-page: 20141289 year: 2015 ident: R30-20240909 article-title: Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases publication-title: J R Soc Interface doi: 10.1098/rsif.2014.1289 – volume: 16 start-page: 1093 year: 2021 ident: R22-20240909 article-title: Artificial intelligence applied to the rapid identification of new antimalarial candidates with dual-stage activity publication-title: ChemMedChem doi: 10.1002/cmdc.202000685 – volume: 36 start-page: 119 year: 2023 ident: R37-20240909 article-title: Equity within AI systems: What can health leaders expect? publication-title: Healthc Manage Forum doi: 10.1177/08404704221125368 – volume: 12 start-page: 3049 year: 2022 ident: R16-20240909 article-title: Why 90% of clinical drug development fails and how to improve it? publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2022.02.002 – volume: 59 start-page: 4450 year: 2019 ident: R24-20240909 article-title: All-Assay-Max2 pQSAR: Activity predictions as accurate as four-concentration IC(50)s for 8558 Novartis assays publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00375 – volume: 30 start-page: 1395 year: 2000 ident: R6-20240909 article-title: Effects of environmental change on emerging parasitic diseases publication-title: Int J Parasitol doi: 10.1016/S0020-7519(00)00141-7 – volume: 10 start-page: 1526 year: 2019 ident: R23-20240909 article-title: DeepMalaria: Artificial intelligence driven discovery of potent antiplasmodials publication-title: Front Pharmacol doi: 10.3389/fphar.2019.01526 – volume: 52 start-page: 283 year: 2020 ident: R21-20240909 article-title: Entering the era of computationally driven drug development publication-title: Drug Metab Rev doi: 10.1080/03602532.2020.1726944 – start-page: 3344 year: 2021 ident: R35-20240909 article-title: Combining collective and artificial intelligence for global health diseases diagnosis using crowdsourced annotated medical images publication-title: Annu Int Conf IEEE Eng Med Biol Soc 2021 doi: 10.1109/EMBC46164.2021.9630868 – volume: 54 start-page: 1 year: 2013 ident: R5-20240909 article-title: Governing future potential biothreats: Toward an anthropology of uncertainty publication-title: Curr Anthropol doi: 10.1086/669114 – volume: 39 start-page: 260 year: 2023 ident: R25-20240909 article-title: Drug discovery for parasitic diseases: Powered by technology, enabled by pharmacology, informed by clinical science publication-title: Trends Parasitol doi: 10.1016/j.pt.2023.01.010 – volume: 16 start-page: 1237 year: 2016 ident: R11-20240909 article-title: Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: A modelling study publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(16)30270-5 – volume: 22 start-page: 151 year: 2003 ident: R18-20240909 article-title: The price of innovation: New estimates of drug development costs publication-title: J Health Econ doi: 10.1016/S0167-6296(02)00126-1 – volume: 14 start-page: 475 year: 2015 ident: R17-20240909 article-title: An analysis of the attrition of drug candidates from four major pharmaceutical companies publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4609 – volume: 10 start-page: 898 year: 2019 ident: R7-20240909 article-title: On the predictability of infectious disease outbreaks publication-title: Nat Commun doi: 10.1038/s41467-019-08616-0 – volume: 185 start-page: 115604 year: 2021 ident: R9-20240909 article-title: Forecasting influenza epidemics in Hong Kong using Google search queries data: A new integrated approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115604 – volume: 2 start-page: 230 year: 2017 ident: R1-20240909 article-title: Artificial intelligence in healthcare:Past, present and future publication-title: Stroke Vasc Neurol doi: 10.1136/svn-2017-000101 – volume: 9 start-page: 614073 year: 2021 ident: R29-20240909 article-title: Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases publication-title: Front Chem doi: 10.3389/fchem.2021.614073 – volume: 12 start-page: 3 year: 2022 ident: R31-20240909 article-title: Climate adaptation impacting parasitic infection publication-title: Trop Parasitol doi: 10.4103/tp.tp_32_22 – volume: 367 start-page: 140 year: 2009 ident: R26-20240909 article-title: Development of novel formulations for Chagas'disease: Optimization of benznidazole chitosan microparticles based on artificial neural networks publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2008.09.036 – volume: 12 start-page: 939 year: 2020 ident: R15-20240909 article-title: An overview of drug discovery and development publication-title: Future Med Chem doi: 10.4155/fmc-2019-0307 |
SSID | ssib008507144 ssj0000503232 |
Score | 2.316078 |
Snippet | Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Artificial intelligence At risk populations Disease control Disease spread Disease transmission Drug development Drug discovery Environmental factors Epidemics Epidemiology Health care Health promotion Leishmaniasis Malaria Outbreaks Parasites Parasitic diseases Presidential Oration Public health Resource allocation Therapeutic targets Tropical diseases Trypanosomiasis Vector-borne diseases |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KWMPY99dU9qhh-5lYCeWZMnuWxgtZbCyhwW6vQhJdlbTxDGNQ9l-_e71R2jWMrY3G12EzbmyjqxzjwCOldSOR9IGSeR5ILXA76DDjyGOceUkHXGsqFD484U6n8pPl_HlDvC-FqYR7XtXhOV8EZbFVaOtrBZ-1OvERuRkSdWSj2BX0abSAHanF18m3-gUOc7TAAnOuL_WyIbbojwZjcWorsK6MkoZLranoXvc8r5E8sm6rOzPWzvH66e3S9rKXl03SvY789HZ87ZGcNXYGJIM5Tpc1y70v_4wefy_V30Bzzp6yiZt20vYyctX8Pj7svn5_hqm1NB6TrDijpkn3jAyEScBmGfdpg_rZPAnbNI0ZsWPBVtdFbOawtsCTEbKszcwPTv9-vE86A5mCLzQugikj5HGqVk2wwQQ3vLIaxs7r-IYVyi5jCKVp4mVOlO4vNJxTkzBJVmUWy2tysUeDMplme8DG6dcu3Tskfl56R0GSWGx7zRGYpZmyRA-9DgZ37mW0-EZc4OrFwLVIKI9qEM43gRXrVnHw2GHPeCmG7ErIyJJzv44Vw_hbYv9pg-RYNbqFB8m2cqKTQB5dG-3IJ6NV3cP4RDebxLo788mt5LLLNqqyIdiDTc96gf_2P0hDOqbdX6ERKp277qR8xtHlyMV priority: 102 providerName: Unpaywall |
Title | Artificial intelligence in parasitic disease control: A paradigm shift in health care |
URI | https://doi.org/10.4103/tp.tp_66_23 https://www.ncbi.nlm.nih.gov/pubmed/38444798 https://www.proquest.com/docview/3145782471 https://pubmed.ncbi.nlm.nih.gov/PMC10911181 https://www.ncbi.nlm.nih.gov/pmc/articles/10911181 |
UnpaywallVersion | submittedVersion |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2229-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000503232 issn: 2229-7758 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2229-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000503232 issn: 2229-7758 databaseCode: ABDBF dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2229-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000503232 issn: 2229-7758 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2229-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000503232 issn: 2229-7758 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2229-7758 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000503232 issn: 2229-7758 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2229-7758 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0000503232 issn: 2229-7758 databaseCode: M48 dateStart: 20110101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQgkhPhNYVR-GC9IKYnt2AkvqEJME1KrPRBp8GI5TsoiurSsmcb-e-7ipGpZxQMvUSNfrejunPvs3H0HcKSkznkkbZBEjgdSC3wP5vgyxDWuckktjhUVCk-m6iSTX87isz3om3F2Clzt3NpRP6nscj76_evmIy54xK8jGYXifbMcNUujlOHiDhxgSOLk3pMNnJ8Q6unimCf9DgVvm5dRO-sAR0Nfu_f3fNvR6hYEvZ1Jee-qXtqbazvH3w-uF_TFe_WzTXjfCFvHj-BhhzfZ2DvIY9gr6ydw9_uiPU1_ChkNeBIJVm2wc-INI1ZwyuhyrPuKw7q89g9s3A4W1Y8LtjqvZg2J-4pKRqlkzyA7_vz100nQdVoInNC6CqSLEZepWTFDiwpneeS0jXOn4hi3HKWMIlWmiZW6ULhf0nFJoT9Piqi0WlpViuewXy_q8iWwMOU6T0OHOnfS5SgkhcW50xiRVlokA3jXa9S4joacumHMDW5HSP0Gdd-rfwBHa-GlZ9_YLXbYm8b0HmREJImqH4PvAF54K63nEAm6oU7xYZIt-60FiHR7e6SuzlvybSJSpWLdAbxdm_rfzya33MBc-DLHXbKGm97qr_7vb6_hPkfU5c-IDmG_ubwq3yBqavJhuyLwOj2dDNtDrSEcZNPT8bc_9RMcnA |
linkProvider | Scholars Portal |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KWMPY99dU9qhh-5lYCeWZMnuWxgtZbCyhwW6vQhJdlbTxDGNQ9l-_e71R2jWMrY3G12EzbmyjqxzjwCOldSOR9IGSeR5ILXA76DDjyGOceUkHXGsqFD484U6n8pPl_HlDvC-FqYR7XtXhOV8EZbFVaOtrBZ-1OvERuRkSdWSj2BX0abSAHanF18m3-gUOc7TAAnOuL_WyIbbojwZjcWorsK6MkoZLranoXvc8r5E8sm6rOzPWzvH66e3S9rKXl03SvY789HZ87ZGcNXYGJIM5Tpc1y70v_4wefy_V30Bzzp6yiZt20vYyctX8Pj7svn5_hqm1NB6TrDijpkn3jAyEScBmGfdpg_rZPAnbNI0ZsWPBVtdFbOawtsCTEbKszcwPTv9-vE86A5mCLzQugikj5HGqVk2wwQQ3vLIaxs7r-IYVyi5jCKVp4mVOlO4vNJxTkzBJVmUWy2tysUeDMplme8DG6dcu3Tskfl56R0GSWGx7zRGYpZmyRA-9DgZ37mW0-EZc4OrFwLVIKI9qEM43gRXrVnHw2GHPeCmG7ErIyJJzv44Vw_hbYv9pg-RYNbqFB8m2cqKTQB5dG-3IJ6NV3cP4RDebxLo788mt5LLLNqqyIdiDTc96gf_2P0hDOqbdX6ERKp277qR8xtHlyMV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+parasitic+disease+control%3A+A+paradigm+shift+in+health+care&rft.jtitle=Tropical+Parasitology&rft.au=Parija%2C+Subhash+Chandra&rft.au=Poddar%2C+Abhijit&rft.date=2024&rft.pub=Wolters+Kluwer+-+Medknow&rft.issn=2229-5070&rft.eissn=2229-7758&rft.volume=14&rft.issue=1&rft.spage=2&rft.epage=7&rft_id=info:doi/10.4103%2Ftp.tp_66_23&rft.externalDocID=TPAR-14-2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2229-5070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2229-5070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2229-5070&client=summon |