Artificial intelligence in parasitic disease control: A paradigm shift in health care

Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control appr...

Full description

Saved in:
Bibliographic Details
Published inTropical Parasitology Vol. 14; no. 1; pp. 2 - 7
Main Authors Parija, Subhash Chandra, Poddar, Abhijit
Format Journal Article
LanguageEnglish
Published India Wolters Kluwer - Medknow 2024
Medknow Publications & Media Pvt. Ltd
Edition2
Subjects
Online AccessGet full text
ISSN2229-5070
2229-7758
2229-7758
DOI10.4103/tp.tp_66_23

Cover

Abstract Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios.
AbstractList Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios.
Author Poddar, Abhijit
Parija, Subhash Chandra
AuthorAffiliation 1 Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
Professor Emeritus, National Academy of Medical Sciences, New Delhi, India
AuthorAffiliation_xml – name: 1 Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
– name: Professor Emeritus, National Academy of Medical Sciences, New Delhi, India
Author_xml – sequence: 1
  givenname: Subhash Chandra
  surname: Parija
  fullname: Parija, Subhash Chandra
  email: subhashparija@gmail.com
– sequence: 2
  givenname: Abhijit
  surname: Poddar
  fullname: Poddar, Abhijit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38444798$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvEzEQxi1UREvpiTtaiSOk2F4_NnBAUcVLqsSFnq2JdzYxdezF9hL1v8chCS-BONmj-X3z-OyH5CTEgIQ8ZvRSMNq-KONlGY1Shrf3yBnnfD7TWnYnh7ukmp6Si5zdktKuRkyIB-S07YQQet6dkZtFKm5w1oFvXCjovVthsFiDZoQE2RVnm95lhIyNjaGk6F82i-_J3q02TV67oezwNYIv68ZCwkfk_gA-48XhPCc3b998uno_u_747sPV4npmW63dTFjJVKuGfkBrWwucWQ1yaZWUXEoUjCmcdyB0rxSXWiKlnC-7niFoAQrbc_J8X3cKI9xtwXszJreBdGcYNTuDTHXnaFDFX-_xcVpusLdYt4GfkgjO_J4Jbm1W8WstNmeMdaxWeHqokOKXCXMxn-OUQt3RtExI3XGhd9STX_v8aHC0vQLP9oBNMeeEw3_GZn_Q1hUobvcY4Pw_NK_2mm30BVO-9dMWk6nT3Ia4_ZvEcHP8C-03QbW83Q
CitedBy_id crossref_primary_10_2174_0122113525319708240606061352
crossref_primary_10_3390_biomedicines13010042
crossref_primary_10_1021_acsinfecdis_4c00693
Cites_doi 10.1016/j.patter.2023.100806
10.3390/tropicalmed3010005
10.3389/fimmu.2019.00549
10.1016/S2589-7500(20)30192-8
10.1042/BST20220618
10.4103/tp.tp_12_23
10.1109/ICSTCEE49637.2020.9277286
10.1007/s11030-021-10217-3
10.1016/S0065-308X(00)47013-2
10.1038/s41579-022-00777-y
10.1098/rsif.2014.1289
10.1002/cmdc.202000685
10.1177/08404704221125368
10.1016/j.apsb.2022.02.002
10.1021/acs.jcim.9b00375
10.1016/S0020-7519(00)00141-7
10.3389/fphar.2019.01526
10.1080/03602532.2020.1726944
10.1109/EMBC46164.2021.9630868
10.1086/669114
10.1016/j.pt.2023.01.010
10.1016/S1473-3099(16)30270-5
10.1016/S0167-6296(02)00126-1
10.1038/nrd4609
10.1038/s41467-019-08616-0
10.1016/j.eswa.2021.115604
10.1136/svn-2017-000101
10.3389/fchem.2021.614073
10.4103/tp.tp_32_22
10.1016/j.ijpharm.2008.09.036
10.4155/fmc-2019-0307
ContentType Journal Article
Copyright Copyright: © 2024 Tropical Parasitology
Copyright: © 2024 Tropical Parasitology.
2024. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2024 Tropical Parasitology 2024
Copyright_xml – notice: Copyright: © 2024 Tropical Parasitology
– notice: Copyright: © 2024 Tropical Parasitology.
– notice: 2024. This article is published under (http://creativecommons.org/licenses/by-nc-sa/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2024 Tropical Parasitology 2024
DBID AAYXX
CITATION
NPM
K9.
5PM
ADTOC
UNPAY
DOI 10.4103/tp.tp_66_23
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Public Health
EISSN 2229-7758
Edition 2
EndPage 7
ExternalDocumentID oai:pubmedcentral.nih.gov:10911181
PMC10911181
38444798
10_4103_tp_tp_66_23
TPAR-14-2
Genre Journal Article
GroupedDBID 7X7
8FE
8FH
8FI
8FJ
AAKDD
ABDBF
ABJNI
ABUWG
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
AEGXH
AEUYN
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
CCPQU
DIK
EOJEC
ESX
FYUFA
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IL9
ITC
KQ8
LK8
M48
M7P
OBODZ
OK1
OVD
PGMZT
PHGZM
PHGZT
PIMPY
PMFND
PROAC
RMW
RPM
TEORI
TUS
UKHRP
AAYXX
ADJBI
CITATION
PQGLB
PUEGO
53G
NPM
K9.
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c377i-4c51636fdfecc3ca21c7a5bc655255e4116e98a47d662575e0022b8d1ea74a6e3
IEDL.DBID M48
ISSN 2229-5070
2229-7758
IngestDate Wed Aug 20 00:14:15 EDT 2025
Thu Aug 21 18:35:37 EDT 2025
Mon Jun 30 09:55:45 EDT 2025
Thu Jan 02 22:40:30 EST 2025
Thu Apr 24 22:56:02 EDT 2025
Wed Oct 01 04:41:31 EDT 2025
Wed May 28 23:13:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords parasitic diseases
machine learning
Artificial intelligence
health care
Language English
License Copyright: © 2024 Tropical Parasitology.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c377i-4c51636fdfecc3ca21c7a5bc655255e4116e98a47d662575e0022b8d1ea74a6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Presidential Oration, delivered by Prof. Subhash Chandra Parija, President, Indian Academy of Tropical Parasitology, during the 17th Annual Congress of the Indian Academy of Tropical Parasitology (Tropacon 2023) held at the All India Institute of Medical Sciences, Jodhpur, Rajasthan.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.4103/tp.tp_66_23
PMID 38444798
PQID 3145782471
PQPubID 2035631
PageCount 6
ParticipantIDs unpaywall_primary_10_4103_tp_tp_66_23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10911181
proquest_journals_3145782471
pubmed_primary_38444798
crossref_primary_10_4103_tp_tp_66_23
crossref_citationtrail_10_4103_tp_tp_66_23
wolterskluwer_medknow_10_4103_tp_tp_66_23_2_Artifici
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-01-00
2024 Jan-Jun
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace India
PublicationPlace_xml – name: India
– name: Kurumampet
PublicationTitle Tropical Parasitology
PublicationTitleAlternate Trop Parasitol
PublicationYear 2024
Publisher Wolters Kluwer - Medknow
Medknow Publications & Media Pvt. Ltd
Publisher_xml – name: Wolters Kluwer - Medknow
– name: Medknow Publications & Media Pvt. Ltd
References Parija (R31-20240909) 2022; 12
Myers (R8-20240909) 2000; 47
Berdigaliyev (R15-20240909) 2020; 12
DiMasi (R18-20240909) 2003; 22
Oguntimilehin (R13-20240909) 2015; 4
Shabanpour (R14-20240909) 2022; 112
Gupta (R19-20240909) 2021; 25
Urán (R28-20240909) 2023; 51
Lin (R35-20240909) 2021
Liu (R9-20240909) 2021; 185
Winkler (R29-20240909) 2021; 9
Jiang (R1-20240909) 2017; 2
Waring (R17-20240909) 2015; 14
Zhou (R20-20240909) 2020; 2
Sun (R16-20240909) 2022; 12
Liu (R33-20240909) 2023; 4
Maharao (R21-20240909) 2020; 52
Williams (R30-20240909) 2015; 12
Rao (R25-20240909) 2023; 39
Leonardi (R26-20240909) 2009; 367
Bogoch (R11-20240909) 2016; 16
Samimian-Darash (R5-20240909) 2013; 54
Gurevich (R37-20240909) 2023; 36
Patz (R6-20240909) 2000; 30
Martin (R24-20240909) 2019; 59
Scarpino (R7-20240909) 2019; 10
Lima (R22-20240909) 2021; 16
Parija (R32-20240909) 2023; 13
De (R27-20240909) 2023; 21
Laureano-Rosario (R10-20240909) 2018; 3
Raizada (R12-20240909) 2020
Bloom (R4-20240909) 2019; 10
Keshavarzi (R23-20240909) 2019; 10
References_xml – volume: 112
  start-page: 102854
  year: 2022
  ident: R14-20240909
  article-title: Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 4
  start-page: 100806
  year: 2023
  ident: R33-20240909
  article-title: AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
  publication-title: Patterns (N Y)
  doi: 10.1016/j.patter.2023.100806
– volume: 3
  start-page: 5
  year: 2018
  ident: R10-20240909
  article-title: Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of Yucatan, Mexico and San Juan, Puerto Rico
  publication-title: Trop Med Infect Dis
  doi: 10.3390/tropicalmed3010005
– volume: 10
  start-page: 549
  year: 2019
  ident: R4-20240909
  article-title: Infectious disease threats in the twenty-first century: Strengthening the global response
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00549
– volume: 4
  start-page: 1087
  year: 2015
  ident: R13-20240909
  article-title: A review of predictive models on diagnosis and treatment of malaria fever
  publication-title: Int J Comput Sci Mob Comput
– volume: 2
  start-page: e667
  year: 2020
  ident: R20-20240909
  article-title: Artificial intelligence in COVID-19 drug repurposing
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30192-8
– volume: 51
  start-page: 195
  year: 2023
  ident: R28-20240909
  article-title: Targeting trypanosomes: How chemogenomics and artificial intelligence can guide drug discovery
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20220618
– volume: 13
  start-page: 3
  year: 2023
  ident: R32-20240909
  article-title: Deep tech innovation for parasite diagnosis: New dimensions and opportunities
  publication-title: Trop Parasitol
  doi: 10.4103/tp.tp_12_23
– start-page: 213
  year: 2020
  ident: R12-20240909
  article-title: Vector Borne Disease Outbreak Prediction by Machine Learning
  publication-title: 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE
  doi: 10.1109/ICSTCEE49637.2020.9277286
– volume: 25
  start-page: 1315
  year: 2021
  ident: R19-20240909
  article-title: Artificial intelligence to deep learning: Machine intelligence approach for drug discovery
  publication-title: Mol Divers
  doi: 10.1007/s11030-021-10217-3
– volume: 47
  start-page: 309
  year: 2000
  ident: R8-20240909
  article-title: Forecasting disease risk for increased epidemic preparedness in public health
  publication-title: Adv Parasitol
  doi: 10.1016/S0065-308X(00)47013-2
– volume: 21
  start-page: 35
  year: 2023
  ident: R27-20240909
  article-title: Anti-trypanosomatid drug discovery: Progress and challenges
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-022-00777-y
– volume: 12
  start-page: 20141289
  year: 2015
  ident: R30-20240909
  article-title: Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2014.1289
– volume: 16
  start-page: 1093
  year: 2021
  ident: R22-20240909
  article-title: Artificial intelligence applied to the rapid identification of new antimalarial candidates with dual-stage activity
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.202000685
– volume: 36
  start-page: 119
  year: 2023
  ident: R37-20240909
  article-title: Equity within AI systems: What can health leaders expect?
  publication-title: Healthc Manage Forum
  doi: 10.1177/08404704221125368
– volume: 12
  start-page: 3049
  year: 2022
  ident: R16-20240909
  article-title: Why 90% of clinical drug development fails and how to improve it?
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2022.02.002
– volume: 59
  start-page: 4450
  year: 2019
  ident: R24-20240909
  article-title: All-Assay-Max2 pQSAR: Activity predictions as accurate as four-concentration IC(50)s for 8558 Novartis assays
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00375
– volume: 30
  start-page: 1395
  year: 2000
  ident: R6-20240909
  article-title: Effects of environmental change on emerging parasitic diseases
  publication-title: Int J Parasitol
  doi: 10.1016/S0020-7519(00)00141-7
– volume: 10
  start-page: 1526
  year: 2019
  ident: R23-20240909
  article-title: DeepMalaria: Artificial intelligence driven discovery of potent antiplasmodials
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.01526
– volume: 52
  start-page: 283
  year: 2020
  ident: R21-20240909
  article-title: Entering the era of computationally driven drug development
  publication-title: Drug Metab Rev
  doi: 10.1080/03602532.2020.1726944
– start-page: 3344
  year: 2021
  ident: R35-20240909
  article-title: Combining collective and artificial intelligence for global health diseases diagnosis using crowdsourced annotated medical images
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc 2021
  doi: 10.1109/EMBC46164.2021.9630868
– volume: 54
  start-page: 1
  year: 2013
  ident: R5-20240909
  article-title: Governing future potential biothreats: Toward an anthropology of uncertainty
  publication-title: Curr Anthropol
  doi: 10.1086/669114
– volume: 39
  start-page: 260
  year: 2023
  ident: R25-20240909
  article-title: Drug discovery for parasitic diseases: Powered by technology, enabled by pharmacology, informed by clinical science
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2023.01.010
– volume: 16
  start-page: 1237
  year: 2016
  ident: R11-20240909
  article-title: Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: A modelling study
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(16)30270-5
– volume: 22
  start-page: 151
  year: 2003
  ident: R18-20240909
  article-title: The price of innovation: New estimates of drug development costs
  publication-title: J Health Econ
  doi: 10.1016/S0167-6296(02)00126-1
– volume: 14
  start-page: 475
  year: 2015
  ident: R17-20240909
  article-title: An analysis of the attrition of drug candidates from four major pharmaceutical companies
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd4609
– volume: 10
  start-page: 898
  year: 2019
  ident: R7-20240909
  article-title: On the predictability of infectious disease outbreaks
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08616-0
– volume: 185
  start-page: 115604
  year: 2021
  ident: R9-20240909
  article-title: Forecasting influenza epidemics in Hong Kong using Google search queries data: A new integrated approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115604
– volume: 2
  start-page: 230
  year: 2017
  ident: R1-20240909
  article-title: Artificial intelligence in healthcare:Past, present and future
  publication-title: Stroke Vasc Neurol
  doi: 10.1136/svn-2017-000101
– volume: 9
  start-page: 614073
  year: 2021
  ident: R29-20240909
  article-title: Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases
  publication-title: Front Chem
  doi: 10.3389/fchem.2021.614073
– volume: 12
  start-page: 3
  year: 2022
  ident: R31-20240909
  article-title: Climate adaptation impacting parasitic infection
  publication-title: Trop Parasitol
  doi: 10.4103/tp.tp_32_22
– volume: 367
  start-page: 140
  year: 2009
  ident: R26-20240909
  article-title: Development of novel formulations for Chagas'disease: Optimization of benznidazole chitosan microparticles based on artificial neural networks
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2008.09.036
– volume: 12
  start-page: 939
  year: 2020
  ident: R15-20240909
  article-title: An overview of drug discovery and development
  publication-title: Future Med Chem
  doi: 10.4155/fmc-2019-0307
SSID ssib008507144
ssj0000503232
Score 2.316078
Snippet Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Artificial intelligence
At risk populations
Disease control
Disease spread
Disease transmission
Drug development
Drug discovery
Environmental factors
Epidemics
Epidemiology
Health care
Health promotion
Leishmaniasis
Malaria
Outbreaks
Parasites
Parasitic diseases
Presidential Oration
Public health
Resource allocation
Therapeutic targets
Tropical diseases
Trypanosomiasis
Vector-borne diseases
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KWMPY99dU9qhh-5lYCeWZMnuWxgtZbCyhwW6vQhJdlbTxDGNQ9l-_e71R2jWMrY3G12EzbmyjqxzjwCOldSOR9IGSeR5ILXA76DDjyGOceUkHXGsqFD484U6n8pPl_HlDvC-FqYR7XtXhOV8EZbFVaOtrBZ-1OvERuRkSdWSj2BX0abSAHanF18m3-gUOc7TAAnOuL_WyIbbojwZjcWorsK6MkoZLranoXvc8r5E8sm6rOzPWzvH66e3S9rKXl03SvY789HZ87ZGcNXYGJIM5Tpc1y70v_4wefy_V30Bzzp6yiZt20vYyctX8Pj7svn5_hqm1NB6TrDijpkn3jAyEScBmGfdpg_rZPAnbNI0ZsWPBVtdFbOawtsCTEbKszcwPTv9-vE86A5mCLzQugikj5HGqVk2wwQQ3vLIaxs7r-IYVyi5jCKVp4mVOlO4vNJxTkzBJVmUWy2tysUeDMplme8DG6dcu3Tskfl56R0GSWGx7zRGYpZmyRA-9DgZ37mW0-EZc4OrFwLVIKI9qEM43gRXrVnHw2GHPeCmG7ErIyJJzv44Vw_hbYv9pg-RYNbqFB8m2cqKTQB5dG-3IJ6NV3cP4RDebxLo788mt5LLLNqqyIdiDTc96gf_2P0hDOqbdX6ERKp277qR8xtHlyMV
  priority: 102
  providerName: Unpaywall
Title Artificial intelligence in parasitic disease control: A paradigm shift in health care
URI https://doi.org/10.4103/tp.tp_66_23
https://www.ncbi.nlm.nih.gov/pubmed/38444798
https://www.proquest.com/docview/3145782471
https://pubmed.ncbi.nlm.nih.gov/PMC10911181
https://www.ncbi.nlm.nih.gov/pmc/articles/10911181
UnpaywallVersion submittedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2229-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000503232
  issn: 2229-7758
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2229-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000503232
  issn: 2229-7758
  databaseCode: ABDBF
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2229-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000503232
  issn: 2229-7758
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2229-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000503232
  issn: 2229-7758
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2229-7758
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000503232
  issn: 2229-7758
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2229-7758
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0000503232
  issn: 2229-7758
  databaseCode: M48
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQgkhPhNYVR-GC9IKYnt2AkvqEJME1KrPRBp8GI5TsoiurSsmcb-e-7ipGpZxQMvUSNfrejunPvs3H0HcKSkznkkbZBEjgdSC3wP5vgyxDWuckktjhUVCk-m6iSTX87isz3om3F2Clzt3NpRP6nscj76_evmIy54xK8jGYXifbMcNUujlOHiDhxgSOLk3pMNnJ8Q6unimCf9DgVvm5dRO-sAR0Nfu_f3fNvR6hYEvZ1Jee-qXtqbazvH3w-uF_TFe_WzTXjfCFvHj-BhhzfZ2DvIY9gr6ydw9_uiPU1_ChkNeBIJVm2wc-INI1ZwyuhyrPuKw7q89g9s3A4W1Y8LtjqvZg2J-4pKRqlkzyA7_vz100nQdVoInNC6CqSLEZepWTFDiwpneeS0jXOn4hi3HKWMIlWmiZW6ULhf0nFJoT9Piqi0WlpViuewXy_q8iWwMOU6T0OHOnfS5SgkhcW50xiRVlokA3jXa9S4joacumHMDW5HSP0Gdd-rfwBHa-GlZ9_YLXbYm8b0HmREJImqH4PvAF54K63nEAm6oU7xYZIt-60FiHR7e6SuzlvybSJSpWLdAbxdm_rfzya33MBc-DLHXbKGm97qr_7vb6_hPkfU5c-IDmG_ubwq3yBqavJhuyLwOj2dDNtDrSEcZNPT8bc_9RMcnA
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL10KWMPY99dU9qhh-5lYCeWZMnuWxgtZbCyhwW6vQhJdlbTxDGNQ9l-_e71R2jWMrY3G12EzbmyjqxzjwCOldSOR9IGSeR5ILXA76DDjyGOceUkHXGsqFD484U6n8pPl_HlDvC-FqYR7XtXhOV8EZbFVaOtrBZ-1OvERuRkSdWSj2BX0abSAHanF18m3-gUOc7TAAnOuL_WyIbbojwZjcWorsK6MkoZLranoXvc8r5E8sm6rOzPWzvH66e3S9rKXl03SvY789HZ87ZGcNXYGJIM5Tpc1y70v_4wefy_V30Bzzp6yiZt20vYyctX8Pj7svn5_hqm1NB6TrDijpkn3jAyEScBmGfdpg_rZPAnbNI0ZsWPBVtdFbOawtsCTEbKszcwPTv9-vE86A5mCLzQugikj5HGqVk2wwQQ3vLIaxs7r-IYVyi5jCKVp4mVOlO4vNJxTkzBJVmUWy2tysUeDMplme8DG6dcu3Tskfl56R0GSWGx7zRGYpZmyRA-9DgZ37mW0-EZc4OrFwLVIKI9qEM43gRXrVnHw2GHPeCmG7ErIyJJzv44Vw_hbYv9pg-RYNbqFB8m2cqKTQB5dG-3IJ6NV3cP4RDebxLo788mt5LLLNqqyIdiDTc96gf_2P0hDOqbdX6ERKp277qR8xtHlyMV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+parasitic+disease+control%3A+A+paradigm+shift+in+health+care&rft.jtitle=Tropical+Parasitology&rft.au=Parija%2C+Subhash+Chandra&rft.au=Poddar%2C+Abhijit&rft.date=2024&rft.pub=Wolters+Kluwer+-+Medknow&rft.issn=2229-5070&rft.eissn=2229-7758&rft.volume=14&rft.issue=1&rft.spage=2&rft.epage=7&rft_id=info:doi/10.4103%2Ftp.tp_66_23&rft.externalDocID=TPAR-14-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2229-5070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2229-5070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2229-5070&client=summon