Hybrid intelligent phishing website prediction using deep neural networks with genetic algorithm-based feature selection and weighting
In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial information about the internet users to carry out financial thefts. Several blacklist-based conventional phishing website detection methods are use...
Saved in:
| Published in | IET information security Vol. 13; no. 6; pp. 659 - 669 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
01.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8709 1751-8717 1751-8717 |
| DOI | 10.1049/iet-ifs.2019.0006 |
Cover
| Abstract | In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial information about the internet users to carry out financial thefts. Several blacklist-based conventional phishing website detection methods are used to predict the phishing websites. However, numerous phishing websites are not predicted precisely by these blacklist-based conventional methods since many new phishing websites are constantly developed and launched on the Web over time. In this study, hybrid intelligent phishing website prediction using deep neural networks (DNNs) with evolutionary algorithm-based feature selection and weighting methods are suggested to enhance the phishing website prediction. In the proposed hybrid intelligent phishing website prediction approaches, the most influential features and the optimal weights of website features are heuristically identified with the genetic algorithm (GA) to help in increasing the accuracy of phishing website prediction. Accordingly, the website features selected and weighted by the GA are utilised to train DNNs to accurately predict the phishing websites. The experimental results demonstrated that the proposed hybrid intelligent phishing website prediction approaches achieved significantly higher classification accuracy, sensitivity, specificity, and geometric mean in phishing website prediction compared to those proposed in other studies. |
|---|---|
| AbstractList | In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial information about the internet users to carry out financial thefts. Several blacklist‐based conventional phishing website detection methods are used to predict the phishing websites. However, numerous phishing websites are not predicted precisely by these blacklist‐based conventional methods since many new phishing websites are constantly developed and launched on the Web over time. In this study, hybrid intelligent phishing website prediction using deep neural networks (DNNs) with evolutionary algorithm‐based feature selection and weighting methods are suggested to enhance the phishing website prediction. In the proposed hybrid intelligent phishing website prediction approaches, the most influential features and the optimal weights of website features are heuristically identified with the genetic algorithm (GA) to help in increasing the accuracy of phishing website prediction. Accordingly, the website features selected and weighted by the GA are utilised to train DNNs to accurately predict the phishing websites. The experimental results demonstrated that the proposed hybrid intelligent phishing website prediction approaches achieved significantly higher classification accuracy, sensitivity, specificity, and geometric mean in phishing website prediction compared to those proposed in other studies. |
| Author | Ali, Waleed Ahmed, Adel A |
| Author_xml | – sequence: 1 givenname: Waleed surname: Ali fullname: Ali, Waleed email: waleedalodini@gmail.com organization: 1Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia – sequence: 2 givenname: Adel A surname: Ahmed fullname: Ahmed, Adel A organization: 2Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia |
| BookMark | eNqNkMtu3SAQhlGVSM3tAbLjBXw6-AJ2d22UNJEiZZF2jbA9PmdSgi3Ass4L9LmD5aqLLtKuBgHf_2u-c3biRoeMXQvYCSibT4QxoyHschDNDgDkB3YmVCWyWgl18ucMzUd2HsILQCUraM7Yr_tj66nn5CJaS3t0kU8HCgdye75gGyginzz21EUaHZ_D-tAjTtzh7I1NIy6j_xn4QvHAUwBG6rix-9Gni9esNQF7PqCJs0ce0OKWZFyfCmh_iCnxkp0Oxga8-j0v2I-72-8399nj07eHmy-PWVcoJbNS5AUIqUAUVT6YNq9EXQpZda0ph7zrc9VUTV3LoilaqbCXUNeqNaDUICs0ZXHB8i13dpM5LsZaPXl6Nf6oBejVpE4mdTKpV5N6NZkgtUGdH0PwOOiOolmXiN6QfZcUf5H_0_Z5YxayePw3oB-eb_OvdwCFXOFsg9dvL-PsXbL5TtkbcHixKA |
| CitedBy_id | crossref_primary_10_1016_j_cose_2024_103885 crossref_primary_10_1109_JIOT_2021_3138073 crossref_primary_10_2139_ssrn_3922446 crossref_primary_10_1016_j_heliyon_2021_e05936 crossref_primary_10_32604_cmc_2023_036422 crossref_primary_10_1007_s13369_020_04802_1 crossref_primary_10_1109_ACCESS_2023_3250256 crossref_primary_10_1016_j_heliyon_2021_e07437 crossref_primary_10_14710_jtsiskom_2021_13965 crossref_primary_10_1016_j_eswa_2023_119992 crossref_primary_10_1007_s42979_024_03388_x crossref_primary_10_1007_s10586_024_04272_2 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1109_ACCESS_2024_3486462 crossref_primary_10_1109_ACCESS_2024_3384840 crossref_primary_10_3390_pr11020562 crossref_primary_10_1016_j_knosys_2022_110122 crossref_primary_10_1109_ACCESS_2022_3166474 crossref_primary_10_3390_app13084649 crossref_primary_10_1016_j_compeleceng_2025_110212 crossref_primary_10_1007_s11277_023_10736_2 crossref_primary_10_28925_2663_4023_2023_20_124141 crossref_primary_10_1109_ACCESS_2020_3013699 crossref_primary_10_32604_csse_2022_020414 crossref_primary_10_1016_j_procs_2023_01_145 crossref_primary_10_3390_electronics12214545 crossref_primary_10_1007_s11042_023_15399_6 crossref_primary_10_1016_j_jestch_2023_101453 crossref_primary_10_1038_s41598_021_82796_y crossref_primary_10_1002_spy2_256 crossref_primary_10_3390_electronics10111285 crossref_primary_10_1016_j_swevo_2024_101809 crossref_primary_10_1016_j_compeleceng_2022_107868 crossref_primary_10_32604_jcs_2023_045859 crossref_primary_10_1109_ACCESS_2020_3003569 crossref_primary_10_1007_s10586_024_04313_w crossref_primary_10_1007_s10115_022_01672_x crossref_primary_10_1007_s11235_021_00799_6 crossref_primary_10_3390_app14146081 crossref_primary_10_1016_j_eswa_2023_120058 crossref_primary_10_1109_TAI_2022_3145333 crossref_primary_10_1109_ACCESS_2023_3247135 crossref_primary_10_3390_make3030034 crossref_primary_10_2478_amns_2023_1_00195 |
| Cites_doi | 10.1016/j.cosrev.2015.04.001 10.1109/ICC.2018.8422327 10.1016/j.eswa.2017.04.030 10.1016/j.ejor.2017.11.054 10.1016/j.eswa.2011.01.046 10.1109/ICC.2018.8422448 10.1016/j.asoc.2015.07.046 10.1109/TNSM.2018.2831197 10.1038/nature14539 10.1016/S0004-3702(97)00043-X 10.1016/j.ejor.2016.10.031 10.1016/j.proeng.2012.01.930 10.1007/s11235-017-0414-0 10.1109/TETC.2014.2367415 10.1007/978-3-319-27247-4_11 10.1109/ACSAT.2014.29 10.1109/COMST.2018.2812301 10.1155/2014/526801 10.1016/j.eswa.2016.01.028 10.1016/j.eswa.2013.02.009 10.1109/ITNG.2010.117 10.1049/iet-ifs.2013.0202 10.1049/iet-cps.2017.0010 10.1016/j.compeleceng.2013.11.024 10.1016/j.ins.2019.01.064 10.1007/s00521-013-1490-z 10.1016/j.knosys.2012.10.001 10.1016/j.patrec.2017.01.004 10.1007/s11042-017-4946-9 10.1016/j.eswa.2014.03.019 10.1016/j.patrec.2015.07.007 10.1109/JSYST.2016.2550530 10.1016/j.ipm.2009.03.002 10.1016/j.eswa.2010.10.041 10.1109/CSCI.2016.0214 10.1016/j.eswa.2018.09.029 10.1109/ICCC.2013.6731669 10.1109/ACCESS.2018.2878681 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1049/iet-ifs.2019.0006 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1751-8717 |
| EndPage | 669 |
| ExternalDocumentID | 10.1049/iet-ifs.2019.0006 10_1049_iet_ifs_2019_0006 ISE2BF00366 |
| Genre | article |
| GrantInformation_xml | – fundername: Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah grantid: G: 289-830-1439 – fundername: Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah funderid: G: 289‐830‐1439 |
| GroupedDBID | 0R 24P 29I 3V. 4.4 5GY 6IK 8AL 8FE 8FG AAJGR ABJCF ABUWG ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD GNUQQ HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI LXU M0N M43 M7S NADUK NXXTH O9- OCL P2P P62 PQEST PQQKQ PQUKI PROAC PTHSS RIE RIG RNS RUI S0W UNMZH UNR ZZ .DC 0R~ 0ZK 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ADEYR ADZOD AEEZP AEGXH AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3776-4123016701352fab25184165cba4f2cd27959886393b67ed60887ba077f65ea43 |
| IEDL.DBID | 24P |
| ISSN | 1751-8709 1751-8717 |
| IngestDate | Thu Oct 30 06:12:18 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Oct 29 21:20:35 EDT 2025 Wed Jan 22 16:32:44 EST 2025 Tue Jan 05 21:44:24 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | pattern classification genetic algorithm-based feature selection DNN Web site features unsolicited e-mail Web phishing attack genetic algorithms hybrid intelligent phishing Web site prediction approaches blacklist-based conventional phishing Web site detection methods evolutionary computation computer crime evolutionary algorithm-based feature selection financial information Internet learning (artificial intelligence) Web sites neural nets feature selection deep neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3776-4123016701352fab25184165cba4f2cd27959886393b67ed60887ba077f65ea43 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2019.0006 |
| PageCount | 11 |
| ParticipantIDs | iet_journals_10_1049_iet_ifs_2019_0006 unpaywall_primary_10_1049_iet_ifs_2019_0006 crossref_citationtrail_10_1049_iet_ifs_2019_0006 crossref_primary_10_1049_iet_ifs_2019_0006 wiley_primary_10_1049_iet_ifs_2019_0006_ISE2BF00366 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20191100 November 2019 2019-11-00 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
| PublicationDecade | 2010 |
| PublicationTitle | IET information security |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Sahingoz, O.K.; Buber, E.; Demir, O. (C10) 2019; 117 Wen, H.; Tang, J.; Wu, J. (C31) 2015; 3 Zhao, M.; Fu, C.; Ji, L. (C36) 2011; 38 Chong, E.; Han, C.; Park, F. (C17) 2017; 83 Yong, K.S.C.; Tiong, W.K.; Chiew, K.L. (C24) 2019; 484 Pérez-Rodríguez, J.; Arroyo-Peña, A.G.; García-Pedrajas, N. (C40) 2015; 37 Sokolova, M.; Lapalme, G. (C50) 2009; 45 Pham, C.; Nguyen, L.A.T.; Tran, N.H. (C23) 2018; 15 Abdelhamid, N.; Ayesh, A.; Thabtah, F. (C4) 2014; 41 Das, A.; Das, S. (C38) 2017; 88 Wu, J.; Guo, S.; Li, J. (C30) 2016; 10 Fischer, T.; Krauss, C. (C18) 2018; 270 Chandrashekar, G.; Sahin, F. (C34) 2014; 40 Al-diabat, M. (C13) 2016; 147 Barraclough, P.A.; Hossain, M.A.; Tahir, M.A. (C7) 2013; 40 He, M.; Horng, S.J.; Fan, P. (C2) 2011; 38 Ali, W. (C6) 2017; 8 Kohavi, R.; John, G.H. (C37) 1997; 97 Varpa, K.; Iltanen, K.; Juhola, M. (C39) 2014; 2014 Atat, R.; Liu, L.; Wu, J. (C26) 2018; 6 Sun, X.; Liu, Y.; Xu, M. (C35) 2013; 37 Moghimi, M.; Varjani, A.Y. (C20) 2016; 53 Lakshmi, V.S.; Vijaya, M.S. (C11) 2012; 30 Jain, A.K.; Gupta, B.B. (C22) 2018; 68 Liao, X.; Guo, S.; Yin, J. (C33) 2018; 77 LeCun, Y.; Bengio, Y.; Hinton, G. (C19) 2015; 521 Atat, R.; Liu, L.; Chen, H. (C25) 2017; 2 Wu, J.; Guo, S.; Huang, H. (C29) 2018; 20 Rao, R.S.; Pais, A.R. (C21) 2018 Krauss, C.; Do, X.A.; Huck, N. (C42) 2015; 259 Liao, X.; Yu, Y.; Li, B. (C32) 2019 Paul, S.; Das, S. (C41) 2015; 65 Mohammad, R.M.; Thabtah, F.; McCluskey, L. (C8) 2014; 8 Mohammad, R.M.; Thabtah, F.; McCluskey, L. (C3) 2015; 17 Mohammad, R.M.; Thabtah, F.; McCluskey, L. (C1) 2014; 25 2009; 45 2017; 83 2015; 37 2017; 8 2015; 17 2017; 2 2015; 3 2012 2015; 521 2010 2013; 40 2017; 88 2016; 10 2016; 53 2014; 25 2014; 2014 2016; 147 2014; 41 2011; 38 2014; 40 2018; 20 2012; 30 2018; 68 2019; 484 2018; 6 2018; 270 2013; 37 2015; 259 1997; 97 2015; 65 2019 2018 2016 2019; 117 2014 2013 2014; 8 2018; 77 2018; 15 e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_40_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_6_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_32_2 Rao R.S. (e_1_2_10_22_2) 2018 e_1_2_10_30_2 e_1_2_10_51_2 Al‐diabat M. (e_1_2_10_14_2) 2016; 147 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_45_2 e_1_2_10_20_2 e_1_2_10_43_2 Liao X. (e_1_2_10_33_2) 2019 e_1_2_10_41_2 Ali W. (e_1_2_10_7_2) 2017; 8 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_9_2 e_1_2_10_12_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_50_2 e_1_2_10_28_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_24_2 e_1_2_10_47_2 |
| References_xml | – volume: 270 start-page: 654 issue: 2 year: 2018 end-page: 669 ident: C18 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. – volume: 41 start-page: 5948 issue: 13 year: 2014 end-page: 5959 ident: C4 article-title: Phishing detection based associative classification data mining publication-title: Expert Syst. Appl. – volume: 10 start-page: 888 issue: 3 year: 2016 end-page: 900 ident: C30 article-title: Big data meet green challenges: big data toward green applications publication-title: IEEE Syst. J. – volume: 2 start-page: 49 issue: 1 year: 2017 end-page: 54 ident: C25 article-title: Enabling cyber-physical communication in 5G cellular networks: challenges, spatial spectrum sensing, and cyber-security publication-title: IET Cyber-Phys. Syst., Theory Appl. – volume: 259 start-page: 689 issue: 2 year: 2015 end-page: 702 ident: C42 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: Eur. J. Oper. Res. – volume: 8 start-page: 72 issue: 9 year: 2017 end-page: 78 ident: C6 article-title: Phishing website detection based on supervised machine learning with wrapper features selection publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: C19 article-title: Deep learning publication-title: Nature – volume: 83 start-page: 187 year: 2017 end-page: 205 ident: C17 article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies publication-title: Expert Syst. Appl. – volume: 53 start-page: 231 year: 2016 end-page: 242 ident: C20 article-title: New rule-based phishing detection method publication-title: Expert Syst. Appl. – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: C50 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. – volume: 147 start-page: 5 issue: 5 year: 2016 end-page: 11 ident: C13 article-title: Detection and prediction of phishing websites using classification mining techniques publication-title: Int. J. Comput. Appl. – volume: 25 start-page: 443 issue: 2 year: 2014 end-page: 458 ident: C1 article-title: Predicting phishing websites based on self-structuring neural network publication-title: Neural Comput. Appl. – volume: 38 start-page: 5197 issue: 5 year: 2011 end-page: 5204 ident: C36 article-title: Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes publication-title: Expert Syst. Appl. – volume: 88 start-page: 12 year: 2017 end-page: 19 ident: C38 article-title: Feature weighting and selection with a pareto-optimal trade-off between relevancy and redundancy publication-title: Pattern Recognit. Lett. – volume: 30 start-page: 798 year: 2012 end-page: 805 ident: C11 article-title: Efficient prediction of phishing websites using supervised learning algorithms publication-title: Proc. Eng. – volume: 15 start-page: 1076 issue: 3 year: 2018 end-page: 1089 ident: C23 article-title: Phishing-aware: a neuro-fuzzy approach for anti-phishing on fog networks publication-title: IEEE Trans. Netw. Serv. Manage. – volume: 6 start-page: 73603 year: 2018 end-page: 73636 ident: C26 article-title: Big data meet cyber-physical systems: a panoramic survey publication-title: IEEE. Access. – volume: 37 start-page: 416 year: 2015 end-page: 443 ident: C40 article-title: Simultaneous instance and feature selection and weighting using evolutionary computation publication-title: Appl. Soft Comput. – volume: 3 start-page: 119 issue: 1 year: 2015 end-page: 126 ident: C31 article-title: A cross-layer secure communication model based on discrete fractional Fourier transform (DFRFT) publication-title: IEEE Trans. Emerging Top. Comput. – volume: 37 start-page: 541 year: 2013 end-page: 549 ident: C35 article-title: Feature selection using dynamic weights for classification publication-title: Knowl.-Based Syst. – volume: 17 start-page: 1 year: 2015 end-page: 24 ident: C3 article-title: Tutorial and critical analysis of phishing websites methods publication-title: Comput. Sci. Rev. – volume: 65 start-page: 51 year: 2015 end-page: 59 ident: C41 article-title: Simultaneous feature selection and weighting – An evolutionary multi-objective optimization approach publication-title: Pattern Recogn. Lett. – volume: 77 start-page: 10033 issue: 8 year: 2018 end-page: 10050 ident: C33 article-title: New cubic reference table based image steganography publication-title: Multimedia Tools Appl. – volume: 68 start-page: 687 issue: 4 year: 2018 end-page: 700 ident: C22 article-title: Towards detection of phishing websites on client-side using machine learning based approach publication-title: Telecommun. Syst. – start-page: 1 year: 2019 end-page: 14 ident: C32 article-title: A new payload partition strategy in color image steganography publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1 year: 2018 end-page: 23 ident: C21 article-title: Detection of phishing websites using an efficient feature-based machine learning framework publication-title: Neural Comput. Appl. – volume: 38 start-page: 12018 issue: 10 year: 2011 end-page: 12027 ident: C2 article-title: An efficient phishing webpage detector publication-title: Expert Syst. Appl. – volume: 484 start-page: 153 year: 2019 end-page: 166 ident: C24 article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system publication-title: Inf. Sci. – volume: 97 start-page: 273 issue: 1–2 year: 1997 end-page: 324 ident: C37 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 2014 start-page: 1 year: 2014 end-page: 11 ident: C39 article-title: Genetic algorithm based approach in attribute weighting for a medical data set publication-title: J. Comput. Med. – volume: 40 start-page: 4697 issue: 11 year: 2013 end-page: 4706 ident: C7 article-title: Intelligent phishing detection and protection scheme for online transactions publication-title: Expert Syst. Appl. – volume: 8 start-page: 153 issue: 3 year: 2014 end-page: 160 ident: C8 article-title: Intelligent rule-based phishing websites classification publication-title: IET Inf. Sec. – volume: 117 start-page: 345 year: 2019 end-page: 357 ident: C10 article-title: Machine learning based phishing detection from URLs publication-title: Exp. Syst. Appl. – volume: 40 start-page: 16 issue: 1 year: 2014 end-page: 28 ident: C34 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – volume: 20 start-page: 2389 issue: 3 year: 2018 end-page: 2406 ident: C29 article-title: Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives publication-title: IEEE Commun. Surv. Tutorials – start-page: 1 year: 2018 end-page: 6 article-title: Machine‐learning‐based online distributed denial‐of‐service attack detection using spark streaming – volume: 37 start-page: 541 year: 2013 end-page: 549 article-title: Feature selection using dynamic weights for classification publication-title: Knowl.‐Based Syst. – volume: 15 start-page: 1076 issue: 3 year: 2018 end-page: 1089 article-title: Phishing‐aware: a neuro‐fuzzy approach for anti‐phishing on fog networks publication-title: IEEE Trans. Netw. Serv. Manage. – start-page: 1 year: 2018 end-page: 6 article-title: A novel distributed denial‐of‐service attack detection scheme for software defined networking environments – volume: 68 start-page: 687 issue: 4 year: 2018 end-page: 700 article-title: Towards detection of phishing websites on client‐side using machine learning based approach publication-title: Telecommun. Syst. – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 8 start-page: 153 issue: 3 year: 2014 end-page: 160 article-title: Intelligent rule‐based phishing websites classification publication-title: IET Inf. Sec. – start-page: 125 year: 2014 end-page: 132 article-title: An experimental study for assessing email classification attributes using feature selection methods – volume: 83 start-page: 187 year: 2017 end-page: 205 article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies publication-title: Expert Syst. Appl. – start-page: 1 year: 2019 end-page: 14 article-title: A new payload partition strategy in color image steganography publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 30 start-page: 798 year: 2012 end-page: 805 article-title: Efficient prediction of phishing websites using supervised learning algorithms publication-title: Proc. Eng. – volume: 37 start-page: 416 year: 2015 end-page: 443 article-title: Simultaneous instance and feature selection and weighting using evolutionary computation publication-title: Appl. Soft Comput. – start-page: 1 year: 2018 end-page: 23 article-title: Detection of phishing websites using an efficient feature‐based machine learning framework publication-title: Neural Comput. Appl. – volume: 38 start-page: 12018 issue: 10 year: 2011 end-page: 12027 article-title: An efficient phishing webpage detector publication-title: Expert Syst. Appl. – volume: 10 start-page: 888 issue: 3 year: 2016 end-page: 900 article-title: Big data meet green challenges: big data toward green applications publication-title: IEEE Syst. J. – volume: 41 start-page: 5948 issue: 13 year: 2014 end-page: 5959 article-title: Phishing detection based associative classification data mining publication-title: Expert Syst. Appl. – volume: 53 start-page: 231 year: 2016 end-page: 242 article-title: New rule‐based phishing detection method publication-title: Expert Syst. Appl. – volume: 8 start-page: 72 issue: 9 year: 2017 end-page: 78 article-title: Phishing website detection based on supervised machine learning with wrapper features selection publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 65 start-page: 51 year: 2015 end-page: 59 article-title: Simultaneous feature selection and weighting – An evolutionary multi‐objective optimization approach publication-title: Pattern Recogn. Lett. – volume: 484 start-page: 153 year: 2019 end-page: 166 article-title: A new hybrid ensemble feature selection framework for machine learning‐based phishing detection system publication-title: Inf. Sci. – volume: 3 start-page: 119 issue: 1 year: 2015 end-page: 126 article-title: A cross‐layer secure communication model based on discrete fractional Fourier transform (DFRFT) publication-title: IEEE Trans. Emerging Top. Comput. – volume: 20 start-page: 2389 issue: 3 year: 2018 end-page: 2406 article-title: Information and communications technologies for sustainable development goals: state‐of‐the‐art, needs and perspectives publication-title: IEEE Commun. Surv. Tutorials – year: 2016 – volume: 40 start-page: 16 issue: 1 year: 2014 end-page: 28 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – volume: 77 start-page: 10033 issue: 8 year: 2018 end-page: 10050 article-title: New cubic reference table based image steganography publication-title: Multimedia Tools Appl. – year: 2018 – volume: 40 start-page: 4697 issue: 11 year: 2013 end-page: 4706 article-title: Intelligent phishing detection and protection scheme for online transactions publication-title: Expert Syst. Appl. – year: 2012 – volume: 45 start-page: 427 year: 2009 end-page: 437 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. – volume: 6 start-page: 73603 year: 2018 end-page: 73636 article-title: Big data meet cyber‐physical systems: a panoramic survey publication-title: IEEE. Access. – volume: 2 start-page: 49 issue: 1 year: 2017 end-page: 54 article-title: Enabling cyber‐physical communication in 5G cellular networks: challenges, spatial spectrum sensing, and cyber‐security publication-title: IET Cyber‐Phys. Syst., Theory Appl. – volume: 117 start-page: 345 year: 2019 end-page: 357 article-title: Machine learning based phishing detection from URLs publication-title: Exp. Syst. Appl. – volume: 88 start-page: 12 year: 2017 end-page: 19 article-title: Feature weighting and selection with a pareto‐optimal trade‐off between relevancy and redundancy publication-title: Pattern Recognit. Lett. – volume: 2014 start-page: 1 year: 2014 end-page: 11 article-title: Genetic algorithm based approach in attribute weighting for a medical data set publication-title: J. Comput. Med. – year: 2010 article-title: Predicting phishing websites using classification mining techniques – start-page: 304 year: 2013 end-page: 309 article-title: Detection of phishing URLs using machine learning techniques – volume: 259 start-page: 689 issue: 2 year: 2015 end-page: 702 article-title: Deep neural networks, gradient‐boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: Eur. J. Oper. Res. – volume: 25 start-page: 443 issue: 2 year: 2014 end-page: 458 article-title: Predicting phishing websites based on self‐structuring neural network publication-title: Neural Comput. Appl. – start-page: 123 year: 2016 end-page: 131 – start-page: 492 year: 2012 end-page: 497 article-title: An assessment of features related to phishing websites using an automated technique – volume: 38 start-page: 5197 issue: 5 year: 2011 end-page: 5204 article-title: Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes publication-title: Expert Syst. Appl. – volume: 97 start-page: 273 issue: 1–2 year: 1997 end-page: 324 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – start-page: 1126 year: 2016 end-page: 1133 article-title: A hybrid model to detect phishing‐sites using supervised learning algorithms – volume: 270 start-page: 654 issue: 2 year: 2018 end-page: 669 article-title: Deep learning with long short‐term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. – volume: 17 start-page: 1 year: 2015 end-page: 24 article-title: Tutorial and critical analysis of phishing websites methods publication-title: Comput. Sci. Rev. – volume: 147 start-page: 5 issue: 5 year: 2016 end-page: 11 article-title: Detection and prediction of phishing websites using classification mining techniques publication-title: Int. J. Comput. Appl. – ident: e_1_2_10_4_2 doi: 10.1016/j.cosrev.2015.04.001 – ident: e_1_2_10_28_2 doi: 10.1109/ICC.2018.8422327 – ident: e_1_2_10_18_2 doi: 10.1016/j.eswa.2017.04.030 – ident: e_1_2_10_19_2 doi: 10.1016/j.ejor.2017.11.054 – ident: e_1_2_10_3_2 doi: 10.1016/j.eswa.2011.01.046 – ident: e_1_2_10_29_2 doi: 10.1109/ICC.2018.8422448 – ident: e_1_2_10_41_2 doi: 10.1016/j.asoc.2015.07.046 – ident: e_1_2_10_48_2 – ident: e_1_2_10_47_2 – ident: e_1_2_10_24_2 doi: 10.1109/TNSM.2018.2831197 – ident: e_1_2_10_20_2 doi: 10.1038/nature14539 – ident: e_1_2_10_44_2 – ident: e_1_2_10_38_2 doi: 10.1016/S0004-3702(97)00043-X – ident: e_1_2_10_43_2 doi: 10.1016/j.ejor.2016.10.031 – ident: e_1_2_10_12_2 doi: 10.1016/j.proeng.2012.01.930 – ident: e_1_2_10_23_2 doi: 10.1007/s11235-017-0414-0 – volume: 8 start-page: 72 issue: 9 year: 2017 ident: e_1_2_10_7_2 article-title: Phishing website detection based on supervised machine learning with wrapper features selection publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: e_1_2_10_32_2 doi: 10.1109/TETC.2014.2367415 – ident: e_1_2_10_6_2 doi: 10.1007/978-3-319-27247-4_11 – ident: e_1_2_10_17_2 doi: 10.1109/ACSAT.2014.29 – ident: e_1_2_10_30_2 doi: 10.1109/COMST.2018.2812301 – ident: e_1_2_10_40_2 doi: 10.1155/2014/526801 – ident: e_1_2_10_21_2 doi: 10.1016/j.eswa.2016.01.028 – ident: e_1_2_10_8_2 doi: 10.1016/j.eswa.2013.02.009 – ident: e_1_2_10_50_2 doi: 10.1109/ITNG.2010.117 – ident: e_1_2_10_15_2 – start-page: 1 year: 2018 ident: e_1_2_10_22_2 article-title: Detection of phishing websites using an efficient feature‐based machine learning framework publication-title: Neural Comput. Appl. – ident: e_1_2_10_9_2 doi: 10.1049/iet-ifs.2013.0202 – ident: e_1_2_10_26_2 doi: 10.1049/iet-cps.2017.0010 – ident: e_1_2_10_45_2 – volume: 147 start-page: 5 issue: 5 year: 2016 ident: e_1_2_10_14_2 article-title: Detection and prediction of phishing websites using classification mining techniques publication-title: Int. J. Comput. Appl. – ident: e_1_2_10_35_2 doi: 10.1016/j.compeleceng.2013.11.024 – ident: e_1_2_10_25_2 doi: 10.1016/j.ins.2019.01.064 – ident: e_1_2_10_2_2 doi: 10.1007/s00521-013-1490-z – ident: e_1_2_10_36_2 doi: 10.1016/j.knosys.2012.10.001 – ident: e_1_2_10_39_2 doi: 10.1016/j.patrec.2017.01.004 – ident: e_1_2_10_34_2 doi: 10.1007/s11042-017-4946-9 – ident: e_1_2_10_49_2 – ident: e_1_2_10_5_2 doi: 10.1016/j.eswa.2014.03.019 – ident: e_1_2_10_42_2 doi: 10.1016/j.patrec.2015.07.007 – ident: e_1_2_10_31_2 doi: 10.1109/JSYST.2016.2550530 – ident: e_1_2_10_46_2 – ident: e_1_2_10_51_2 doi: 10.1016/j.ipm.2009.03.002 – start-page: 1 year: 2019 ident: e_1_2_10_33_2 article-title: A new payload partition strategy in color image steganography publication-title: IEEE Trans. Circuits Syst. Video Technol. – ident: e_1_2_10_37_2 doi: 10.1016/j.eswa.2010.10.041 – ident: e_1_2_10_10_2 doi: 10.1109/CSCI.2016.0214 – ident: e_1_2_10_11_2 doi: 10.1016/j.eswa.2018.09.029 – ident: e_1_2_10_13_2 doi: 10.1109/ICCC.2013.6731669 – ident: e_1_2_10_16_2 – ident: e_1_2_10_27_2 doi: 10.1109/ACCESS.2018.2878681 |
| SSID | ssj0056509 |
| Score | 2.4718819 |
| Snippet | In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial... |
| SourceID | unpaywall crossref wiley iet |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 659 |
| SubjectTerms | blacklist‐based conventional phishing Web site detection methods computer crime deep neural networks DNN evolutionary algorithm‐based feature selection evolutionary computation feature selection financial information genetic algorithms genetic algorithm‐based feature selection hybrid intelligent phishing Web site prediction approaches Internet learning (artificial intelligence) neural nets pattern classification Research Article unsolicited e‐mail Web phishing attack Web site features Web sites |
| SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHIADb8R4KQfEARTRNmm6HnlNAwEXmMStSptkTCpdNYbQ_gC_G7svhIQGtyp1nSpObCeOPxNy5AgXtwkJk6FxmEgCwxTnAYu1AypZcBV6mI18_yB7fXH77D9_p0fr4QBrZbD6xA1Py02ZeYBXt0EPn1VjXBYkAf_2DAjY0CL0tovYk4i_veDB7txrkYWbqzvcYpWa2Ue0uCJB0ndBCzhhE-X8hckPOzUPr5fJ4nuWq-mHStOfnmxhirprZKXyIel5KfR1MmeyDbJa12eg1XLdJJ-9KeZj0WEDuzmh-Ut56ERBfWLgmOZjDNWgeCjegR9QbUxOEeYSusjKS-JvFI9rKTDAlEeq0sFoDA2vDG2gptYU6KD0raipg5xUpqED3PcDxy3S714_XfZYVXeBJTwIJBNgzTA7AbxD37MqBhcIg5N-EithvUR7WJ-80wHfhscyMFqipoqVEwRW-kYJvk1a2SgzO4TG1ljtc9lxpRaODkLrcljo1hcGPAnttIlTj3KUVKDkWBsjjYrguAgjGPkIBBOhYDBSLtvkpPkkLxE5ZhEfY1s9Z2YRnjbS_Q9bXsj_b8ro5vHau-gi7I_c_e_P7JElfC5THvdJazJ-Nwfg-0ziw2pKfwGW8ADM priority: 102 providerName: Institution of Engineering and Technology – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS-QwFA_reBAP6q4uKio5LHtQOrRNmkyPrjiMCysL64CeStokKo61zHQQPXn06Gf0k-x7aaagLLoLeytt8kLSvD95L-_3CPkS8giPCUUgUhMGvJAmUIzJINchiGTOVBpjNvKPYzEY8u-nyanPrHO5MKb2KDcX3QYronW-IZc42Y3MXmnbyPzmBMpT7BlcWkTgjhCCEmG450UCBnqHzA-Pf-6fudTIJAL-dxc__HMk21jnH2i80FZz8HmRLEzLSt3dqtHopT3rFFJ_mdSzqTT3UK660zrvFvevUB7_81xXyJI3YOl-s-M-kg-m_ESWZ8UhqJcVq-RxcIfJYPSyxfysaXXReLwoyG6MWtNqjHEi3BsUL-CfU21MRRFjE4YomxvqE4q-YgoEMN-SqtH5zRheXD8_PKEK1tQaB05KJ66kD9JSpYYh0O0ANNfIsH94cjAIfNmHoGBSioCDMsXkCDBOk9iqHCwwjI0mRa64jQsdY3n0Xg9MK5YLabRAQZmrUEorEqM4-0w65U1p1gnNrbE6YaIXCc1DLVMbMZAzNuEGDBkdbpBw9nuzwmOiY2mOUeZi8zzNYKUzWOkMVxoD9WKD7LZdqgYQ5K3GX_GdFwuTtxrutdvqb8gyt0Peb5kd_TqMv_URdUhs_tMYW6RTj6dmG0yuOt_xLPQb4WouMA priority: 102 providerName: Unpaywall |
| Title | Hybrid intelligent phishing website prediction using deep neural networks with genetic algorithm-based feature selection and weighting |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2019.0006 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ifs.2019.0006 https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2019.0006 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: IDLOA dateStart: 20130301 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: AVUZU dateStart: 0 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056509 issn: 1751-8717 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_THdSD3-LnyEE8KMW2SdP1OKdjE79AB_NU0ibRwaxlm4g3jx79G_1LfK_tCiKoeCqk6Qvk5b38ktf3e4Ts2tzBY0JsiUDbFo99bUnGfCtSNrhkzmTgYjby-YVod_lpz-tVSHOSC5PzQ5QXbmgZmb9GA5dRXoUEQC0osa_HVt8g47aDlJNIu111AM_gMnf51cQde0gRl2VFeg6Yvh2Uoc3g8JuIL5vTFLyeIzNPSSpfnuVg8BW-ZvtPa5HMF8CRNnJNL5GKTpbJwqQoAy1sdIW8tV8wCYv2S67NMU3v85smCj4To8U0HWJ8BnVC8cf3O6q0TilyW8IQSf5n-IjiHS0FAZjnSOXg7nEIDQ8fr--49SlqdEYKSkdZKR2UJRMFQ-BxH2Sukm7r5KbZtopyC1bMfF9YHDYxTEoAUOi5RkaAfDAm6cWR5MaNlYtlyet1gDQsEr5WAh1UJG3fN8LTkrM1Mp08Jnqd0Mhoozwm6o5Q3FZ-YBwG9m08rgFAKHuD2JN5DuOCixxLYgzCLCbOgxDmPgTVhKgaDJCLDbJffpLmRBw_dd7DtsIcRz91PCj1-xexLFsBv_cMO9cn7lEL2X7E5r--2iKz2J6nPW6T6fHwSe8A_hlHtWx910i1c3x22YBn9-KqcfsJt9wD5A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DurBt_g2B_GgFNsmTbdHX8uuuouggreSNsm6ULtld0W8efTob_SXONN2CyKs4jVNJtDJvDKZbwjZt7mDYUJsiUDbFo99bUnGfCtSNqhkzmTgYjVyqy0a9_zywXuYIOejWpgCH6K6cEPJyPU1CjheSBcBJ0eQzK4eWl2DkNsOYk4i7vY0F47AEMzlNyN97CFGXF4W6Tkg-3ZQ5TaD4x8kvlmnSfg8R2ae00y-vsgk-e6_5gaovkjmS8-RnhSsXiITOl0mC6OuDLQU0hXy3njFKizarcA2hzR7LK6aKChNTBfTrI8JGmQKxZfvHaq0ziiCW8IWafE0fEDxkpYCASx0pDLp9Pow8PT59oG2T1Gjc1RQOsh76SAtmSrYAuN9oLlK7usXd2cNq-y3YMXM94XFwYphVQJ4hZ5rZASuDyYlvTiS3LixcrEvea0GPg2LhK-VQA0VSdv3jfC05GyNTKW9VK8TGhltlMdEzRGK28oPjMNAwI3HNXgQyt4g9ug_h3EJRo49MZIwT4rzIIR_HwJrQmQNZsjFBjmslmQFEse4yQc4VsrjYNzEo4q_fyHL8hPw-8yweXvhntYR7kds_mvVHplp3LWuw-tm-2qLzOKcogZym0wN-896B5yhYbSbn_UvbaUEFA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIvE49AUIKG19qHpoFeHEjrM58lotLSCkdivUS-TE9rLSEqJ9CO2txx75jfwSZpJsJFSJol6d8VjKeB72eL4B-MilT8eEzFOx5Z7MIutpISIvNRxNshQ6Dqga-excdXvy62V4uQBH81qYCh-iuXAjzSjtNSm4LYyrDpySQDIHduINHEFu-4Q5SbjbS-jPuWzB0v7P3q_e3CKHhBJXFkaGPmo_j5vsZrz3F5NH_mkRP6_ByjQv9OxWD4ePI9jSBXVewYs6dmT7lbBfw4LN38DLeV8GVqvpOvzpzqgOiw0auM0JK66qyyaGZpMSxqwYUYqGxMLo7XufGWsLRvCWuERePQ4fM7qmZciASh2ZHvZvRjhwff_7jryfYc6WuKBsXHbTIV46N7gEnfiR5wb0Osc_Drte3XHBy0QUKU-iH6O6BIwLw8DpFIMfSkuGWaqlCzITUGfydhujGpGqyBpFNirVPIqcCq2WYhNa-U1ut4ClzjoTCtX2lZHcRLHzBaq4C6XFGMLwbeDz_5xkNRw5dcUYJmVaXMYJ_vsERZOQaChHrrbhczOlqLA4niL-RGO1Ro6fIvzSyPc5bEW5A_5NmZx8Pw4OOgT4o3b-a9YHWL446iSnJ-ff3sIqkVRFkLvQmoym9h1GQ5P0fb3ZHwAAwAVo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS-QwFA_reBAP6q4uKio5LHtQOrRNmkyPrjiMCysL64CeStokKo61zHQQPXn06Gf0k-x7aaagLLoLeytt8kLSvD95L-_3CPkS8giPCUUgUhMGvJAmUIzJINchiGTOVBpjNvKPYzEY8u-nyanPrHO5MKb2KDcX3QYronW-IZc42Y3MXmnbyPzmBMpT7BlcWkTgjhCCEmG450UCBnqHzA-Pf-6fudTIJAL-dxc__HMk21jnH2i80FZz8HmRLEzLSt3dqtHopT3rFFJ_mdSzqTT3UK660zrvFvevUB7_81xXyJI3YOl-s-M-kg-m_ESWZ8UhqJcVq-RxcIfJYPSyxfysaXXReLwoyG6MWtNqjHEi3BsUL-CfU21MRRFjE4YomxvqE4q-YgoEMN-SqtH5zRheXD8_PKEK1tQaB05KJ66kD9JSpYYh0O0ANNfIsH94cjAIfNmHoGBSioCDMsXkCDBOk9iqHCwwjI0mRa64jQsdY3n0Xg9MK5YLabRAQZmrUEorEqM4-0w65U1p1gnNrbE6YaIXCc1DLVMbMZAzNuEGDBkdbpBw9nuzwmOiY2mOUeZi8zzNYKUzWOkMVxoD9WKD7LZdqgYQ5K3GX_GdFwuTtxrutdvqb8gyt0Peb5kd_TqMv_URdUhs_tMYW6RTj6dmG0yuOt_xLPQb4WouMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+intelligent+phishing+website+prediction+using+deep+neural+networks+with+genetic+algorithm%E2%80%90based+feature+selection+and+weighting&rft.jtitle=IET+information+security&rft.au=Ali%2C+Waleed&rft.au=Ahmed%2C+Adel+A.&rft.date=2019-11-01&rft.issn=1751-8709&rft.volume=13&rft.issue=6&rft.spage=659&rft.epage=669&rft_id=info:doi/10.1049%2Fiet-ifs.2019.0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ifs_2019_0006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8709&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8709&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8709&client=summon |