Hybrid intelligent phishing website prediction using deep neural networks with genetic algorithm-based feature selection and weighting

In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial information about the internet users to carry out financial thefts. Several blacklist-based conventional phishing website detection methods are use...

Full description

Saved in:
Bibliographic Details
Published inIET information security Vol. 13; no. 6; pp. 659 - 669
Main Authors Ali, Waleed, Ahmed, Adel A
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.11.2019
Subjects
Online AccessGet full text
ISSN1751-8709
1751-8717
1751-8717
DOI10.1049/iet-ifs.2019.0006

Cover

Abstract In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial information about the internet users to carry out financial thefts. Several blacklist-based conventional phishing website detection methods are used to predict the phishing websites. However, numerous phishing websites are not predicted precisely by these blacklist-based conventional methods since many new phishing websites are constantly developed and launched on the Web over time. In this study, hybrid intelligent phishing website prediction using deep neural networks (DNNs) with evolutionary algorithm-based feature selection and weighting methods are suggested to enhance the phishing website prediction. In the proposed hybrid intelligent phishing website prediction approaches, the most influential features and the optimal weights of website features are heuristically identified with the genetic algorithm (GA) to help in increasing the accuracy of phishing website prediction. Accordingly, the website features selected and weighted by the GA are utilised to train DNNs to accurately predict the phishing websites. The experimental results demonstrated that the proposed hybrid intelligent phishing website prediction approaches achieved significantly higher classification accuracy, sensitivity, specificity, and geometric mean in phishing website prediction compared to those proposed in other studies.
AbstractList In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial information about the internet users to carry out financial thefts. Several blacklist‐based conventional phishing website detection methods are used to predict the phishing websites. However, numerous phishing websites are not predicted precisely by these blacklist‐based conventional methods since many new phishing websites are constantly developed and launched on the Web over time. In this study, hybrid intelligent phishing website prediction using deep neural networks (DNNs) with evolutionary algorithm‐based feature selection and weighting methods are suggested to enhance the phishing website prediction. In the proposed hybrid intelligent phishing website prediction approaches, the most influential features and the optimal weights of website features are heuristically identified with the genetic algorithm (GA) to help in increasing the accuracy of phishing website prediction. Accordingly, the website features selected and weighted by the GA are utilised to train DNNs to accurately predict the phishing websites. The experimental results demonstrated that the proposed hybrid intelligent phishing website prediction approaches achieved significantly higher classification accuracy, sensitivity, specificity, and geometric mean in phishing website prediction compared to those proposed in other studies.
Author Ali, Waleed
Ahmed, Adel A
Author_xml – sequence: 1
  givenname: Waleed
  surname: Ali
  fullname: Ali, Waleed
  email: waleedalodini@gmail.com
  organization: 1Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
– sequence: 2
  givenname: Adel A
  surname: Ahmed
  fullname: Ahmed, Adel A
  organization: 2Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
BookMark eNqNkMtu3SAQhlGVSM3tAbLjBXw6-AJ2d22UNJEiZZF2jbA9PmdSgi3Ass4L9LmD5aqLLtKuBgHf_2u-c3biRoeMXQvYCSibT4QxoyHschDNDgDkB3YmVCWyWgl18ucMzUd2HsILQCUraM7Yr_tj66nn5CJaS3t0kU8HCgdye75gGyginzz21EUaHZ_D-tAjTtzh7I1NIy6j_xn4QvHAUwBG6rix-9Gni9esNQF7PqCJs0ce0OKWZFyfCmh_iCnxkp0Oxga8-j0v2I-72-8399nj07eHmy-PWVcoJbNS5AUIqUAUVT6YNq9EXQpZda0ph7zrc9VUTV3LoilaqbCXUNeqNaDUICs0ZXHB8i13dpM5LsZaPXl6Nf6oBejVpE4mdTKpV5N6NZkgtUGdH0PwOOiOolmXiN6QfZcUf5H_0_Z5YxayePw3oB-eb_OvdwCFXOFsg9dvL-PsXbL5TtkbcHixKA
CitedBy_id crossref_primary_10_1016_j_cose_2024_103885
crossref_primary_10_1109_JIOT_2021_3138073
crossref_primary_10_2139_ssrn_3922446
crossref_primary_10_1016_j_heliyon_2021_e05936
crossref_primary_10_32604_cmc_2023_036422
crossref_primary_10_1007_s13369_020_04802_1
crossref_primary_10_1109_ACCESS_2023_3250256
crossref_primary_10_1016_j_heliyon_2021_e07437
crossref_primary_10_14710_jtsiskom_2021_13965
crossref_primary_10_1016_j_eswa_2023_119992
crossref_primary_10_1007_s42979_024_03388_x
crossref_primary_10_1007_s10586_024_04272_2
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1109_ACCESS_2024_3486462
crossref_primary_10_1109_ACCESS_2024_3384840
crossref_primary_10_3390_pr11020562
crossref_primary_10_1016_j_knosys_2022_110122
crossref_primary_10_1109_ACCESS_2022_3166474
crossref_primary_10_3390_app13084649
crossref_primary_10_1016_j_compeleceng_2025_110212
crossref_primary_10_1007_s11277_023_10736_2
crossref_primary_10_28925_2663_4023_2023_20_124141
crossref_primary_10_1109_ACCESS_2020_3013699
crossref_primary_10_32604_csse_2022_020414
crossref_primary_10_1016_j_procs_2023_01_145
crossref_primary_10_3390_electronics12214545
crossref_primary_10_1007_s11042_023_15399_6
crossref_primary_10_1016_j_jestch_2023_101453
crossref_primary_10_1038_s41598_021_82796_y
crossref_primary_10_1002_spy2_256
crossref_primary_10_3390_electronics10111285
crossref_primary_10_1016_j_swevo_2024_101809
crossref_primary_10_1016_j_compeleceng_2022_107868
crossref_primary_10_32604_jcs_2023_045859
crossref_primary_10_1109_ACCESS_2020_3003569
crossref_primary_10_1007_s10586_024_04313_w
crossref_primary_10_1007_s10115_022_01672_x
crossref_primary_10_1007_s11235_021_00799_6
crossref_primary_10_3390_app14146081
crossref_primary_10_1016_j_eswa_2023_120058
crossref_primary_10_1109_TAI_2022_3145333
crossref_primary_10_1109_ACCESS_2023_3247135
crossref_primary_10_3390_make3030034
crossref_primary_10_2478_amns_2023_1_00195
Cites_doi 10.1016/j.cosrev.2015.04.001
10.1109/ICC.2018.8422327
10.1016/j.eswa.2017.04.030
10.1016/j.ejor.2017.11.054
10.1016/j.eswa.2011.01.046
10.1109/ICC.2018.8422448
10.1016/j.asoc.2015.07.046
10.1109/TNSM.2018.2831197
10.1038/nature14539
10.1016/S0004-3702(97)00043-X
10.1016/j.ejor.2016.10.031
10.1016/j.proeng.2012.01.930
10.1007/s11235-017-0414-0
10.1109/TETC.2014.2367415
10.1007/978-3-319-27247-4_11
10.1109/ACSAT.2014.29
10.1109/COMST.2018.2812301
10.1155/2014/526801
10.1016/j.eswa.2016.01.028
10.1016/j.eswa.2013.02.009
10.1109/ITNG.2010.117
10.1049/iet-ifs.2013.0202
10.1049/iet-cps.2017.0010
10.1016/j.compeleceng.2013.11.024
10.1016/j.ins.2019.01.064
10.1007/s00521-013-1490-z
10.1016/j.knosys.2012.10.001
10.1016/j.patrec.2017.01.004
10.1007/s11042-017-4946-9
10.1016/j.eswa.2014.03.019
10.1016/j.patrec.2015.07.007
10.1109/JSYST.2016.2550530
10.1016/j.ipm.2009.03.002
10.1016/j.eswa.2010.10.041
10.1109/CSCI.2016.0214
10.1016/j.eswa.2018.09.029
10.1109/ICCC.2013.6731669
10.1109/ACCESS.2018.2878681
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/iet-ifs.2019.0006
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1751-8717
EndPage 669
ExternalDocumentID 10.1049/iet-ifs.2019.0006
10_1049_iet_ifs_2019_0006
ISE2BF00366
Genre article
GrantInformation_xml – fundername: Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah
  grantid: G: 289-830-1439
– fundername: Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah
  funderid: G: 289‐830‐1439
GroupedDBID 0R
24P
29I
3V.
4.4
5GY
6IK
8AL
8FE
8FG
AAJGR
ABJCF
ABUWG
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M0N
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
RIE
RIG
RNS
RUI
S0W
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIAGR
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
MCNEO
OK1
ROL
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ADTOC
UNPAY
ID FETCH-LOGICAL-c3776-4123016701352fab25184165cba4f2cd27959886393b67ed60887ba077f65ea43
IEDL.DBID 24P
ISSN 1751-8709
1751-8717
IngestDate Thu Oct 30 06:12:18 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Oct 29 21:20:35 EDT 2025
Wed Jan 22 16:32:44 EST 2025
Tue Jan 05 21:44:24 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords pattern classification
genetic algorithm-based feature selection
DNN
Web site features
unsolicited e-mail
Web phishing attack
genetic algorithms
hybrid intelligent phishing Web site prediction approaches
blacklist-based conventional phishing Web site detection methods
evolutionary computation
computer crime
evolutionary algorithm-based feature selection
financial information
Internet
learning (artificial intelligence)
Web sites
neural nets
feature selection
deep neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3776-4123016701352fab25184165cba4f2cd27959886393b67ed60887ba077f65ea43
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2019.0006
PageCount 11
ParticipantIDs iet_journals_10_1049_iet_ifs_2019_0006
unpaywall_primary_10_1049_iet_ifs_2019_0006
crossref_citationtrail_10_1049_iet_ifs_2019_0006
crossref_primary_10_1049_iet_ifs_2019_0006
wiley_primary_10_1049_iet_ifs_2019_0006_ISE2BF00366
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20191100
November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationTitle IET information security
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Sahingoz, O.K.; Buber, E.; Demir, O. (C10) 2019; 117
Wen, H.; Tang, J.; Wu, J. (C31) 2015; 3
Zhao, M.; Fu, C.; Ji, L. (C36) 2011; 38
Chong, E.; Han, C.; Park, F. (C17) 2017; 83
Yong, K.S.C.; Tiong, W.K.; Chiew, K.L. (C24) 2019; 484
Pérez-Rodríguez, J.; Arroyo-Peña, A.G.; García-Pedrajas, N. (C40) 2015; 37
Sokolova, M.; Lapalme, G. (C50) 2009; 45
Pham, C.; Nguyen, L.A.T.; Tran, N.H. (C23) 2018; 15
Abdelhamid, N.; Ayesh, A.; Thabtah, F. (C4) 2014; 41
Das, A.; Das, S. (C38) 2017; 88
Wu, J.; Guo, S.; Li, J. (C30) 2016; 10
Fischer, T.; Krauss, C. (C18) 2018; 270
Chandrashekar, G.; Sahin, F. (C34) 2014; 40
Al-diabat, M. (C13) 2016; 147
Barraclough, P.A.; Hossain, M.A.; Tahir, M.A. (C7) 2013; 40
He, M.; Horng, S.J.; Fan, P. (C2) 2011; 38
Ali, W. (C6) 2017; 8
Kohavi, R.; John, G.H. (C37) 1997; 97
Varpa, K.; Iltanen, K.; Juhola, M. (C39) 2014; 2014
Atat, R.; Liu, L.; Wu, J. (C26) 2018; 6
Sun, X.; Liu, Y.; Xu, M. (C35) 2013; 37
Moghimi, M.; Varjani, A.Y. (C20) 2016; 53
Lakshmi, V.S.; Vijaya, M.S. (C11) 2012; 30
Jain, A.K.; Gupta, B.B. (C22) 2018; 68
Liao, X.; Guo, S.; Yin, J. (C33) 2018; 77
LeCun, Y.; Bengio, Y.; Hinton, G. (C19) 2015; 521
Atat, R.; Liu, L.; Chen, H. (C25) 2017; 2
Wu, J.; Guo, S.; Huang, H. (C29) 2018; 20
Rao, R.S.; Pais, A.R. (C21) 2018
Krauss, C.; Do, X.A.; Huck, N. (C42) 2015; 259
Liao, X.; Yu, Y.; Li, B. (C32) 2019
Paul, S.; Das, S. (C41) 2015; 65
Mohammad, R.M.; Thabtah, F.; McCluskey, L. (C8) 2014; 8
Mohammad, R.M.; Thabtah, F.; McCluskey, L. (C3) 2015; 17
Mohammad, R.M.; Thabtah, F.; McCluskey, L. (C1) 2014; 25
2009; 45
2017; 83
2015; 37
2017; 8
2015; 17
2017; 2
2015; 3
2012
2015; 521
2010
2013; 40
2017; 88
2016; 10
2016; 53
2014; 25
2014; 2014
2016; 147
2014; 41
2011; 38
2014; 40
2018; 20
2012; 30
2018; 68
2019; 484
2018; 6
2018; 270
2013; 37
2015; 259
1997; 97
2015; 65
2019
2018
2016
2019; 117
2014
2013
2014; 8
2018; 77
2018; 15
e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_6_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_32_2
Rao R.S. (e_1_2_10_22_2) 2018
e_1_2_10_30_2
e_1_2_10_51_2
Al‐diabat M. (e_1_2_10_14_2) 2016; 147
e_1_2_10_29_2
e_1_2_10_27_2
e_1_2_10_48_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_45_2
e_1_2_10_20_2
e_1_2_10_43_2
Liao X. (e_1_2_10_33_2) 2019
e_1_2_10_41_2
Ali W. (e_1_2_10_7_2) 2017; 8
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_9_2
e_1_2_10_12_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_50_2
e_1_2_10_28_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_24_2
e_1_2_10_47_2
References_xml – volume: 270
  start-page: 654
  issue: 2
  year: 2018
  end-page: 669
  ident: C18
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
– volume: 41
  start-page: 5948
  issue: 13
  year: 2014
  end-page: 5959
  ident: C4
  article-title: Phishing detection based associative classification data mining
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 888
  issue: 3
  year: 2016
  end-page: 900
  ident: C30
  article-title: Big data meet green challenges: big data toward green applications
  publication-title: IEEE Syst. J.
– volume: 2
  start-page: 49
  issue: 1
  year: 2017
  end-page: 54
  ident: C25
  article-title: Enabling cyber-physical communication in 5G cellular networks: challenges, spatial spectrum sensing, and cyber-security
  publication-title: IET Cyber-Phys. Syst., Theory Appl.
– volume: 259
  start-page: 689
  issue: 2
  year: 2015
  end-page: 702
  ident: C42
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: Eur. J. Oper. Res.
– volume: 8
  start-page: 72
  issue: 9
  year: 2017
  end-page: 78
  ident: C6
  article-title: Phishing website detection based on supervised machine learning with wrapper features selection
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: C19
  article-title: Deep learning
  publication-title: Nature
– volume: 83
  start-page: 187
  year: 2017
  end-page: 205
  ident: C17
  article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies
  publication-title: Expert Syst. Appl.
– volume: 53
  start-page: 231
  year: 2016
  end-page: 242
  ident: C20
  article-title: New rule-based phishing detection method
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: C50
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
– volume: 147
  start-page: 5
  issue: 5
  year: 2016
  end-page: 11
  ident: C13
  article-title: Detection and prediction of phishing websites using classification mining techniques
  publication-title: Int. J. Comput. Appl.
– volume: 25
  start-page: 443
  issue: 2
  year: 2014
  end-page: 458
  ident: C1
  article-title: Predicting phishing websites based on self-structuring neural network
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 5197
  issue: 5
  year: 2011
  end-page: 5204
  ident: C36
  article-title: Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes
  publication-title: Expert Syst. Appl.
– volume: 88
  start-page: 12
  year: 2017
  end-page: 19
  ident: C38
  article-title: Feature weighting and selection with a pareto-optimal trade-off between relevancy and redundancy
  publication-title: Pattern Recognit. Lett.
– volume: 30
  start-page: 798
  year: 2012
  end-page: 805
  ident: C11
  article-title: Efficient prediction of phishing websites using supervised learning algorithms
  publication-title: Proc. Eng.
– volume: 15
  start-page: 1076
  issue: 3
  year: 2018
  end-page: 1089
  ident: C23
  article-title: Phishing-aware: a neuro-fuzzy approach for anti-phishing on fog networks
  publication-title: IEEE Trans. Netw. Serv. Manage.
– volume: 6
  start-page: 73603
  year: 2018
  end-page: 73636
  ident: C26
  article-title: Big data meet cyber-physical systems: a panoramic survey
  publication-title: IEEE. Access.
– volume: 37
  start-page: 416
  year: 2015
  end-page: 443
  ident: C40
  article-title: Simultaneous instance and feature selection and weighting using evolutionary computation
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 119
  issue: 1
  year: 2015
  end-page: 126
  ident: C31
  article-title: A cross-layer secure communication model based on discrete fractional Fourier transform (DFRFT)
  publication-title: IEEE Trans. Emerging Top. Comput.
– volume: 37
  start-page: 541
  year: 2013
  end-page: 549
  ident: C35
  article-title: Feature selection using dynamic weights for classification
  publication-title: Knowl.-Based Syst.
– volume: 17
  start-page: 1
  year: 2015
  end-page: 24
  ident: C3
  article-title: Tutorial and critical analysis of phishing websites methods
  publication-title: Comput. Sci. Rev.
– volume: 65
  start-page: 51
  year: 2015
  end-page: 59
  ident: C41
  article-title: Simultaneous feature selection and weighting – An evolutionary multi-objective optimization approach
  publication-title: Pattern Recogn. Lett.
– volume: 77
  start-page: 10033
  issue: 8
  year: 2018
  end-page: 10050
  ident: C33
  article-title: New cubic reference table based image steganography
  publication-title: Multimedia Tools Appl.
– volume: 68
  start-page: 687
  issue: 4
  year: 2018
  end-page: 700
  ident: C22
  article-title: Towards detection of phishing websites on client-side using machine learning based approach
  publication-title: Telecommun. Syst.
– start-page: 1
  year: 2019
  end-page: 14
  ident: C32
  article-title: A new payload partition strategy in color image steganography
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1
  year: 2018
  end-page: 23
  ident: C21
  article-title: Detection of phishing websites using an efficient feature-based machine learning framework
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 12018
  issue: 10
  year: 2011
  end-page: 12027
  ident: C2
  article-title: An efficient phishing webpage detector
  publication-title: Expert Syst. Appl.
– volume: 484
  start-page: 153
  year: 2019
  end-page: 166
  ident: C24
  article-title: A new hybrid ensemble feature selection framework for machine learning-based phishing detection system
  publication-title: Inf. Sci.
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  end-page: 324
  ident: C37
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  ident: C39
  article-title: Genetic algorithm based approach in attribute weighting for a medical data set
  publication-title: J. Comput. Med.
– volume: 40
  start-page: 4697
  issue: 11
  year: 2013
  end-page: 4706
  ident: C7
  article-title: Intelligent phishing detection and protection scheme for online transactions
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 153
  issue: 3
  year: 2014
  end-page: 160
  ident: C8
  article-title: Intelligent rule-based phishing websites classification
  publication-title: IET Inf. Sec.
– volume: 117
  start-page: 345
  year: 2019
  end-page: 357
  ident: C10
  article-title: Machine learning based phishing detection from URLs
  publication-title: Exp. Syst. Appl.
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  end-page: 28
  ident: C34
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 20
  start-page: 2389
  issue: 3
  year: 2018
  end-page: 2406
  ident: C29
  article-title: Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives
  publication-title: IEEE Commun. Surv. Tutorials
– start-page: 1
  year: 2018
  end-page: 6
  article-title: Machine‐learning‐based online distributed denial‐of‐service attack detection using spark streaming
– volume: 37
  start-page: 541
  year: 2013
  end-page: 549
  article-title: Feature selection using dynamic weights for classification
  publication-title: Knowl.‐Based Syst.
– volume: 15
  start-page: 1076
  issue: 3
  year: 2018
  end-page: 1089
  article-title: Phishing‐aware: a neuro‐fuzzy approach for anti‐phishing on fog networks
  publication-title: IEEE Trans. Netw. Serv. Manage.
– start-page: 1
  year: 2018
  end-page: 6
  article-title: A novel distributed denial‐of‐service attack detection scheme for software defined networking environments
– volume: 68
  start-page: 687
  issue: 4
  year: 2018
  end-page: 700
  article-title: Towards detection of phishing websites on client‐side using machine learning based approach
  publication-title: Telecommun. Syst.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 8
  start-page: 153
  issue: 3
  year: 2014
  end-page: 160
  article-title: Intelligent rule‐based phishing websites classification
  publication-title: IET Inf. Sec.
– start-page: 125
  year: 2014
  end-page: 132
  article-title: An experimental study for assessing email classification attributes using feature selection methods
– volume: 83
  start-page: 187
  year: 2017
  end-page: 205
  article-title: Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2019
  end-page: 14
  article-title: A new payload partition strategy in color image steganography
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 30
  start-page: 798
  year: 2012
  end-page: 805
  article-title: Efficient prediction of phishing websites using supervised learning algorithms
  publication-title: Proc. Eng.
– volume: 37
  start-page: 416
  year: 2015
  end-page: 443
  article-title: Simultaneous instance and feature selection and weighting using evolutionary computation
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2018
  end-page: 23
  article-title: Detection of phishing websites using an efficient feature‐based machine learning framework
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 12018
  issue: 10
  year: 2011
  end-page: 12027
  article-title: An efficient phishing webpage detector
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 888
  issue: 3
  year: 2016
  end-page: 900
  article-title: Big data meet green challenges: big data toward green applications
  publication-title: IEEE Syst. J.
– volume: 41
  start-page: 5948
  issue: 13
  year: 2014
  end-page: 5959
  article-title: Phishing detection based associative classification data mining
  publication-title: Expert Syst. Appl.
– volume: 53
  start-page: 231
  year: 2016
  end-page: 242
  article-title: New rule‐based phishing detection method
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 72
  issue: 9
  year: 2017
  end-page: 78
  article-title: Phishing website detection based on supervised machine learning with wrapper features selection
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 65
  start-page: 51
  year: 2015
  end-page: 59
  article-title: Simultaneous feature selection and weighting – An evolutionary multi‐objective optimization approach
  publication-title: Pattern Recogn. Lett.
– volume: 484
  start-page: 153
  year: 2019
  end-page: 166
  article-title: A new hybrid ensemble feature selection framework for machine learning‐based phishing detection system
  publication-title: Inf. Sci.
– volume: 3
  start-page: 119
  issue: 1
  year: 2015
  end-page: 126
  article-title: A cross‐layer secure communication model based on discrete fractional Fourier transform (DFRFT)
  publication-title: IEEE Trans. Emerging Top. Comput.
– volume: 20
  start-page: 2389
  issue: 3
  year: 2018
  end-page: 2406
  article-title: Information and communications technologies for sustainable development goals: state‐of‐the‐art, needs and perspectives
  publication-title: IEEE Commun. Surv. Tutorials
– year: 2016
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  end-page: 28
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 77
  start-page: 10033
  issue: 8
  year: 2018
  end-page: 10050
  article-title: New cubic reference table based image steganography
  publication-title: Multimedia Tools Appl.
– year: 2018
– volume: 40
  start-page: 4697
  issue: 11
  year: 2013
  end-page: 4706
  article-title: Intelligent phishing detection and protection scheme for online transactions
  publication-title: Expert Syst. Appl.
– year: 2012
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
– volume: 6
  start-page: 73603
  year: 2018
  end-page: 73636
  article-title: Big data meet cyber‐physical systems: a panoramic survey
  publication-title: IEEE. Access.
– volume: 2
  start-page: 49
  issue: 1
  year: 2017
  end-page: 54
  article-title: Enabling cyber‐physical communication in 5G cellular networks: challenges, spatial spectrum sensing, and cyber‐security
  publication-title: IET Cyber‐Phys. Syst., Theory Appl.
– volume: 117
  start-page: 345
  year: 2019
  end-page: 357
  article-title: Machine learning based phishing detection from URLs
  publication-title: Exp. Syst. Appl.
– volume: 88
  start-page: 12
  year: 2017
  end-page: 19
  article-title: Feature weighting and selection with a pareto‐optimal trade‐off between relevancy and redundancy
  publication-title: Pattern Recognit. Lett.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Genetic algorithm based approach in attribute weighting for a medical data set
  publication-title: J. Comput. Med.
– year: 2010
  article-title: Predicting phishing websites using classification mining techniques
– start-page: 304
  year: 2013
  end-page: 309
  article-title: Detection of phishing URLs using machine learning techniques
– volume: 259
  start-page: 689
  issue: 2
  year: 2015
  end-page: 702
  article-title: Deep neural networks, gradient‐boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: Eur. J. Oper. Res.
– volume: 25
  start-page: 443
  issue: 2
  year: 2014
  end-page: 458
  article-title: Predicting phishing websites based on self‐structuring neural network
  publication-title: Neural Comput. Appl.
– start-page: 123
  year: 2016
  end-page: 131
– start-page: 492
  year: 2012
  end-page: 497
  article-title: An assessment of features related to phishing websites using an automated technique
– volume: 38
  start-page: 5197
  issue: 5
  year: 2011
  end-page: 5204
  article-title: Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  end-page: 324
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– start-page: 1126
  year: 2016
  end-page: 1133
  article-title: A hybrid model to detect phishing‐sites using supervised learning algorithms
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  end-page: 669
  article-title: Deep learning with long short‐term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
– volume: 17
  start-page: 1
  year: 2015
  end-page: 24
  article-title: Tutorial and critical analysis of phishing websites methods
  publication-title: Comput. Sci. Rev.
– volume: 147
  start-page: 5
  issue: 5
  year: 2016
  end-page: 11
  article-title: Detection and prediction of phishing websites using classification mining techniques
  publication-title: Int. J. Comput. Appl.
– ident: e_1_2_10_4_2
  doi: 10.1016/j.cosrev.2015.04.001
– ident: e_1_2_10_28_2
  doi: 10.1109/ICC.2018.8422327
– ident: e_1_2_10_18_2
  doi: 10.1016/j.eswa.2017.04.030
– ident: e_1_2_10_19_2
  doi: 10.1016/j.ejor.2017.11.054
– ident: e_1_2_10_3_2
  doi: 10.1016/j.eswa.2011.01.046
– ident: e_1_2_10_29_2
  doi: 10.1109/ICC.2018.8422448
– ident: e_1_2_10_41_2
  doi: 10.1016/j.asoc.2015.07.046
– ident: e_1_2_10_48_2
– ident: e_1_2_10_47_2
– ident: e_1_2_10_24_2
  doi: 10.1109/TNSM.2018.2831197
– ident: e_1_2_10_20_2
  doi: 10.1038/nature14539
– ident: e_1_2_10_44_2
– ident: e_1_2_10_38_2
  doi: 10.1016/S0004-3702(97)00043-X
– ident: e_1_2_10_43_2
  doi: 10.1016/j.ejor.2016.10.031
– ident: e_1_2_10_12_2
  doi: 10.1016/j.proeng.2012.01.930
– ident: e_1_2_10_23_2
  doi: 10.1007/s11235-017-0414-0
– volume: 8
  start-page: 72
  issue: 9
  year: 2017
  ident: e_1_2_10_7_2
  article-title: Phishing website detection based on supervised machine learning with wrapper features selection
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: e_1_2_10_32_2
  doi: 10.1109/TETC.2014.2367415
– ident: e_1_2_10_6_2
  doi: 10.1007/978-3-319-27247-4_11
– ident: e_1_2_10_17_2
  doi: 10.1109/ACSAT.2014.29
– ident: e_1_2_10_30_2
  doi: 10.1109/COMST.2018.2812301
– ident: e_1_2_10_40_2
  doi: 10.1155/2014/526801
– ident: e_1_2_10_21_2
  doi: 10.1016/j.eswa.2016.01.028
– ident: e_1_2_10_8_2
  doi: 10.1016/j.eswa.2013.02.009
– ident: e_1_2_10_50_2
  doi: 10.1109/ITNG.2010.117
– ident: e_1_2_10_15_2
– start-page: 1
  year: 2018
  ident: e_1_2_10_22_2
  article-title: Detection of phishing websites using an efficient feature‐based machine learning framework
  publication-title: Neural Comput. Appl.
– ident: e_1_2_10_9_2
  doi: 10.1049/iet-ifs.2013.0202
– ident: e_1_2_10_26_2
  doi: 10.1049/iet-cps.2017.0010
– ident: e_1_2_10_45_2
– volume: 147
  start-page: 5
  issue: 5
  year: 2016
  ident: e_1_2_10_14_2
  article-title: Detection and prediction of phishing websites using classification mining techniques
  publication-title: Int. J. Comput. Appl.
– ident: e_1_2_10_35_2
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: e_1_2_10_25_2
  doi: 10.1016/j.ins.2019.01.064
– ident: e_1_2_10_2_2
  doi: 10.1007/s00521-013-1490-z
– ident: e_1_2_10_36_2
  doi: 10.1016/j.knosys.2012.10.001
– ident: e_1_2_10_39_2
  doi: 10.1016/j.patrec.2017.01.004
– ident: e_1_2_10_34_2
  doi: 10.1007/s11042-017-4946-9
– ident: e_1_2_10_49_2
– ident: e_1_2_10_5_2
  doi: 10.1016/j.eswa.2014.03.019
– ident: e_1_2_10_42_2
  doi: 10.1016/j.patrec.2015.07.007
– ident: e_1_2_10_31_2
  doi: 10.1109/JSYST.2016.2550530
– ident: e_1_2_10_46_2
– ident: e_1_2_10_51_2
  doi: 10.1016/j.ipm.2009.03.002
– start-page: 1
  year: 2019
  ident: e_1_2_10_33_2
  article-title: A new payload partition strategy in color image steganography
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: e_1_2_10_37_2
  doi: 10.1016/j.eswa.2010.10.041
– ident: e_1_2_10_10_2
  doi: 10.1109/CSCI.2016.0214
– ident: e_1_2_10_11_2
  doi: 10.1016/j.eswa.2018.09.029
– ident: e_1_2_10_13_2
  doi: 10.1109/ICCC.2013.6731669
– ident: e_1_2_10_16_2
– ident: e_1_2_10_27_2
  doi: 10.1109/ACCESS.2018.2878681
SSID ssj0056509
Score 2.4718819
Snippet In recent years, the web phishing attack has become one of the most serious web security problems, in which the phishers can steal significant financial...
SourceID unpaywall
crossref
wiley
iet
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 659
SubjectTerms blacklist‐based conventional phishing Web site detection methods
computer crime
deep neural networks
DNN
evolutionary algorithm‐based feature selection
evolutionary computation
feature selection
financial information
genetic algorithms
genetic algorithm‐based feature selection
hybrid intelligent phishing Web site prediction approaches
Internet
learning (artificial intelligence)
neural nets
pattern classification
Research Article
unsolicited e‐mail
Web phishing attack
Web site features
Web sites
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHIADb8R4KQfEARTRNmm6HnlNAwEXmMStSptkTCpdNYbQ_gC_G7svhIQGtyp1nSpObCeOPxNy5AgXtwkJk6FxmEgCwxTnAYu1AypZcBV6mI18_yB7fXH77D9_p0fr4QBrZbD6xA1Py02ZeYBXt0EPn1VjXBYkAf_2DAjY0CL0tovYk4i_veDB7txrkYWbqzvcYpWa2Ue0uCJB0ndBCzhhE-X8hckPOzUPr5fJ4nuWq-mHStOfnmxhirprZKXyIel5KfR1MmeyDbJa12eg1XLdJJ-9KeZj0WEDuzmh-Ut56ERBfWLgmOZjDNWgeCjegR9QbUxOEeYSusjKS-JvFI9rKTDAlEeq0sFoDA2vDG2gptYU6KD0raipg5xUpqED3PcDxy3S714_XfZYVXeBJTwIJBNgzTA7AbxD37MqBhcIg5N-EithvUR7WJ-80wHfhscyMFqipoqVEwRW-kYJvk1a2SgzO4TG1ljtc9lxpRaODkLrcljo1hcGPAnttIlTj3KUVKDkWBsjjYrguAgjGPkIBBOhYDBSLtvkpPkkLxE5ZhEfY1s9Z2YRnjbS_Q9bXsj_b8ro5vHau-gi7I_c_e_P7JElfC5THvdJazJ-Nwfg-0ziw2pKfwGW8ADM
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS-QwFA_reBAP6q4uKio5LHtQOrRNmkyPrjiMCysL64CeStokKo61zHQQPXn06Gf0k-x7aaagLLoLeytt8kLSvD95L-_3CPkS8giPCUUgUhMGvJAmUIzJINchiGTOVBpjNvKPYzEY8u-nyanPrHO5MKb2KDcX3QYronW-IZc42Y3MXmnbyPzmBMpT7BlcWkTgjhCCEmG450UCBnqHzA-Pf-6fudTIJAL-dxc__HMk21jnH2i80FZz8HmRLEzLSt3dqtHopT3rFFJ_mdSzqTT3UK660zrvFvevUB7_81xXyJI3YOl-s-M-kg-m_ESWZ8UhqJcVq-RxcIfJYPSyxfysaXXReLwoyG6MWtNqjHEi3BsUL-CfU21MRRFjE4YomxvqE4q-YgoEMN-SqtH5zRheXD8_PKEK1tQaB05KJ66kD9JSpYYh0O0ANNfIsH94cjAIfNmHoGBSioCDMsXkCDBOk9iqHCwwjI0mRa64jQsdY3n0Xg9MK5YLabRAQZmrUEorEqM4-0w65U1p1gnNrbE6YaIXCc1DLVMbMZAzNuEGDBkdbpBw9nuzwmOiY2mOUeZi8zzNYKUzWOkMVxoD9WKD7LZdqgYQ5K3GX_GdFwuTtxrutdvqb8gyt0Peb5kd_TqMv_URdUhs_tMYW6RTj6dmG0yuOt_xLPQb4WouMA
  priority: 102
  providerName: Unpaywall
Title Hybrid intelligent phishing website prediction using deep neural networks with genetic algorithm-based feature selection and weighting
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2019.0006
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ifs.2019.0006
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2019.0006
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: IDLOA
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: AVUZU
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056509
  issn: 1751-8717
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_THdSD3-LnyEE8KMW2SdP1OKdjE79AB_NU0ibRwaxlm4g3jx79G_1LfK_tCiKoeCqk6Qvk5b38ktf3e4Ts2tzBY0JsiUDbFo99bUnGfCtSNrhkzmTgYjby-YVod_lpz-tVSHOSC5PzQ5QXbmgZmb9GA5dRXoUEQC0osa_HVt8g47aDlJNIu111AM_gMnf51cQde0gRl2VFeg6Yvh2Uoc3g8JuIL5vTFLyeIzNPSSpfnuVg8BW-ZvtPa5HMF8CRNnJNL5GKTpbJwqQoAy1sdIW8tV8wCYv2S67NMU3v85smCj4To8U0HWJ8BnVC8cf3O6q0TilyW8IQSf5n-IjiHS0FAZjnSOXg7nEIDQ8fr--49SlqdEYKSkdZKR2UJRMFQ-BxH2Sukm7r5KbZtopyC1bMfF9YHDYxTEoAUOi5RkaAfDAm6cWR5MaNlYtlyet1gDQsEr5WAh1UJG3fN8LTkrM1Mp08Jnqd0Mhoozwm6o5Q3FZ-YBwG9m08rgFAKHuD2JN5DuOCixxLYgzCLCbOgxDmPgTVhKgaDJCLDbJffpLmRBw_dd7DtsIcRz91PCj1-xexLFsBv_cMO9cn7lEL2X7E5r--2iKz2J6nPW6T6fHwSe8A_hlHtWx910i1c3x22YBn9-KqcfsJt9wD5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DurBt_g2B_GgFNsmTbdHX8uuuouggreSNsm6ULtld0W8efTob_SXONN2CyKs4jVNJtDJvDKZbwjZt7mDYUJsiUDbFo99bUnGfCtSNqhkzmTgYjVyqy0a9_zywXuYIOejWpgCH6K6cEPJyPU1CjheSBcBJ0eQzK4eWl2DkNsOYk4i7vY0F47AEMzlNyN97CFGXF4W6Tkg-3ZQ5TaD4x8kvlmnSfg8R2ae00y-vsgk-e6_5gaovkjmS8-RnhSsXiITOl0mC6OuDLQU0hXy3njFKizarcA2hzR7LK6aKChNTBfTrI8JGmQKxZfvHaq0ziiCW8IWafE0fEDxkpYCASx0pDLp9Pow8PT59oG2T1Gjc1RQOsh76SAtmSrYAuN9oLlK7usXd2cNq-y3YMXM94XFwYphVQJ4hZ5rZASuDyYlvTiS3LixcrEvea0GPg2LhK-VQA0VSdv3jfC05GyNTKW9VK8TGhltlMdEzRGK28oPjMNAwI3HNXgQyt4g9ug_h3EJRo49MZIwT4rzIIR_HwJrQmQNZsjFBjmslmQFEse4yQc4VsrjYNzEo4q_fyHL8hPw-8yweXvhntYR7kds_mvVHplp3LWuw-tm-2qLzOKcogZym0wN-896B5yhYbSbn_UvbaUEFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIvE49AUIKG19qHpoFeHEjrM58lotLSCkdivUS-TE9rLSEqJ9CO2txx75jfwSZpJsJFSJol6d8VjKeB72eL4B-MilT8eEzFOx5Z7MIutpISIvNRxNshQ6Dqga-excdXvy62V4uQBH81qYCh-iuXAjzSjtNSm4LYyrDpySQDIHduINHEFu-4Q5SbjbS-jPuWzB0v7P3q_e3CKHhBJXFkaGPmo_j5vsZrz3F5NH_mkRP6_ByjQv9OxWD4ePI9jSBXVewYs6dmT7lbBfw4LN38DLeV8GVqvpOvzpzqgOiw0auM0JK66qyyaGZpMSxqwYUYqGxMLo7XufGWsLRvCWuERePQ4fM7qmZciASh2ZHvZvRjhwff_7jryfYc6WuKBsXHbTIV46N7gEnfiR5wb0Osc_Drte3XHBy0QUKU-iH6O6BIwLw8DpFIMfSkuGWaqlCzITUGfydhujGpGqyBpFNirVPIqcCq2WYhNa-U1ut4ClzjoTCtX2lZHcRLHzBaq4C6XFGMLwbeDz_5xkNRw5dcUYJmVaXMYJ_vsERZOQaChHrrbhczOlqLA4niL-RGO1Ro6fIvzSyPc5bEW5A_5NmZx8Pw4OOgT4o3b-a9YHWL446iSnJ-ff3sIqkVRFkLvQmoym9h1GQ5P0fb3ZHwAAwAVo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS-QwFA_reBAP6q4uKio5LHtQOrRNmkyPrjiMCysL64CeStokKo61zHQQPXn06Gf0k-x7aaagLLoLeytt8kLSvD95L-_3CPkS8giPCUUgUhMGvJAmUIzJINchiGTOVBpjNvKPYzEY8u-nyanPrHO5MKb2KDcX3QYronW-IZc42Y3MXmnbyPzmBMpT7BlcWkTgjhCCEmG450UCBnqHzA-Pf-6fudTIJAL-dxc__HMk21jnH2i80FZz8HmRLEzLSt3dqtHopT3rFFJ_mdSzqTT3UK660zrvFvevUB7_81xXyJI3YOl-s-M-kg-m_ESWZ8UhqJcVq-RxcIfJYPSyxfysaXXReLwoyG6MWtNqjHEi3BsUL-CfU21MRRFjE4YomxvqE4q-YgoEMN-SqtH5zRheXD8_PKEK1tQaB05KJ66kD9JSpYYh0O0ANNfIsH94cjAIfNmHoGBSioCDMsXkCDBOk9iqHCwwjI0mRa64jQsdY3n0Xg9MK5YLabRAQZmrUEorEqM4-0w65U1p1gnNrbE6YaIXCc1DLVMbMZAzNuEGDBkdbpBw9nuzwmOiY2mOUeZi8zzNYKUzWOkMVxoD9WKD7LZdqgYQ5K3GX_GdFwuTtxrutdvqb8gyt0Peb5kd_TqMv_URdUhs_tMYW6RTj6dmG0yuOt_xLPQb4WouMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+intelligent+phishing+website+prediction+using+deep+neural+networks+with+genetic+algorithm%E2%80%90based+feature+selection+and+weighting&rft.jtitle=IET+information+security&rft.au=Ali%2C+Waleed&rft.au=Ahmed%2C+Adel+A.&rft.date=2019-11-01&rft.issn=1751-8709&rft.volume=13&rft.issue=6&rft.spage=659&rft.epage=669&rft_id=info:doi/10.1049%2Fiet-ifs.2019.0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_ifs_2019_0006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8709&client=summon