Detection, identification, and reconstruction of faulty sensors with maximized sensitivity

A new method proposed here detects, reconstructs, and identifies faulty sensors using a normal process model, which can be built from first principles or statistical methods such as partial least squares or principal component analysis. The model residual is used to detect sensor faults that demonst...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 45; no. 9; pp. 1963 - 1976
Main Authors Qin, S. Joe, Li, Weihua
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.1999
Wiley Subscription Services
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.690450913

Cover

Abstract A new method proposed here detects, reconstructs, and identifies faulty sensors using a normal process model, which can be built from first principles or statistical methods such as partial least squares or principal component analysis. The model residual is used to detect sensor faults that demonstrate a deviation from the normal process model. To identify which sensor is faulty, a structured residual approach with maximized sensitivity is proposed to make one residual insensitive to one subset of faults but most sensitive to other faults. The structured residuals are subject to exponentially weighted moving average filtering to reduce the effect of noise and dynamic transients. The confidence limits for these filtered structured residuals are determined using statistical inferential techniques. In addition, other indices including generalized likelihood ratio test, cumulative sum, and cumulative variance of the structured residuals are compared to identify faulty sensors. The fault magnitude is then estimated based on the model and faulty data. Four types of sensor faults, including bias, precision degradation, drifting and complete failure, are simulated to test this method. Data from an industrial boiler process are used to test its effectiveness. Both single faults and simultaneous double faults are detected and uniquely identified with the method.
AbstractList A new method proposed here detects, reconstructs, and identifies faulty sensors using a normal process model, which can be built from first principles or statistical methods such as partial least squares or principal component analysis. The model residual is used to detect sensor faults that demonstrate a deviation from the normal process model. To identify which sensor is faulty, a structured residual approach with maximized sensitivity is proposed to make one residual insensitive to one subset of faults but most sensitive to other faults. The structured residuals are subject to exponentially weighted moving average filtering to reduce the effect of noise and dynamic transients. The confidence limits for these filtered structured residuals are determined using statistical inferential techniques. In addition, other indices including generalized likelihood ratio test, cumulative sum, and cumulative variance of the structured residuals are compared to identify faulty sensors. The fault magnitude is then estimated based on the model and faulty data. Four types of sensor faults, including bias, precision degradation, drifting and complete failure, are simulated to test this method. Data from an industrial boiler process are used to test its effectiveness. Both single faults and simultaneous double faults are detected and uniquely identified with the method.
Author Qin, S. Joe
Li, Weihua
Author_xml – sequence: 1
  givenname: S. Joe
  surname: Qin
  fullname: Qin, S. Joe
  organization: Dept. of Chemical Engineering, University of Texas, Austin, TX 78712
– sequence: 2
  givenname: Weihua
  surname: Li
  fullname: Li, Weihua
  organization: Dept. of Chemical Engineering, University of Texas, Austin, TX 78712
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1953650$$DView record in Pascal Francis
BookMark eNp9kEFPGzEUhC1EJULaY-8rxLEb7PV6vT6mAUKkiF5aIfVieb3P6ks3XrAdIP31XRKUA6I9Pc3TNzPSnJJj33sg5DOjE0ZpcWHQTipFS0EV40dkxEQpc6GoOCYjSinLhwc7IacxrgZVyLoYkZ-XkMAm7P2XDFvwCR1as9fGt1kA2_uYwmbHZL3LnNl0aZtF8LEPMXvC9Ctbm2dc4x9od29M-Ihp-5F8cKaL8On1jsmP66vvs5t8-W2-mE2XueVS8rwtnGwFuAZEWxfWKVqBACNV21rJGBfCVE3FoSlZXbnSgqlk7WgBDW-ssQ0fk7N97n3oHzYQk171m-CHSs2U4lLVQgzQ-StkojWdC8ZbjPo-4NqE7QAKXgk6YHyP2dDHGMBpi2k3RwoGO82ofplaD1Prw9SDK3_jOuT-g5d7_gk72P4f1tPF7J0mjAmeD04TfutKcin03e1c383Kubqub_RX_hehH6PA
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_automatica_2009_02_027
crossref_primary_10_1016_j_ifacol_2021_10_054
crossref_primary_10_3182_20050703_6_CZ_1902_01864
crossref_primary_10_1016_j_isatra_2010_05_001
crossref_primary_10_1177_1420326X12469744
crossref_primary_10_1016_j_ymssp_2016_08_028
crossref_primary_10_1007_s12555_023_0170_8
crossref_primary_10_1016_j_chemolab_2014_10_002
crossref_primary_10_1155_2016_9746948
crossref_primary_10_1016_j_arcontrol_2007_02_004
crossref_primary_10_1002_aic_690480216
crossref_primary_10_1002_cem_2932
crossref_primary_10_1109_TCST_2003_821960
crossref_primary_10_1016_j_ifacol_2017_12_005
crossref_primary_10_1016_S1474_6670_17_33611_X
crossref_primary_10_1109_TASE_2009_2018140
crossref_primary_10_1002_cem_800
crossref_primary_10_1016_S0263_8762_07_73181_7
crossref_primary_10_1177_14759217211025488
crossref_primary_10_1016_j_measurement_2013_02_016
crossref_primary_10_1021_ie401019k
crossref_primary_10_1016_j_jprocont_2017_03_004
crossref_primary_10_4028_www_scientific_net_AMR_433_440_6430
crossref_primary_10_1088_0964_1726_25_10_105019
crossref_primary_10_1016_j_enbuild_2013_07_002
crossref_primary_10_1016_j_jprocont_2015_12_002
crossref_primary_10_1109_TIE_2006_878304
crossref_primary_10_1155_2016_2839372
crossref_primary_10_1016_j_chemolab_2013_10_014
crossref_primary_10_3182_20120215_3_AT_3016_00171
crossref_primary_10_4028_www_scientific_net_AMM_182_183_1435
crossref_primary_10_1016_j_snb_2019_126721
crossref_primary_10_1061__ASCE_0733_9402_2009_135_4_127
crossref_primary_10_1111_j_1934_6093_2003_tb00093_x
crossref_primary_10_1016_j_jobe_2020_101221
crossref_primary_10_1016_S0959_1524_03_00005_2
crossref_primary_10_1002_aic_690470711
crossref_primary_10_1109_TCST_2015_2464331
crossref_primary_10_1002_cem_3222
crossref_primary_10_1002_env_900
crossref_primary_10_1016_j_conengprac_2013_06_008
crossref_primary_10_3390_en10020194
crossref_primary_10_1016_j_anucene_2005_02_003
crossref_primary_10_1205_cherd_04280
crossref_primary_10_3182_20060829_4_CN_2909_00004
crossref_primary_10_1016_j_arcontrol_2012_09_004
crossref_primary_10_1016_j_jhazmat_2014_05_098
crossref_primary_10_1016_j_ymssp_2011_02_015
crossref_primary_10_1016_j_jprocont_2004_10_005
crossref_primary_10_1002_stc_2634
crossref_primary_10_1191_0143624403bt070oa
crossref_primary_10_1016_j_conengprac_2018_04_003
crossref_primary_10_1016_j_jprocont_2011_07_003
crossref_primary_10_1002_aic_690490716
crossref_primary_10_1109_TCST_2013_2283925
crossref_primary_10_1016_j_conengprac_2004_04_020
crossref_primary_10_1021_ie301096x
crossref_primary_10_1088_1361_665X_ad61a4
crossref_primary_10_1016_S1004_9541_11_60007_4
crossref_primary_10_1109_TIE_2019_2907505
crossref_primary_10_1016_S0959_1524_01_00046_4
crossref_primary_10_1021_ie300072q
crossref_primary_10_1080_00207170310001647669
crossref_primary_10_1080_09593330_2015_1058859
crossref_primary_10_3182_20090630_4_ES_2003_00184
crossref_primary_10_1016_j_jprocont_2013_09_019
crossref_primary_10_1109_TNNLS_2023_3290974
crossref_primary_10_1021_ie301945s
crossref_primary_10_1016_j_automatica_2007_05_009
crossref_primary_10_3390_en13030609
crossref_primary_10_1016_j_aei_2019_100991
crossref_primary_10_1016_j_ifacol_2017_08_1772
crossref_primary_10_1002_aic_13959
crossref_primary_10_1080_1573062X_2022_2117634
crossref_primary_10_1007_s11768_009_7164_9
crossref_primary_10_1016_j_ijpvp_2020_104210
crossref_primary_10_1016_S1004_9541_08_60125_1
crossref_primary_10_4028_www_scientific_net_AMM_229_231_1265
crossref_primary_10_1002_aic_14400
crossref_primary_10_3182_20120829_3_MX_2028_00238
crossref_primary_10_3390_drones5010016
crossref_primary_10_1016_j_jprocont_2004_06_009
crossref_primary_10_1016_S1474_6670_17_36588_6
crossref_primary_10_1021_ie901634r
crossref_primary_10_13182_NT01_A3240
crossref_primary_10_1109_TIE_2018_2838088
crossref_primary_10_25046_aj0203214
crossref_primary_10_1109_TCST_2010_2071415
crossref_primary_10_1016_S0098_1354_02_00162_X
crossref_primary_10_1109_TASE_2016_2564442
Cites_doi 10.1002/aic.690230504
10.1109/37.9163
10.1080/00401706.1979.10489779
10.1002/aic.690380410
10.1016/0009-2509(81)85004-X
10.1016/0009-2509(81)80133-9
10.1021/ie960615y
10.1021/i260057a030
10.1109/TAC.1977.1101598
10.1002/aic.690420812
10.1016/0959-1524(96)00012-1
10.1002/aic.690290602
10.1002/aic.690410711
10.1002/aic.690450213
10.1002/aic.690370209
10.1016/0098-1354(92)80030-D
10.1016/0005-1098(90)90133-3
10.1109/TAC.1987.1104683
10.1002/aic.690340810
10.1002/aic.690421014
ContentType Journal Article
Copyright Copyright © 1999 American Institute of Chemical Engineers (AIChE)
1999 INIST-CNRS
Copyright American Institute of Chemical Engineers Sep 1999
Copyright_xml – notice: Copyright © 1999 American Institute of Chemical Engineers (AIChE)
– notice: 1999 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Sep 1999
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7U5
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
L6V
L7M
M2O
M2P
M7S
MBDVC
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0X
SOI
DOI 10.1002/aic.690450913
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Solid State and Superconductivity Abstracts
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1547-5905
EndPage 1976
ExternalDocumentID 44713110
1953650
10_1002_aic_690450913
AIC690450913
ark_67375_WNG_WC4G9F8H_B
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
UAO
WRC
WSB
AAYXX
CITATION
IQODW
7ST
7U5
7XB
8FD
8FK
C1K
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c3773-d2f7d5efbe5d82cf906e5ea79ddc711355a6b63eb4186f4cea678f02eb3bcacb3
IEDL.DBID BENPR
ISSN 0001-1541
IngestDate Fri Jul 25 10:50:40 EDT 2025
Mon Jul 21 09:14:08 EDT 2025
Thu Oct 09 00:23:44 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Wed Jan 22 17:03:45 EST 2025
Sun Sep 21 06:18:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Boiler
Failure detection
Fault diagnostic
Measurement sensor
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3773-d2f7d5efbe5d82cf906e5ea79ddc711355a6b63eb4186f4cea678f02eb3bcacb3
Notes istex:C8CDA1DE8A42D84D7980916C8781EEF4975E6C2C
ark:/67375/WNG-WC4G9F8H-B
ArticleID:AIC690450913
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 199379855
PQPubID 7879
PageCount 14
ParticipantIDs proquest_journals_199379855
pascalfrancis_primary_1953650
crossref_citationtrail_10_1002_aic_690450913
crossref_primary_10_1002_aic_690450913
wiley_primary_10_1002_aic_690450913_AIC690450913
istex_primary_ark_67375_WNG_WC4G9F8H_B
PublicationCentury 1900
PublicationDate September 1999
PublicationDateYYYYMMDD 1999-09-01
PublicationDate_xml – month: 09
  year: 1999
  text: September 1999
PublicationDecade 1990
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 1999
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services
American Institute of Chemical Engineers
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services
– name: American Institute of Chemical Engineers
References Albuquerque, J. S., and L. T. Biegler, "Data Reconciliation and Gross-Error Detection for Dynamic Systems," AIChE J., 42, 2841 (1996).
Basseville, M., and I. V. Nikiforov, Detection of Abrupt Changes-Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ (1993).
Benveniste, A., M. Basseville, and G. Moustakides, "The Asymptotic Local Approach to Change Detection and Model Validation," IEEE Trans. Auto. Cont., 32, 583 (1987).
Dunia, R., J. Qin, T. F. Edgar, and T. J. McAvoy, "Sensor Fault Identification and Reconstruction Using Principal Component Analysis," Proc. 13th IFAC World Congress, Volume N, 259 (1996).
Rollins, D. K., and J. F. Davis, "Unbiased Estimation of Gross Errors in Process Measurements," AIChE J., 38, 563 (1992).
Kramer, M., "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks," AIChE J., 37, 233 (1991).
Tong, H., and C. M. Crowe, "Detection of Gross Errors in Data Reconciliation by Principal Component Analysis," AIChE J., 41, 1712 (1995).
Crowe, C. M., "Data Reconciliation-Progress and Challenges," J. Proc. Cont., 6, 89 (1996).
Hald, A., Statistical Theory with Engineering Applications, Wiley (1952).
Karjala, T. W., and D. M. Himmelblau, "Dynamic Rectification of Data via Recurrent Neural Nets and the Extended Kalman Filter," AIChE J., 42, 2225 (1996).
Narasimhan, S., and R. S. H. Mah, "Generalized Likelihood Ratios for Gross Error Identification in Dynamic Processes," AIChE J., 34, 1321 (1988).
Stanley, G. M., and R. S. H. Mah, "Observability and Redundancy in Process Data Estimation," Chem. Eng. Sci., 36, 259 (1981).
Gertler, J., and D. Singer, "A New Structural Framework for Parity Equation Based Failure Detection and Isolation," Automatica, 26, 381 (1990).
Stanley, G. M., and R. S. H. Mah, "Estimation of Flows and Temperatures in Process Networks," AIChE J., 23, 642 (1977).
Crowe, C. M., A. Hrymak, and Y. A. Garcia Campos, "Reconciliation of Process Flow Rates by Matrix Projection. i. The Linear Case," AIChE J., 29, 881 (1983).
Deckert, J. C., M. N. Desai, J. J. Deyst, and A. S. Willsky, "F-8 DFBW Sensor Failure Identification Using Analytical Redundancy," IEEE Trans. Auto. Cont., 22, 796 (1977).
Liebman, M. J., T. F. Edgar, and L. S. Lasdon, "Efficient Data Reconciliation and Estimation for Dynamic Processes Using Nonlinear Programming Techniques," Comput. Chem. Eng., 16, 963 (1992).
Jackson, J. E., and G. Mudholkar, "Control Procedures for Residuals Associated with Principal Component Analysis," Technometrics, 21, 341 (1979).
Mah, R. S. H., G. M. Stanley, and D. Downing, "Reconciliation and Rectification of Process Flow and Inventory Data," Ind. Eng. Chem. Proc. Des. Dev., 15, 175 (1976).
Gertler, J., W. Li, Y. Huang, and T. McAvoy, "Isolation-Enhanced Principal Component Analysis," AIChE J., 45, 323 (1999).
Qin, S. J., H. Yue, and R. Dunia, "Self-Validating Inferential Sensors with Application to Air Emission Monitoring," Ind. Eng. Chem. Res., 36, 1675 (1997).
Romagnoli, J. A., and G. Stephanopoulos, "Rectification of Process Measurement Data in the Presence of Gross Errors," Chem. Eng. Sci., 36, 1849 (1981).
Gertler, J., "Survey of Model-Based Failure Detection and Isolation in Complex Plants," IEEE Cont. Sys. Mag., 12, 3 (1988).
1987; 32
1991; 37
1998
1999; 45
1996
1988; 12
1952
1988; 34
1977; 22
1994
1993
1991
1992; 16
1992; 38
1977; 23
1995; 41
1990; 26
1997; 36
1981; 36
1985
1983; 29
1979; 21
1976; 15
1996; 42
1996; 6
Hald A. (e_1_2_1_15_1) 1952
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
Basseville M. (e_1_2_1_3_1) 1993
e_1_2_1_29_1
Dunia R. (e_1_2_1_8_1) 1996
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Basseville, M., and I. V. Nikiforov, Detection of Abrupt Changes-Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ (1993).
– reference: Gertler, J., W. Li, Y. Huang, and T. McAvoy, "Isolation-Enhanced Principal Component Analysis," AIChE J., 45, 323 (1999).
– reference: Deckert, J. C., M. N. Desai, J. J. Deyst, and A. S. Willsky, "F-8 DFBW Sensor Failure Identification Using Analytical Redundancy," IEEE Trans. Auto. Cont., 22, 796 (1977).
– reference: Qin, S. J., H. Yue, and R. Dunia, "Self-Validating Inferential Sensors with Application to Air Emission Monitoring," Ind. Eng. Chem. Res., 36, 1675 (1997).
– reference: Hald, A., Statistical Theory with Engineering Applications, Wiley (1952).
– reference: Narasimhan, S., and R. S. H. Mah, "Generalized Likelihood Ratios for Gross Error Identification in Dynamic Processes," AIChE J., 34, 1321 (1988).
– reference: Liebman, M. J., T. F. Edgar, and L. S. Lasdon, "Efficient Data Reconciliation and Estimation for Dynamic Processes Using Nonlinear Programming Techniques," Comput. Chem. Eng., 16, 963 (1992).
– reference: Jackson, J. E., and G. Mudholkar, "Control Procedures for Residuals Associated with Principal Component Analysis," Technometrics, 21, 341 (1979).
– reference: Karjala, T. W., and D. M. Himmelblau, "Dynamic Rectification of Data via Recurrent Neural Nets and the Extended Kalman Filter," AIChE J., 42, 2225 (1996).
– reference: Mah, R. S. H., G. M. Stanley, and D. Downing, "Reconciliation and Rectification of Process Flow and Inventory Data," Ind. Eng. Chem. Proc. Des. Dev., 15, 175 (1976).
– reference: Dunia, R., J. Qin, T. F. Edgar, and T. J. McAvoy, "Sensor Fault Identification and Reconstruction Using Principal Component Analysis," Proc. 13th IFAC World Congress, Volume N, 259 (1996).
– reference: Stanley, G. M., and R. S. H. Mah, "Estimation of Flows and Temperatures in Process Networks," AIChE J., 23, 642 (1977).
– reference: Crowe, C. M., A. Hrymak, and Y. A. Garcia Campos, "Reconciliation of Process Flow Rates by Matrix Projection. i. The Linear Case," AIChE J., 29, 881 (1983).
– reference: Rollins, D. K., and J. F. Davis, "Unbiased Estimation of Gross Errors in Process Measurements," AIChE J., 38, 563 (1992).
– reference: Kramer, M., "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks," AIChE J., 37, 233 (1991).
– reference: Stanley, G. M., and R. S. H. Mah, "Observability and Redundancy in Process Data Estimation," Chem. Eng. Sci., 36, 259 (1981).
– reference: Benveniste, A., M. Basseville, and G. Moustakides, "The Asymptotic Local Approach to Change Detection and Model Validation," IEEE Trans. Auto. Cont., 32, 583 (1987).
– reference: Gertler, J., "Survey of Model-Based Failure Detection and Isolation in Complex Plants," IEEE Cont. Sys. Mag., 12, 3 (1988).
– reference: Tong, H., and C. M. Crowe, "Detection of Gross Errors in Data Reconciliation by Principal Component Analysis," AIChE J., 41, 1712 (1995).
– reference: Crowe, C. M., "Data Reconciliation-Progress and Challenges," J. Proc. Cont., 6, 89 (1996).
– reference: Romagnoli, J. A., and G. Stephanopoulos, "Rectification of Process Measurement Data in the Presence of Gross Errors," Chem. Eng. Sci., 36, 1849 (1981).
– reference: Albuquerque, J. S., and L. T. Biegler, "Data Reconciliation and Gross-Error Detection for Dynamic Systems," AIChE J., 42, 2841 (1996).
– reference: Gertler, J., and D. Singer, "A New Structural Framework for Parity Equation Based Failure Detection and Isolation," Automatica, 26, 381 (1990).
– volume: 36
  start-page: 1849
  year: 1981
  article-title: Rectification of Process Measurement Data in the Presence of Gross Errors
  publication-title: Chem. Eng. Sci.
– volume: 26
  start-page: 381
  year: 1990
  article-title: A New Structural Framework for Parity Equation Based Failure Detection and Isolation
  publication-title: Automatica
– volume: 6
  start-page: 89
  year: 1996
  article-title: Data Reconciliation—Progress and Challenges
  publication-title: J. Proc. Cont.
– volume: 38
  start-page: 563
  year: 1992
  article-title: Unbiased Estimation of Gross Errors in Process Measurements
  publication-title: AIChE J.
– volume: 45
  start-page: 323
  year: 1999
  article-title: Isolation‐Enhanced Principal Component Analysis
  publication-title: AIChE J.
– volume: 32
  start-page: 583
  year: 1987
  article-title: The Asymptotic Local Approach to Change Detection and Model Validation
  publication-title: IEEE Trans. Auto. Cont.
– start-page: 47
  year: 1996
– year: 1996
– volume: 41
  start-page: 1712
  year: 1995
  article-title: Detection of Gross Errors in Data Reconciliation by Principal Component Analysis
  publication-title: AIChE J.
– year: 1952
– volume: 36
  start-page: 259
  year: 1981
  article-title: Observability and Redundancy in Process Data Estimation
  publication-title: Chem. Eng. Sci.
– year: 1994
– volume: 16
  start-page: 963
  year: 1992
  article-title: Efficient Data Reconciliation and Estimation for Dynamic Processes Using Nonlinear Programming Techniques
  publication-title: Comput. Chem. Eng.
– year: 1998
– volume: 23
  start-page: 642
  year: 1977
  article-title: Estimation of Flows and Temperatures in Process Networks
  publication-title: AIChE J.
– volume: 12
  start-page: 3
  year: 1988
  article-title: Survey of Model‐Based Failure Detection and Isolation in Complex Plants
  publication-title: IEEE Cont. Sys. Mag.
– volume: 29
  start-page: 881
  year: 1983
  article-title: Reconciliation of Process Flow Rates by Matrix Projection. i. The Linear Case
  publication-title: AIChE J.
– volume: 15
  start-page: 175
  year: 1976
  article-title: Reconciliation and Rectification of Process Flow and Inventory Data
  publication-title: Ind. Eng. Chem. Proc. Des. Dev.
– start-page: 259
  year: 1996
  article-title: Sensor Fault Identification and Reconstruction Using Principal Component Analysis
  publication-title: Proc. 13th IFAC World Congress
– volume: 37
  start-page: 233
  year: 1991
  article-title: Nonlinear Principal Component Analysis Using Autoassociative Neural Networks
  publication-title: AIChE J.
– volume: 42
  start-page: 2225
  year: 1996
  article-title: Dynamic Rectification of Data via Recurrent Neural Nets and the Extended Kalman Filter
  publication-title: AIChE J.
– volume: 22
  start-page: 796
  year: 1977
  article-title: F‐8 DFBW Sensor Failure Identification Using Analytical Redundancy
  publication-title: IEEE Trans. Auto. Cont.
– volume: 36
  start-page: 1675
  year: 1997
  article-title: Self‐Validating Inferential Sensors with Application to Air Emission Monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 34
  start-page: 1321
  year: 1988
  article-title: Generalized Likelihood Ratios for Gross Error Identification in Dynamic Processes
  publication-title: AIChE J.
– volume: 42
  start-page: 2841
  year: 1996
  article-title: Data Reconciliation and Gross‐Error Detection for Dynamic Systems
  publication-title: AIChE J.
– volume: 21
  start-page: 341
  year: 1979
  article-title: Control Procedures for Residuals Associated with Principal Component Analysis
  publication-title: Technometrics
– year: 1991
– year: 1993
– start-page: 317
  year: 1985
– ident: e_1_2_1_29_1
  doi: 10.1002/aic.690230504
– ident: e_1_2_1_13_1
  doi: 10.1109/37.9163
– volume-title: Statistical Theory with Engineering Applications
  year: 1952
  ident: e_1_2_1_15_1
– ident: e_1_2_1_16_1
  doi: 10.1080/00401706.1979.10489779
– ident: e_1_2_1_27_1
  doi: 10.1002/aic.690380410
– ident: e_1_2_1_23_1
– start-page: 259
  year: 1996
  ident: e_1_2_1_8_1
  article-title: Sensor Fault Identification and Reconstruction Using Principal Component Analysis
  publication-title: Proc. 13th IFAC World Congress
– ident: e_1_2_1_26_1
– ident: e_1_2_1_18_1
– ident: e_1_2_1_30_1
  doi: 10.1016/0009-2509(81)85004-X
– ident: e_1_2_1_28_1
  doi: 10.1016/0009-2509(81)80133-9
– ident: e_1_2_1_25_1
  doi: 10.1021/ie960615y
– ident: e_1_2_1_21_1
  doi: 10.1021/i260057a030
– ident: e_1_2_1_7_1
  doi: 10.1109/TAC.1977.1101598
– ident: e_1_2_1_17_1
  doi: 10.1002/aic.690420812
– volume-title: Detection of Abrupt Changes—Theory and Applications
  year: 1993
  ident: e_1_2_1_3_1
– ident: e_1_2_1_5_1
  doi: 10.1016/0959-1524(96)00012-1
– ident: e_1_2_1_6_1
  doi: 10.1002/aic.690290602
– ident: e_1_2_1_31_1
  doi: 10.1002/aic.690410711
– ident: e_1_2_1_14_1
  doi: 10.1002/aic.690450213
– ident: e_1_2_1_22_1
– ident: e_1_2_1_11_1
– ident: e_1_2_1_19_1
  doi: 10.1002/aic.690370209
– ident: e_1_2_1_20_1
  doi: 10.1016/0098-1354(92)80030-D
– ident: e_1_2_1_12_1
  doi: 10.1016/0005-1098(90)90133-3
– ident: e_1_2_1_4_1
  doi: 10.1109/TAC.1987.1104683
– ident: e_1_2_1_24_1
  doi: 10.1002/aic.690340810
– ident: e_1_2_1_9_1
– ident: e_1_2_1_10_1
– ident: e_1_2_1_2_1
  doi: 10.1002/aic.690421014
SSID ssj0012782
Score 1.9933248
Snippet A new method proposed here detects, reconstructs, and identifies faulty sensors using a normal process model, which can be built from first principles or...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1963
SubjectTerms Applied sciences
Chemical engineering
Exact sciences and technology
Metrology, automation
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCmHAqWI8Kh8qHoiSx52nBxh6bKtVA6oCMTF-ClFQBaRRQJ-PX5kA4tUpKpHR54onrE98znjbwC-mUxJUSlssUkuY0ypjkVikpg68jfK81RV7jby7-NifIp_nZPzrs6puwsT-CH6Aze3Mvx-7RY4F-3eC2kor-XAQjvsPJ5j-0zzwkOqk54-Ks1oGdjCLWS2oULacWxa-b056TmftOjU--ByJHlr1WRCfYu5APR1GOv90GgZLmcjCOknV4P7qRjIpzfkjv8xxBX41MWoaD9MqlX4oJvPsPSKuXANLg711CdxNbuoVl3GEQ9t3ijkcXbPTYsmBhl-fz19RK2FzZO7FrnzX3TDH-qb-kkr_7gOhSy-wOnox5_hOO7KNMQypzSPVWaoItoITVSZSVMlhSaa00opSdPUBjS8EEWuBU7LwmCpuXWQJsksjBeSS5Gvw0IzafQGIMmNwlSTBBuME1058rBMZMRYFKR0WkWwOzMUkx2HuSulcc0C-3LGrMpYr7IIvvfdbwN5x187eqv3vfjdlct4o4SdHR-xsyE-qkblmB1EsDM3LV5e636DkySCrdk0Yd1m0DKXI0mrkpAIEm_u9z-G7f8c9o3NfxfZgo-BW8Ilwm3DgrW13rGR01R89cvjGWJAEVY
  priority: 102
  providerName: Wiley-Blackwell
Title Detection, identification, and reconstruction of faulty sensors with maximized sensitivity
URI https://api.istex.fr/ark:/67375/WNG-WC4G9F8H-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.690450913
https://www.proquest.com/docview/199379855
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1547-5905
  dateEnd: 20031231
  omitProxy: true
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 20031231
  omitProxy: true
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0001-1541
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4IJ4ilFY-IE4NTRw7Tg4ItdvuLkhdoYqqFRfLTymizZbuIhV-PZ686B7o0ZFlRTO2Z8b-_H0A7zy1RpeWhdokMzETwsU68UkskPxNqCy1Jb5GPl3k83P25ZJfbsFp_xYGYZX9nths1HZp8Iz8AIFmoiw4_3TzM0bRKLxc7RU0VKesYD82DGPbMKZIjDWC8dHJ4uvZcK1ARdHSh4caOuQOaUe6GXaFA1WZD6FSZBhAs40gNUZ73yFoUq2C3XwreLGRkd7Pa5vANH0KT7qMkhy2U-AZbLn6OTy-xzP4Ar4fu3UDuar3SWU7fJBq26q2pKmKByZZsvTEq19X699kFYrc5e2K4GktuVZ31XX1x9nmc9XKTryE8-nJt8k87kQVYpMJkcWWemG589pxW1DjyyR33ClRWmtEmob0Q-U6z5xmaZF7ZpwK4cwnNBTd2iijs1cwqpe1ew3EKG-ZcDxhnrHElUj1RTXlPtQs1qVlBPu9FaXpGMdR-OJKtlzJVAajy8HoEbwfut-0VBv_7di4ZOilbn8gPk1webGYyYsJm5XTYi6PItjd8Nm_YfHSmicR7PQ-lN3SXclhokWQNG59-Gfk4efJ0Hjz4IA78KglfUCE2lsYBbe63ZDSrPUebBfT2V43XUPr-Iz-BZRD9jY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7gE4IJ4ilIIPwKmhiWPHyaFC7bbbXdquEGrVqhfjpxTRZkuziJb_xn_Dzovugd56dGRZ0XzOzHzx-BuAdxZrJXNNHDdJVEgYM6GMbBQyL_7GRBLr3N9GPpim4yPy-YSeLMGf7i6ML6vsfGLtqPVM-X_k677QjOUZpZ8ufoS-aZQ_XO06aIi2s4LeqBXG2nsde-b6l2Nw1cZk28H9HuPRzuFwHLZNBkKVMJaEGlumqbHSUJ1hZfMoNdQIlmutWBy7cCxSmSZGkjhLLVFGOPduI-xIqFRCycStew8GJCG5436DrZ3pl6_9MQZmWSNX7ji7y1XiVuTTeaF1UaiPjpkSH7CThaA48Phe-SJNUTmcbNNgYyEDvplH14Fw9BgetRks2my23BNYMuVTeHhD1_AZnG6beV3iVa6hQrf1SKIZi1KjmoX3yrVoZpEVP8_m16hypHp2WSH_dxidi6vivPhtdP24aNpcPIejO7HvC1guZ6V5CUgJqwkzNCKWkMjkXloMS0yt40jaxHkAa50VuWoVzn2jjTPeaDNj7ozOe6MH8KGfftFIe_x3Yg1JP0tcfvf1cIzy4-kuPx6S3XyUjflWAKsLmP1b1h-S0yiAlQ5D3rqKivcbO4CohvX2l-Gbk2E_eHXrgm_h_vjwYJ_vT6Z7K_CgEZzw1XGvYdlBbFZdOjWXb9pNi-DbXX8nfwHT_jPI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQDxFKAUfgFPDJo4dJweEyi7ZXQorDlStuBg_pYg2W5pFtPwz_h12XnQP9NajI8uK5hvPwx5_A_DCYq1kronLTRIVEsZMKCMbhcyTvzGRxDr3r5E_LdLZAflwRI824E__FsaXVfY2sTHUeqn8GfnIF5qxPKN0ZLuqiM-T4u3pj9A3kPIXrX03jVZD9s3FL5e91W_mEwf1S4yL91_Gs7BrMBCqhLEk1NgyTY2VhuoMK5tHqaFGsFxrxeLYuWKRyjQxksRZaokywpl2G2GXgEollEzcujdgi3kSd_9IvZgOFxiYZS1RucvWXZQSd_Sezv6MRKleu5yUeFedrLnDLY_suS_PFLVDyLatNdZi38sRdOMCi7twp4td0V6rbPdgw1T34fYlRsMH8HViVk1xV7WLSt1VIol2LCqNmvx74KxFS4us-Hm8ukC1S6eXZzXy58LoRJyXJ-Vvo5vPZdvg4iEcXIt0H8FmtazMY0BKWE2YoRGxhEQm96RiWGJqXXakTZwHsNtLkauO29y32DjmLSsz5k7ofBB6AK-G6actqcd_JzaQDLPE2XdfCccoP1xM-eGYTPMim_F3AeysYfZvWX89TqMAtnsMeWckaj6odABRA-vVP8P35uNh8OTKBZ_DTbc7-Mf5Yn8bbrVME74s7ilsOoTNjoujVvJZo7EIvl33FvkLcMAxYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection%2C+identification%2C+and+reconstruction+of+faulty+sensors+with+maximized+sensitivity&rft.jtitle=AIChE+journal&rft.au=Qin%2C+S.+Joe&rft.au=Li%2C+Weihua&rft.date=1999-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=45&rft.issue=9&rft.spage=1963&rft.epage=1976&rft_id=info:doi/10.1002%2Faic.690450913&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WC4G9F8H_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon