Conditional graphical models for systemic risk estimation
•The paper provides a stochastic framework for financial network models.•It is based on a conditional graphical Gaussian model.•Systemic risk is decomposed into country risk plus bank specific risk.•It is the first paper that considers more data sources in systemic risks estimation. Financial networ...
Saved in:
Published in | Expert systems with applications Vol. 43; pp. 165 - 174 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2015.08.047 |
Cover
Abstract | •The paper provides a stochastic framework for financial network models.•It is based on a conditional graphical Gaussian model.•Systemic risk is decomposed into country risk plus bank specific risk.•It is the first paper that considers more data sources in systemic risks estimation.
Financial network models are a useful tool to model interconnectedness and systemic risks in banking and finance. Recently, graphical Gaussian models have been shown to improve the estimation of network models and, consequently, the interpretation of systemic risks.
This paper provides a novel graphical Gaussian model to estimate systemic risks. The model is characterised by two main innovations, with respect to the recent literature: it estimates risks considering jointly market data and balance sheet data, in an integrated perspective; it decomposes the conditional dependencies between financial institutions into correlations between countries and correlations between institutions, within countries.
The model has been applied to study systemic risks among the largest European banks, with the aim of identifying central institutions, more subject to contagion or, conversely, whose failure could result in further distress or breakdowns in the whole system. The results show that, in the transmission of systemic risk, there is a strong country effect, that reflects the weakness or the strength of the underlying economies. Besides the country effect, the most central banks are those larger in size. |
---|---|
AbstractList | •The paper provides a stochastic framework for financial network models.•It is based on a conditional graphical Gaussian model.•Systemic risk is decomposed into country risk plus bank specific risk.•It is the first paper that considers more data sources in systemic risks estimation.
Financial network models are a useful tool to model interconnectedness and systemic risks in banking and finance. Recently, graphical Gaussian models have been shown to improve the estimation of network models and, consequently, the interpretation of systemic risks.
This paper provides a novel graphical Gaussian model to estimate systemic risks. The model is characterised by two main innovations, with respect to the recent literature: it estimates risks considering jointly market data and balance sheet data, in an integrated perspective; it decomposes the conditional dependencies between financial institutions into correlations between countries and correlations between institutions, within countries.
The model has been applied to study systemic risks among the largest European banks, with the aim of identifying central institutions, more subject to contagion or, conversely, whose failure could result in further distress or breakdowns in the whole system. The results show that, in the transmission of systemic risk, there is a strong country effect, that reflects the weakness or the strength of the underlying economies. Besides the country effect, the most central banks are those larger in size. Financial network models are a useful tool to model interconnectedness and systemic risks in banking and finance. Recently, graphical Gaussian models have been shown to improve the estimation of network models and, consequently, the interpretation of systemic risks. This paper provides a novel graphical Gaussian model to estimate systemic risks. The model is characterised by two main innovations, with respect to the recent literature: it estimates risks considering jointly market data and balance sheet data, in an integrated perspective; it decomposes the conditional dependencies between financial institutions into correlations between countries and correlations between institutions, within countries. The model has been applied to study systemic risks among the largest European banks, with the aim of identifying central institutions, more subject to contagion or, conversely, whose failure could result in further distress or breakdowns in the whole system. The results show that, in the transmission of systemic risk, there is a strong country effect, that reflects the weakness or the strength of the underlying economies. Besides the country effect, the most central banks are those larger in size. |
Author | Giudici, Paolo Cerchiello, Paola |
Author_xml | – sequence: 1 givenname: Paola surname: Cerchiello fullname: Cerchiello, Paola email: paola.cerchiello@unipv.it – sequence: 2 givenname: Paolo surname: Giudici fullname: Giudici, Paolo email: giudici@unipv.it |
BookMark | eNp9kE9PwyAYh4mZidv0C3jq0UsrUFog8WIW_yVLvOiZUHirzLZM6DT79lLnycNOL3nze-DHs0CzwQ-A0CXBBcGkvt4UEL91QTGpCiwKzPgJmhPBy7zmspyhOZYVzxnh7AwtYtxgTDjGfI7kyg_Wjc4Pusvegt6-O5NOvbfQxaz1IYv7OELvTBZc_Mggjq7XU_4cnba6i3DxN5fo9f7uZfWYr58fnla369yUvB5z2zai0hKo4WVaYMFr1ra0oYZJUUljiaZWVtgyaVOpSptSN7LRGErJZCPLJbo63LsN_nOX3le9iwa6Tg_gd1ERQStWY8qqFBWHqAk-xgCtMm78LTsG7TpFsJpsqY2abKnJlsJCJVsJpf_QbUgfDfvj0M0BSq7gy0FQ0TgYDFgXwIzKencM_wGIJ4Ye |
CitedBy_id | crossref_primary_10_1142_S0219622021500334 crossref_primary_10_1016_j_eswa_2016_06_024 crossref_primary_10_1016_j_eswa_2024_124134 crossref_primary_10_4236_am_2016_717166 crossref_primary_10_1007_s10479_021_04446_w crossref_primary_10_1016_j_iswa_2023_200240 crossref_primary_10_3390_e22111331 crossref_primary_10_3390_e23050621 crossref_primary_10_1371_journal_pone_0277756 crossref_primary_10_1080_14697688_2017_1357968 crossref_primary_10_1016_j_jfs_2023_101195 crossref_primary_10_3846_tede_2019_8740 crossref_primary_10_1080_14697688_2017_1357974 crossref_primary_10_1057_s41274_017_0189_4 crossref_primary_10_1109_TSP_2019_2953651 crossref_primary_10_1016_j_eneco_2021_105395 crossref_primary_10_2139_ssrn_4119746 crossref_primary_10_1016_j_frl_2021_102054 crossref_primary_10_1155_2022_6858916 crossref_primary_10_1016_j_econmod_2023_106596 crossref_primary_10_1016_j_irfa_2022_102101 crossref_primary_10_2139_ssrn_2730552 |
Cites_doi | 10.1016/j.jbankfin.2007.03.011 10.2139/ssrn.2050029 10.2139/ssrn.2249909 10.1016/j.jfs.2007.12.004 10.1111/j.1540-6261.1975.tb03158.x 10.2139/ssrn.2577961 10.1016/j.jbankfin.2011.10.006 10.1016/j.jbankfin.2013.11.041 10.1111/j.2517-6161.1990.tb01771.x 10.1214/aos/1176347003 10.1007/s10693-010-0097-0 10.1016/j.ijforecast.2013.09.004 10.1111/j.2517-6161.1990.tb01770.x 10.1016/j.jfineco.2011.12.010 10.1023/A:1007954718966 10.1214/aos/1176349260 10.1016/j.jeconom.2011.02.003 10.1287/mnsc.38.7.926 10.1093/biomet/85.4.960 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2015.08.047 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 174 |
ExternalDocumentID | 10_1016_j_eswa_2015_08_047 S0957417415006041 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD ACLOT EFKBS JQ2 L7M L~C L~D ~HD |
ID | FETCH-LOGICAL-c376t-dfb85a9e2c7337608764ff2b2c49859cd1a2d950d49d0175ac3ab9ba0e3949b93 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Sun Sep 28 05:27:42 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 03:12:26 EDT 2025 Fri Feb 23 02:29:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 99-00 Network models Financial risk management Conditional independence 00-01 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-dfb85a9e2c7337608764ff2b2c49859cd1a2d950d49d0175ac3ab9ba0e3949b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825460245 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1825460245 crossref_citationtrail_10_1016_j_eswa_2015_08_047 crossref_primary_10_1016_j_eswa_2015_08_047 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_08_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 2016-01-00 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peltonen, Piloiou, Sarlin (bib0040) 2015 Pearl (bib0039) 1988 Betz, Oprica, Peltonen, Sarlin (bib0009) 2014; 45 Billio, Getmansky, Lo, Pelizzon (bib0011) 2012; 104 Giudici, P., & Spelta, A. (to appear). Graphical network models for international financial flows. Sinkey (bib0043) 1975; 30 Whittaker (bib0047) 1990 Barigozzi, M. Brownlees, C. (2013). Nets: Network estimation for time series. Working paper. Kanno (bib0030) 2013 Diebold, Demirer, Yilmaz (bib0022) 2014 Edwards (bib0023) 1990; 52 Segoviano, Goodhart (bib0041) 2009; 09 Davis, Dilruba (bib0018) 2008; 4 Koopman, Lucas, Schwaab (bib0033) 2011; 162 Lauritzen, Wermuth (bib0036) 1989; 17 Didelez, Pigeot (bib0021) 1998; 85 Holopainen, Sarlin (bib0027) 2015 Huang, Hao, Haibin (bib0028) 2011; 60 Klomp, Haan (bib0032) 2012; 36 Halaj (bib0025) 2013; Vol. 1533 Tam, Kiang (bib0044) 1992; 38 Cerchiello, P., & Giudici, P. (to appear). How to measure the quality of financial tweets. Cole, Gunther (bib0017) 1998; 13 Adrian, Brunnermeier (bib0003) 2010 Arena (bib0006) 2005; 32 Brownlees, C., Hans, C. Nualart, E. (2014). Bank credit risk networks: Evidence from the eurozone crisis. Working paper. Hautsch, Schaumburg, Schienle (bib0026) 2013; 30 Dawid, Lauritzen (bib0019) 1993; 21 Mare, D. S. (2012). Contribution of macroeconomic factors to the prediction of small bank failures. Available at SSRN 2050029. Calabrese, R., & Giudici, P. (to appear). Estimating bank default with generalised extreme value regression models. Sharpe (bib0042) 1964; 19 Laeven, Ratnovski, Tong (bib0034) 2014 . Benoit, S., Colliard, J., Hurlin, C. Perignon, C. (2015). Where the risks lie: A survey on systemic risk. Working paper. Merton (bib0038) 1974; 2 Acharya, Pedersen, Philippon, Richardson (bib0002) 2010 Vasicek (bib0045) 1984 Wermuth, Lauritzen (bib0046) 1990; 52 Basel committee on banking supervision, A global regulatory framework for more resilient banks and banking systems, Bank for International Settlements. (2011). Kenny, Kostka, Masera (bib0031) 2013; 1540 Ahelegbey, D. Billio, M., & Casarin, R. (to appear). Bayesian graphical models for structural vector autoregressive processes. Idier, Lamé, Mésonnier (bib0029) 2013; 348 De Lisa, Zedda, Vallascas, Campolongo, Marchesi (bib0020) 2011; 40 Laeven (10.1016/j.eswa.2015.08.047_bib0034) 2014 Diebold (10.1016/j.eswa.2015.08.047_bib0022) 2014 Merton (10.1016/j.eswa.2015.08.047_bib0038) 1974; 2 Davis (10.1016/j.eswa.2015.08.047_bib0018) 2008; 4 Halaj (10.1016/j.eswa.2015.08.047_bib0025) 2013; Vol. 1533 Pearl (10.1016/j.eswa.2015.08.047_bib0039) 1988 Didelez (10.1016/j.eswa.2015.08.047_bib0021) 1998; 85 Kanno (10.1016/j.eswa.2015.08.047_sbref0023) 2013 Huang (10.1016/j.eswa.2015.08.047_bib0028) 2011; 60 Betz (10.1016/j.eswa.2015.08.047_bib0009) 2014; 45 Kenny (10.1016/j.eswa.2015.08.047_sbref0024) 2013; 1540 Peltonen (10.1016/j.eswa.2015.08.047_bib0040) 2015 10.1016/j.eswa.2015.08.047_bib0015 Cole (10.1016/j.eswa.2015.08.047_bib0017) 1998; 13 10.1016/j.eswa.2015.08.047_bib0037 10.1016/j.eswa.2015.08.047_bib0013 Segoviano (10.1016/j.eswa.2015.08.047_bib0041) 2009; 09 Dawid (10.1016/j.eswa.2015.08.047_bib0019) 1993; 21 Sinkey (10.1016/j.eswa.2015.08.047_bib0043) 1975; 30 Lauritzen (10.1016/j.eswa.2015.08.047_bib0036) 1989; 17 10.1016/j.eswa.2015.08.047_bib0016 Edwards (10.1016/j.eswa.2015.08.047_bib0023) 1990; 52 Holopainen (10.1016/j.eswa.2015.08.047_bib0027) 2015 Sharpe (10.1016/j.eswa.2015.08.047_bib0042) 1964; 19 De Lisa (10.1016/j.eswa.2015.08.047_bib0020) 2011; 40 Hautsch (10.1016/j.eswa.2015.08.047_bib0026) 2013; 30 Tam (10.1016/j.eswa.2015.08.047_bib0044) 1992; 38 Acharya (10.1016/j.eswa.2015.08.047_sbref0001) 2010 Adrian (10.1016/j.eswa.2015.08.047_sbref0002) 2010 Arena (10.1016/j.eswa.2015.08.047_bib0006) 2005; 32 Klomp (10.1016/j.eswa.2015.08.047_bib0032) 2012; 36 10.1016/j.eswa.2015.08.047_bib0004 Idier (10.1016/j.eswa.2015.08.047_sbref0022) 2013; 348 Whittaker (10.1016/j.eswa.2015.08.047_bib0047) 1990 10.1016/j.eswa.2015.08.047_bib0024 Koopman (10.1016/j.eswa.2015.08.047_bib0033) 2011; 162 Wermuth (10.1016/j.eswa.2015.08.047_bib0046) 1990; 52 10.1016/j.eswa.2015.08.047_bib0001 10.1016/j.eswa.2015.08.047_bib0008 10.1016/j.eswa.2015.08.047_bib0007 Billio (10.1016/j.eswa.2015.08.047_bib0011) 2012; 104 Vasicek (10.1016/j.eswa.2015.08.047_bib0045) 1984 |
References_xml | – volume: 30 start-page: 21 year: 1975 end-page: 36 ident: bib0043 article-title: A multivariate statistical analysis of the characteristics of problem banks publication-title: The Journal of Finance – reference: Ahelegbey, D. Billio, M., & Casarin, R. (to appear). Bayesian graphical models for structural vector autoregressive processes. – volume: 40 start-page: 123 year: 2011 end-page: 141 ident: bib0020 article-title: Modelling deposit insurance scheme losses in a basel 2 framework publication-title: Journal of Financial Services Research – year: 2013 ident: bib0030 publication-title: Credit migration forecasting and correlation between business and credit cycles – volume: 36 start-page: 3197 year: 2012 end-page: 3212 ident: bib0032 article-title: Banking risk and regulation: Does one size fit all? publication-title: Journal of Banking and Finance – volume: 17 start-page: 31 year: 1989 end-page: 57 ident: bib0036 article-title: Graphical models for associations between variables, some of which are quantitative and some qualitative publication-title: Annals of Statistics – volume: 13 start-page: 103 year: 1998 end-page: 117 ident: bib0017 article-title: Predicting bank failures: A comparison of on-and off-site monitoring systems publication-title: Journal of Financial Services Research – volume: 85 start-page: 960 year: 1998 end-page: 966 ident: bib0021 article-title: Maximum likelihood estimation in graphical models with missing data publication-title: Biometrika – reference: Giudici, P., & Spelta, A. (to appear). Graphical network models for international financial flows. – reference: Cerchiello, P., & Giudici, P. (to appear). How to measure the quality of financial tweets. – reference: Calabrese, R., & Giudici, P. (to appear). Estimating bank default with generalised extreme value regression models. – volume: 4 start-page: 89 year: 2008 end-page: 120 ident: bib0018 article-title: Comparing early warning systems for banking crises publication-title: Journal of Financial stability – volume: 30 start-page: 781 year: 2013 end-page: 794 ident: bib0026 article-title: Forecasting systemic impact in financial networks publication-title: International Journal of Forecasting – year: 1984 ident: bib0045 publication-title: Credit valuation – reference: Mare, D. S. (2012). Contribution of macroeconomic factors to the prediction of small bank failures. Available at SSRN 2050029. – year: 2014 ident: bib0022 article-title: Estimatingglobal bank interconnectedness publication-title: Technical report – year: 2015 ident: bib0040 article-title: Network linkagesto predict bank distress publication-title: Technical report – volume: 09 year: 2009 ident: bib0041 article-title: Banking stability measures publication-title: IMF Working Papers – volume: 32 start-page: 299 year: 2005 end-page: 310 ident: bib0006 article-title: Bank failures and bank fundamentals: A comparative analysis of Latin America and East Asia during the nineties using bank-level data publication-title: Journal of Banking and Finance – reference: Barigozzi, M. Brownlees, C. (2013). Nets: Network estimation for time series. Working paper. – volume: 21 start-page: 317 year: 1993 end-page: 1272 ident: bib0019 article-title: Hyper Markov laws in the statistical analysis of decomposable graphical models publication-title: Annals of Statistics – reference: Basel committee on banking supervision, A global regulatory framework for more resilient banks and banking systems, Bank for International Settlements. (2011). – volume: 45 start-page: 225 year: 2014 end-page: 241 ident: bib0009 article-title: Predicting distress in European banks publication-title: Journal of Banking and Finance – year: 2014 ident: bib0034 article-title: 2014). Banksize and systemic risk publication-title: Technical report – reference: Brownlees, C., Hans, C. Nualart, E. (2014). Bank credit risk networks: Evidence from the eurozone crisis. Working paper. – year: 1988 ident: bib0039 article-title: Probabilistic reasoning in intelligent systems: Networks of plausible inference – volume: 38 start-page: 926 year: 1992 end-page: 947 ident: bib0044 article-title: Managerial applications of neural networks: The case of bank failure predictions publication-title: Management Science – start-page: 348 year: 2010 ident: bib0003 publication-title: CoVaR – year: 1990 ident: bib0047 publication-title: Graphical models in applied multivariate statistics – start-page: 1002 year: 2010 ident: bib0002 publication-title: Measuring systemic risk – reference: . – reference: Benoit, S., Colliard, J., Hurlin, C. Perignon, C. (2015). Where the risks lie: A survey on systemic risk. Working paper. – volume: 348 year: 2013 ident: bib0029 publication-title: How useful is the marginal expected shortfall for the measurement of systemic exposure? a practical assessment – volume: 162 start-page: 312 year: 2011 end-page: 325 ident: bib0033 article-title: Modeling frailty-correlated defaults using many macroeconomic covariates publication-title: Journal of Econometrics – volume: 19 start-page: 425 year: 1964 end-page: 442 ident: bib0042 article-title: Capital asset prices: A theory of market equilibrium under conditions of risk publication-title: Journal of Finance – volume: 1540 year: 2013 ident: bib0031 publication-title: Can macroeconomists forecast risk? event-based evidence from the euro area spf – volume: 52 start-page: 21 year: 1990 end-page: 50 ident: bib0046 article-title: On substantive research hypotheses, conditional independence graphs and graphical chain models (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: Vol. 1533 year: 2013 ident: bib0025 publication-title: Optimal asset structure of a bank – bank reactions to stressful market conditions – year: 2015 ident: bib0027 article-title: Toward robust early-warning models: A horse-race, ensembles andmodel uncertainty publication-title: Technical report – volume: 60 start-page: 36 year: 2011 end-page: 43 ident: bib0028 article-title: Systemic risk contributions, macroprudential regulation and policy publication-title: BIS Papers Chapters – volume: 2 start-page: 449 year: 1974 end-page: 471 ident: bib0038 article-title: On the pricing of corporate debt: The risk structure of interest rates publication-title: Journal of Finance – volume: 104 start-page: 535 year: 2012 end-page: 559 ident: bib0011 article-title: Econometric measures of connectedness and systemic risk in the finance and insurance sectors publication-title: Journal of Financial Economics – volume: 52 start-page: pp. 3 year: 1990 end-page: 20 and 51–72 ident: bib0023 article-title: Hierarchical interaction models (with discussion) publication-title: Journal of the Royal Statistical Society Series B – ident: 10.1016/j.eswa.2015.08.047_bib0013 – volume: 32 start-page: 299 year: 2005 ident: 10.1016/j.eswa.2015.08.047_bib0006 article-title: Bank failures and bank fundamentals: A comparative analysis of Latin America and East Asia during the nineties using bank-level data publication-title: Journal of Banking and Finance doi: 10.1016/j.jbankfin.2007.03.011 – ident: 10.1016/j.eswa.2015.08.047_bib0037 doi: 10.2139/ssrn.2050029 – year: 2015 ident: 10.1016/j.eswa.2015.08.047_bib0040 article-title: Network linkagesto predict bank distress – ident: 10.1016/j.eswa.2015.08.047_bib0015 – ident: 10.1016/j.eswa.2015.08.047_bib0007 doi: 10.2139/ssrn.2249909 – volume: 4 start-page: 89 issue: 2 year: 2008 ident: 10.1016/j.eswa.2015.08.047_bib0018 article-title: Comparing early warning systems for banking crises publication-title: Journal of Financial stability doi: 10.1016/j.jfs.2007.12.004 – volume: Vol. 1533 year: 2013 ident: 10.1016/j.eswa.2015.08.047_bib0025 – volume: 30 start-page: 21 issue: 1 year: 1975 ident: 10.1016/j.eswa.2015.08.047_bib0043 article-title: A multivariate statistical analysis of the characteristics of problem banks publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1975.tb03158.x – ident: 10.1016/j.eswa.2015.08.047_bib0008 doi: 10.2139/ssrn.2577961 – start-page: 348 year: 2010 ident: 10.1016/j.eswa.2015.08.047_sbref0002 – volume: 60 start-page: 36 year: 2011 ident: 10.1016/j.eswa.2015.08.047_bib0028 article-title: Systemic risk contributions, macroprudential regulation and policy publication-title: BIS Papers Chapters – year: 2015 ident: 10.1016/j.eswa.2015.08.047_bib0027 article-title: Toward robust early-warning models: A horse-race, ensembles andmodel uncertainty – year: 2014 ident: 10.1016/j.eswa.2015.08.047_bib0022 article-title: Estimatingglobal bank interconnectedness – year: 2013 ident: 10.1016/j.eswa.2015.08.047_sbref0023 – year: 1984 ident: 10.1016/j.eswa.2015.08.047_bib0045 – volume: 348 year: 2013 ident: 10.1016/j.eswa.2015.08.047_sbref0022 – volume: 36 start-page: 3197 issue: 12 year: 2012 ident: 10.1016/j.eswa.2015.08.047_bib0032 article-title: Banking risk and regulation: Does one size fit all? publication-title: Journal of Banking and Finance doi: 10.1016/j.jbankfin.2011.10.006 – volume: 45 start-page: 225 issue: C year: 2014 ident: 10.1016/j.eswa.2015.08.047_bib0009 article-title: Predicting distress in European banks publication-title: Journal of Banking and Finance doi: 10.1016/j.jbankfin.2013.11.041 – volume: 52 start-page: 21 issue: 1 year: 1990 ident: 10.1016/j.eswa.2015.08.047_bib0046 article-title: On substantive research hypotheses, conditional independence graphs and graphical chain models (with discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1990.tb01771.x – year: 2014 ident: 10.1016/j.eswa.2015.08.047_bib0034 article-title: 2014). Banksize and systemic risk – volume: 17 start-page: 31 year: 1989 ident: 10.1016/j.eswa.2015.08.047_bib0036 article-title: Graphical models for associations between variables, some of which are quantitative and some qualitative publication-title: Annals of Statistics doi: 10.1214/aos/1176347003 – volume: 09 issue: 04 year: 2009 ident: 10.1016/j.eswa.2015.08.047_bib0041 article-title: Banking stability measures publication-title: IMF Working Papers – volume: 40 start-page: 123 issue: 3 year: 2011 ident: 10.1016/j.eswa.2015.08.047_bib0020 article-title: Modelling deposit insurance scheme losses in a basel 2 framework publication-title: Journal of Financial Services Research doi: 10.1007/s10693-010-0097-0 – volume: 30 start-page: 781 year: 2013 ident: 10.1016/j.eswa.2015.08.047_bib0026 article-title: Forecasting systemic impact in financial networks publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2013.09.004 – ident: 10.1016/j.eswa.2015.08.047_bib0004 – volume: 19 start-page: 425 issue: 3 year: 1964 ident: 10.1016/j.eswa.2015.08.047_bib0042 article-title: Capital asset prices: A theory of market equilibrium under conditions of risk publication-title: Journal of Finance – volume: 52 start-page: pp. 3 year: 1990 ident: 10.1016/j.eswa.2015.08.047_bib0023 article-title: Hierarchical interaction models (with discussion) publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1990.tb01770.x – year: 1988 ident: 10.1016/j.eswa.2015.08.047_bib0039 – volume: 1540 year: 2013 ident: 10.1016/j.eswa.2015.08.047_sbref0024 – ident: 10.1016/j.eswa.2015.08.047_bib0024 – ident: 10.1016/j.eswa.2015.08.047_bib0001 – volume: 104 start-page: 535 issue: 3 year: 2012 ident: 10.1016/j.eswa.2015.08.047_bib0011 article-title: Econometric measures of connectedness and systemic risk in the finance and insurance sectors publication-title: Journal of Financial Economics doi: 10.1016/j.jfineco.2011.12.010 – volume: 13 start-page: 103 issue: 2 year: 1998 ident: 10.1016/j.eswa.2015.08.047_bib0017 article-title: Predicting bank failures: A comparison of on-and off-site monitoring systems publication-title: Journal of Financial Services Research doi: 10.1023/A:1007954718966 – start-page: 1002 year: 2010 ident: 10.1016/j.eswa.2015.08.047_sbref0001 – year: 1990 ident: 10.1016/j.eswa.2015.08.047_bib0047 – ident: 10.1016/j.eswa.2015.08.047_bib0016 – volume: 21 start-page: 317 year: 1993 ident: 10.1016/j.eswa.2015.08.047_bib0019 article-title: Hyper Markov laws in the statistical analysis of decomposable graphical models publication-title: Annals of Statistics doi: 10.1214/aos/1176349260 – volume: 162 start-page: 312 issue: 2 year: 2011 ident: 10.1016/j.eswa.2015.08.047_bib0033 article-title: Modeling frailty-correlated defaults using many macroeconomic covariates publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2011.02.003 – volume: 2 start-page: 449 year: 1974 ident: 10.1016/j.eswa.2015.08.047_bib0038 article-title: On the pricing of corporate debt: The risk structure of interest rates publication-title: Journal of Finance – volume: 38 start-page: 926 issue: 7 year: 1992 ident: 10.1016/j.eswa.2015.08.047_bib0044 article-title: Managerial applications of neural networks: The case of bank failure predictions publication-title: Management Science doi: 10.1287/mnsc.38.7.926 – volume: 85 start-page: 960 issue: 4 year: 1998 ident: 10.1016/j.eswa.2015.08.047_bib0021 article-title: Maximum likelihood estimation in graphical models with missing data publication-title: Biometrika doi: 10.1093/biomet/85.4.960 |
SSID | ssj0017007 |
Score | 2.2820811 |
Snippet | •The paper provides a stochastic framework for financial network models.•It is based on a conditional graphical Gaussian model.•Systemic risk is decomposed... Financial network models are a useful tool to model interconnectedness and systemic risks in banking and finance. Recently, graphical Gaussian models have been... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 165 |
SubjectTerms | Banking Banks Conditional independence Correlation Estimates Expert systems Financial risk management Gaussian Network models Networks Risk |
Title | Conditional graphical models for systemic risk estimation |
URI | https://dx.doi.org/10.1016/j.eswa.2015.08.047 https://www.proquest.com/docview/1825460245 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lgjdZu5tNdjfHUixVsRct9BbyhIq0xbZ487ebyWYLinjwuEtmWWYy3wzJzDcIXTtuHKGsTGxayITylCXK5d7dSaE8HPqUQEOD89OoGI7pw4RNWqjf9MJAWWXE_hrTA1rHN92oze5iOu0---TAh0OIiEAqEprXgf3L7-nbz02ZB9DPlTXfXpnA6tg4U9d42eUHcA9lLNB4woiV34PTD5gOsWewh3Zi0oh79X_to5adHaDdZiADjv55iHh_DjfQ4XQPBypqMAEO026W2KenuCZunmoMJeUYGDbq1sUjNB7cvfSHSZyNkGgPCavEOFUxyS3RZQ51LR7UqHNEEU15xbg2mSSGs9RQbrwSmNS5VFzJ1OaccsXzY9SezWf2BOGcFbywmSxMZqjRVaW04prkmhiZOVeeoqxRitCROBzmV7yJpkLsVYAiBShSwFBL6mVuNjKLmjbjz9Ws0bX4Znzhcf1PuavGMMJ7BVx1yJmdr5ciCzz_cK189s9vn6Nt_xRPWy5Qe_W-tpc-_1ipTthgHbTVu38cjr4AhdnaEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalPWyXvcfe82C3EZqHncTHUlbS9XFZC70ZP6FjtGVt2d-flTiFjbHDrokVgmR_Epb0CaFHy7SNCc0CE6YiICykgbSJO-5xKh0cupBAQYPzaJwWU_Iyo7MG6ta9MFBW6bG_wvQSrf2TttdmezWft19dcODcIXhEIBWB5vUWoQ6Tm6jV6Q-K8S6ZkIVV17RbH4CA752pyrzM-hPohyJaMnnClJXf_dMPpC7dT-8IHfi4EXeqXztGDbM4QYf1TAbsj-gpYt0lJKHLCz5cslGDFXA58GaNXYSKK-7mucJQVY6BZKPqXjxD097zpFsEfjxCoBwqbAJtZU4FM7HKEihtcbhGrI1lrAjLKVM6ErFmNNSEaacEKlQiJJMiNAkjTLLkHDUXy4W5QDihKUtNJFIdaaJVnkslmYoTFWsRWZtdoqhWCleeOxxGWLzzukjsjYMiOSiSw1xL4mSedjKrijnjz9W01jX_Zn_uoP1PuYfaMNwdDMh2iIVZbtc8Kqn-IbN89c9v36O9YjIa8mF_PLhG--6Nv3y5Qc3Nx9bcunBkI-_8dvsC-5fcvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+graphical+models+for+systemic+risk+estimation&rft.jtitle=Expert+systems+with+applications&rft.au=Cerchiello%2C+Paola&rft.au=Giudici%2C+Paolo&rft.date=2016-01-01&rft.issn=0957-4174&rft.volume=43&rft.spage=165&rft.epage=174&rft_id=info:doi/10.1016%2Fj.eswa.2015.08.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_08_047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |