Surrogate maximization/minimization algorithms and extensions

Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-s...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 69; no. 1; pp. 1 - 33
Main Authors Zhang, Zhihua, Kwok, James T., Yeung, Dit-Yan
Format Journal Article
LanguageEnglish
Published Dordrecht Springer 01.10.2007
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
1573-0565
DOI10.1007/s10994-007-5022-x

Cover

Abstract Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-step computes a tractable surrogate function to substitute the original objective function and the M-step seeks to maximize this surrogate function. Convexity plays a central role in the S-step. SM algorithms enjoy the same convergence properties as EM algorithms. There are mainly three approaches to the construction of surrogate functions, namely, by using Jensen's inequality, first-order Taylor approximation, and the low quadratic bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model as examples. More specifically, by using different surrogate function construction methods, we devise several SM algorithms, including the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants called the conditional surrogate maximization (CSM) and surrogate conditional maximization (SCM) algorithms. [PUBLICATION ABSTRACT]
AbstractList Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-step computes a tractable surrogate function to substitute the original objective function and the M-step seeks to maximize this surrogate function. Convexity plays a central role in the S-step. SM algorithms enjoy the same convergence properties as EM algorithms. There are mainly three approaches to the construction of surrogate functions, namely, by using Jensen's inequality, first-order Taylor approximation, and the low quadratic bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model as examples. More specifically, by using different surrogate function construction methods, we devise several SM algorithms, including the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants called the conditional surrogate maximization (CSM) and surrogate conditional maximization (SCM) algorithms.
Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-step computes a tractable surrogate function to substitute the original objective function and the M-step seeks to maximize this surrogate function. Convexity plays a central role in the S-step. SM algorithms enjoy the same convergence properties as EM algorithms. There are mainly three approaches to the construction of surrogate functions, namely, by using Jensen's inequality, first-order Taylor approximation, and the low quadratic bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model as examples. More specifically, by using different surrogate function construction methods, we devise several SM algorithms, including the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants called the conditional surrogate maximization (CSM) and surrogate conditional maximization (SCM) algorithms. [PUBLICATION ABSTRACT]
Author Zhang, Zhihua
Kwok, James T.
Yeung, Dit-Yan
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Zhang
  fullname: Zhang, Zhihua
– sequence: 2
  givenname: James T.
  surname: Kwok
  fullname: Kwok, James T.
– sequence: 3
  givenname: Dit-Yan
  surname: Yeung
  fullname: Yeung, Dit-Yan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19174608$$DView record in Pascal Francis
BookMark eNqNkD9PwzAQxS1UJErhA7BFSLCF2nHscwYGVPFPqsQAzJab2MVV4hQ7ESmfnpRUIHVATHen-73Tu3eMRq52GqEzgq8IxjANBGdZGvdtzHCSxN0BGhMGNMaMsxEaYyFYzEnCjtBxCCuMccIFH6Pr59b7eqkaHVWqs5X9VI2t3bSy7meIVLmsvW3eqhApV0S6a7QL_SKcoEOjyqBPd3WCXu9uX2YP8fzp_nF2M49zCryJc1MkZsE1F4UwUCxApSKjNDMFB00TDpAQLAxPBadYm7RQ1BhmWMEAYGGATlAy3G3dWm0-VFnKtbeV8htJsNwGIIcA5LbdBiC7XnQ5iNa-fm91aGRlQ67LUjldt0FSnIk0A9qD53vgqm696x-SwAATQijpoYsdpEKuSuOVy234tZERSDkWPUcGLvd1CF6bfzmFPU1um-_oG69s-YfyC8E6mXM
CitedBy_id crossref_primary_10_1109_LSP_2016_2593589
crossref_primary_10_1109_TSP_2009_2026004
crossref_primary_10_1016_j_sigpro_2023_109369
crossref_primary_10_1016_j_sigpro_2014_10_010
crossref_primary_10_1007_s11590_023_02012_w
crossref_primary_10_1016_j_patcog_2012_07_016
crossref_primary_10_1109_TSP_2017_2709265
crossref_primary_10_1137_23M1600943
crossref_primary_10_1007_s11590_023_02055_z
crossref_primary_10_1016_j_sigpro_2016_03_009
crossref_primary_10_1016_j_csda_2013_01_020
crossref_primary_10_1109_TSP_2009_2016257
crossref_primary_10_1088_1361_6420_acbdb9
crossref_primary_10_1109_TII_2023_3306929
crossref_primary_10_1109_TPAMI_2019_2962683
crossref_primary_10_1007_s10013_018_0315_x
crossref_primary_10_1007_s10957_022_02122_y
Cites_doi 10.1214/aos/1176346060
10.1214/aos/1016218223
10.1214/aoms/1177692379
10.1007/978-1-4757-2711-1
10.1007/978-3-642-46808-7_28
10.1006/jcss.1997.1504
10.1093/biomet/80.2.267
10.1145/307400.307422
10.1007/BF00049423
10.1093/biomet/88.4.961
10.1515/9781400873173
10.1109/42.370409
10.1177/096228029700600104
10.1111/j.2517-6161.1995.tb02037.x
10.1111/j.2517-6161.1977.tb01600.x
10.1093/biomet/81.4.633
10.1017/CBO9780511804441
10.1080/10618600.2000.10474858
10.1023/A:1007614523901
10.1023/A:1013912006537
10.1109/34.588021
ContentType Journal Article
Copyright 2007 INIST-CNRS
Springer Science+Business Media, LLC 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Springer Science+Business Media, LLC 2007
DBID AAYXX
CITATION
IQODW
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1007/s10994-007-5022-x
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1573-0565
EndPage 33
ExternalDocumentID 10.1007/s10994-007-5022-x
2157426271
19174608
10_1007_s10994_007_5022_x
Genre Feature
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PUEGO
Q2X
QF4
QM1
QN7
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
1SB
2.D
28-
2P1
5QI
6TJ
AAEWM
AAOBN
ADMLS
AEFIE
AFEXP
AFOHR
AHAVH
AMVHM
BBWZM
H13
I-F
IQODW
ITG
ITH
KOW
NDZJH
QO4
R4E
RIG
RNI
RZC
RZE
S1Z
S26
S28
SCJ
SCLPG
T16
XJT
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c376t-cfd2fb6e68d8f7db7a489339fd67e326772108f648630ef4da3ff5f5d5777bf73
IEDL.DBID BENPR
ISSN 0885-6125
1573-0565
IngestDate Sun Oct 05 09:16:14 EDT 2025
Fri Sep 05 06:49:01 EDT 2025
Sun Jul 13 03:07:45 EDT 2025
Mon Jul 21 09:16:53 EDT 2025
Wed Oct 01 01:03:53 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gradient
Loglinear model
Minimization
Regression analysis
Jensen inequality
Aggregate model
Logistic regression
Surrogate function,Convexity,Logistic regression,AdaBoost
Supervised learning
Regression model
Classification
Quadratic approximation
Regression function
Convexity
Objective function
EM algorithm
Artificial intelligence
Log-linear model
Step function
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-cfd2fb6e68d8f7db7a489339fd67e326772108f648630ef4da3ff5f5d5777bf73
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-007-5022-x.pdf
PQID 757011131
PQPubID 54194
PageCount 33
ParticipantIDs unpaywall_primary_10_1007_s10994_007_5022_x
proquest_miscellaneous_30984973
proquest_journals_757011131
pascalfrancis_primary_19174608
crossref_primary_10_1007_s10994_007_5022_x
crossref_citationtrail_10_1007_s10994_007_5022_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Machine learning
PublicationYear 2007
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References A. R. Pierro De (5022_CR12) 1995; 14
T. Rockafellar (5022_CR30) 1970
A. P. Dempster (5022_CR11) 1977; 39
R. E. Schapire (5022_CR33) 1999; 37
I. Borg (5022_CR3) 1997
5022_CR6
J. N. Darroch (5022_CR7) 1972; 43
T. Joachims (5022_CR19) 1997
J. Leeuw De (5022_CR8) 1994
J. H. Friedman (5022_CR16) 2000; 28
M. Collins (5022_CR5) 2002; 47
K. Lange (5022_CR23) 2000; 9
5022_CR24
D. Edwards (5022_CR13) 2001; 88
K. Lange (5022_CR22) 1995; 57
5022_CR21
5022_CR20
C. F. J. Wu (5022_CR34) 1983; 11
X.-L. Meng (5022_CR27) 1993; 80
A. M. Ostrowski (5022_CR29) 1960
M. P. Becker (5022_CR1) 1997; 6
S. Pietra Della (5022_CR9) 1997; 19
5022_CR28
D. Böhning (5022_CR2) 1988; 40
Y. Freund (5022_CR15) 1997; 55
X.-L. Meng (5022_CR26) 2000; 9
R. Fletcher (5022_CR14) 1987
5022_CR35
5022_CR10
C. Liu (5022_CR25) 1994; 84
R. E. Schapire (5022_CR32) 1990; 5
5022_CR31
5022_CR18
5022_CR17
S. Boyd (5022_CR4) 2004
References_xml – ident: 5022_CR28
– volume: 11
  start-page: 95
  year: 1983
  ident: 5022_CR34
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176346060
– volume: 9
  start-page: 35
  issue: 1
  year: 2000
  ident: 5022_CR26
  publication-title: Journal of Computational and Graphical Statistics
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 5022_CR16
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1016218223
– volume: 43
  start-page: 1470
  issue: 5
  year: 1972
  ident: 5022_CR7
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177692379
– volume-title: Practical methods of optimization
  year: 1987
  ident: 5022_CR14
– volume-title: Modern multidimensional scaling
  year: 1997
  ident: 5022_CR3
  doi: 10.1007/978-1-4757-2711-1
– start-page: 308
  volume-title: Information systems and data analysis
  year: 1994
  ident: 5022_CR8
  doi: 10.1007/978-3-642-46808-7_28
– volume: 5
  start-page: 197
  year: 1990
  ident: 5022_CR32
  publication-title: Machine Learning
– ident: 5022_CR18
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 5022_CR15
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– volume: 80
  start-page: 267
  issue: 2
  year: 1993
  ident: 5022_CR27
  publication-title: Bionmetrika
  doi: 10.1093/biomet/80.2.267
– ident: 5022_CR21
  doi: 10.1145/307400.307422
– volume: 40
  start-page: 641
  issue: 4
  year: 1988
  ident: 5022_CR2
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/BF00049423
– volume: 88
  start-page: 961
  issue: 4
  year: 2001
  ident: 5022_CR13
  publication-title: Biometrika
  doi: 10.1093/biomet/88.4.961
– volume-title: Convex analysis
  year: 1970
  ident: 5022_CR30
  doi: 10.1515/9781400873173
– volume: 14
  start-page: 132
  issue: 1
  year: 1995
  ident: 5022_CR12
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.370409
– ident: 5022_CR31
– volume: 6
  start-page: 38
  year: 1997
  ident: 5022_CR1
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/096228029700600104
– volume-title: Solution of equations and systems of equations
  year: 1960
  ident: 5022_CR29
– ident: 5022_CR6
– ident: 5022_CR10
– volume: 57
  start-page: 425
  issue: 2
  year: 1995
  ident: 5022_CR22
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1995.tb02037.x
– ident: 5022_CR35
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 5022_CR11
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 84
  start-page: 633
  issue: 4
  year: 1994
  ident: 5022_CR25
  publication-title: Bionmetrika
  doi: 10.1093/biomet/81.4.633
– start-page: 143
  volume-title: The fourteenth international conference on machine learning
  year: 1997
  ident: 5022_CR19
– volume-title: Convex optimization
  year: 2004
  ident: 5022_CR4
  doi: 10.1017/CBO9780511804441
– ident: 5022_CR17
– volume: 9
  start-page: 1
  issue: 1
  year: 2000
  ident: 5022_CR23
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2000.10474858
– volume: 37
  start-page: 297
  year: 1999
  ident: 5022_CR33
  publication-title: Machine Learning
  doi: 10.1023/A:1007614523901
– volume: 47
  start-page: 253
  issue: 2–3
  year: 2002
  ident: 5022_CR5
  publication-title: Machine Learning
  doi: 10.1023/A:1013912006537
– volume: 19
  start-page: 380
  issue: 4
  year: 1997
  ident: 5022_CR9
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.588021
– ident: 5022_CR24
– ident: 5022_CR20
SSID ssj0002686
Score 2.038396
Snippet Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM)...
SourceID unpaywall
proquest
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Studies
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BObASorAPkYVlc-C0yG2yju3kwKFCixAHtBJUglPk54Jo06pJRNlfj51HoWi1CHGJEtmOYs_Y_jKe-QbgQNJAaiEwMlgrFFHJENehRiLEkZaGBfbivC3O6ekwOrsiVytw3MbCVN7u7ZFkHdPgWJqyoj9Vpv8s8K2itA0YIs4dfd6zpauwRokF5B1YG57_HlzX-JEgt4dXrKnMeapR0p5t_us9S7vTxpTndqBMneFiCYKul9mUP9zz0ejZbnTSBdX2o3ZCueuVhejJvy8oHt_Z0S3YbNCqP6jVaxtWdPYRum0mCL9ZGD7B0UU5m02cRc4f8_ntuAnu7DvikvbB56M_k9ltcTPOfZ4pvzK_O1td_hmGJ78uj09Rk5gBSbseFUga9dMIqmmsYsOUYNxR2ODEKMq0xYMWsYdBbGgUUxxoEymOjSGGKMIYE4bhL9DJJpneAT9OBBaYGCFCESU85BwrKY2wOkJ4zLgHQSuQVDas5S55xih94lt2Q5S6WzdE6dyDH4sm05qy43-V95ek_NTC_sdGNIg92G3FnjbTO08ZYXZdDHHowfdFqZ2X7rCFZ3pS5ikOkjhKGPbgcKErr3_O1zfV3oUPlam58i3cg04xK_U3i5EKsd_MgUfnYQ0p
  priority: 102
  providerName: Unpaywall
Title Surrogate maximization/minimization algorithms and extensions
URI https://www.proquest.com/docview/757011131
https://www.proquest.com/docview/30984973
https://link.springer.com/content/pdf/10.1007/s10994-007-5022-x.pdf
UnpaywallVersion publishedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB616QEkBJSHcAvBh55Aq9pZ78OHChXUUCE1qgqRysnaJyAlThonIv333XFsl1zKxQ_ZK9uzOw_Pzn4fwJHhiXFaU-KpsyTjRhDlUkd0SjNnvEjCBqstRvx8nH27Ztc7cNGuhcGyytYm1obazgzmyI8FEzUtevppfkOQNAonV1sGDdUwK9iTGmFsF_YGCIzVg73PZ6PLq840D3hN_Rg0ixF07e0052YtXY2SmwjCsMJ9veWonsxVFWTmN2QXW9Hoo1U5V7d_1WTyj2MaPoenTUQZn26GwD7suPIFPGvZGuJGeV_CyffVYjHDrFk8Ves_02YB5jGCi7QnsZr8Cl-9_D2tYlXauE6RYz6tegXj4dmPL-ekIU8gJtiMJTHeDrzmjksrvbBaKISZobm3XLgQs4WoOk2k55nkNHE-s4p6zzyzTAihvaCvoVfOSvcGYplrqinzWqc6y1WqFLXGeB36kSkpVARJK6nCNMjiSHAxKe4xkVG4BR6icIt1BB-6JvMNrMZDN_e3xH_fIvxrZjyRERy2_VE0KlgV3YCJ4H13NegOToio0s1WVUGTXGa5oBF87Drx_69z8ODTDuFxnf6t6_3eQm-5WLl3IW5Z6j7syuHXfjMmw348ujz9eQeqIPAr
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAkRHkK05cPcAGtamdf9iGq6EspLRGCVurN7BOQEifEiZr-uP43dp21Sy7l1Itly17bmsfuzOzMfADvFEuUkRIji41GhCmOhEkNkikmRlmeuIPPtuiz3iX5fEWvVuC2qYXxaZXNnFhP1HqkfIx8j1New6Kn--M_yING-c3VBkFDBGQF3a07jIW6jjNzc-08uKp7euTY_b7TOTm-OOyhADKAlNOtKVJWd6xkhmU6s1xLLnw7Fpxbzbhxto2zPtMks4xkDCfGEi2wtdRSTTnn0nLs3vsI1ggmufP91g6O-1-_tUtBh9VQk06TKfKmRLOtuqjdq7vyJhxRn1E_X1oYn4xF5XhkF-AaS9bv-qwci5trMRj8sxCePIOnwYKNPy1E7jmsmPIFbDToEHGYLF5C9_tsMhn5KF08FPPfw1DwueebmTQXsRj8dFSe_hpWsSh1XIfkffyuegWXD0LH17BajkrzBuIsl1hiaqVMJclFKgTWSlnp5IaKjIsIkoZShQqdzD2gxqC468HsiVv4U0_cYh7Bh3bIeNHG476Hd5bIfzfC-baEJVkEmw0_iqDyVdEKaAS77V2nq34DRpRmNKsKnOSZExMcwceWif__nbf3fm0X1nsXX86L89P-2SY8rkPPda7hFqxOJzOz7WymqdwJkhnDj4dWhr-rgys4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BNVET4hVjRaEP-KKZbLvTmWkfiDHiAkKIiZLwVucKJrvdZbsblp_mv3NOb7gv8MRL06adtjmXmTPn9gHsaB5pqxQljlpDEq4FkTa2RMU0sdqJyB8w2-KEH5wm38_Y2Rr8bWthMK2ynROridpMNPrI-4KJChY97rsmK-LH3vDz9JIggBQGWls0jVpCjuz1ld-9lbuHe57VHwaD4bdfXw9IAzBAtNerOdHODJzilqcmdcIoIbEVC82c4cJ6u8ZbnnGUOp6knEbWJUZS55hjhgkhlBPUv_cBPBTYxB2L1If73SIw4BXIpNdhRtCIaAOqddVe1Y83EoRhLv1yZUlcn8rSc8fVsBordu_jRTGV11dyNPpvCRw-h6eN7Rp-qYXtBazZ4iU8a3EhwmaaeAW7Pxez2QT9c-FYLv-Mm1LPPrYxaS9COTr3NJ1fjMtQFiasnPHouSs34PReqPgaesWksG8gTDNFFWVOqVglmYylpEZrp7zEMJkKGUDUUirXTQ9zhNIY5Tfdl5G4OZ4icfNlAB-7IdO6gcdtD2-tkP9mhN_VJjxKA9hs-ZE3yl7mnWgGsN3d9VqKoRdZ2MmizGmUpUkmaACfOibe_Ttvb_3aNjzyKpAfH54cbcKTyudcJRm-g958trDvvbE0V1uVWIbw-7714B992yjS
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BObASorAPkYVlc-C0yG2yju3kwKFCixAHtBJUglPk54Jo06pJRNlfj51HoWi1CHGJEtmOYs_Y_jKe-QbgQNJAaiEwMlgrFFHJENehRiLEkZaGBfbivC3O6ekwOrsiVytw3MbCVN7u7ZFkHdPgWJqyoj9Vpv8s8K2itA0YIs4dfd6zpauwRokF5B1YG57_HlzX-JEgt4dXrKnMeapR0p5t_us9S7vTxpTndqBMneFiCYKul9mUP9zz0ejZbnTSBdX2o3ZCueuVhejJvy8oHt_Z0S3YbNCqP6jVaxtWdPYRum0mCL9ZGD7B0UU5m02cRc4f8_ntuAnu7DvikvbB56M_k9ltcTPOfZ4pvzK_O1td_hmGJ78uj09Rk5gBSbseFUga9dMIqmmsYsOUYNxR2ODEKMq0xYMWsYdBbGgUUxxoEymOjSGGKMIYE4bhL9DJJpneAT9OBBaYGCFCESU85BwrKY2wOkJ4zLgHQSuQVDas5S55xih94lt2Q5S6WzdE6dyDH4sm05qy43-V95ek_NTC_sdGNIg92G3FnjbTO08ZYXZdDHHowfdFqZ2X7rCFZ3pS5ikOkjhKGPbgcKErr3_O1zfV3oUPlam58i3cg04xK_U3i5EKsd_MgUfnYQ0p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+maximization%2Fminimization+algorithms+and+extensions&rft.jtitle=Machine+learning&rft.au=Zhang%2C+Zhihua&rft.au=Kwok%2C+James+T&rft.au=Yeung%2C+Dit-Yan&rft.date=2007-10-01&rft.issn=0885-6125&rft.volume=69&rft.issue=1&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1007%2Fs10994-007-5022-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon