Surrogate maximization/minimization algorithms and extensions
Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-s...
Saved in:
| Published in | Machine learning Vol. 69; no. 1; pp. 1 - 33 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer
01.10.2007
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6125 1573-0565 1573-0565 |
| DOI | 10.1007/s10994-007-5022-x |
Cover
| Abstract | Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-step computes a tractable surrogate function to substitute the original objective function and the M-step seeks to maximize this surrogate function. Convexity plays a central role in the S-step. SM algorithms enjoy the same convergence properties as EM algorithms. There are mainly three approaches to the construction of surrogate functions, namely, by using Jensen's inequality, first-order Taylor approximation, and the low quadratic bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model as examples. More specifically, by using different surrogate function construction methods, we devise several SM algorithms, including the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants called the conditional surrogate maximization (CSM) and surrogate conditional maximization (SCM) algorithms. [PUBLICATION ABSTRACT] |
|---|---|
| AbstractList | Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-step computes a tractable surrogate function to substitute the original objective function and the M-step seeks to maximize this surrogate function. Convexity plays a central role in the S-step. SM algorithms enjoy the same convergence properties as EM algorithms. There are mainly three approaches to the construction of surrogate functions, namely, by using Jensen's inequality, first-order Taylor approximation, and the low quadratic bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model as examples. More specifically, by using different surrogate function construction methods, we devise several SM algorithms, including the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants called the conditional surrogate maximization (CSM) and surrogate conditional maximization (SCM) algorithms. Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM) algorithms. An SM algorithm aims at turning an otherwise intractable maximization problem into a tractable one by iterating two steps. The S-step computes a tractable surrogate function to substitute the original objective function and the M-step seeks to maximize this surrogate function. Convexity plays a central role in the S-step. SM algorithms enjoy the same convergence properties as EM algorithms. There are mainly three approaches to the construction of surrogate functions, namely, by using Jensen's inequality, first-order Taylor approximation, and the low quadratic bound principle. In this paper, we demonstrate the usefulness of SM algorithms by taking logistic regression models, AdaBoost and the log-linear model as examples. More specifically, by using different surrogate function construction methods, we devise several SM algorithms, including the standard SM, generalized SM, gradient SM, and quadratic SM algorithms, and their two variants called the conditional surrogate maximization (CSM) and surrogate conditional maximization (SCM) algorithms. [PUBLICATION ABSTRACT] |
| Author | Zhang, Zhihua Kwok, James T. Yeung, Dit-Yan |
| Author_xml | – sequence: 1 givenname: Zhihua surname: Zhang fullname: Zhang, Zhihua – sequence: 2 givenname: James T. surname: Kwok fullname: Kwok, James T. – sequence: 3 givenname: Dit-Yan surname: Yeung fullname: Yeung, Dit-Yan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19174608$$DView record in Pascal Francis |
| BookMark | eNqNkD9PwzAQxS1UJErhA7BFSLCF2nHscwYGVPFPqsQAzJab2MVV4hQ7ESmfnpRUIHVATHen-73Tu3eMRq52GqEzgq8IxjANBGdZGvdtzHCSxN0BGhMGNMaMsxEaYyFYzEnCjtBxCCuMccIFH6Pr59b7eqkaHVWqs5X9VI2t3bSy7meIVLmsvW3eqhApV0S6a7QL_SKcoEOjyqBPd3WCXu9uX2YP8fzp_nF2M49zCryJc1MkZsE1F4UwUCxApSKjNDMFB00TDpAQLAxPBadYm7RQ1BhmWMEAYGGATlAy3G3dWm0-VFnKtbeV8htJsNwGIIcA5LbdBiC7XnQ5iNa-fm91aGRlQ67LUjldt0FSnIk0A9qD53vgqm696x-SwAATQijpoYsdpEKuSuOVy234tZERSDkWPUcGLvd1CF6bfzmFPU1um-_oG69s-YfyC8E6mXM |
| CitedBy_id | crossref_primary_10_1109_LSP_2016_2593589 crossref_primary_10_1109_TSP_2009_2026004 crossref_primary_10_1016_j_sigpro_2023_109369 crossref_primary_10_1016_j_sigpro_2014_10_010 crossref_primary_10_1007_s11590_023_02012_w crossref_primary_10_1016_j_patcog_2012_07_016 crossref_primary_10_1109_TSP_2017_2709265 crossref_primary_10_1137_23M1600943 crossref_primary_10_1007_s11590_023_02055_z crossref_primary_10_1016_j_sigpro_2016_03_009 crossref_primary_10_1016_j_csda_2013_01_020 crossref_primary_10_1109_TSP_2009_2016257 crossref_primary_10_1088_1361_6420_acbdb9 crossref_primary_10_1109_TII_2023_3306929 crossref_primary_10_1109_TPAMI_2019_2962683 crossref_primary_10_1007_s10013_018_0315_x crossref_primary_10_1007_s10957_022_02122_y |
| Cites_doi | 10.1214/aos/1176346060 10.1214/aos/1016218223 10.1214/aoms/1177692379 10.1007/978-1-4757-2711-1 10.1007/978-3-642-46808-7_28 10.1006/jcss.1997.1504 10.1093/biomet/80.2.267 10.1145/307400.307422 10.1007/BF00049423 10.1093/biomet/88.4.961 10.1515/9781400873173 10.1109/42.370409 10.1177/096228029700600104 10.1111/j.2517-6161.1995.tb02037.x 10.1111/j.2517-6161.1977.tb01600.x 10.1093/biomet/81.4.633 10.1017/CBO9780511804441 10.1080/10618600.2000.10474858 10.1023/A:1007614523901 10.1023/A:1013912006537 10.1109/34.588021 |
| ContentType | Journal Article |
| Copyright | 2007 INIST-CNRS Springer Science+Business Media, LLC 2007 |
| Copyright_xml | – notice: 2007 INIST-CNRS – notice: Springer Science+Business Media, LLC 2007 |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1007/s10994-007-5022-x |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1573-0565 |
| EndPage | 33 |
| ExternalDocumentID | 10.1007/s10994-007-5022-x 2157426271 19174608 10_1007_s10994_007_5022_x |
| Genre | Feature |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LLZTM M2P M4Y MA- MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PUEGO Q2X QF4 QM1 QN7 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 Z8Z ZMTXR 1SB 2.D 28- 2P1 5QI 6TJ AAEWM AAOBN ADMLS AEFIE AFEXP AFOHR AHAVH AMVHM BBWZM H13 I-F IQODW ITG ITH KOW NDZJH QO4 R4E RIG RNI RZC RZE S1Z S26 S28 SCJ SCLPG T16 XJT 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c376t-cfd2fb6e68d8f7db7a489339fd67e326772108f648630ef4da3ff5f5d5777bf73 |
| IEDL.DBID | BENPR |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Sun Oct 05 09:16:14 EDT 2025 Fri Sep 05 06:49:01 EDT 2025 Sun Jul 13 03:07:45 EDT 2025 Mon Jul 21 09:16:53 EDT 2025 Wed Oct 01 01:03:53 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gradient Loglinear model Minimization Regression analysis Jensen inequality Aggregate model Logistic regression Surrogate function,Convexity,Logistic regression,AdaBoost Supervised learning Regression model Classification Quadratic approximation Regression function Convexity Objective function EM algorithm Artificial intelligence Log-linear model Step function |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-cfd2fb6e68d8f7db7a489339fd67e326772108f648630ef4da3ff5f5d5777bf73 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10994-007-5022-x.pdf |
| PQID | 757011131 |
| PQPubID | 54194 |
| PageCount | 33 |
| ParticipantIDs | unpaywall_primary_10_1007_s10994_007_5022_x proquest_miscellaneous_30984973 proquest_journals_757011131 pascalfrancis_primary_19174608 crossref_primary_10_1007_s10994_007_5022_x crossref_citationtrail_10_1007_s10994_007_5022_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-10-01 |
| PublicationDateYYYYMMDD | 2007-10-01 |
| PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationYear | 2007 |
| Publisher | Springer Springer Nature B.V |
| Publisher_xml | – name: Springer – name: Springer Nature B.V |
| References | A. R. Pierro De (5022_CR12) 1995; 14 T. Rockafellar (5022_CR30) 1970 A. P. Dempster (5022_CR11) 1977; 39 R. E. Schapire (5022_CR33) 1999; 37 I. Borg (5022_CR3) 1997 5022_CR6 J. N. Darroch (5022_CR7) 1972; 43 T. Joachims (5022_CR19) 1997 J. Leeuw De (5022_CR8) 1994 J. H. Friedman (5022_CR16) 2000; 28 M. Collins (5022_CR5) 2002; 47 K. Lange (5022_CR23) 2000; 9 5022_CR24 D. Edwards (5022_CR13) 2001; 88 K. Lange (5022_CR22) 1995; 57 5022_CR21 5022_CR20 C. F. J. Wu (5022_CR34) 1983; 11 X.-L. Meng (5022_CR27) 1993; 80 A. M. Ostrowski (5022_CR29) 1960 M. P. Becker (5022_CR1) 1997; 6 S. Pietra Della (5022_CR9) 1997; 19 5022_CR28 D. Böhning (5022_CR2) 1988; 40 Y. Freund (5022_CR15) 1997; 55 X.-L. Meng (5022_CR26) 2000; 9 R. Fletcher (5022_CR14) 1987 5022_CR35 5022_CR10 C. Liu (5022_CR25) 1994; 84 R. E. Schapire (5022_CR32) 1990; 5 5022_CR31 5022_CR18 5022_CR17 S. Boyd (5022_CR4) 2004 |
| References_xml | – ident: 5022_CR28 – volume: 11 start-page: 95 year: 1983 ident: 5022_CR34 publication-title: Annals of Statistics doi: 10.1214/aos/1176346060 – volume: 9 start-page: 35 issue: 1 year: 2000 ident: 5022_CR26 publication-title: Journal of Computational and Graphical Statistics – volume: 28 start-page: 337 issue: 2 year: 2000 ident: 5022_CR16 publication-title: Annals of Statistics doi: 10.1214/aos/1016218223 – volume: 43 start-page: 1470 issue: 5 year: 1972 ident: 5022_CR7 publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177692379 – volume-title: Practical methods of optimization year: 1987 ident: 5022_CR14 – volume-title: Modern multidimensional scaling year: 1997 ident: 5022_CR3 doi: 10.1007/978-1-4757-2711-1 – start-page: 308 volume-title: Information systems and data analysis year: 1994 ident: 5022_CR8 doi: 10.1007/978-3-642-46808-7_28 – volume: 5 start-page: 197 year: 1990 ident: 5022_CR32 publication-title: Machine Learning – ident: 5022_CR18 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 5022_CR15 publication-title: Journal of Computer and System Sciences doi: 10.1006/jcss.1997.1504 – volume: 80 start-page: 267 issue: 2 year: 1993 ident: 5022_CR27 publication-title: Bionmetrika doi: 10.1093/biomet/80.2.267 – ident: 5022_CR21 doi: 10.1145/307400.307422 – volume: 40 start-page: 641 issue: 4 year: 1988 ident: 5022_CR2 publication-title: Annals of the Institute of Statistical Mathematics doi: 10.1007/BF00049423 – volume: 88 start-page: 961 issue: 4 year: 2001 ident: 5022_CR13 publication-title: Biometrika doi: 10.1093/biomet/88.4.961 – volume-title: Convex analysis year: 1970 ident: 5022_CR30 doi: 10.1515/9781400873173 – volume: 14 start-page: 132 issue: 1 year: 1995 ident: 5022_CR12 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.370409 – ident: 5022_CR31 – volume: 6 start-page: 38 year: 1997 ident: 5022_CR1 publication-title: Statistical Methods in Medical Research doi: 10.1177/096228029700600104 – volume-title: Solution of equations and systems of equations year: 1960 ident: 5022_CR29 – ident: 5022_CR6 – ident: 5022_CR10 – volume: 57 start-page: 425 issue: 2 year: 1995 ident: 5022_CR22 publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1995.tb02037.x – ident: 5022_CR35 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 5022_CR11 publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 84 start-page: 633 issue: 4 year: 1994 ident: 5022_CR25 publication-title: Bionmetrika doi: 10.1093/biomet/81.4.633 – start-page: 143 volume-title: The fourteenth international conference on machine learning year: 1997 ident: 5022_CR19 – volume-title: Convex optimization year: 2004 ident: 5022_CR4 doi: 10.1017/CBO9780511804441 – ident: 5022_CR17 – volume: 9 start-page: 1 issue: 1 year: 2000 ident: 5022_CR23 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2000.10474858 – volume: 37 start-page: 297 year: 1999 ident: 5022_CR33 publication-title: Machine Learning doi: 10.1023/A:1007614523901 – volume: 47 start-page: 253 issue: 2–3 year: 2002 ident: 5022_CR5 publication-title: Machine Learning doi: 10.1023/A:1013912006537 – volume: 19 start-page: 380 issue: 4 year: 1997 ident: 5022_CR9 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.588021 – ident: 5022_CR24 – ident: 5022_CR20 |
| SSID | ssj0002686 |
| Score | 2.038396 |
| Snippet | Surrogate maximization (or minimization) (SM) algorithms are a family of algorithms that can be regarded as a generalization of expectation-maximization (EM)... |
| SourceID | unpaywall proquest pascalfrancis crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1 |
| SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Exact sciences and technology Studies |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BObASorAPkYVlc-C0yG2yju3kwKFCixAHtBJUglPk54Jo06pJRNlfj51HoWi1CHGJEtmOYs_Y_jKe-QbgQNJAaiEwMlgrFFHJENehRiLEkZaGBfbivC3O6ekwOrsiVytw3MbCVN7u7ZFkHdPgWJqyoj9Vpv8s8K2itA0YIs4dfd6zpauwRokF5B1YG57_HlzX-JEgt4dXrKnMeapR0p5t_us9S7vTxpTndqBMneFiCYKul9mUP9zz0ejZbnTSBdX2o3ZCueuVhejJvy8oHt_Z0S3YbNCqP6jVaxtWdPYRum0mCL9ZGD7B0UU5m02cRc4f8_ntuAnu7DvikvbB56M_k9ltcTPOfZ4pvzK_O1td_hmGJ78uj09Rk5gBSbseFUga9dMIqmmsYsOUYNxR2ODEKMq0xYMWsYdBbGgUUxxoEymOjSGGKMIYE4bhL9DJJpneAT9OBBaYGCFCESU85BwrKY2wOkJ4zLgHQSuQVDas5S55xih94lt2Q5S6WzdE6dyDH4sm05qy43-V95ek_NTC_sdGNIg92G3FnjbTO08ZYXZdDHHowfdFqZ2X7rCFZ3pS5ikOkjhKGPbgcKErr3_O1zfV3oUPlam58i3cg04xK_U3i5EKsd_MgUfnYQ0p priority: 102 providerName: Unpaywall |
| Title | Surrogate maximization/minimization algorithms and extensions |
| URI | https://www.proquest.com/docview/757011131 https://www.proquest.com/docview/30984973 https://link.springer.com/content/pdf/10.1007/s10994-007-5022-x.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0565 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0565 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB616QEkBJSHcAvBh55Aq9pZ78OHChXUUCE1qgqRysnaJyAlThonIv333XFsl1zKxQ_ZK9uzOw_Pzn4fwJHhiXFaU-KpsyTjRhDlUkd0SjNnvEjCBqstRvx8nH27Ztc7cNGuhcGyytYm1obazgzmyI8FEzUtevppfkOQNAonV1sGDdUwK9iTGmFsF_YGCIzVg73PZ6PLq840D3hN_Rg0ixF07e0052YtXY2SmwjCsMJ9veWonsxVFWTmN2QXW9Hoo1U5V7d_1WTyj2MaPoenTUQZn26GwD7suPIFPGvZGuJGeV_CyffVYjHDrFk8Ves_02YB5jGCi7QnsZr8Cl-9_D2tYlXauE6RYz6tegXj4dmPL-ekIU8gJtiMJTHeDrzmjksrvbBaKISZobm3XLgQs4WoOk2k55nkNHE-s4p6zzyzTAihvaCvoVfOSvcGYplrqinzWqc6y1WqFLXGeB36kSkpVARJK6nCNMjiSHAxKe4xkVG4BR6icIt1BB-6JvMNrMZDN_e3xH_fIvxrZjyRERy2_VE0KlgV3YCJ4H13NegOToio0s1WVUGTXGa5oBF87Drx_69z8ODTDuFxnf6t6_3eQm-5WLl3IW5Z6j7syuHXfjMmw348ujz9eQeqIPAr |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAkRHkK05cPcAGtamdf9iGq6EspLRGCVurN7BOQEifEiZr-uP43dp21Sy7l1Itly17bmsfuzOzMfADvFEuUkRIji41GhCmOhEkNkikmRlmeuIPPtuiz3iX5fEWvVuC2qYXxaZXNnFhP1HqkfIx8j1New6Kn--M_yING-c3VBkFDBGQF3a07jIW6jjNzc-08uKp7euTY_b7TOTm-OOyhADKAlNOtKVJWd6xkhmU6s1xLLnw7Fpxbzbhxto2zPtMks4xkDCfGEi2wtdRSTTnn0nLs3vsI1ggmufP91g6O-1-_tUtBh9VQk06TKfKmRLOtuqjdq7vyJhxRn1E_X1oYn4xF5XhkF-AaS9bv-qwci5trMRj8sxCePIOnwYKNPy1E7jmsmPIFbDToEHGYLF5C9_tsMhn5KF08FPPfw1DwueebmTQXsRj8dFSe_hpWsSh1XIfkffyuegWXD0LH17BajkrzBuIsl1hiaqVMJclFKgTWSlnp5IaKjIsIkoZShQqdzD2gxqC468HsiVv4U0_cYh7Bh3bIeNHG476Hd5bIfzfC-baEJVkEmw0_iqDyVdEKaAS77V2nq34DRpRmNKsKnOSZExMcwceWif__nbf3fm0X1nsXX86L89P-2SY8rkPPda7hFqxOJzOz7WymqdwJkhnDj4dWhr-rgys4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BNVET4hVjRaEP-KKZbLvTmWkfiDHiAkKIiZLwVucKJrvdZbsblp_mv3NOb7gv8MRL06adtjmXmTPn9gHsaB5pqxQljlpDEq4FkTa2RMU0sdqJyB8w2-KEH5wm38_Y2Rr8bWthMK2ynROridpMNPrI-4KJChY97rsmK-LH3vDz9JIggBQGWls0jVpCjuz1ld-9lbuHe57VHwaD4bdfXw9IAzBAtNerOdHODJzilqcmdcIoIbEVC82c4cJ6u8ZbnnGUOp6knEbWJUZS55hjhgkhlBPUv_cBPBTYxB2L1If73SIw4BXIpNdhRtCIaAOqddVe1Y83EoRhLv1yZUlcn8rSc8fVsBordu_jRTGV11dyNPpvCRw-h6eN7Rp-qYXtBazZ4iU8a3EhwmaaeAW7Pxez2QT9c-FYLv-Mm1LPPrYxaS9COTr3NJ1fjMtQFiasnPHouSs34PReqPgaesWksG8gTDNFFWVOqVglmYylpEZrp7zEMJkKGUDUUirXTQ9zhNIY5Tfdl5G4OZ4icfNlAB-7IdO6gcdtD2-tkP9mhN_VJjxKA9hs-ZE3yl7mnWgGsN3d9VqKoRdZ2MmizGmUpUkmaACfOibe_Ttvb_3aNjzyKpAfH54cbcKTyudcJRm-g958trDvvbE0V1uVWIbw-7714B992yjS |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BObASorAPkYVlc-C0yG2yju3kwKFCixAHtBJUglPk54Jo06pJRNlfj51HoWi1CHGJEtmOYs_Y_jKe-QbgQNJAaiEwMlgrFFHJENehRiLEkZaGBfbivC3O6ekwOrsiVytw3MbCVN7u7ZFkHdPgWJqyoj9Vpv8s8K2itA0YIs4dfd6zpauwRokF5B1YG57_HlzX-JEgt4dXrKnMeapR0p5t_us9S7vTxpTndqBMneFiCYKul9mUP9zz0ejZbnTSBdX2o3ZCueuVhejJvy8oHt_Z0S3YbNCqP6jVaxtWdPYRum0mCL9ZGD7B0UU5m02cRc4f8_ntuAnu7DvikvbB56M_k9ltcTPOfZ4pvzK_O1td_hmGJ78uj09Rk5gBSbseFUga9dMIqmmsYsOUYNxR2ODEKMq0xYMWsYdBbGgUUxxoEymOjSGGKMIYE4bhL9DJJpneAT9OBBaYGCFCESU85BwrKY2wOkJ4zLgHQSuQVDas5S55xih94lt2Q5S6WzdE6dyDH4sm05qy43-V95ek_NTC_sdGNIg92G3FnjbTO08ZYXZdDHHowfdFqZ2X7rCFZ3pS5ikOkjhKGPbgcKErr3_O1zfV3oUPlam58i3cg04xK_U3i5EKsd_MgUfnYQ0p |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+maximization%2Fminimization+algorithms+and+extensions&rft.jtitle=Machine+learning&rft.au=Zhang%2C+Zhihua&rft.au=Kwok%2C+James+T&rft.au=Yeung%2C+Dit-Yan&rft.date=2007-10-01&rft.issn=0885-6125&rft.volume=69&rft.issue=1&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1007%2Fs10994-007-5022-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |