Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm
This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP...
        Saved in:
      
    
          | Published in | Resources policy Vol. 66; p. 101604 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kidlington
          Elsevier Ltd
    
        01.06.2020
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0301-4207 1873-7641  | 
| DOI | 10.1016/j.resourpol.2020.101604 | 
Cover
| Abstract | This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR (stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks (ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially copper mining projects.
•A novel ACO-DNN model was developed for estimating the CC of mining projects with high accuracy.•Ten ANN and DNN models were optimized by the ACO algorithm for estimating the CC of mining projects.•The performance of the ACO-ANN and ACO-DNN models was compared and evaluated.•ANOVA test was used to assess the strength and statistical significance of the developed models.•The sensitivity of input variables was analyzed for predicting the CC of mining projects. | 
    
|---|---|
| AbstractList | This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR (stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks (ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially copper mining projects. This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR (stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks (ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially copper mining projects. •A novel ACO-DNN model was developed for estimating the CC of mining projects with high accuracy.•Ten ANN and DNN models were optimized by the ACO algorithm for estimating the CC of mining projects.•The performance of the ACO-ANN and ACO-DNN models was compared and evaluated.•ANOVA test was used to assess the strength and statistical significance of the developed models.•The sensitivity of input variables was analyzed for predicting the CC of mining projects.  | 
    
| ArticleNumber | 101604 | 
    
| Author | Nguyen, Hoang Zhang, Hong Bui, Thu-Thuy Nguyen, Nga Vu, Diep-Anh Mahesh, Vinyas Nguyen-Thoi, Trung Bui, Xuan-Nam Moayedi, Hossein  | 
    
| Author_xml | – sequence: 1 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: College of Economics & Management, Changsha University, Changsha, 410022, China – sequence: 2 givenname: Hoang orcidid: 0000-0001-6122-8314 surname: Nguyen fullname: Nguyen, Hoang email: nguyenhoang23@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam – sequence: 3 givenname: Xuan-Nam surname: Bui fullname: Bui, Xuan-Nam organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam – sequence: 4 givenname: Trung surname: Nguyen-Thoi fullname: Nguyen-Thoi, Trung email: nguyenthoitrung@tdtu.edu.vn organization: Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam – sequence: 5 givenname: Thu-Thuy surname: Bui fullname: Bui, Thu-Thuy organization: Accountancy Department, Faculty of Economics and Business Administration, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam – sequence: 6 givenname: Nga surname: Nguyen fullname: Nguyen, Nga organization: Mining Management Department, Faculty of Economics and Business Administration, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam – sequence: 7 givenname: Diep-Anh surname: Vu fullname: Vu, Diep-Anh organization: Basic Economics Department, Faculty of Economics and Business Administration, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam – sequence: 8 givenname: Vinyas surname: Mahesh fullname: Mahesh, Vinyas organization: Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 560012, India – sequence: 9 givenname: Hossein surname: Moayedi fullname: Moayedi, Hossein organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia  | 
    
| BookMark | eNqNUcFu1TAQtFCReC18A5Y457F2XCc5cKgKhUqVuMDZcpz1q4OfHWy_ovI5fCmOgjj0AidrvTOzuzPn5CzEgIS8ZrBnwOTbeZ8wx1Naot9z4NsviGdkx_qubTop2BnZQQusERy6F-Q85xkALrte7siv9_iAPi4uHKimIdaC6lScdcZpT10o6L07YDBIj3Gq3RIp5uKOuiAt90iNXlypUBNzodHSowur2JLijKZkesprOSEuNOApVWTA8iOmb82oM05Uh1K5PoZHGpeq637q4mKg2h9icuX--JI8t9pnfPXnvSBfbz58uf7U3H3-eHt9ddeYtpOlMZoPl0YbKScBo7XS8JHbyQIMQy86GCUHENAztCPHqTUMZGcH1P0ErB1Ze0HebLp19e-neqOaq62hjlRcCBD9IHuoqHcbyqSYc0KrTD1_3bgk7bxioNYA1Kz-xqLWWNQWS-V3T_hLqmamx_9gXm1MrCY8OEwqG7cGM7lUnVZTdP_U-A3MyLRO | 
    
| CitedBy_id | crossref_primary_10_1016_j_tafmec_2023_104218 crossref_primary_10_1109_ACCESS_2022_3170038 crossref_primary_10_1080_23311916_2024_2316458 crossref_primary_10_1007_s00366_020_01003_0 crossref_primary_10_1016_j_resourpol_2022_103087 crossref_primary_10_1016_j_resourpol_2021_102195 crossref_primary_10_1007_s41939_023_00220_6 crossref_primary_10_1016_j_irbm_2022_100748 crossref_primary_10_1109_ACCESS_2023_3262167 crossref_primary_10_1007_s00366_021_01459_8 crossref_primary_10_1007_s10462_023_10500_9 crossref_primary_10_1515_phys_2021_0072 crossref_primary_10_1016_j_jrmge_2021_07_005 crossref_primary_10_1109_ACCESS_2020_3010376 crossref_primary_10_3390_en14144079 crossref_primary_10_1002_cpe_7579 crossref_primary_10_1007_s40808_022_01637_7 crossref_primary_10_1108_JEIM_07_2022_0247 crossref_primary_10_1142_S0219876222500657 crossref_primary_10_3390_w15122222 crossref_primary_10_1038_s41598_020_66904_y crossref_primary_10_3390_math9091041 crossref_primary_10_3390_min11060601 crossref_primary_10_1007_s11053_020_09727_y crossref_primary_10_1016_j_tust_2020_103517 crossref_primary_10_1007_s42729_023_01598_5 crossref_primary_10_1155_2022_7104750 crossref_primary_10_1016_j_jenvman_2021_112808 crossref_primary_10_3390_mining5010005 crossref_primary_10_1007_s11053_020_09766_5 crossref_primary_10_5937_JMMA2401051S crossref_primary_10_1016_j_energy_2021_119758 crossref_primary_10_1007_s00366_020_01272_9 crossref_primary_10_1007_s00521_020_05197_8 crossref_primary_10_1016_j_engappai_2021_104408 crossref_primary_10_1007_s42107_023_00969_8 crossref_primary_10_1080_09537287_2024_2320790 crossref_primary_10_1016_j_istruc_2023_01_059 crossref_primary_10_1016_j_jclepro_2021_126871 crossref_primary_10_1016_j_asoc_2022_109395 crossref_primary_10_1109_ACCESS_2021_3095335 crossref_primary_10_1016_j_eij_2023_03_004 crossref_primary_10_21605_cukurovaumfd_1514409 crossref_primary_10_1016_j_measurement_2021_110552 crossref_primary_10_1007_s11053_024_10445_y crossref_primary_10_1007_s11440_022_01616_3 crossref_primary_10_1016_j_gsf_2020_11_005 crossref_primary_10_1038_s41467_024_51661_7 crossref_primary_10_1080_09537325_2021_1883583 crossref_primary_10_1007_s10064_025_04178_2 crossref_primary_10_1088_1361_6501_acc756 crossref_primary_10_1080_17480930_2024_2362579 crossref_primary_10_1016_j_jclepro_2021_127672 crossref_primary_10_1016_j_asoc_2024_112077 crossref_primary_10_1007_s00477_023_02429_w crossref_primary_10_1016_j_swevo_2024_101522 crossref_primary_10_1007_s13563_025_00495_w crossref_primary_10_1007_s11771_021_4794_7 crossref_primary_10_1016_j_resourpol_2021_102189 crossref_primary_10_32604_cmes_2024_048398 crossref_primary_10_1016_j_resourpol_2021_102300  | 
    
| Cites_doi | 10.1007/s00500-016-2442-1 10.1076/ijsm.16.2.122.3399 10.1016/j.jclepro.2019.02.243 10.1016/j.resourpol.2019.02.014 10.1139/t99-038 10.1016/j.resourpol.2015.10.003 10.17159/2411-9717/2015/v115n8a17 10.1007/s42452-018-0136-2 10.1016/j.ijmst.2016.09.015 10.1016/j.tust.2011.08.006 10.1115/1.2137750 10.1016/j.asoc.2015.11.038 10.1111/j.0033-0124.2004.05603009.x 10.1016/j.jclepro.2004.05.006 10.3390/s20010132 10.1080/00137919708903174 10.1080/19648189.2016.1246693 10.1016/j.resourpol.2019.101414 10.1016/j.resourpol.2013.09.008 10.1016/j.resourpol.2018.12.013 10.1016/j.specom.2017.11.003 10.1016/j.ecolmodel.2004.03.013 10.1016/j.resourpol.2011.11.001 10.1016/S0304-3800(02)00064-9 10.1016/j.ejor.2010.05.031 10.1016/0167-8191(90)90086-O 10.1080/17480930.2017.1352058 10.1016/j.csda.2003.10.021 10.1016/j.asoc.2018.10.007 10.1177/1059712307082080 10.1016/j.resourpol.2004.06.002 10.1111/j.1835-2561.2010.00119.x 10.1016/j.ejor.2005.12.035 10.1016/j.resourpol.2018.10.008 10.1016/j.ijforecast.2011.01.006 10.3390/e21030305 10.1016/j.neunet.2011.05.015 10.1016/j.resourpol.2018.12.001 10.1038/s41524-018-0081-z 10.1080/15230406.2016.1274237 10.1179/1743286312Y.0000000011 10.1007/s12599-019-00595-2 10.1016/j.resourpol.2016.08.009 10.1016/S0167-739X(00)00042-X 10.1111/dpr.12231 10.1007/s00500-018-3253-3 10.1109/JSEN.2018.2814839 10.3390/app9214554 10.1016/j.neunet.2019.04.024 10.1080/0951192X.2011.596281 10.1016/j.prostr.2019.08.123 10.1038/s41386-018-0247-x  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Jun 2020  | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jun 2020  | 
    
| DBID | AAYXX CITATION 7TA 7TQ 8BJ 8FD DHY DON FQK JBE JG9  | 
    
| DOI | 10.1016/j.resourpol.2020.101604 | 
    
| DatabaseName | CrossRef Materials Business File PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International PAIS International (Ovid) International Bibliography of the Social Sciences International Bibliography of the Social Sciences Materials Research Database  | 
    
| DatabaseTitle | CrossRef Materials Research Database International Bibliography of the Social Sciences (IBSS) Technology Research Database Materials Business File PAIS International  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Environmental Sciences  | 
    
| EISSN | 1873-7641 | 
    
| ExternalDocumentID | 10_1016_j_resourpol_2020_101604 S0301420719307706  | 
    
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3R3 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFFL AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIWK ACLVX ACRLP ACROA ACSBN ADBBV ADEZE ADFHU ADMUD AEBSH AEFWE AEKER AEYQN AFKWA AFODL AFTJW AFXIZ AGHFR AGTHC AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG ATOGT AVARZ AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BLECG BLXMC BNTGB BPUDD BULVW CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HMY HVGLF HZ~ IHE IMUCA IXIXF J1W JARJE KCYFY KOM LY5 LY6 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAC SDF SDG SEB SEE SES SEW SPC SPCBC SSB SSE SSF SSJ SSO SSR SSS SSZ T5K UHS UNMZH WH7 WUQ YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TA 7TQ 8BJ 8FD AGCQF AGRNS BNPGV DHY DON FQK JBE JG9 SSH  | 
    
| ID | FETCH-LOGICAL-c376t-ca295cac66d40bff6c2b2fdf00998470b62004081efb2ed3c1067f9ea8d013b13 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0301-4207 | 
    
| IngestDate | Sat Jul 26 00:32:16 EDT 2025 Thu Oct 09 00:18:51 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Fri Feb 23 02:46:22 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Project decision making Deep neural network Open-pit optimization-strategies AI in resources policy ACO-DNN Mining capital cost optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c376t-ca295cac66d40bff6c2b2fdf00998470b62004081efb2ed3c1067f9ea8d013b13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6122-8314 | 
    
| PQID | 2440489680 | 
    
| PQPubID | 2037026 | 
    
| ParticipantIDs | proquest_journals_2440489680 crossref_citationtrail_10_1016_j_resourpol_2020_101604 crossref_primary_10_1016_j_resourpol_2020_101604 elsevier_sciencedirect_doi_10_1016_j_resourpol_2020_101604  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2020 2020-06-00 20200601  | 
    
| PublicationDateYYYYMMDD | 2020-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Kidlington | 
    
| PublicationPlace_xml | – name: Kidlington | 
    
| PublicationTitle | Resources policy | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Ltd Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd  | 
    
| References | Dorigo, Stützle (bib27) 2019 Maronidis, Bolis, Tefas, Pitas (bib52) 2011; 24 Hustrulid, Kuchta, Martin (bib42) 2013 Whitley, Starkweather, Bogart (bib93) 1990; 14 Castle (bib17) 1985 Ferguson, Clinch, Kean (bib32) 2011; 21 Dehghani, Ataee-pour (bib22) 2012; 37 Nguyen, Bui (bib58) 2018 Nguyen, Bui, Bui, Mai (bib59) 2018 Noakes, Lanz (bib66) 1993 Loterman, Brown, Martens, Mues, Baesens (bib51) 2012; 28 Nguyen, Bui, Tran, Le, Do, Hoa (bib61) 2018; 1 Bennet (bib9) 1996 Long (bib49) 2011 Pytel, Britos, García-Martínez (bib78) 2013 Alameer, Elaziz, Ewees, Ye, Jianhua (bib2) 2019; 61 Mikolov, Karafiát, Burget, Černocký, Khudanpur (bib53) 2010 Souza, Coelho, Ribas, Santos, Merschmann (bib86) 2010; 207 Cuevas, Febrero, Fraiman (bib19) 2004; 47 Asad, Dimitrakopoulos (bib5) 2013; 38 Dellermann, Ebel, Söllner, Leimeister (bib23) 2019; 61 Dagdelen (bib20) 2001 Fan, Wang, Li (bib31) 2016; 50 Mirjalili (bib54) 2019 Long, Singer (bib50) 2001 Asteris, Kolovos, Douvika, Roinos (bib6) 2016; 20 Nguyen, Bui, Nguyen-Thoi, Ragam, Moayedi (bib60) 2019; 9 Olden, Jackson (bib73) 2002; 154 Armaghani, Hatzigeorgiou, Karamani, Skentou, Zoumpoulaki, Asteris (bib4) 2019; 17 Berthold, Hand (bib10) 2003 Koopialipoor, Armaghani, Hedayat, Marto, Gordan (bib44) 2019; 23 Lacey, Taylor, Areibi (bib45) 2018 Lawrence, Giles, Tsoi (bib46) 1997 Nguyen, Moayedi, Foong, Al Najjar, Jusoh, Rashid, Jamali (bib64) 2019 Rendu (bib80) 2002; 16 Ben-Awuah, Richter, Elkington, Pourrahimian (bib8) 2016; 26 Li, Mao, Li, Wu, Meng (bib48) 2018; 96 Nourali, Osanloo (bib67) 2018; 62 Sayadi, Lashgari, Paraszczak (bib82) 2012; 27 Shang, Nguyen, Bui, Tran, Moayedi (bib84) 2019 Karsznia, Weibel (bib43) 2018; 45 Darling (bib21) 2011 Dorigo, Bonabeau, Theraulaz (bib25) 2000; 16 Camm (bib16) 1992 Guo, Nguyen, Vu, Bui (bib37) 2019 Mular (bib57) 1982 Collier, Ireland (bib18) 2018; 36 O'Hara (bib72) 1980 Nguyen, Drebenstedt, Bui, Bui (bib63) 2019 Ramazan (bib79) 2007; 177 Gypton (bib38) 2002; 203 Cairns, Shinkuma (bib15) 2003; 29 Phoon, Kulhawy (bib77) 1999; 36 Stebbins (bib87) 1987 Zhang, Ling (bib94) 2018; 4 Nourali, Osanloo (bib68) 2018 Stratigopoulos, Mir, Makris (bib88) 2009 Hassanpour, Tomita, DeLise, Crosier, Marsch (bib40) 2019; 44 Pasini (bib75) 2015; 7 Ahmadi, Bazzazi (bib1) 2019; 60 Godoy, Dimitrakopoulos (bib35) 2004; 316 Mohutsiwa, Musingwini (bib56) 2015; 115 Dwivedi, Ramakrishnan, Reddy, Patel, Ozel, Onal (bib29) 2018; 18 Lee, Sarwar, Roy (bib47) 2019 Pedrycz, Chen (bib76) 2014 Wang, Zhang, Wang, Lim, Ghadimi (bib90) 2019; 63 Franco-Sepúlveda, Del Rio-Cuervo, Pachón-Hernández (bib33) 2019; 60 Huang, Newnes, Parry (bib41) 2012; 25 Nourali, Osanloo (bib69) 2019; 62 Niazi, Dai, Balabani, Seneviratne (bib65) 2006; 128 Smith, Mason (bib85) 1997; 42 Bui, Choi, Atrushkevich, Nguyen, Tran, Long, Hoang (bib14) 2019 García, Kristjanpoller (bib34) 2019; 74 Mohamed, Dahl, Hinton (bib55) 2009 Duckworth, John (bib28) 2016 Olden, Joy, Death (bib74) 2004; 178 Wheeler (bib92) 2019; 33 Bouwmans, Javed, Sultana, Jung (bib12) 2019; 117 Goodfellow, Dimitrakopoulos (bib36) 2016; 40 O'Regan, Moles (bib71) 2006; 14 Aznar-Sánchez, Velasco-Muñoz, Belmonte-Ureña, Manzano-Agugliaro (bib7) 2019; 221 Bluszcz, Kijewska (bib11) 2016; 61 Haferlach, Wessnitzer, Mangan, Webb (bib39) 2007; 15 Thomas (bib89) 2001 Nguyen, Choi, Bui, Nguyen-Thoi (bib62) 2020; 20 Deng, Hinton, Kingsbury (bib24) 2013 Dorigo, Di Caro (bib26) 1999 Wellmer, Dalheimer, Wagner (bib91) 2007 Aljarah, Faris, Mirjalili (bib3) 2018; 22 Shafiee, Topal (bib83) 2012; 121 Sánchez, Krzemień, Fernández, Rodríguez, Lasheras, de Cos Juez (bib81) 2015; 46 Bridge (bib13) 2004; 56 Elola, Aramendi, Irusta, Picón, Alonso, Owens, Idris (bib30) 2019; 21 O'Hara (bib70) 1987 Loterman (10.1016/j.resourpol.2020.101604_bib51) 2012; 28 O'Regan (10.1016/j.resourpol.2020.101604_bib71) 2006; 14 Stebbins (10.1016/j.resourpol.2020.101604_bib87) 1987 Ferguson (10.1016/j.resourpol.2020.101604_bib32) 2011; 21 Lacey (10.1016/j.resourpol.2020.101604_bib45) 2018 Elola (10.1016/j.resourpol.2020.101604_bib30) 2019; 21 Nguyen (10.1016/j.resourpol.2020.101604_bib63) 2019 Dorigo (10.1016/j.resourpol.2020.101604_bib27) 2019 Olden (10.1016/j.resourpol.2020.101604_bib74) 2004; 178 Bouwmans (10.1016/j.resourpol.2020.101604_bib12) 2019; 117 Rendu (10.1016/j.resourpol.2020.101604_bib80) 2002; 16 Thomas (10.1016/j.resourpol.2020.101604_bib89) 2001 Bui (10.1016/j.resourpol.2020.101604_bib14) 2019 Aznar-Sánchez (10.1016/j.resourpol.2020.101604_bib7) 2019; 221 Dorigo (10.1016/j.resourpol.2020.101604_bib26) 1999 Berthold (10.1016/j.resourpol.2020.101604_bib10) 2003 Nguyen (10.1016/j.resourpol.2020.101604_bib61) 2018; 1 Phoon (10.1016/j.resourpol.2020.101604_bib77) 1999; 36 Pytel (10.1016/j.resourpol.2020.101604_bib78) 2013 Asteris (10.1016/j.resourpol.2020.101604_bib6) 2016; 20 Karsznia (10.1016/j.resourpol.2020.101604_bib43) 2018; 45 Nguyen (10.1016/j.resourpol.2020.101604_bib59) 2018 Noakes (10.1016/j.resourpol.2020.101604_bib66) 1993 Nourali (10.1016/j.resourpol.2020.101604_bib69) 2019; 62 Cairns (10.1016/j.resourpol.2020.101604_bib15) 2003; 29 Darling (10.1016/j.resourpol.2020.101604_bib21) 2011 Wellmer (10.1016/j.resourpol.2020.101604_bib91) 2007 Souza (10.1016/j.resourpol.2020.101604_bib86) 2010; 207 Maronidis (10.1016/j.resourpol.2020.101604_bib52) 2011; 24 Pedrycz (10.1016/j.resourpol.2020.101604_bib76) 2014 Koopialipoor (10.1016/j.resourpol.2020.101604_bib44) 2019; 23 Nourali (10.1016/j.resourpol.2020.101604_bib68) 2018 García (10.1016/j.resourpol.2020.101604_bib34) 2019; 74 Godoy (10.1016/j.resourpol.2020.101604_bib35) 2004; 316 Aljarah (10.1016/j.resourpol.2020.101604_bib3) 2018; 22 Long (10.1016/j.resourpol.2020.101604_bib49) 2011 Mohamed (10.1016/j.resourpol.2020.101604_bib55) 2009 Asad (10.1016/j.resourpol.2020.101604_bib5) 2013; 38 Niazi (10.1016/j.resourpol.2020.101604_bib65) 2006; 128 O'Hara (10.1016/j.resourpol.2020.101604_bib72) 1980 Dellermann (10.1016/j.resourpol.2020.101604_bib23) 2019; 61 Li (10.1016/j.resourpol.2020.101604_bib48) 2018; 96 Pasini (10.1016/j.resourpol.2020.101604_bib75) 2015; 7 Mirjalili (10.1016/j.resourpol.2020.101604_bib54) 2019 Bluszcz (10.1016/j.resourpol.2020.101604_bib11) 2016; 61 Gypton (10.1016/j.resourpol.2020.101604_bib38) 2002; 203 Ahmadi (10.1016/j.resourpol.2020.101604_bib1) 2019; 60 Castle (10.1016/j.resourpol.2020.101604_bib17) 1985 Hassanpour (10.1016/j.resourpol.2020.101604_bib40) 2019; 44 Nguyen (10.1016/j.resourpol.2020.101604_bib58) 2018 Smith (10.1016/j.resourpol.2020.101604_bib85) 1997; 42 Mular (10.1016/j.resourpol.2020.101604_bib57) 1982 O'Hara (10.1016/j.resourpol.2020.101604_bib70) 1987 Dagdelen (10.1016/j.resourpol.2020.101604_bib20) 2001 Ben-Awuah (10.1016/j.resourpol.2020.101604_bib8) 2016; 26 Lee (10.1016/j.resourpol.2020.101604_bib47) 2019 Bridge (10.1016/j.resourpol.2020.101604_bib13) 2004; 56 Dehghani (10.1016/j.resourpol.2020.101604_bib22) 2012; 37 Collier (10.1016/j.resourpol.2020.101604_bib18) 2018; 36 Haferlach (10.1016/j.resourpol.2020.101604_bib39) 2007; 15 Hustrulid (10.1016/j.resourpol.2020.101604_bib42) 2013 Deng (10.1016/j.resourpol.2020.101604_bib24) 2013 Nguyen (10.1016/j.resourpol.2020.101604_bib64) 2019 Olden (10.1016/j.resourpol.2020.101604_bib73) 2002; 154 Franco-Sepúlveda (10.1016/j.resourpol.2020.101604_bib33) 2019; 60 Goodfellow (10.1016/j.resourpol.2020.101604_bib36) 2016; 40 Alameer (10.1016/j.resourpol.2020.101604_bib2) 2019; 61 Armaghani (10.1016/j.resourpol.2020.101604_bib4) 2019; 17 Cuevas (10.1016/j.resourpol.2020.101604_bib19) 2004; 47 Nguyen (10.1016/j.resourpol.2020.101604_bib60) 2019; 9 Huang (10.1016/j.resourpol.2020.101604_bib41) 2012; 25 Camm (10.1016/j.resourpol.2020.101604_bib16) 1992 Long (10.1016/j.resourpol.2020.101604_bib50) 2001 Dorigo (10.1016/j.resourpol.2020.101604_bib25) 2000; 16 Fan (10.1016/j.resourpol.2020.101604_bib31) 2016; 50 Whitley (10.1016/j.resourpol.2020.101604_bib93) 1990; 14 Duckworth (10.1016/j.resourpol.2020.101604_bib28) 2016 Lawrence (10.1016/j.resourpol.2020.101604_bib46) 1997 Mohutsiwa (10.1016/j.resourpol.2020.101604_bib56) 2015; 115 Stratigopoulos (10.1016/j.resourpol.2020.101604_bib88) 2009 Wheeler (10.1016/j.resourpol.2020.101604_bib92) 2019; 33 Nguyen (10.1016/j.resourpol.2020.101604_bib62) 2020; 20 Dwivedi (10.1016/j.resourpol.2020.101604_bib29) 2018; 18 Guo (10.1016/j.resourpol.2020.101604_bib37) 2019 Ramazan (10.1016/j.resourpol.2020.101604_bib79) 2007; 177 Mikolov (10.1016/j.resourpol.2020.101604_bib53) 2010 Sánchez (10.1016/j.resourpol.2020.101604_bib81) 2015; 46 Sayadi (10.1016/j.resourpol.2020.101604_bib82) 2012; 27 Bennet (10.1016/j.resourpol.2020.101604_bib9) 1996 Nourali (10.1016/j.resourpol.2020.101604_bib67) 2018; 62 Zhang (10.1016/j.resourpol.2020.101604_bib94) 2018; 4 Shafiee (10.1016/j.resourpol.2020.101604_bib83) 2012; 121 Shang (10.1016/j.resourpol.2020.101604_bib84) 2019 Wang (10.1016/j.resourpol.2020.101604_bib90) 2019; 63  | 
    
| References_xml | – volume: 221 start-page: 38 year: 2019 end-page: 54 ident: bib7 article-title: Innovation and technology for sustainable mining activity: a worldwide research assessment publication-title: J. Clean. Prod. – volume: 60 start-page: 125 year: 2019 end-page: 133 ident: bib33 article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining publication-title: Resour. Pol. – year: 2007 ident: bib91 article-title: Economic Evaluations in Exploration – volume: 74 start-page: 466 year: 2019 end-page: 478 ident: bib34 article-title: An adaptive forecasting approach for copper price volatility through hybrid and non-hybrid models publication-title: Appl. Soft Comput. – volume: 37 start-page: 109 year: 2012 end-page: 117 ident: bib22 article-title: Determination of the effect of operating cost uncertainty on mining project evaluation publication-title: Resour. Pol. – volume: 21 start-page: 44 year: 2011 end-page: 53 ident: bib32 article-title: Predicting the failure of developmental gold mining projects publication-title: Aust. Account. Rev. – start-page: 1668 year: 2009 end-page: 1673 ident: bib88 article-title: Enrichment of Limited Training Sets in Machine-Learning-Based Analog/RF Test, 2009 Design, Automation & Test in Europe Conference & Exhibition – year: 2001 ident: bib89 article-title: Project Development Costs—Estimates versus Reality – volume: 61 start-page: 637 year: 2019 end-page: 643 ident: bib23 article-title: Hybrid intelligence publication-title: Bus. Inf. Syst. Eng. – volume: 4 start-page: 1 year: 2018 end-page: 8 ident: bib94 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: NPJ Comput. Mater. – volume: 44 start-page: 487 year: 2019 ident: bib40 article-title: Identifying substance use risk based on deep neural networks and Instagram social media data publication-title: Neuropsychopharmacology – start-page: 33 year: 2019 end-page: 42 ident: bib54 article-title: Ant Colony Optimisation, Evolutionary Algorithms and Neural Networks: Theory and Applications – volume: 154 start-page: 135 year: 2002 end-page: 150 ident: bib73 article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecol. Model. – volume: 22 start-page: 1 year: 2018 end-page: 15 ident: bib3 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Computing – year: 2019 ident: bib47 article-title: Enabling Spike-Based Backpropagation in State-Of-The-Art Deep Neural Network Architectures – volume: 128 start-page: 563 year: 2006 end-page: 575 ident: bib65 article-title: Product cost estimation: technique classification and methodology review publication-title: J. Manuf. Sci. Eng. – volume: 26 start-page: 1065 year: 2016 end-page: 1071 ident: bib8 article-title: Strategic mining options optimization: open pit mining, underground mining or both publication-title: Int. J. Min. Sci. Technol. – year: 2003 ident: bib10 article-title: Intelligent Data Analysis – year: 2019 ident: bib84 article-title: A Novel Artificial Intelligence Approach to Predict Blast-Induced Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network – start-page: 311 year: 2019 end-page: 351 ident: bib27 article-title: Ant colony optimization: overview and recent advances publication-title: Handbook of Metaheuristics – volume: 1 start-page: 125 year: 2018 ident: bib61 article-title: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam publication-title: SN Appl. Sci. – year: 2011 ident: bib21 article-title: SME Mining Engineering Handbook – volume: 45 start-page: 111 year: 2018 end-page: 127 ident: bib43 article-title: Improving settlement selection for small-scale maps using data enrichment and machine learning publication-title: Cartogr. Geogr. Inf. Sci. – volume: 177 start-page: 1153 year: 2007 end-page: 1166 ident: bib79 article-title: The new fundamental tree algorithm for production scheduling of open pit mines publication-title: Eur. J. Oper. Res. – start-page: 117 year: 2001 end-page: 121 ident: bib20 article-title: Open Pit Optimization-Strategies for Improving Economics of Mining Projects through Mine Planning, 17th International Mining Congress and Exhibition of Turkey – year: 2018 ident: bib45 article-title: Stochastic Layer-wise Precision in Deep Neural Networks – volume: 36 start-page: 612 year: 1999 end-page: 624 ident: bib77 article-title: Characterization of geotechnical variability publication-title: Can. Geotech. J. – start-page: 1 year: 2018 end-page: 15 ident: bib58 article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest publication-title: Nat. Resour. Res. – volume: 16 start-page: 122 year: 2002 end-page: 133 ident: bib80 article-title: Geostatistical simulations for risk assessment and decision making: the mining industry perspective publication-title: Int. J. Surf. Min. Reclamat. Environ. – volume: 61 start-page: 250 year: 2019 end-page: 260 ident: bib2 article-title: Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm publication-title: Resour. Pol. – volume: 20 start-page: s102 year: 2016 end-page: s122 ident: bib6 article-title: Prediction of self-compacting concrete strength using artificial neural networks publication-title: Eur. J. Environ. Civ. Eng. – volume: 117 start-page: 8 year: 2019 end-page: 66 ident: bib12 article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation publication-title: Neural Network. – year: 1992 ident: bib16 article-title: The Development of Cost Models Using Regression Analysis – volume: 56 start-page: 406 year: 2004 end-page: 421 ident: bib13 article-title: Mapping the bonanza: geographies of mining investment in an era of neoliberal reform publication-title: Prof. Geogr. – start-page: 123 year: 1987 end-page: 137 ident: bib70 article-title: Analysis of Risk in Mining Projects, Selected Readings in Mineral Economics – year: 1985 ident: bib17 article-title: Feasibility Studies and Other Pre-project Estimates: How Reliable Are They. Proceedings of the Finance for the Minerals Industry – start-page: 39 year: 2009 ident: bib55 article-title: Deep Belief Networks for Phone Recognition, Nips Workshop on Deep Learning for Speech Recognition and Related Applications. Vancouver, Canada – volume: 42 start-page: 137 year: 1997 end-page: 161 ident: bib85 article-title: Cost estimation predictive modeling: regression versus neural network publication-title: Eng. Econ. – volume: 16 start-page: 851 year: 2000 end-page: 871 ident: bib25 article-title: Ant algorithms and stigmergy publication-title: Future Generat. Comput. Syst. – year: 1993 ident: bib66 article-title: Cost Estimation Handbook for the Australian Mining Industr – volume: 36 start-page: 51 year: 2018 end-page: 68 ident: bib18 article-title: Shared‐use mining infrastructure: why it matters and how to achieve it publication-title: Dev. Pol. Rev. – volume: 60 start-page: 72 year: 2019 end-page: 82 ident: bib1 article-title: Cutoff grades optimization in open pit mines using meta-heuristic algorithms publication-title: Resour. Pol. – year: 2019 ident: bib14 article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system publication-title: Nat. Resour. Res. – volume: 207 start-page: 1041 year: 2010 end-page: 1051 ident: bib86 article-title: A hybrid heuristic algorithm for the open-pit-mining operational planning problem publication-title: Eur. J. Oper. Res. – volume: 63 start-page: 101414 year: 2019 ident: bib90 article-title: Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques publication-title: Resour. Pol. – volume: 17 start-page: 924 year: 2019 end-page: 933 ident: bib4 article-title: Soft computing-based techniques for concrete beams shear strength publication-title: Procedia Structural Integrity – volume: 46 start-page: 177 year: 2015 end-page: 190 ident: bib81 article-title: Investment in new tungsten mining projects publication-title: Resour. Pol. – volume: 50 start-page: 86 year: 2016 end-page: 92 ident: bib31 article-title: Predicting chaotic coal prices using a multi-layer perceptron network model publication-title: Resour. Pol. – year: 2010 ident: bib53 article-title: Recurrent Neural Network Based Language Model, Eleventh Annual Conference of the International Speech Communication Association – volume: 18 start-page: 3852 year: 2018 end-page: 3863 ident: bib29 article-title: Design, modeling, and validation of a soft magnetic 3-D force sensor publication-title: IEEE Sensor. J. – volume: 25 start-page: 417 year: 2012 end-page: 431 ident: bib41 article-title: The adaptation of product cost estimation techniques to estimate the cost of service publication-title: Int. J. Comput. Integrated Manuf. – year: 2013 ident: bib42 article-title: Open Pit Mine Planning and Design, Two Volume Set & CD-ROM Pack – volume: 7 start-page: 953 year: 2015 ident: bib75 article-title: Artificial neural networks for small dataset analysis publication-title: J. Thorac. Dis. – year: 2016 ident: bib28 article-title: Copper Mine Project Profiles - 2016 Edition – volume: 47 start-page: 111 year: 2004 end-page: 122 ident: bib19 article-title: An anova test for functional data publication-title: Comput. Stat. Data Anal. – start-page: 8599 year: 2013 end-page: 8603 ident: bib24 article-title: New Types of Deep Neural Network Learning for Speech Recognition and Related Applications: an Overview, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 21 start-page: 305 year: 2019 ident: bib30 article-title: Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest publication-title: Entropy – volume: 62 start-page: 527 year: 2018 end-page: 540 ident: bib67 article-title: Mining capital cost estimation using Support Vector Regression (SVR) publication-title: Resour. Pol. – volume: 38 start-page: 591 year: 2013 end-page: 597 ident: bib5 article-title: A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams publication-title: Resour. Pol. – start-page: 1470 year: 1999 end-page: 1477 ident: bib26 article-title: Ant Colony Optimization: a New Meta-Heuristic, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) – volume: 316 year: 2004 ident: bib35 article-title: Managing risk and waste mining in long-term production scheduling of open-pit mines publication-title: SME Trans. – volume: 28 start-page: 161 year: 2012 end-page: 170 ident: bib51 article-title: Benchmarking regression algorithms for loss given default modeling publication-title: Int. J. Forecast. – year: 1980 ident: bib72 article-title: A Parametric Cost Estimation Method for Open Pit Mines – start-page: 101474 year: 2019 ident: bib37 article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach publication-title: Resour. Pol. – start-page: 1 year: 2018 end-page: 13 ident: bib68 article-title: A regression-tree-based model for mining capital cost estimation publication-title: Int. J. Min. Reclamat. Environ. – volume: 178 start-page: 389 year: 2004 end-page: 397 ident: bib74 article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data publication-title: Ecol. Model. – volume: 14 start-page: 347 year: 1990 end-page: 361 ident: bib93 article-title: Genetic algorithms and neural networks: optimizing connections and connectivity publication-title: Parallel Comput. – volume: 15 start-page: 273 year: 2007 end-page: 287 ident: bib39 article-title: Evolving a neural model of insect path integration publication-title: Adapt. Behav. – start-page: 540 year: 1997 end-page: 545 ident: bib46 article-title: Lessons in Neural Network Training: Overfitting May Be Harder than Expected – volume: 20 start-page: 132 year: 2020 ident: bib62 article-title: Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms publication-title: Sensors – volume: 14 start-page: 689 year: 2006 end-page: 707 ident: bib71 article-title: Using system dynamics to model the interaction between environmental and economic factors in the mining industry publication-title: J. Clean. Prod. – start-page: 147 year: 2011 end-page: 151 ident: bib49 article-title: Statistical Methods of Estimating Mining Costs, SME Annual Meeting and Exhibit and CMA 113th National Western Mining Conference 2011 – volume: 115 start-page: 789 year: 2015 end-page: 797 ident: bib56 article-title: Parametric estimation of capital costs for establishing a coal mine: South Africa case study publication-title: J. S. Afr. Inst. Min. Metall – year: 2014 ident: bib76 article-title: Information Granularity, Big Data, and Computational Intelligence – start-page: 1 year: 2018 end-page: 17 ident: bib59 article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam publication-title: Neural Comput. Appl. – volume: 33 start-page: 118 year: 2019 end-page: 132 ident: bib92 article-title: Development of the rail conveyor technology publication-title: Int. J. Min. Reclamat. Environ. – year: 1987 ident: bib87 article-title: Cost Estimation Handbook for Small Placer Mines – volume: 24 start-page: 814 year: 2011 end-page: 823 ident: bib52 article-title: Improving subspace learning for facial expression recognition using person dependent and geometrically enriched training sets publication-title: Neural Network. – year: 2019 ident: bib63 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Nat. Resour. Res. – volume: 27 start-page: 133 year: 2012 end-page: 141 ident: bib82 article-title: Hard-rock LHD cost estimation using single and multiple regressions based on principal component analysis publication-title: Tunn. Undergr. Space Technol. – volume: 62 start-page: 527 year: 2019 end-page: 540 ident: bib69 article-title: Mining capital cost estimation using Support Vector Regression (SVR) publication-title: Resour. Pol. – volume: 61 start-page: 109 year: 2016 end-page: 123 ident: bib11 article-title: Factors creating economic value added of mining company publication-title: Arch. Min. Sci. – volume: 96 start-page: 28 year: 2018 end-page: 36 ident: bib48 article-title: Automatic lexical stress and pitch accent detection for L2 English speech using multi-distribution deep neural networks publication-title: Speech Commun. – start-page: 58 year: 2013 end-page: 74 ident: bib78 article-title: A Proposal of Effort Estimation Method for Information Mining Projects Oriented to SMEs, Enterprise Information Systems of the Future – volume: 9 start-page: 4554 year: 2019 ident: bib60 article-title: Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model publication-title: Appl. Sci. – volume: 23 start-page: 5913 year: 2019 end-page: 5929 ident: bib44 article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions publication-title: Soft Comput. – volume: 203 start-page: 40 year: 2002 ident: bib38 article-title: How have we done? publication-title: Eng. Min. J. – volume: 29 start-page: 75 year: 2003 end-page: 81 ident: bib15 article-title: The choice of the cutoff grade in mining publication-title: Resour. Pol. – year: 1982 ident: bib57 article-title: Mining and Mineral Processing Equipment Costs and Preliminary Capital Cost Estimations – volume: 121 start-page: 109 year: 2012 end-page: 116 ident: bib83 article-title: New approach for estimating total mining costs in surface coal mines publication-title: Min. Technol. – year: 1996 ident: bib9 article-title: Technical Due Diligence Requirements for Mining Project Finance, Randol at Vancouver 1996 85th Annual Global Mining Opportunities and 2nd Annual Copper Hydromet Rountable, Conference Proceedings – volume: 40 start-page: 292 year: 2016 end-page: 304 ident: bib36 article-title: Global optimization of open pit mining complexes with uncertainty publication-title: Appl. Soft Comput. – year: 2019 ident: bib64 article-title: Optimizing ANN models with PSO for predicting short building seismic response publication-title: Eng. Comput. – year: 2001 ident: bib50 article-title: A Simplified Economic Filter for Open-Pit Mining and Heap-Leach Recovery of Copper in the United States – volume: 22 start-page: 1 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib3 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Computing doi: 10.1007/s00500-016-2442-1 – volume: 16 start-page: 122 year: 2002 ident: 10.1016/j.resourpol.2020.101604_bib80 article-title: Geostatistical simulations for risk assessment and decision making: the mining industry perspective publication-title: Int. J. Surf. Min. Reclamat. Environ. doi: 10.1076/ijsm.16.2.122.3399 – volume: 221 start-page: 38 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib7 article-title: Innovation and technology for sustainable mining activity: a worldwide research assessment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.243 – year: 1993 ident: 10.1016/j.resourpol.2020.101604_bib66 – volume: 61 start-page: 250 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib2 article-title: Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2019.02.014 – volume: 36 start-page: 612 year: 1999 ident: 10.1016/j.resourpol.2020.101604_bib77 article-title: Characterization of geotechnical variability publication-title: Can. Geotech. J. doi: 10.1139/t99-038 – volume: 46 start-page: 177 year: 2015 ident: 10.1016/j.resourpol.2020.101604_bib81 article-title: Investment in new tungsten mining projects publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2015.10.003 – volume: 115 start-page: 789 year: 2015 ident: 10.1016/j.resourpol.2020.101604_bib56 article-title: Parametric estimation of capital costs for establishing a coal mine: South Africa case study publication-title: J. S. Afr. Inst. Min. Metall doi: 10.17159/2411-9717/2015/v115n8a17 – volume: 1 start-page: 125 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib61 article-title: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam publication-title: SN Appl. Sci. doi: 10.1007/s42452-018-0136-2 – volume: 26 start-page: 1065 year: 2016 ident: 10.1016/j.resourpol.2020.101604_bib8 article-title: Strategic mining options optimization: open pit mining, underground mining or both publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2016.09.015 – year: 2011 ident: 10.1016/j.resourpol.2020.101604_bib21 – volume: 27 start-page: 133 year: 2012 ident: 10.1016/j.resourpol.2020.101604_bib82 article-title: Hard-rock LHD cost estimation using single and multiple regressions based on principal component analysis publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2011.08.006 – start-page: 1668 year: 2009 ident: 10.1016/j.resourpol.2020.101604_bib88 – start-page: 540 year: 1997 ident: 10.1016/j.resourpol.2020.101604_bib46 – year: 2013 ident: 10.1016/j.resourpol.2020.101604_bib42 – volume: 128 start-page: 563 year: 2006 ident: 10.1016/j.resourpol.2020.101604_bib65 article-title: Product cost estimation: technique classification and methodology review publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.2137750 – volume: 40 start-page: 292 year: 2016 ident: 10.1016/j.resourpol.2020.101604_bib36 article-title: Global optimization of open pit mining complexes with uncertainty publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.11.038 – volume: 56 start-page: 406 year: 2004 ident: 10.1016/j.resourpol.2020.101604_bib13 article-title: Mapping the bonanza: geographies of mining investment in an era of neoliberal reform publication-title: Prof. Geogr. doi: 10.1111/j.0033-0124.2004.05603009.x – volume: 316 year: 2004 ident: 10.1016/j.resourpol.2020.101604_bib35 article-title: Managing risk and waste mining in long-term production scheduling of open-pit mines publication-title: SME Trans. – volume: 14 start-page: 689 year: 2006 ident: 10.1016/j.resourpol.2020.101604_bib71 article-title: Using system dynamics to model the interaction between environmental and economic factors in the mining industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2004.05.006 – volume: 20 start-page: 132 year: 2020 ident: 10.1016/j.resourpol.2020.101604_bib62 article-title: Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms publication-title: Sensors doi: 10.3390/s20010132 – start-page: 1 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib68 article-title: A regression-tree-based model for mining capital cost estimation publication-title: Int. J. Min. Reclamat. Environ. – volume: 42 start-page: 137 year: 1997 ident: 10.1016/j.resourpol.2020.101604_bib85 article-title: Cost estimation predictive modeling: regression versus neural network publication-title: Eng. Econ. doi: 10.1080/00137919708903174 – year: 2001 ident: 10.1016/j.resourpol.2020.101604_bib89 – volume: 20 start-page: s102 year: 2016 ident: 10.1016/j.resourpol.2020.101604_bib6 article-title: Prediction of self-compacting concrete strength using artificial neural networks publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2016.1246693 – start-page: 1470 year: 1999 ident: 10.1016/j.resourpol.2020.101604_bib26 – start-page: 101474 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib37 article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach publication-title: Resour. Pol. – year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib45 – volume: 63 start-page: 101414 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib90 article-title: Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2019.101414 – year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib47 – volume: 38 start-page: 591 year: 2013 ident: 10.1016/j.resourpol.2020.101604_bib5 article-title: A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2013.09.008 – volume: 60 start-page: 125 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib33 article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2018.12.013 – volume: 96 start-page: 28 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib48 article-title: Automatic lexical stress and pitch accent detection for L2 English speech using multi-distribution deep neural networks publication-title: Speech Commun. doi: 10.1016/j.specom.2017.11.003 – year: 1982 ident: 10.1016/j.resourpol.2020.101604_bib57 – volume: 178 start-page: 389 year: 2004 ident: 10.1016/j.resourpol.2020.101604_bib74 article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.03.013 – start-page: 311 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib27 article-title: Ant colony optimization: overview and recent advances – year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib64 article-title: Optimizing ANN models with PSO for predicting short building seismic response publication-title: Eng. Comput. – year: 2003 ident: 10.1016/j.resourpol.2020.101604_bib10 – start-page: 58 year: 2013 ident: 10.1016/j.resourpol.2020.101604_bib78 – year: 1985 ident: 10.1016/j.resourpol.2020.101604_bib17 – volume: 37 start-page: 109 year: 2012 ident: 10.1016/j.resourpol.2020.101604_bib22 article-title: Determination of the effect of operating cost uncertainty on mining project evaluation publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2011.11.001 – volume: 154 start-page: 135 year: 2002 ident: 10.1016/j.resourpol.2020.101604_bib73 article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecol. Model. doi: 10.1016/S0304-3800(02)00064-9 – volume: 207 start-page: 1041 year: 2010 ident: 10.1016/j.resourpol.2020.101604_bib86 article-title: A hybrid heuristic algorithm for the open-pit-mining operational planning problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.05.031 – volume: 14 start-page: 347 year: 1990 ident: 10.1016/j.resourpol.2020.101604_bib93 article-title: Genetic algorithms and neural networks: optimizing connections and connectivity publication-title: Parallel Comput. doi: 10.1016/0167-8191(90)90086-O – start-page: 39 year: 2009 ident: 10.1016/j.resourpol.2020.101604_bib55 – volume: 33 start-page: 118 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib92 article-title: Development of the rail conveyor technology publication-title: Int. J. Min. Reclamat. Environ. doi: 10.1080/17480930.2017.1352058 – volume: 47 start-page: 111 year: 2004 ident: 10.1016/j.resourpol.2020.101604_bib19 article-title: An anova test for functional data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2003.10.021 – volume: 74 start-page: 466 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib34 article-title: An adaptive forecasting approach for copper price volatility through hybrid and non-hybrid models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.007 – year: 2014 ident: 10.1016/j.resourpol.2020.101604_bib76 – year: 1996 ident: 10.1016/j.resourpol.2020.101604_bib9 – start-page: 1 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib58 article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest publication-title: Nat. Resour. Res. – volume: 15 start-page: 273 year: 2007 ident: 10.1016/j.resourpol.2020.101604_bib39 article-title: Evolving a neural model of insect path integration publication-title: Adapt. Behav. doi: 10.1177/1059712307082080 – year: 1980 ident: 10.1016/j.resourpol.2020.101604_bib72 – volume: 29 start-page: 75 year: 2003 ident: 10.1016/j.resourpol.2020.101604_bib15 article-title: The choice of the cutoff grade in mining publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2004.06.002 – year: 2001 ident: 10.1016/j.resourpol.2020.101604_bib50 – volume: 21 start-page: 44 year: 2011 ident: 10.1016/j.resourpol.2020.101604_bib32 article-title: Predicting the failure of developmental gold mining projects publication-title: Aust. Account. Rev. doi: 10.1111/j.1835-2561.2010.00119.x – start-page: 147 year: 2011 ident: 10.1016/j.resourpol.2020.101604_bib49 – volume: 177 start-page: 1153 year: 2007 ident: 10.1016/j.resourpol.2020.101604_bib79 article-title: The new fundamental tree algorithm for production scheduling of open pit mines publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.12.035 – volume: 62 start-page: 527 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib69 article-title: Mining capital cost estimation using Support Vector Regression (SVR) publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2018.10.008 – volume: 28 start-page: 161 year: 2012 ident: 10.1016/j.resourpol.2020.101604_bib51 article-title: Benchmarking regression algorithms for loss given default modeling publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2011.01.006 – volume: 21 start-page: 305 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib30 article-title: Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest publication-title: Entropy doi: 10.3390/e21030305 – year: 2010 ident: 10.1016/j.resourpol.2020.101604_bib53 – volume: 203 start-page: 40 year: 2002 ident: 10.1016/j.resourpol.2020.101604_bib38 article-title: How have we done? publication-title: Eng. Min. J. – volume: 24 start-page: 814 year: 2011 ident: 10.1016/j.resourpol.2020.101604_bib52 article-title: Improving subspace learning for facial expression recognition using person dependent and geometrically enriched training sets publication-title: Neural Network. doi: 10.1016/j.neunet.2011.05.015 – volume: 60 start-page: 72 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib1 article-title: Cutoff grades optimization in open pit mines using meta-heuristic algorithms publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2018.12.001 – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib94 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-018-0081-z – start-page: 8599 year: 2013 ident: 10.1016/j.resourpol.2020.101604_bib24 – start-page: 33 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib54 – start-page: 123 year: 1987 ident: 10.1016/j.resourpol.2020.101604_bib70 – volume: 62 start-page: 527 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib67 article-title: Mining capital cost estimation using Support Vector Regression (SVR) publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2018.10.008 – year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib84 – start-page: 1 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib59 article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam publication-title: Neural Comput. Appl. – year: 1992 ident: 10.1016/j.resourpol.2020.101604_bib16 – year: 2016 ident: 10.1016/j.resourpol.2020.101604_bib28 – volume: 45 start-page: 111 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib43 article-title: Improving settlement selection for small-scale maps using data enrichment and machine learning publication-title: Cartogr. Geogr. Inf. Sci. doi: 10.1080/15230406.2016.1274237 – start-page: 117 year: 2001 ident: 10.1016/j.resourpol.2020.101604_bib20 – volume: 121 start-page: 109 year: 2012 ident: 10.1016/j.resourpol.2020.101604_bib83 article-title: New approach for estimating total mining costs in surface coal mines publication-title: Min. Technol. doi: 10.1179/1743286312Y.0000000011 – volume: 61 start-page: 637 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib23 article-title: Hybrid intelligence publication-title: Bus. Inf. Syst. Eng. doi: 10.1007/s12599-019-00595-2 – volume: 50 start-page: 86 year: 2016 ident: 10.1016/j.resourpol.2020.101604_bib31 article-title: Predicting chaotic coal prices using a multi-layer perceptron network model publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2016.08.009 – volume: 7 start-page: 953 year: 2015 ident: 10.1016/j.resourpol.2020.101604_bib75 article-title: Artificial neural networks for small dataset analysis publication-title: J. Thorac. Dis. – volume: 16 start-page: 851 year: 2000 ident: 10.1016/j.resourpol.2020.101604_bib25 article-title: Ant algorithms and stigmergy publication-title: Future Generat. Comput. Syst. doi: 10.1016/S0167-739X(00)00042-X – volume: 36 start-page: 51 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib18 article-title: Shared‐use mining infrastructure: why it matters and how to achieve it publication-title: Dev. Pol. Rev. doi: 10.1111/dpr.12231 – volume: 23 start-page: 5913 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib44 article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions publication-title: Soft Comput. doi: 10.1007/s00500-018-3253-3 – volume: 18 start-page: 3852 year: 2018 ident: 10.1016/j.resourpol.2020.101604_bib29 article-title: Design, modeling, and validation of a soft magnetic 3-D force sensor publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2018.2814839 – volume: 9 start-page: 4554 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib60 article-title: Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model publication-title: Appl. Sci. doi: 10.3390/app9214554 – volume: 61 start-page: 109 year: 2016 ident: 10.1016/j.resourpol.2020.101604_bib11 article-title: Factors creating economic value added of mining company publication-title: Arch. Min. Sci. – volume: 117 start-page: 8 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib12 article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation publication-title: Neural Network. doi: 10.1016/j.neunet.2019.04.024 – year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib63 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Nat. Resour. Res. – volume: 25 start-page: 417 year: 2012 ident: 10.1016/j.resourpol.2020.101604_bib41 article-title: The adaptation of product cost estimation techniques to estimate the cost of service publication-title: Int. J. Comput. Integrated Manuf. doi: 10.1080/0951192X.2011.596281 – year: 1987 ident: 10.1016/j.resourpol.2020.101604_bib87 – year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib14 article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system publication-title: Nat. Resour. Res. – year: 2007 ident: 10.1016/j.resourpol.2020.101604_bib91 – volume: 17 start-page: 924 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib4 article-title: Soft computing-based techniques for concrete beams shear strength publication-title: Procedia Structural Integrity doi: 10.1016/j.prostr.2019.08.123 – volume: 44 start-page: 487 year: 2019 ident: 10.1016/j.resourpol.2020.101604_bib40 article-title: Identifying substance use risk based on deep neural networks and Instagram social media data publication-title: Neuropsychopharmacology doi: 10.1038/s41386-018-0247-x  | 
    
| SSID | ssj0005786 | 
    
| Score | 2.4797976 | 
    
| Snippet | This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 101604 | 
    
| SubjectTerms | Accuracy ACO-DNN AI in resources policy Algorithms Anniversaries Ant colony optimization Artificial intelligence Artificial neural networks Capital costs Colonies & territories Copper Copper mines Deep neural network Forecasting Mathematical models Mining Mining capital cost optimization Mining industry Model accuracy Neural networks Open pit mining Open-pit optimization-strategies Optimization Production Project decision making  | 
    
| Title | Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.resourpol.2020.101604 https://www.proquest.com/docview/2440489680  | 
    
| Volume | 66 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: AKRWK dateStart: 19740101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvbQH1FJQoRTNodd0s3Zeyw1tQdsXqlqQuFl-BRaxyWo3HHrpj-kv7YztbBeExKGnyJEdJZnxzGd75hvG3ucpd6OicokSZZZkWrtEi1IkuJhQChdFruSU4PztrJhcZJ8v88sNNu5zYSisMtr-YNO9tY53BvFvDubT6eCnXw1wdJEj1NPS025nWUlVDD78XgvzKKtwXonLZup9L8Zr4bfI5y2dQfBwN1Zse8RDPbDV3gGdvmRbETnCcXi5V2zDNdvsxRqf4DbbPfmXtoZd47xdvmZ_Pq5yo0BB02ID6CsDfQRM13g5wdfGga4F4t9APOsAMSIY5cuLgGmXHbQ1zHxhCYgbOUug-PkrsM7NgSgysWcTAswT8pMWUIBABNnNL2jRSs1i-ieo26t2Me2uZzvs4vTkfDxJYnWGxKBR6hKj-Cg3yhSFzVJd14Xhmte2JsyJLi_VBU1ARByu1txZYYisrh45VVmEnXoodtlm0zbuDQNhCCda0g-DKlJUQtdDUZXWDnOdl2KPFb1EpInU5VRB41b2MWo3ciVKSaKUQZR7LF0NnAf2jqeHHPUil_cUUaKPeXrwQa8kMtqCpeREwVjhhEj3_-fZb9lzaoUwtQO22S3u3DsERJ0-9Bp_yJ4dj398_U7XT18mZ38BQ1MSbQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPVAOqIUioFDm0GvYrJ3Xcqt4aHleChI3y6_QRWyy2g0HLv0x_NLOxM52qSpx4JjEjpLMeOYbZ-Ybxr6nMXeDrHCREnkSJVq7SItcRBhMKIVBkcs5FThfXWfD2-T8Lr1bYkddLQylVQbb7216a63DmV74mr3JaNT72UYDHF3kAPU0J9rtD0nKc4rADn4v5Hnkhf9hiXEzDX-V5DVt98gnNf2E4P5saNn2Hxf1j7FuPdDpJ7YWoCP88E_3mS25ap2tLhAKrrPNk791azg0LNzZBns5nhdHgYKqxgOg1_T8ETBaIOaEtjkONDUQAQcCWgcIEsGotr8ImHrWQF3CuO0sAWEnZwaUQH8P1rkJEEcmjqx8hnlEjtICShCIIbt6hhrN1DjUf4J6vK-no-bX-Au7PT25ORpGoT1DZNAqNZFRfJAaZbLMJrEuy8xwzUtbEuhEnxfrjFYgQg5Xau6sMMRWVw6cKiziTt0Xm2y5qiu3xUAYAoqWFMSgjmSF0GVfFLm1_VSnudhmWScRaQJ3ObXQeJRdktqDnItSkiilF-U2i-cTJ56-4-0ph53I5StNlOhk3p682ymJDMZgJjlxMBa4IuKd99x7n60Mb64u5eXZ9cVX9pGu-Jy1XbbcTJ_cHqKjRn9rtf8P3_YSbQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+novel+artificial+intelligence+model+to+estimate+the+capital+cost+of+mining+projects+using+deep+neural+network-based+ant+colony+optimization+algorithm&rft.jtitle=Resources+policy&rft.au=Zhang%2C+Hong&rft.au=Nguyen%2C+Hoang&rft.au=Bui%2C+Xuan-Nam&rft.au=Nguyen-Thoi%2C+Trung&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4207&rft.eissn=1873-7641&rft.volume=66&rft_id=info:doi/10.1016%2Fj.resourpol.2020.101604&rft.externalDocID=S0301420719307706 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4207&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4207&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4207&client=summon |