Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm

This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP...

Full description

Saved in:
Bibliographic Details
Published inResources policy Vol. 66; p. 101604
Main Authors Zhang, Hong, Nguyen, Hoang, Bui, Xuan-Nam, Nguyen-Thoi, Trung, Bui, Thu-Thuy, Nguyen, Nga, Vu, Diep-Anh, Mahesh, Vinyas, Moayedi, Hossein
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0301-4207
1873-7641
DOI10.1016/j.resourpol.2020.101604

Cover

Abstract This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR (stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks (ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially copper mining projects. •A novel ACO-DNN model was developed for estimating the CC of mining projects with high accuracy.•Ten ANN and DNN models were optimized by the ACO algorithm for estimating the CC of mining projects.•The performance of the ACO-ANN and ACO-DNN models was compared and evaluated.•ANOVA test was used to assess the strength and statistical significance of the developed models.•The sensitivity of input variables was analyzed for predicting the CC of mining projects.
AbstractList This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR (stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks (ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially copper mining projects.
This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a unique combination of a deep neural network (DNN) and ant colony optimization (ACO) algorithm, abbreviated as ACO-DNN. In this model, MineAP (annual mine production), SR (stripping ratio), MillAP (annual production of the mill), RMG (reserve mean grade), and LOM (life of mine) were used to consider the CC of open-pit mining projects. A series of simple and complex artificial neural networks (ANN) was developed for forecasting CC of 74 copper mining projects herein. Subsequently, the ACO algorithm has been applied to optimize the developed ANN and DNN models to improve the accuracy of them. Finally, an optimal hybrid model was defined (i.e., ACO-DNN 5-25-20-18-15-1) with superior performance than other models (i.e., RMSE of 130.988, R2 of 0.991, MAE of 115.274, MAPE of 0.072, and VAF of 99.052). The findings of this study showed that the DNN models could predict the CC for open-pit mining projects with more accuracy than those of the simple ANN models. In particular, the ACO algorithm played an essential role in improving the accuracy of forecasting models. Also, MineAP, MillAP, SR, and LOM have been confirmed as critical parameters that affect the accuracy of the selected model in forecasting the CC of open-pit mining projects, especially MineAP. In conclusion, this study offers a useful tool to improve resource policies of mining projects, especially copper mining projects. •A novel ACO-DNN model was developed for estimating the CC of mining projects with high accuracy.•Ten ANN and DNN models were optimized by the ACO algorithm for estimating the CC of mining projects.•The performance of the ACO-ANN and ACO-DNN models was compared and evaluated.•ANOVA test was used to assess the strength and statistical significance of the developed models.•The sensitivity of input variables was analyzed for predicting the CC of mining projects.
ArticleNumber 101604
Author Nguyen, Hoang
Zhang, Hong
Bui, Thu-Thuy
Nguyen, Nga
Vu, Diep-Anh
Mahesh, Vinyas
Nguyen-Thoi, Trung
Bui, Xuan-Nam
Moayedi, Hossein
Author_xml – sequence: 1
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: College of Economics & Management, Changsha University, Changsha, 410022, China
– sequence: 2
  givenname: Hoang
  orcidid: 0000-0001-6122-8314
  surname: Nguyen
  fullname: Nguyen, Hoang
  email: nguyenhoang23@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
– sequence: 3
  givenname: Xuan-Nam
  surname: Bui
  fullname: Bui, Xuan-Nam
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam
– sequence: 4
  givenname: Trung
  surname: Nguyen-Thoi
  fullname: Nguyen-Thoi, Trung
  email: nguyenthoitrung@tdtu.edu.vn
  organization: Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
– sequence: 5
  givenname: Thu-Thuy
  surname: Bui
  fullname: Bui, Thu-Thuy
  organization: Accountancy Department, Faculty of Economics and Business Administration, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam
– sequence: 6
  givenname: Nga
  surname: Nguyen
  fullname: Nguyen, Nga
  organization: Mining Management Department, Faculty of Economics and Business Administration, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam
– sequence: 7
  givenname: Diep-Anh
  surname: Vu
  fullname: Vu, Diep-Anh
  organization: Basic Economics Department, Faculty of Economics and Business Administration, Hanoi University of Mining and Geology, 18 Vien St., Duc Thang Ward, Bac Tu Liem Dist., Hanoi, Viet Nam
– sequence: 8
  givenname: Vinyas
  surname: Mahesh
  fullname: Mahesh, Vinyas
  organization: Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 560012, India
– sequence: 9
  givenname: Hossein
  surname: Moayedi
  fullname: Moayedi, Hossein
  organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
BookMark eNqNUcFu1TAQtFCReC18A5Y457F2XCc5cKgKhUqVuMDZcpz1q4OfHWy_ovI5fCmOgjj0AidrvTOzuzPn5CzEgIS8ZrBnwOTbeZ8wx1Naot9z4NsviGdkx_qubTop2BnZQQusERy6F-Q85xkALrte7siv9_iAPi4uHKimIdaC6lScdcZpT10o6L07YDBIj3Gq3RIp5uKOuiAt90iNXlypUBNzodHSowur2JLijKZkesprOSEuNOApVWTA8iOmb82oM05Uh1K5PoZHGpeq637q4mKg2h9icuX--JI8t9pnfPXnvSBfbz58uf7U3H3-eHt9ddeYtpOlMZoPl0YbKScBo7XS8JHbyQIMQy86GCUHENAztCPHqTUMZGcH1P0ErB1Ze0HebLp19e-neqOaq62hjlRcCBD9IHuoqHcbyqSYc0KrTD1_3bgk7bxioNYA1Kz-xqLWWNQWS-V3T_hLqmamx_9gXm1MrCY8OEwqG7cGM7lUnVZTdP_U-A3MyLRO
CitedBy_id crossref_primary_10_1016_j_tafmec_2023_104218
crossref_primary_10_1109_ACCESS_2022_3170038
crossref_primary_10_1080_23311916_2024_2316458
crossref_primary_10_1007_s00366_020_01003_0
crossref_primary_10_1016_j_resourpol_2022_103087
crossref_primary_10_1016_j_resourpol_2021_102195
crossref_primary_10_1007_s41939_023_00220_6
crossref_primary_10_1016_j_irbm_2022_100748
crossref_primary_10_1109_ACCESS_2023_3262167
crossref_primary_10_1007_s00366_021_01459_8
crossref_primary_10_1007_s10462_023_10500_9
crossref_primary_10_1515_phys_2021_0072
crossref_primary_10_1016_j_jrmge_2021_07_005
crossref_primary_10_1109_ACCESS_2020_3010376
crossref_primary_10_3390_en14144079
crossref_primary_10_1002_cpe_7579
crossref_primary_10_1007_s40808_022_01637_7
crossref_primary_10_1108_JEIM_07_2022_0247
crossref_primary_10_1142_S0219876222500657
crossref_primary_10_3390_w15122222
crossref_primary_10_1038_s41598_020_66904_y
crossref_primary_10_3390_math9091041
crossref_primary_10_3390_min11060601
crossref_primary_10_1007_s11053_020_09727_y
crossref_primary_10_1016_j_tust_2020_103517
crossref_primary_10_1007_s42729_023_01598_5
crossref_primary_10_1155_2022_7104750
crossref_primary_10_1016_j_jenvman_2021_112808
crossref_primary_10_3390_mining5010005
crossref_primary_10_1007_s11053_020_09766_5
crossref_primary_10_5937_JMMA2401051S
crossref_primary_10_1016_j_energy_2021_119758
crossref_primary_10_1007_s00366_020_01272_9
crossref_primary_10_1007_s00521_020_05197_8
crossref_primary_10_1016_j_engappai_2021_104408
crossref_primary_10_1007_s42107_023_00969_8
crossref_primary_10_1080_09537287_2024_2320790
crossref_primary_10_1016_j_istruc_2023_01_059
crossref_primary_10_1016_j_jclepro_2021_126871
crossref_primary_10_1016_j_asoc_2022_109395
crossref_primary_10_1109_ACCESS_2021_3095335
crossref_primary_10_1016_j_eij_2023_03_004
crossref_primary_10_21605_cukurovaumfd_1514409
crossref_primary_10_1016_j_measurement_2021_110552
crossref_primary_10_1007_s11053_024_10445_y
crossref_primary_10_1007_s11440_022_01616_3
crossref_primary_10_1016_j_gsf_2020_11_005
crossref_primary_10_1038_s41467_024_51661_7
crossref_primary_10_1080_09537325_2021_1883583
crossref_primary_10_1007_s10064_025_04178_2
crossref_primary_10_1088_1361_6501_acc756
crossref_primary_10_1080_17480930_2024_2362579
crossref_primary_10_1016_j_jclepro_2021_127672
crossref_primary_10_1016_j_asoc_2024_112077
crossref_primary_10_1007_s00477_023_02429_w
crossref_primary_10_1016_j_swevo_2024_101522
crossref_primary_10_1007_s13563_025_00495_w
crossref_primary_10_1007_s11771_021_4794_7
crossref_primary_10_1016_j_resourpol_2021_102189
crossref_primary_10_32604_cmes_2024_048398
crossref_primary_10_1016_j_resourpol_2021_102300
Cites_doi 10.1007/s00500-016-2442-1
10.1076/ijsm.16.2.122.3399
10.1016/j.jclepro.2019.02.243
10.1016/j.resourpol.2019.02.014
10.1139/t99-038
10.1016/j.resourpol.2015.10.003
10.17159/2411-9717/2015/v115n8a17
10.1007/s42452-018-0136-2
10.1016/j.ijmst.2016.09.015
10.1016/j.tust.2011.08.006
10.1115/1.2137750
10.1016/j.asoc.2015.11.038
10.1111/j.0033-0124.2004.05603009.x
10.1016/j.jclepro.2004.05.006
10.3390/s20010132
10.1080/00137919708903174
10.1080/19648189.2016.1246693
10.1016/j.resourpol.2019.101414
10.1016/j.resourpol.2013.09.008
10.1016/j.resourpol.2018.12.013
10.1016/j.specom.2017.11.003
10.1016/j.ecolmodel.2004.03.013
10.1016/j.resourpol.2011.11.001
10.1016/S0304-3800(02)00064-9
10.1016/j.ejor.2010.05.031
10.1016/0167-8191(90)90086-O
10.1080/17480930.2017.1352058
10.1016/j.csda.2003.10.021
10.1016/j.asoc.2018.10.007
10.1177/1059712307082080
10.1016/j.resourpol.2004.06.002
10.1111/j.1835-2561.2010.00119.x
10.1016/j.ejor.2005.12.035
10.1016/j.resourpol.2018.10.008
10.1016/j.ijforecast.2011.01.006
10.3390/e21030305
10.1016/j.neunet.2011.05.015
10.1016/j.resourpol.2018.12.001
10.1038/s41524-018-0081-z
10.1080/15230406.2016.1274237
10.1179/1743286312Y.0000000011
10.1007/s12599-019-00595-2
10.1016/j.resourpol.2016.08.009
10.1016/S0167-739X(00)00042-X
10.1111/dpr.12231
10.1007/s00500-018-3253-3
10.1109/JSEN.2018.2814839
10.3390/app9214554
10.1016/j.neunet.2019.04.024
10.1080/0951192X.2011.596281
10.1016/j.prostr.2019.08.123
10.1038/s41386-018-0247-x
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Jun 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jun 2020
DBID AAYXX
CITATION
7TA
7TQ
8BJ
8FD
DHY
DON
FQK
JBE
JG9
DOI 10.1016/j.resourpol.2020.101604
DatabaseName CrossRef
Materials Business File
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Materials Business File
PAIS International
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-7641
ExternalDocumentID 10_1016_j_resourpol_2020_101604
S0301420719307706
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3R3
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACLVX
ACRLP
ACROA
ACSBN
ADBBV
ADEZE
ADFHU
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
ATOGT
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BLECG
BLXMC
BNTGB
BPUDD
BULVW
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HMY
HVGLF
HZ~
IHE
IMUCA
IXIXF
J1W
JARJE
KCYFY
KOM
LY5
LY6
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSE
SSF
SSJ
SSO
SSR
SSS
SSZ
T5K
UHS
UNMZH
WH7
WUQ
YK3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TA
7TQ
8BJ
8FD
AGCQF
AGRNS
BNPGV
DHY
DON
FQK
JBE
JG9
SSH
ID FETCH-LOGICAL-c376t-ca295cac66d40bff6c2b2fdf00998470b62004081efb2ed3c1067f9ea8d013b13
IEDL.DBID .~1
ISSN 0301-4207
IngestDate Sat Jul 26 00:32:16 EDT 2025
Thu Oct 09 00:18:51 EDT 2025
Thu Apr 24 22:54:25 EDT 2025
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Project decision making
Deep neural network
Open-pit optimization-strategies
AI in resources policy
ACO-DNN
Mining capital cost optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-ca295cac66d40bff6c2b2fdf00998470b62004081efb2ed3c1067f9ea8d013b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6122-8314
PQID 2440489680
PQPubID 2037026
ParticipantIDs proquest_journals_2440489680
crossref_citationtrail_10_1016_j_resourpol_2020_101604
crossref_primary_10_1016_j_resourpol_2020_101604
elsevier_sciencedirect_doi_10_1016_j_resourpol_2020_101604
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Resources policy
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Dorigo, Stützle (bib27) 2019
Maronidis, Bolis, Tefas, Pitas (bib52) 2011; 24
Hustrulid, Kuchta, Martin (bib42) 2013
Whitley, Starkweather, Bogart (bib93) 1990; 14
Castle (bib17) 1985
Ferguson, Clinch, Kean (bib32) 2011; 21
Dehghani, Ataee-pour (bib22) 2012; 37
Nguyen, Bui (bib58) 2018
Nguyen, Bui, Bui, Mai (bib59) 2018
Noakes, Lanz (bib66) 1993
Loterman, Brown, Martens, Mues, Baesens (bib51) 2012; 28
Nguyen, Bui, Tran, Le, Do, Hoa (bib61) 2018; 1
Bennet (bib9) 1996
Long (bib49) 2011
Pytel, Britos, García-Martínez (bib78) 2013
Alameer, Elaziz, Ewees, Ye, Jianhua (bib2) 2019; 61
Mikolov, Karafiát, Burget, Černocký, Khudanpur (bib53) 2010
Souza, Coelho, Ribas, Santos, Merschmann (bib86) 2010; 207
Cuevas, Febrero, Fraiman (bib19) 2004; 47
Asad, Dimitrakopoulos (bib5) 2013; 38
Dellermann, Ebel, Söllner, Leimeister (bib23) 2019; 61
Dagdelen (bib20) 2001
Fan, Wang, Li (bib31) 2016; 50
Mirjalili (bib54) 2019
Long, Singer (bib50) 2001
Asteris, Kolovos, Douvika, Roinos (bib6) 2016; 20
Nguyen, Bui, Nguyen-Thoi, Ragam, Moayedi (bib60) 2019; 9
Olden, Jackson (bib73) 2002; 154
Armaghani, Hatzigeorgiou, Karamani, Skentou, Zoumpoulaki, Asteris (bib4) 2019; 17
Berthold, Hand (bib10) 2003
Koopialipoor, Armaghani, Hedayat, Marto, Gordan (bib44) 2019; 23
Lacey, Taylor, Areibi (bib45) 2018
Lawrence, Giles, Tsoi (bib46) 1997
Nguyen, Moayedi, Foong, Al Najjar, Jusoh, Rashid, Jamali (bib64) 2019
Rendu (bib80) 2002; 16
Ben-Awuah, Richter, Elkington, Pourrahimian (bib8) 2016; 26
Li, Mao, Li, Wu, Meng (bib48) 2018; 96
Nourali, Osanloo (bib67) 2018; 62
Sayadi, Lashgari, Paraszczak (bib82) 2012; 27
Shang, Nguyen, Bui, Tran, Moayedi (bib84) 2019
Karsznia, Weibel (bib43) 2018; 45
Darling (bib21) 2011
Dorigo, Bonabeau, Theraulaz (bib25) 2000; 16
Camm (bib16) 1992
Guo, Nguyen, Vu, Bui (bib37) 2019
Mular (bib57) 1982
Collier, Ireland (bib18) 2018; 36
O'Hara (bib72) 1980
Nguyen, Drebenstedt, Bui, Bui (bib63) 2019
Ramazan (bib79) 2007; 177
Gypton (bib38) 2002; 203
Cairns, Shinkuma (bib15) 2003; 29
Phoon, Kulhawy (bib77) 1999; 36
Stebbins (bib87) 1987
Zhang, Ling (bib94) 2018; 4
Nourali, Osanloo (bib68) 2018
Stratigopoulos, Mir, Makris (bib88) 2009
Hassanpour, Tomita, DeLise, Crosier, Marsch (bib40) 2019; 44
Pasini (bib75) 2015; 7
Ahmadi, Bazzazi (bib1) 2019; 60
Godoy, Dimitrakopoulos (bib35) 2004; 316
Mohutsiwa, Musingwini (bib56) 2015; 115
Dwivedi, Ramakrishnan, Reddy, Patel, Ozel, Onal (bib29) 2018; 18
Lee, Sarwar, Roy (bib47) 2019
Pedrycz, Chen (bib76) 2014
Wang, Zhang, Wang, Lim, Ghadimi (bib90) 2019; 63
Franco-Sepúlveda, Del Rio-Cuervo, Pachón-Hernández (bib33) 2019; 60
Huang, Newnes, Parry (bib41) 2012; 25
Nourali, Osanloo (bib69) 2019; 62
Niazi, Dai, Balabani, Seneviratne (bib65) 2006; 128
Smith, Mason (bib85) 1997; 42
Bui, Choi, Atrushkevich, Nguyen, Tran, Long, Hoang (bib14) 2019
García, Kristjanpoller (bib34) 2019; 74
Mohamed, Dahl, Hinton (bib55) 2009
Duckworth, John (bib28) 2016
Olden, Joy, Death (bib74) 2004; 178
Wheeler (bib92) 2019; 33
Bouwmans, Javed, Sultana, Jung (bib12) 2019; 117
Goodfellow, Dimitrakopoulos (bib36) 2016; 40
O'Regan, Moles (bib71) 2006; 14
Aznar-Sánchez, Velasco-Muñoz, Belmonte-Ureña, Manzano-Agugliaro (bib7) 2019; 221
Bluszcz, Kijewska (bib11) 2016; 61
Haferlach, Wessnitzer, Mangan, Webb (bib39) 2007; 15
Thomas (bib89) 2001
Nguyen, Choi, Bui, Nguyen-Thoi (bib62) 2020; 20
Deng, Hinton, Kingsbury (bib24) 2013
Dorigo, Di Caro (bib26) 1999
Wellmer, Dalheimer, Wagner (bib91) 2007
Aljarah, Faris, Mirjalili (bib3) 2018; 22
Shafiee, Topal (bib83) 2012; 121
Sánchez, Krzemień, Fernández, Rodríguez, Lasheras, de Cos Juez (bib81) 2015; 46
Bridge (bib13) 2004; 56
Elola, Aramendi, Irusta, Picón, Alonso, Owens, Idris (bib30) 2019; 21
O'Hara (bib70) 1987
Loterman (10.1016/j.resourpol.2020.101604_bib51) 2012; 28
O'Regan (10.1016/j.resourpol.2020.101604_bib71) 2006; 14
Stebbins (10.1016/j.resourpol.2020.101604_bib87) 1987
Ferguson (10.1016/j.resourpol.2020.101604_bib32) 2011; 21
Lacey (10.1016/j.resourpol.2020.101604_bib45) 2018
Elola (10.1016/j.resourpol.2020.101604_bib30) 2019; 21
Nguyen (10.1016/j.resourpol.2020.101604_bib63) 2019
Dorigo (10.1016/j.resourpol.2020.101604_bib27) 2019
Olden (10.1016/j.resourpol.2020.101604_bib74) 2004; 178
Bouwmans (10.1016/j.resourpol.2020.101604_bib12) 2019; 117
Rendu (10.1016/j.resourpol.2020.101604_bib80) 2002; 16
Thomas (10.1016/j.resourpol.2020.101604_bib89) 2001
Bui (10.1016/j.resourpol.2020.101604_bib14) 2019
Aznar-Sánchez (10.1016/j.resourpol.2020.101604_bib7) 2019; 221
Dorigo (10.1016/j.resourpol.2020.101604_bib26) 1999
Berthold (10.1016/j.resourpol.2020.101604_bib10) 2003
Nguyen (10.1016/j.resourpol.2020.101604_bib61) 2018; 1
Phoon (10.1016/j.resourpol.2020.101604_bib77) 1999; 36
Pytel (10.1016/j.resourpol.2020.101604_bib78) 2013
Asteris (10.1016/j.resourpol.2020.101604_bib6) 2016; 20
Karsznia (10.1016/j.resourpol.2020.101604_bib43) 2018; 45
Nguyen (10.1016/j.resourpol.2020.101604_bib59) 2018
Noakes (10.1016/j.resourpol.2020.101604_bib66) 1993
Nourali (10.1016/j.resourpol.2020.101604_bib69) 2019; 62
Cairns (10.1016/j.resourpol.2020.101604_bib15) 2003; 29
Darling (10.1016/j.resourpol.2020.101604_bib21) 2011
Wellmer (10.1016/j.resourpol.2020.101604_bib91) 2007
Souza (10.1016/j.resourpol.2020.101604_bib86) 2010; 207
Maronidis (10.1016/j.resourpol.2020.101604_bib52) 2011; 24
Pedrycz (10.1016/j.resourpol.2020.101604_bib76) 2014
Koopialipoor (10.1016/j.resourpol.2020.101604_bib44) 2019; 23
Nourali (10.1016/j.resourpol.2020.101604_bib68) 2018
García (10.1016/j.resourpol.2020.101604_bib34) 2019; 74
Godoy (10.1016/j.resourpol.2020.101604_bib35) 2004; 316
Aljarah (10.1016/j.resourpol.2020.101604_bib3) 2018; 22
Long (10.1016/j.resourpol.2020.101604_bib49) 2011
Mohamed (10.1016/j.resourpol.2020.101604_bib55) 2009
Asad (10.1016/j.resourpol.2020.101604_bib5) 2013; 38
Niazi (10.1016/j.resourpol.2020.101604_bib65) 2006; 128
O'Hara (10.1016/j.resourpol.2020.101604_bib72) 1980
Dellermann (10.1016/j.resourpol.2020.101604_bib23) 2019; 61
Li (10.1016/j.resourpol.2020.101604_bib48) 2018; 96
Pasini (10.1016/j.resourpol.2020.101604_bib75) 2015; 7
Mirjalili (10.1016/j.resourpol.2020.101604_bib54) 2019
Bluszcz (10.1016/j.resourpol.2020.101604_bib11) 2016; 61
Gypton (10.1016/j.resourpol.2020.101604_bib38) 2002; 203
Ahmadi (10.1016/j.resourpol.2020.101604_bib1) 2019; 60
Castle (10.1016/j.resourpol.2020.101604_bib17) 1985
Hassanpour (10.1016/j.resourpol.2020.101604_bib40) 2019; 44
Nguyen (10.1016/j.resourpol.2020.101604_bib58) 2018
Smith (10.1016/j.resourpol.2020.101604_bib85) 1997; 42
Mular (10.1016/j.resourpol.2020.101604_bib57) 1982
O'Hara (10.1016/j.resourpol.2020.101604_bib70) 1987
Dagdelen (10.1016/j.resourpol.2020.101604_bib20) 2001
Ben-Awuah (10.1016/j.resourpol.2020.101604_bib8) 2016; 26
Lee (10.1016/j.resourpol.2020.101604_bib47) 2019
Bridge (10.1016/j.resourpol.2020.101604_bib13) 2004; 56
Dehghani (10.1016/j.resourpol.2020.101604_bib22) 2012; 37
Collier (10.1016/j.resourpol.2020.101604_bib18) 2018; 36
Haferlach (10.1016/j.resourpol.2020.101604_bib39) 2007; 15
Hustrulid (10.1016/j.resourpol.2020.101604_bib42) 2013
Deng (10.1016/j.resourpol.2020.101604_bib24) 2013
Nguyen (10.1016/j.resourpol.2020.101604_bib64) 2019
Olden (10.1016/j.resourpol.2020.101604_bib73) 2002; 154
Franco-Sepúlveda (10.1016/j.resourpol.2020.101604_bib33) 2019; 60
Goodfellow (10.1016/j.resourpol.2020.101604_bib36) 2016; 40
Alameer (10.1016/j.resourpol.2020.101604_bib2) 2019; 61
Armaghani (10.1016/j.resourpol.2020.101604_bib4) 2019; 17
Cuevas (10.1016/j.resourpol.2020.101604_bib19) 2004; 47
Nguyen (10.1016/j.resourpol.2020.101604_bib60) 2019; 9
Huang (10.1016/j.resourpol.2020.101604_bib41) 2012; 25
Camm (10.1016/j.resourpol.2020.101604_bib16) 1992
Long (10.1016/j.resourpol.2020.101604_bib50) 2001
Dorigo (10.1016/j.resourpol.2020.101604_bib25) 2000; 16
Fan (10.1016/j.resourpol.2020.101604_bib31) 2016; 50
Whitley (10.1016/j.resourpol.2020.101604_bib93) 1990; 14
Duckworth (10.1016/j.resourpol.2020.101604_bib28) 2016
Lawrence (10.1016/j.resourpol.2020.101604_bib46) 1997
Mohutsiwa (10.1016/j.resourpol.2020.101604_bib56) 2015; 115
Stratigopoulos (10.1016/j.resourpol.2020.101604_bib88) 2009
Wheeler (10.1016/j.resourpol.2020.101604_bib92) 2019; 33
Nguyen (10.1016/j.resourpol.2020.101604_bib62) 2020; 20
Dwivedi (10.1016/j.resourpol.2020.101604_bib29) 2018; 18
Guo (10.1016/j.resourpol.2020.101604_bib37) 2019
Ramazan (10.1016/j.resourpol.2020.101604_bib79) 2007; 177
Mikolov (10.1016/j.resourpol.2020.101604_bib53) 2010
Sánchez (10.1016/j.resourpol.2020.101604_bib81) 2015; 46
Sayadi (10.1016/j.resourpol.2020.101604_bib82) 2012; 27
Bennet (10.1016/j.resourpol.2020.101604_bib9) 1996
Nourali (10.1016/j.resourpol.2020.101604_bib67) 2018; 62
Zhang (10.1016/j.resourpol.2020.101604_bib94) 2018; 4
Shafiee (10.1016/j.resourpol.2020.101604_bib83) 2012; 121
Shang (10.1016/j.resourpol.2020.101604_bib84) 2019
Wang (10.1016/j.resourpol.2020.101604_bib90) 2019; 63
References_xml – volume: 221
  start-page: 38
  year: 2019
  end-page: 54
  ident: bib7
  article-title: Innovation and technology for sustainable mining activity: a worldwide research assessment
  publication-title: J. Clean. Prod.
– volume: 60
  start-page: 125
  year: 2019
  end-page: 133
  ident: bib33
  article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining
  publication-title: Resour. Pol.
– year: 2007
  ident: bib91
  article-title: Economic Evaluations in Exploration
– volume: 74
  start-page: 466
  year: 2019
  end-page: 478
  ident: bib34
  article-title: An adaptive forecasting approach for copper price volatility through hybrid and non-hybrid models
  publication-title: Appl. Soft Comput.
– volume: 37
  start-page: 109
  year: 2012
  end-page: 117
  ident: bib22
  article-title: Determination of the effect of operating cost uncertainty on mining project evaluation
  publication-title: Resour. Pol.
– volume: 21
  start-page: 44
  year: 2011
  end-page: 53
  ident: bib32
  article-title: Predicting the failure of developmental gold mining projects
  publication-title: Aust. Account. Rev.
– start-page: 1668
  year: 2009
  end-page: 1673
  ident: bib88
  article-title: Enrichment of Limited Training Sets in Machine-Learning-Based Analog/RF Test, 2009 Design, Automation & Test in Europe Conference & Exhibition
– year: 2001
  ident: bib89
  article-title: Project Development Costs—Estimates versus Reality
– volume: 61
  start-page: 637
  year: 2019
  end-page: 643
  ident: bib23
  article-title: Hybrid intelligence
  publication-title: Bus. Inf. Syst. Eng.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib94
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: NPJ Comput. Mater.
– volume: 44
  start-page: 487
  year: 2019
  ident: bib40
  article-title: Identifying substance use risk based on deep neural networks and Instagram social media data
  publication-title: Neuropsychopharmacology
– start-page: 33
  year: 2019
  end-page: 42
  ident: bib54
  article-title: Ant Colony Optimisation, Evolutionary Algorithms and Neural Networks: Theory and Applications
– volume: 154
  start-page: 135
  year: 2002
  end-page: 150
  ident: bib73
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol. Model.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib3
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Computing
– year: 2019
  ident: bib47
  article-title: Enabling Spike-Based Backpropagation in State-Of-The-Art Deep Neural Network Architectures
– volume: 128
  start-page: 563
  year: 2006
  end-page: 575
  ident: bib65
  article-title: Product cost estimation: technique classification and methodology review
  publication-title: J. Manuf. Sci. Eng.
– volume: 26
  start-page: 1065
  year: 2016
  end-page: 1071
  ident: bib8
  article-title: Strategic mining options optimization: open pit mining, underground mining or both
  publication-title: Int. J. Min. Sci. Technol.
– year: 2003
  ident: bib10
  article-title: Intelligent Data Analysis
– year: 2019
  ident: bib84
  article-title: A Novel Artificial Intelligence Approach to Predict Blast-Induced Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network
– start-page: 311
  year: 2019
  end-page: 351
  ident: bib27
  article-title: Ant colony optimization: overview and recent advances
  publication-title: Handbook of Metaheuristics
– volume: 1
  start-page: 125
  year: 2018
  ident: bib61
  article-title: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam
  publication-title: SN Appl. Sci.
– year: 2011
  ident: bib21
  article-title: SME Mining Engineering Handbook
– volume: 45
  start-page: 111
  year: 2018
  end-page: 127
  ident: bib43
  article-title: Improving settlement selection for small-scale maps using data enrichment and machine learning
  publication-title: Cartogr. Geogr. Inf. Sci.
– volume: 177
  start-page: 1153
  year: 2007
  end-page: 1166
  ident: bib79
  article-title: The new fundamental tree algorithm for production scheduling of open pit mines
  publication-title: Eur. J. Oper. Res.
– start-page: 117
  year: 2001
  end-page: 121
  ident: bib20
  article-title: Open Pit Optimization-Strategies for Improving Economics of Mining Projects through Mine Planning, 17th International Mining Congress and Exhibition of Turkey
– year: 2018
  ident: bib45
  article-title: Stochastic Layer-wise Precision in Deep Neural Networks
– volume: 36
  start-page: 612
  year: 1999
  end-page: 624
  ident: bib77
  article-title: Characterization of geotechnical variability
  publication-title: Can. Geotech. J.
– start-page: 1
  year: 2018
  end-page: 15
  ident: bib58
  article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest
  publication-title: Nat. Resour. Res.
– volume: 16
  start-page: 122
  year: 2002
  end-page: 133
  ident: bib80
  article-title: Geostatistical simulations for risk assessment and decision making: the mining industry perspective
  publication-title: Int. J. Surf. Min. Reclamat. Environ.
– volume: 61
  start-page: 250
  year: 2019
  end-page: 260
  ident: bib2
  article-title: Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm
  publication-title: Resour. Pol.
– volume: 20
  start-page: s102
  year: 2016
  end-page: s122
  ident: bib6
  article-title: Prediction of self-compacting concrete strength using artificial neural networks
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 117
  start-page: 8
  year: 2019
  end-page: 66
  ident: bib12
  article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation
  publication-title: Neural Network.
– year: 1992
  ident: bib16
  article-title: The Development of Cost Models Using Regression Analysis
– volume: 56
  start-page: 406
  year: 2004
  end-page: 421
  ident: bib13
  article-title: Mapping the bonanza: geographies of mining investment in an era of neoliberal reform
  publication-title: Prof. Geogr.
– start-page: 123
  year: 1987
  end-page: 137
  ident: bib70
  article-title: Analysis of Risk in Mining Projects, Selected Readings in Mineral Economics
– year: 1985
  ident: bib17
  article-title: Feasibility Studies and Other Pre-project Estimates: How Reliable Are They. Proceedings of the Finance for the Minerals Industry
– start-page: 39
  year: 2009
  ident: bib55
  article-title: Deep Belief Networks for Phone Recognition, Nips Workshop on Deep Learning for Speech Recognition and Related Applications. Vancouver, Canada
– volume: 42
  start-page: 137
  year: 1997
  end-page: 161
  ident: bib85
  article-title: Cost estimation predictive modeling: regression versus neural network
  publication-title: Eng. Econ.
– volume: 16
  start-page: 851
  year: 2000
  end-page: 871
  ident: bib25
  article-title: Ant algorithms and stigmergy
  publication-title: Future Generat. Comput. Syst.
– year: 1993
  ident: bib66
  article-title: Cost Estimation Handbook for the Australian Mining Industr
– volume: 36
  start-page: 51
  year: 2018
  end-page: 68
  ident: bib18
  article-title: Shared‐use mining infrastructure: why it matters and how to achieve it
  publication-title: Dev. Pol. Rev.
– volume: 60
  start-page: 72
  year: 2019
  end-page: 82
  ident: bib1
  article-title: Cutoff grades optimization in open pit mines using meta-heuristic algorithms
  publication-title: Resour. Pol.
– year: 2019
  ident: bib14
  article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system
  publication-title: Nat. Resour. Res.
– volume: 207
  start-page: 1041
  year: 2010
  end-page: 1051
  ident: bib86
  article-title: A hybrid heuristic algorithm for the open-pit-mining operational planning problem
  publication-title: Eur. J. Oper. Res.
– volume: 63
  start-page: 101414
  year: 2019
  ident: bib90
  article-title: Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques
  publication-title: Resour. Pol.
– volume: 17
  start-page: 924
  year: 2019
  end-page: 933
  ident: bib4
  article-title: Soft computing-based techniques for concrete beams shear strength
  publication-title: Procedia Structural Integrity
– volume: 46
  start-page: 177
  year: 2015
  end-page: 190
  ident: bib81
  article-title: Investment in new tungsten mining projects
  publication-title: Resour. Pol.
– volume: 50
  start-page: 86
  year: 2016
  end-page: 92
  ident: bib31
  article-title: Predicting chaotic coal prices using a multi-layer perceptron network model
  publication-title: Resour. Pol.
– year: 2010
  ident: bib53
  article-title: Recurrent Neural Network Based Language Model, Eleventh Annual Conference of the International Speech Communication Association
– volume: 18
  start-page: 3852
  year: 2018
  end-page: 3863
  ident: bib29
  article-title: Design, modeling, and validation of a soft magnetic 3-D force sensor
  publication-title: IEEE Sensor. J.
– volume: 25
  start-page: 417
  year: 2012
  end-page: 431
  ident: bib41
  article-title: The adaptation of product cost estimation techniques to estimate the cost of service
  publication-title: Int. J. Comput. Integrated Manuf.
– year: 2013
  ident: bib42
  article-title: Open Pit Mine Planning and Design, Two Volume Set & CD-ROM Pack
– volume: 7
  start-page: 953
  year: 2015
  ident: bib75
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J. Thorac. Dis.
– year: 2016
  ident: bib28
  article-title: Copper Mine Project Profiles - 2016 Edition
– volume: 47
  start-page: 111
  year: 2004
  end-page: 122
  ident: bib19
  article-title: An anova test for functional data
  publication-title: Comput. Stat. Data Anal.
– start-page: 8599
  year: 2013
  end-page: 8603
  ident: bib24
  article-title: New Types of Deep Neural Network Learning for Speech Recognition and Related Applications: an Overview, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 21
  start-page: 305
  year: 2019
  ident: bib30
  article-title: Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest
  publication-title: Entropy
– volume: 62
  start-page: 527
  year: 2018
  end-page: 540
  ident: bib67
  article-title: Mining capital cost estimation using Support Vector Regression (SVR)
  publication-title: Resour. Pol.
– volume: 38
  start-page: 591
  year: 2013
  end-page: 597
  ident: bib5
  article-title: A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams
  publication-title: Resour. Pol.
– start-page: 1470
  year: 1999
  end-page: 1477
  ident: bib26
  article-title: Ant Colony Optimization: a New Meta-Heuristic, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)
– volume: 316
  year: 2004
  ident: bib35
  article-title: Managing risk and waste mining in long-term production scheduling of open-pit mines
  publication-title: SME Trans.
– volume: 28
  start-page: 161
  year: 2012
  end-page: 170
  ident: bib51
  article-title: Benchmarking regression algorithms for loss given default modeling
  publication-title: Int. J. Forecast.
– year: 1980
  ident: bib72
  article-title: A Parametric Cost Estimation Method for Open Pit Mines
– start-page: 101474
  year: 2019
  ident: bib37
  article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach
  publication-title: Resour. Pol.
– start-page: 1
  year: 2018
  end-page: 13
  ident: bib68
  article-title: A regression-tree-based model for mining capital cost estimation
  publication-title: Int. J. Min. Reclamat. Environ.
– volume: 178
  start-page: 389
  year: 2004
  end-page: 397
  ident: bib74
  article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
  publication-title: Ecol. Model.
– volume: 14
  start-page: 347
  year: 1990
  end-page: 361
  ident: bib93
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput.
– volume: 15
  start-page: 273
  year: 2007
  end-page: 287
  ident: bib39
  article-title: Evolving a neural model of insect path integration
  publication-title: Adapt. Behav.
– start-page: 540
  year: 1997
  end-page: 545
  ident: bib46
  article-title: Lessons in Neural Network Training: Overfitting May Be Harder than Expected
– volume: 20
  start-page: 132
  year: 2020
  ident: bib62
  article-title: Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms
  publication-title: Sensors
– volume: 14
  start-page: 689
  year: 2006
  end-page: 707
  ident: bib71
  article-title: Using system dynamics to model the interaction between environmental and economic factors in the mining industry
  publication-title: J. Clean. Prod.
– start-page: 147
  year: 2011
  end-page: 151
  ident: bib49
  article-title: Statistical Methods of Estimating Mining Costs, SME Annual Meeting and Exhibit and CMA 113th National Western Mining Conference 2011
– volume: 115
  start-page: 789
  year: 2015
  end-page: 797
  ident: bib56
  article-title: Parametric estimation of capital costs for establishing a coal mine: South Africa case study
  publication-title: J. S. Afr. Inst. Min. Metall
– year: 2014
  ident: bib76
  article-title: Information Granularity, Big Data, and Computational Intelligence
– start-page: 1
  year: 2018
  end-page: 17
  ident: bib59
  article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam
  publication-title: Neural Comput. Appl.
– volume: 33
  start-page: 118
  year: 2019
  end-page: 132
  ident: bib92
  article-title: Development of the rail conveyor technology
  publication-title: Int. J. Min. Reclamat. Environ.
– year: 1987
  ident: bib87
  article-title: Cost Estimation Handbook for Small Placer Mines
– volume: 24
  start-page: 814
  year: 2011
  end-page: 823
  ident: bib52
  article-title: Improving subspace learning for facial expression recognition using person dependent and geometrically enriched training sets
  publication-title: Neural Network.
– year: 2019
  ident: bib63
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat. Resour. Res.
– volume: 27
  start-page: 133
  year: 2012
  end-page: 141
  ident: bib82
  article-title: Hard-rock LHD cost estimation using single and multiple regressions based on principal component analysis
  publication-title: Tunn. Undergr. Space Technol.
– volume: 62
  start-page: 527
  year: 2019
  end-page: 540
  ident: bib69
  article-title: Mining capital cost estimation using Support Vector Regression (SVR)
  publication-title: Resour. Pol.
– volume: 61
  start-page: 109
  year: 2016
  end-page: 123
  ident: bib11
  article-title: Factors creating economic value added of mining company
  publication-title: Arch. Min. Sci.
– volume: 96
  start-page: 28
  year: 2018
  end-page: 36
  ident: bib48
  article-title: Automatic lexical stress and pitch accent detection for L2 English speech using multi-distribution deep neural networks
  publication-title: Speech Commun.
– start-page: 58
  year: 2013
  end-page: 74
  ident: bib78
  article-title: A Proposal of Effort Estimation Method for Information Mining Projects Oriented to SMEs, Enterprise Information Systems of the Future
– volume: 9
  start-page: 4554
  year: 2019
  ident: bib60
  article-title: Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model
  publication-title: Appl. Sci.
– volume: 23
  start-page: 5913
  year: 2019
  end-page: 5929
  ident: bib44
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Comput.
– volume: 203
  start-page: 40
  year: 2002
  ident: bib38
  article-title: How have we done?
  publication-title: Eng. Min. J.
– volume: 29
  start-page: 75
  year: 2003
  end-page: 81
  ident: bib15
  article-title: The choice of the cutoff grade in mining
  publication-title: Resour. Pol.
– year: 1982
  ident: bib57
  article-title: Mining and Mineral Processing Equipment Costs and Preliminary Capital Cost Estimations
– volume: 121
  start-page: 109
  year: 2012
  end-page: 116
  ident: bib83
  article-title: New approach for estimating total mining costs in surface coal mines
  publication-title: Min. Technol.
– year: 1996
  ident: bib9
  article-title: Technical Due Diligence Requirements for Mining Project Finance, Randol at Vancouver 1996 85th Annual Global Mining Opportunities and 2nd Annual Copper Hydromet Rountable, Conference Proceedings
– volume: 40
  start-page: 292
  year: 2016
  end-page: 304
  ident: bib36
  article-title: Global optimization of open pit mining complexes with uncertainty
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: bib64
  article-title: Optimizing ANN models with PSO for predicting short building seismic response
  publication-title: Eng. Comput.
– year: 2001
  ident: bib50
  article-title: A Simplified Economic Filter for Open-Pit Mining and Heap-Leach Recovery of Copper in the United States
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib3
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2442-1
– volume: 16
  start-page: 122
  year: 2002
  ident: 10.1016/j.resourpol.2020.101604_bib80
  article-title: Geostatistical simulations for risk assessment and decision making: the mining industry perspective
  publication-title: Int. J. Surf. Min. Reclamat. Environ.
  doi: 10.1076/ijsm.16.2.122.3399
– volume: 221
  start-page: 38
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib7
  article-title: Innovation and technology for sustainable mining activity: a worldwide research assessment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.02.243
– year: 1993
  ident: 10.1016/j.resourpol.2020.101604_bib66
– volume: 61
  start-page: 250
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib2
  article-title: Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2019.02.014
– volume: 36
  start-page: 612
  year: 1999
  ident: 10.1016/j.resourpol.2020.101604_bib77
  article-title: Characterization of geotechnical variability
  publication-title: Can. Geotech. J.
  doi: 10.1139/t99-038
– volume: 46
  start-page: 177
  year: 2015
  ident: 10.1016/j.resourpol.2020.101604_bib81
  article-title: Investment in new tungsten mining projects
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2015.10.003
– volume: 115
  start-page: 789
  year: 2015
  ident: 10.1016/j.resourpol.2020.101604_bib56
  article-title: Parametric estimation of capital costs for establishing a coal mine: South Africa case study
  publication-title: J. S. Afr. Inst. Min. Metall
  doi: 10.17159/2411-9717/2015/v115n8a17
– volume: 1
  start-page: 125
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib61
  article-title: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-018-0136-2
– volume: 26
  start-page: 1065
  year: 2016
  ident: 10.1016/j.resourpol.2020.101604_bib8
  article-title: Strategic mining options optimization: open pit mining, underground mining or both
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2016.09.015
– year: 2011
  ident: 10.1016/j.resourpol.2020.101604_bib21
– volume: 27
  start-page: 133
  year: 2012
  ident: 10.1016/j.resourpol.2020.101604_bib82
  article-title: Hard-rock LHD cost estimation using single and multiple regressions based on principal component analysis
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2011.08.006
– start-page: 1668
  year: 2009
  ident: 10.1016/j.resourpol.2020.101604_bib88
– start-page: 540
  year: 1997
  ident: 10.1016/j.resourpol.2020.101604_bib46
– year: 2013
  ident: 10.1016/j.resourpol.2020.101604_bib42
– volume: 128
  start-page: 563
  year: 2006
  ident: 10.1016/j.resourpol.2020.101604_bib65
  article-title: Product cost estimation: technique classification and methodology review
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2137750
– volume: 40
  start-page: 292
  year: 2016
  ident: 10.1016/j.resourpol.2020.101604_bib36
  article-title: Global optimization of open pit mining complexes with uncertainty
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.11.038
– volume: 56
  start-page: 406
  year: 2004
  ident: 10.1016/j.resourpol.2020.101604_bib13
  article-title: Mapping the bonanza: geographies of mining investment in an era of neoliberal reform
  publication-title: Prof. Geogr.
  doi: 10.1111/j.0033-0124.2004.05603009.x
– volume: 316
  year: 2004
  ident: 10.1016/j.resourpol.2020.101604_bib35
  article-title: Managing risk and waste mining in long-term production scheduling of open-pit mines
  publication-title: SME Trans.
– volume: 14
  start-page: 689
  year: 2006
  ident: 10.1016/j.resourpol.2020.101604_bib71
  article-title: Using system dynamics to model the interaction between environmental and economic factors in the mining industry
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2004.05.006
– volume: 20
  start-page: 132
  year: 2020
  ident: 10.1016/j.resourpol.2020.101604_bib62
  article-title: Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms
  publication-title: Sensors
  doi: 10.3390/s20010132
– start-page: 1
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib68
  article-title: A regression-tree-based model for mining capital cost estimation
  publication-title: Int. J. Min. Reclamat. Environ.
– volume: 42
  start-page: 137
  year: 1997
  ident: 10.1016/j.resourpol.2020.101604_bib85
  article-title: Cost estimation predictive modeling: regression versus neural network
  publication-title: Eng. Econ.
  doi: 10.1080/00137919708903174
– year: 2001
  ident: 10.1016/j.resourpol.2020.101604_bib89
– volume: 20
  start-page: s102
  year: 2016
  ident: 10.1016/j.resourpol.2020.101604_bib6
  article-title: Prediction of self-compacting concrete strength using artificial neural networks
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2016.1246693
– start-page: 1470
  year: 1999
  ident: 10.1016/j.resourpol.2020.101604_bib26
– start-page: 101474
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib37
  article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach
  publication-title: Resour. Pol.
– year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib45
– volume: 63
  start-page: 101414
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib90
  article-title: Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2019.101414
– year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib47
– volume: 38
  start-page: 591
  year: 2013
  ident: 10.1016/j.resourpol.2020.101604_bib5
  article-title: A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2013.09.008
– volume: 60
  start-page: 125
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib33
  article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2018.12.013
– volume: 96
  start-page: 28
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib48
  article-title: Automatic lexical stress and pitch accent detection for L2 English speech using multi-distribution deep neural networks
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2017.11.003
– year: 1982
  ident: 10.1016/j.resourpol.2020.101604_bib57
– volume: 178
  start-page: 389
  year: 2004
  ident: 10.1016/j.resourpol.2020.101604_bib74
  article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.03.013
– start-page: 311
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib27
  article-title: Ant colony optimization: overview and recent advances
– year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib64
  article-title: Optimizing ANN models with PSO for predicting short building seismic response
  publication-title: Eng. Comput.
– year: 2003
  ident: 10.1016/j.resourpol.2020.101604_bib10
– start-page: 58
  year: 2013
  ident: 10.1016/j.resourpol.2020.101604_bib78
– year: 1985
  ident: 10.1016/j.resourpol.2020.101604_bib17
– volume: 37
  start-page: 109
  year: 2012
  ident: 10.1016/j.resourpol.2020.101604_bib22
  article-title: Determination of the effect of operating cost uncertainty on mining project evaluation
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2011.11.001
– volume: 154
  start-page: 135
  year: 2002
  ident: 10.1016/j.resourpol.2020.101604_bib73
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 207
  start-page: 1041
  year: 2010
  ident: 10.1016/j.resourpol.2020.101604_bib86
  article-title: A hybrid heuristic algorithm for the open-pit-mining operational planning problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.05.031
– volume: 14
  start-page: 347
  year: 1990
  ident: 10.1016/j.resourpol.2020.101604_bib93
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(90)90086-O
– start-page: 39
  year: 2009
  ident: 10.1016/j.resourpol.2020.101604_bib55
– volume: 33
  start-page: 118
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib92
  article-title: Development of the rail conveyor technology
  publication-title: Int. J. Min. Reclamat. Environ.
  doi: 10.1080/17480930.2017.1352058
– volume: 47
  start-page: 111
  year: 2004
  ident: 10.1016/j.resourpol.2020.101604_bib19
  article-title: An anova test for functional data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2003.10.021
– volume: 74
  start-page: 466
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib34
  article-title: An adaptive forecasting approach for copper price volatility through hybrid and non-hybrid models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.007
– year: 2014
  ident: 10.1016/j.resourpol.2020.101604_bib76
– year: 1996
  ident: 10.1016/j.resourpol.2020.101604_bib9
– start-page: 1
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib58
  article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest
  publication-title: Nat. Resour. Res.
– volume: 15
  start-page: 273
  year: 2007
  ident: 10.1016/j.resourpol.2020.101604_bib39
  article-title: Evolving a neural model of insect path integration
  publication-title: Adapt. Behav.
  doi: 10.1177/1059712307082080
– year: 1980
  ident: 10.1016/j.resourpol.2020.101604_bib72
– volume: 29
  start-page: 75
  year: 2003
  ident: 10.1016/j.resourpol.2020.101604_bib15
  article-title: The choice of the cutoff grade in mining
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2004.06.002
– year: 2001
  ident: 10.1016/j.resourpol.2020.101604_bib50
– volume: 21
  start-page: 44
  year: 2011
  ident: 10.1016/j.resourpol.2020.101604_bib32
  article-title: Predicting the failure of developmental gold mining projects
  publication-title: Aust. Account. Rev.
  doi: 10.1111/j.1835-2561.2010.00119.x
– start-page: 147
  year: 2011
  ident: 10.1016/j.resourpol.2020.101604_bib49
– volume: 177
  start-page: 1153
  year: 2007
  ident: 10.1016/j.resourpol.2020.101604_bib79
  article-title: The new fundamental tree algorithm for production scheduling of open pit mines
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.035
– volume: 62
  start-page: 527
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib69
  article-title: Mining capital cost estimation using Support Vector Regression (SVR)
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2018.10.008
– volume: 28
  start-page: 161
  year: 2012
  ident: 10.1016/j.resourpol.2020.101604_bib51
  article-title: Benchmarking regression algorithms for loss given default modeling
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2011.01.006
– volume: 21
  start-page: 305
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib30
  article-title: Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest
  publication-title: Entropy
  doi: 10.3390/e21030305
– year: 2010
  ident: 10.1016/j.resourpol.2020.101604_bib53
– volume: 203
  start-page: 40
  year: 2002
  ident: 10.1016/j.resourpol.2020.101604_bib38
  article-title: How have we done?
  publication-title: Eng. Min. J.
– volume: 24
  start-page: 814
  year: 2011
  ident: 10.1016/j.resourpol.2020.101604_bib52
  article-title: Improving subspace learning for facial expression recognition using person dependent and geometrically enriched training sets
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2011.05.015
– volume: 60
  start-page: 72
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib1
  article-title: Cutoff grades optimization in open pit mines using meta-heuristic algorithms
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2018.12.001
– volume: 4
  start-page: 1
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib94
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-018-0081-z
– start-page: 8599
  year: 2013
  ident: 10.1016/j.resourpol.2020.101604_bib24
– start-page: 33
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib54
– start-page: 123
  year: 1987
  ident: 10.1016/j.resourpol.2020.101604_bib70
– volume: 62
  start-page: 527
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib67
  article-title: Mining capital cost estimation using Support Vector Regression (SVR)
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2018.10.008
– year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib84
– start-page: 1
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib59
  article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam
  publication-title: Neural Comput. Appl.
– year: 1992
  ident: 10.1016/j.resourpol.2020.101604_bib16
– year: 2016
  ident: 10.1016/j.resourpol.2020.101604_bib28
– volume: 45
  start-page: 111
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib43
  article-title: Improving settlement selection for small-scale maps using data enrichment and machine learning
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1080/15230406.2016.1274237
– start-page: 117
  year: 2001
  ident: 10.1016/j.resourpol.2020.101604_bib20
– volume: 121
  start-page: 109
  year: 2012
  ident: 10.1016/j.resourpol.2020.101604_bib83
  article-title: New approach for estimating total mining costs in surface coal mines
  publication-title: Min. Technol.
  doi: 10.1179/1743286312Y.0000000011
– volume: 61
  start-page: 637
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib23
  article-title: Hybrid intelligence
  publication-title: Bus. Inf. Syst. Eng.
  doi: 10.1007/s12599-019-00595-2
– volume: 50
  start-page: 86
  year: 2016
  ident: 10.1016/j.resourpol.2020.101604_bib31
  article-title: Predicting chaotic coal prices using a multi-layer perceptron network model
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2016.08.009
– volume: 7
  start-page: 953
  year: 2015
  ident: 10.1016/j.resourpol.2020.101604_bib75
  article-title: Artificial neural networks for small dataset analysis
  publication-title: J. Thorac. Dis.
– volume: 16
  start-page: 851
  year: 2000
  ident: 10.1016/j.resourpol.2020.101604_bib25
  article-title: Ant algorithms and stigmergy
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/S0167-739X(00)00042-X
– volume: 36
  start-page: 51
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib18
  article-title: Shared‐use mining infrastructure: why it matters and how to achieve it
  publication-title: Dev. Pol. Rev.
  doi: 10.1111/dpr.12231
– volume: 23
  start-page: 5913
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib44
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3253-3
– volume: 18
  start-page: 3852
  year: 2018
  ident: 10.1016/j.resourpol.2020.101604_bib29
  article-title: Design, modeling, and validation of a soft magnetic 3-D force sensor
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2018.2814839
– volume: 9
  start-page: 4554
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib60
  article-title: Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model
  publication-title: Appl. Sci.
  doi: 10.3390/app9214554
– volume: 61
  start-page: 109
  year: 2016
  ident: 10.1016/j.resourpol.2020.101604_bib11
  article-title: Factors creating economic value added of mining company
  publication-title: Arch. Min. Sci.
– volume: 117
  start-page: 8
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib12
  article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2019.04.024
– year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib63
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat. Resour. Res.
– volume: 25
  start-page: 417
  year: 2012
  ident: 10.1016/j.resourpol.2020.101604_bib41
  article-title: The adaptation of product cost estimation techniques to estimate the cost of service
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2011.596281
– year: 1987
  ident: 10.1016/j.resourpol.2020.101604_bib87
– year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib14
  article-title: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system
  publication-title: Nat. Resour. Res.
– year: 2007
  ident: 10.1016/j.resourpol.2020.101604_bib91
– volume: 17
  start-page: 924
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib4
  article-title: Soft computing-based techniques for concrete beams shear strength
  publication-title: Procedia Structural Integrity
  doi: 10.1016/j.prostr.2019.08.123
– volume: 44
  start-page: 487
  year: 2019
  ident: 10.1016/j.resourpol.2020.101604_bib40
  article-title: Identifying substance use risk based on deep neural networks and Instagram social media data
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0247-x
SSID ssj0005786
Score 2.4797976
Snippet This study aims to propose a novel artificial intelligence model for forecasting the capital cost (CC) of open-pit mining projects with high accuracy. It is a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101604
SubjectTerms Accuracy
ACO-DNN
AI in resources policy
Algorithms
Anniversaries
Ant colony optimization
Artificial intelligence
Artificial neural networks
Capital costs
Colonies & territories
Copper
Copper mines
Deep neural network
Forecasting
Mathematical models
Mining
Mining capital cost optimization
Mining industry
Model accuracy
Neural networks
Open pit mining
Open-pit optimization-strategies
Optimization
Production
Project decision making
Title Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm
URI https://dx.doi.org/10.1016/j.resourpol.2020.101604
https://www.proquest.com/docview/2440489680
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: AKRWK
  dateStart: 19740101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvbQH1FJQoRTNodd0s3Zeyw1tQdsXqlqQuFl-BRaxyWo3HHrpj-kv7YztbBeExKGnyJEdJZnxzGd75hvG3ucpd6OicokSZZZkWrtEi1IkuJhQChdFruSU4PztrJhcZJ8v88sNNu5zYSisMtr-YNO9tY53BvFvDubT6eCnXw1wdJEj1NPS025nWUlVDD78XgvzKKtwXonLZup9L8Zr4bfI5y2dQfBwN1Zse8RDPbDV3gGdvmRbETnCcXi5V2zDNdvsxRqf4DbbPfmXtoZd47xdvmZ_Pq5yo0BB02ID6CsDfQRM13g5wdfGga4F4t9APOsAMSIY5cuLgGmXHbQ1zHxhCYgbOUug-PkrsM7NgSgysWcTAswT8pMWUIBABNnNL2jRSs1i-ieo26t2Me2uZzvs4vTkfDxJYnWGxKBR6hKj-Cg3yhSFzVJd14Xhmte2JsyJLi_VBU1ARByu1txZYYisrh45VVmEnXoodtlm0zbuDQNhCCda0g-DKlJUQtdDUZXWDnOdl2KPFb1EpInU5VRB41b2MWo3ciVKSaKUQZR7LF0NnAf2jqeHHPUil_cUUaKPeXrwQa8kMtqCpeREwVjhhEj3_-fZb9lzaoUwtQO22S3u3DsERJ0-9Bp_yJ4dj398_U7XT18mZ38BQ1MSbQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPVAOqIUioFDm0GvYrJ3Xcqt4aHleChI3y6_QRWyy2g0HLv0x_NLOxM52qSpx4JjEjpLMeOYbZ-Ybxr6nMXeDrHCREnkSJVq7SItcRBhMKIVBkcs5FThfXWfD2-T8Lr1bYkddLQylVQbb7216a63DmV74mr3JaNT72UYDHF3kAPU0J9rtD0nKc4rADn4v5Hnkhf9hiXEzDX-V5DVt98gnNf2E4P5saNn2Hxf1j7FuPdDpJ7YWoCP88E_3mS25ap2tLhAKrrPNk791azg0LNzZBns5nhdHgYKqxgOg1_T8ETBaIOaEtjkONDUQAQcCWgcIEsGotr8ImHrWQF3CuO0sAWEnZwaUQH8P1rkJEEcmjqx8hnlEjtICShCIIbt6hhrN1DjUf4J6vK-no-bX-Au7PT25ORpGoT1DZNAqNZFRfJAaZbLMJrEuy8xwzUtbEuhEnxfrjFYgQg5Xau6sMMRWVw6cKiziTt0Xm2y5qiu3xUAYAoqWFMSgjmSF0GVfFLm1_VSnudhmWScRaQJ3ObXQeJRdktqDnItSkiilF-U2i-cTJ56-4-0ph53I5StNlOhk3p682ymJDMZgJjlxMBa4IuKd99x7n60Mb64u5eXZ9cVX9pGu-Jy1XbbcTJ_cHqKjRn9rtf8P3_YSbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+novel+artificial+intelligence+model+to+estimate+the+capital+cost+of+mining+projects+using+deep+neural+network-based+ant+colony+optimization+algorithm&rft.jtitle=Resources+policy&rft.au=Zhang%2C+Hong&rft.au=Nguyen%2C+Hoang&rft.au=Bui%2C+Xuan-Nam&rft.au=Nguyen-Thoi%2C+Trung&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4207&rft.eissn=1873-7641&rft.volume=66&rft_id=info:doi/10.1016%2Fj.resourpol.2020.101604&rft.externalDocID=S0301420719307706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4207&client=summon