A Performance Study of Deep Neural Network Representations of Interpretable ML on Edge Devices with AI Accelerators

With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigat...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 18; p. 5681
Main Authors Schauer, Julian, Goodarzi, Payman, Morsch, Jannis, Schütze, Andreas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.09.2025
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25185681

Cover

Abstract With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption.
AbstractList With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption.
With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption.With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption.
Author Morsch, Jannis
Schauer, Julian
Goodarzi, Payman
Schütze, Andreas
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0009-0002-2830-1166
  surname: Schauer
  fullname: Schauer, Julian
– sequence: 2
  givenname: Payman
  orcidid: 0000-0002-3937-1752
  surname: Goodarzi
  fullname: Goodarzi, Payman
– sequence: 3
  givenname: Jannis
  surname: Morsch
  fullname: Morsch, Jannis
– sequence: 4
  givenname: Andreas
  orcidid: 0000-0003-3060-5177
  surname: Schütze
  fullname: Schütze, Andreas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41012919$$D View this record in MEDLINE/PubMed
BookMark eNp9kUmPEzEQhS00iFngwB9AlrgwSAGv3e1jNMxApLCI5dwqu6uHDh072G6i_HucyRAhDpyqVPr8qp7fOTnxwSMhTzl7JaVhr5PQvNFVwx-QM66EmjVCsJO_-lNyntKKMSGlbB6RU8UZF4abM5Lm9BPGPsQ1eIf0S566HQ09fYO4oR9wijCWkrch_qCfcRMxoc-Qh-DTHlv4jLFMM9gR6fslDZ5ed7dY3v8aHCa6HfJ3Ol_QuXM4YoQcYnpMHvYwJnxyXy_It5vrr1fvZsuPbxdX8-XMybrKM9CagZaKCWsMYON6JW2trBWVBNl1lVVMK9OhcU5LXbyhZlw3ndWuB2fkBVkcdLsAq3YThzXEXRtgaO8GId62EPPgRmwFNFwLrGvFimrVg9R1Y23Xmdq4Gqui9fKgNfkN7LYwjkdBztp9Cu0xhQK_OMCbGH5OmHK7HlLxP4LHMKVWinK3MKrao8__QVdhir58yx1VKS3qvZNn99Rk19gdV__JsQCXB8DFkFLE_j_X_QZ0Mqoq
Cites_doi 10.1016/j.comcom.2020.01.004
10.1109/ISCA.2018.00063
10.1109/SENSORS60989.2024.10784817
10.5194/jsss-14-169-2025
10.1145/3458817.3476177
10.20944/preprints202306.1068.v1
10.1145/3593044
10.1023/A:1008280620621
10.3390/math10224299
10.1016/0003-2670(86)80028-9
10.1109/ICCVW.2019.00363
10.1145/3729215
10.3390/make3040048
10.5194/jsss-7-359-2018
10.1145/3583740.3628442
10.1016/j.eng.2020.01.007
10.5194/jsss-14-119-2025
10.1002/0470846100
10.1038/nature14539
10.1109/CSCI46756.2018.00177
10.1016/j.iotcps.2023.02.004
10.1007/978-3-642-00296-0
10.1007/BF02834632
10.1007/s10994-021-06053-z
10.1109/ICFEC57925.2023.00009
10.1016/B978-075067531-4/50006-3
10.3390/s21134412
10.23919/DATE54114.2022.9774739
10.3390/infrastructures9120225
10.1561/1000000060
10.1109/MPOT.2022.3182519
10.1063/1.168556
10.1109/I2MTC60896.2024.10560978
10.1016/S1004-9541(06)60039-6
10.1109/MDAT.2022.3161126
10.1515/teme-2016-0072
10.1126/science.22.558.309
10.1016/0169-7439(87)80084-9
10.1088/1361-6501/aad1d4
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.3390/s25185681
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2a8152e7740b406fa3578bbdd979c7e6
10.3390/s25185681
41012919
10_3390_s25185681
Genre Journal Article
GrantInformation_xml – fundername: German Ministry for Education and Research
  grantid: 16ME0574
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c376t-a550a53402b99ae8cf43b74bb263a3dd6b40549de9cc535233e50158db5cfac93
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:29 EDT 2025
Sun Oct 26 03:54:03 EDT 2025
Thu Oct 02 21:18:36 EDT 2025
Tue Oct 07 07:13:40 EDT 2025
Wed Oct 01 06:56:48 EDT 2025
Thu Oct 16 04:44:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords interpretable ML
edge computing
energy efficiency
latency
AI accelerator
smart sensors
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-a550a53402b99ae8cf43b74bb263a3dd6b40549de9cc535233e50158db5cfac93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3060-5177
0000-0002-3937-1752
0009-0002-2830-1166
OpenAccessLink https://doaj.org/article/2a8152e7740b406fa3578bbdd979c7e6
PMID 41012919
PQID 3254645279
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2a8152e7740b406fa3578bbdd979c7e6
unpaywall_primary_10_3390_s25185681
proquest_miscellaneous_3254929461
proquest_journals_3254645279
pubmed_primary_41012919
crossref_primary_10_3390_s25185681
PublicationCentury 2000
PublicationDate 2025-09-11
PublicationDateYYYYMMDD 2025-09-11
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kononenko (ref_38) 1997; 7
ref_50
Zhang (ref_4) 2020; 151
Silvano (ref_17) 2025; 57
Wissler (ref_40) 1905; 22
ref_14
ref_58
ref_13
ref_57
ref_12
ref_56
ref_11
ref_55
ref_53
ref_52
ref_51
Chen (ref_16) 2020; 6
ref_59
LeCun (ref_8) 2015; 521
Cheng (ref_15) 2023; 56
ref_25
ref_20
Singh (ref_7) 2023; 3
ref_28
ref_27
ref_26
Wang (ref_10) 2018; 6
Yong (ref_39) 2006; 14
Geladi (ref_43) 1986; 185
Nahshan (ref_47) 2021; 110
Rowe (ref_35) 1995; 9
ref_34
ref_33
ref_32
ref_31
ref_30
McLachlan (ref_42) 1999; 4
ref_37
Helwig (ref_6) 2018; 7
Goodarzi (ref_23) 2025; 14
Schneider (ref_21) 2017; 84
Schneider (ref_22) 2018; 29
Zoni (ref_54) 2023; 55
Zaniolo (ref_24) 2023; 42
Wold (ref_36) 1987; 2
ref_46
ref_45
Juracy (ref_18) 2023; 13
ref_44
Bavikadi (ref_9) 2022; 39
Buhrmester (ref_19) 2021; 3
ref_41
ref_1
ref_3
ref_2
ref_49
ref_48
Schauer (ref_29) 2025; 14
ref_5
References_xml – volume: 151
  start-page: 556
  year: 2020
  ident: ref_4
  article-title: Energy Aware Edge Computing: A Survey
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.01.004
– ident: ref_49
– ident: ref_32
– ident: ref_55
– ident: ref_51
– ident: ref_11
  doi: 10.1109/ISCA.2018.00063
– ident: ref_30
  doi: 10.1109/SENSORS60989.2024.10784817
– volume: 14
  start-page: 169
  year: 2025
  ident: ref_29
  article-title: Efficient hardware implementation of interpretable machine learning based on deep neural network representations for sensor data processing
  publication-title: J. Sens. Sens. Syst.
  doi: 10.5194/jsss-14-169-2025
– ident: ref_26
  doi: 10.1145/3458817.3476177
– ident: ref_59
  doi: 10.20944/preprints202306.1068.v1
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_54
  article-title: A Survey on Run-Time Power Monitors at the Edge
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3593044
– volume: 7
  start-page: 39
  year: 1997
  ident: ref_38
  article-title: Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008280620621
– ident: ref_13
  doi: 10.3390/math10224299
– volume: 185
  start-page: 1
  year: 1986
  ident: ref_43
  article-title: Partial Least-Squares Regression: A Tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– ident: ref_31
  doi: 10.1109/ICCVW.2019.00363
– ident: ref_56
– volume: 56
  start-page: 22
  year: 2023
  ident: ref_15
  article-title: Deep Learning on Mobile Devices With Neural Processing Units
  publication-title: IEEE Comput.
– ident: ref_52
– volume: 57
  start-page: 1
  year: 2025
  ident: ref_17
  article-title: Survey on Deep Learning Hardware Accelerators for Heterogeneous HPC Platforms
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3729215
– ident: ref_48
– volume: 3
  start-page: 966
  year: 2021
  ident: ref_19
  article-title: Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make3040048
– ident: ref_41
– volume: 7
  start-page: 359
  year: 2018
  ident: ref_6
  article-title: Sensors 4.0—Smart Sensors and Measurement Technology Enable Industry 4.0
  publication-title: J. Sens. Sens. Syst.
  doi: 10.5194/jsss-7-359-2018
– ident: ref_53
  doi: 10.1145/3583740.3628442
– volume: 6
  start-page: 264
  year: 2020
  ident: ref_16
  article-title: A Survey of Accelerator Architectures for Deep Neural Networks
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.01.007
– ident: ref_45
– volume: 6
  start-page: 12345
  year: 2018
  ident: ref_10
  article-title: A Survey of FPGA-Based Deep Learning Accelerators: Challenges and Opportunities
  publication-title: IEEE Access
– volume: 14
  start-page: 119
  year: 2025
  ident: ref_23
  article-title: Domain Shifts in Industrial Condition Monitoring: A Comparative Analysis of Automated Machine Learning Models
  publication-title: J. Sens. Sens. Syst.
  doi: 10.5194/jsss-14-119-2025
– ident: ref_5
  doi: 10.1002/0470846100
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_8
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_20
– ident: ref_25
  doi: 10.1109/CSCI46756.2018.00177
– volume: 3
  start-page: 71
  year: 2023
  ident: ref_7
  article-title: Edge AI: A Survey
  publication-title: Internet Things Cyber-Phys. Syst.
  doi: 10.1016/j.iotcps.2023.02.004
– ident: ref_37
  doi: 10.1007/978-3-642-00296-0
– volume: 4
  start-page: 20
  year: 1999
  ident: ref_42
  article-title: Mahalanobis Distance
  publication-title: Resonance
  doi: 10.1007/BF02834632
– volume: 110
  start-page: 3245
  year: 2021
  ident: ref_47
  article-title: Loss Aware Post-Training Quantization
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-06053-z
– ident: ref_3
– ident: ref_34
– ident: ref_58
  doi: 10.1109/ICFEC57925.2023.00009
– ident: ref_1
  doi: 10.1016/B978-075067531-4/50006-3
– ident: ref_14
  doi: 10.3390/s21134412
– ident: ref_44
– ident: ref_27
  doi: 10.23919/DATE54114.2022.9774739
– ident: ref_2
  doi: 10.3390/infrastructures9120225
– volume: 13
  start-page: 270
  year: 2023
  ident: ref_18
  article-title: From CNN to DNN Hardware Accelerators: A Survey on Design, Exploration, Simulation, and Frameworks
  publication-title: Found. Trends® Electron. Des. Autom.
  doi: 10.1561/1000000060
– ident: ref_50
– volume: 42
  start-page: 39
  year: 2023
  ident: ref_24
  article-title: Deep Learning for Edge Devices
  publication-title: IEEE Potentials
  doi: 10.1109/MPOT.2022.3182519
– ident: ref_33
– volume: 9
  start-page: 635
  year: 1995
  ident: ref_35
  article-title: Daubechies Wavelets and Mathematica
  publication-title: Comput. Phys.
  doi: 10.1063/1.168556
– ident: ref_28
  doi: 10.1109/I2MTC60896.2024.10560978
– volume: 14
  start-page: 65
  year: 2006
  ident: ref_39
  article-title: Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(06)60039-6
– ident: ref_46
– ident: ref_12
– volume: 39
  start-page: 91
  year: 2022
  ident: ref_9
  article-title: A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms
  publication-title: IEEE Des. Test
  doi: 10.1109/MDAT.2022.3161126
– volume: 84
  start-page: 198
  year: 2017
  ident: ref_21
  article-title: Automatic Feature Extraction and Selection for Classification of Cyclical Time Series Data
  publication-title: Tm-Tech. Mess.
  doi: 10.1515/teme-2016-0072
– volume: 22
  start-page: 309
  year: 1905
  ident: ref_40
  article-title: The Spearman Correlation Formula
  publication-title: Science
  doi: 10.1126/science.22.558.309
– volume: 2
  start-page: 37
  year: 1987
  ident: ref_36
  article-title: Principal Component Analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref_57
– volume: 29
  start-page: 094002
  year: 2018
  ident: ref_22
  article-title: Industrial Condition Monitoring with Smart Sensors Using Automated Feature Extraction and Selection
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aad1d4
SSID ssj0023338
Score 2.4604917
Snippet With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown...
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5681
SubjectTerms AI accelerator
Algorithms
Classification
Data collection
Data processing
Data transmission
Edge computing
Energy consumption
energy efficiency
Feature selection
Field programmable gate arrays
interpretable ML
latency
Machine learning
Methods
Neural networks
Power
Python
Sensors
smart sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLxZKMg8rlETP-L4gNAWtioIVlVFpd4iv9LLKlmaXaH-e2aSbLZIwDWxpcmMPfNNPP4G4L1FCIJZgkqUsyKRukoTy32apF4XIqaKF76r8l3kpxfy66W63IPF9i4MlVVufWLnqEPj6R_5kSDidqm4Nh9XPxPqGkWnq9sWGnZorRA-dBRjd2CfEzPWBPaP54uz8zEFE5iR9fxCApP9oxaje0EUXH9EpY68_2-I8wDubuqVvflll8tbUejkAdwf4COb9fZ-CHuxfgQHt0gFH0M7Y2e72wCMCgVvWFOxzzGuGHFx4PxFX_zNzrs62OH6Ud3SsF0VoltG9v0ba2o2D1cR53dOhdGfWzb7wmbeY8jqTunbJ3BxMv_x6TQZWiskHj3KOrGYmFglMHl0xthY-EoKp6VzPBdWhJA7BHLShGi8JwIYIaJC4FAEp3xlvRFPYVI3dXwOTLkspN4oqWWQ2gbDuct0KLjOIqVDU3i7VW256hk0Ssw8SP_lqP8pHJPSxwFEet09aK6vymEPldwWiDYiAtYUxcsrS0w9zoVgtPE65lM43JqsHHZiW-7WzRTejK9xD9HBiK1js-nHIEyUOcrxrDf1KIkkAjST4ex3o-3__R0v_i_CS7jHqX8wtaDIDmGyvt7EVwhq1u71sFJ_A9oe9O8
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal: Open Access Journals [open access]
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoAeEG-2FGQe10DiRxwfEFqgVUG0QoiVeov8Si-rZNnsiu6_ZybJpq1UblwTW3JmbM_3xeNvAN5ahCDIElSinBWJ1FWaWO7TJPW6EDFVvPBdlu9pfjyT387U2Q5sa2wOBmxvpHZUT2q2nL-7-L35iAv-AzFOpOzvW4zRBQlp3YLbGKAMVXA4keNhAhdIw3pRoevNr4WiTrH_Jpi5B3fW9cJu_tj5_EroOboP9wbMyKa9kx_ATqwfwt4VJcFH0E7Zj8srAIyyAzesqdiXGBeMBDiw_2mf8c1-dsmvw52juqVml6mHbh7ZyXfW1OwwnEfs3-0kjH7XsulXNvUe41R3NN8-htnR4a_Px8lQTyHxuI2sEotsxCqBjNEZY2PhKymcls7xXFgRQu4QvUkTovGeVF-EiArRQhGc8pX1RjyB3bqp4zNgymUh9UZJLYPUNhjOXaZDwXUWiQNN4PXWtOWil80okW6Q_cvR_hP4REYfG5DSdfegWZ6Xw8IpuS0QYkREqSkOL68syfM4F4LRxuuYT-Bg67JyO3tKQSr_UnFtJvBqfI0Lh05DbB2bdd8GsaHMcRxPe1ePI5GkemYy7P1m9P2_v2P_f3zHc7jLqbQwVafIDmB3tVzHF4h3Vu5lN5v_AhRB_Lc
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4AeeBcWCjKPa5rEjzg-oQCtCoJVhVipnCK_UiFWyarZBZVfz0ySTRcEEhLXZCaxZY_nG3vmMyEvDEAQiBJkJK3hkVBVEhnmkihxKuchkSx3XZbvLDuei3en8nSrih_TKiEU_9It0liFFYEHS2Im4zSPkSwrXvrq5bdhLwl-ogARZ3l2lexkEtD4hOzMZyfF566oaNDuCYU4RPdxC-48x8_84oY6tv4_Qcxdcm1dL83Fd7NYbLmdo5vEbBrcZ5t8PViv7IH78RuX4__06Ba5MWBSWvST6Da5Euo7ZHeLqfAuaQt6clliQDH78II2FX0TwpIiwQfoz_qMcvqxS64daprqFsUuUxvtItAP72lT00N_FkC_W6kobgfT4i0tnAM_2B39t_fI_Ojw0-vjaLivIXKwTK0iA9GOkRwiUqu1CbmrBLdKWMsybrj3mQV0KLQP2jlkleE8SEAjubfSVcZpvkcmdVOHB4RKm_rEaSmU8EIZrxmzqfI5U2nAGGtKnm2Gr1z2tBwlhDM4xuU4xlPyCgd2FEAm7e5Bc35WDoZZMpMDhAmAghNoXlYZpP-x1nuttFMhm5L9zbQoB_NuS463CAjJlJ6Sp-NrMEw8bTF1aNa9DGBPkUE77vfTaWyJQFY1nYL283F-_b0fD_9J6hG5zvBuYrzeIt0nk9X5OjwGwLSyTwab-AmDYAzG
  priority: 102
  providerName: Unpaywall
Title A Performance Study of Deep Neural Network Representations of Interpretable ML on Edge Devices with AI Accelerators
URI https://www.ncbi.nlm.nih.gov/pubmed/41012919
https://www.proquest.com/docview/3254645279
https://www.proquest.com/docview/3254929461
https://www.mdpi.com/1424-8220/25/18/5681/pdf?version=1757597686
https://doaj.org/article/2a8152e7740b406fa3578bbdd979c7e6
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED606dBmKPqO28RgH6sQiQ-THJXWblo0hhHUgDsJfKmLIRuRjSD_PkdJVlygRZYuHKgjQN6JvPvE03cAnwyGIIgSRCKsYQmXZZoY6tIkdVKxkAqqXJPlOx2dz_n3hVjslfqKOWEtPXCruFNqFLqYgFFKatH5lCbSs1jrvZbaydCQbadK78BUB7UYIq-WR4ghqD-t0YurSLX1h_dpSPr_FlkewuNttTY312a53PM2k2fwtAsTSd5O7zk8CNULONwjD3wJdU5md1n_JCYE3pBVSb6EsCaRcwPHT9skb3LZ5Lt2vxlVdRS7yza0y0AufpBVRcb-d8DxzeFB4hdakn8juXPomprb-PoVzCfjn5_Pk66EQuLw5NgkBgGIEQxBotXaBOVKzqzk1tIRM8z7EeoUEaIP2rlI9MJYEBggKG-FK43T7DUcVKsqHAERNvOp04JL7rk0XlNqM-kVlVmIsGcAH3aqLdYtU0aBCCPqv-j1P4CzqPReIJJbNx1o8qIzeXGfyQdwvDNZ0e24umCR2J8LKvUA3vePca_ECxBThdW2lcFwkI9wHm9aU_cz4ZHoTGc4-mNv-3-v4-3_WMc7eEJjNeFYkCI7hoPN1TacYIizsUN4KBcSWzX5OoRHZ-Pp7HLYvOHYXnCFffPpLP91C53e_KU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5VB6QLwJFFheR6v2PrzeA0KBtkpoGiHUSrmZfbmXyA51oip_it_IjB9JkYBbr_auNJ7dmfnGO_sNIe8NQBDIEmQkreGRUEUcGebiKHYq4yGWLHNNle80HV2IrzM52yG_-rswWFbZ-8TGUfvK4T_yQ47E7UIypT8tfkbYNQpPV_sWGu22OA3ra0jZ6o_jI1jfD4ydHJ9_GUVdV4HIgTEtIwOY3EgOeZPV2oTMFYJbJaxlKTfc-9QChhHaB-0ccp9wHiTEzMxb6QrjkHwJXP4dwcGXgP2o2TbB45DvtexFnOv4sAbskCHB1x8xr2kN8Dc8u0_2VuXCrK_NfH4jxp3cJ_c6cEqH7W56QHZC-ZDs36AsfETqIf22vWtAsQxxTauCHoWwoMj0AfOnbWk5_d5U2XaXm8oah21rHO080LMJrUp67C8DzG9cFsX_wnQ4pkPnICA2NQD1Y3JxKyp-QnbLqgzPCJU28bHTUijhhTJeM2YT5TOmkoDJ1oC87VWbL1p-jhzyGtR_vtH_gHxGpW8GIKV286C6usw7C82ZyQDLBIDDMYiXFgZ5gKz1XivtVEgH5KBfsryz8zrf7soBebN5DRaKxy6mDNWqHQMgVKQgx9N2qTeSCKRX0wnMfrdZ-39_x_P_i_Ca7I3Ozyb5ZDw9fUHuMuxUjM0ukgOyu7xahZcAn5b2VbNnKflx20byG3IfK2E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQL2MHGnMMDcHqMmthPHDwgVumplo5oQk_qW-Za9VElZWk39a_w6zsmtQwLe9hrbknPsY3_H_vwdQt5rgCAQJcRBbDQPhMzDQDMbBqGVKfdhzFJbs3xnyfG5-DqP5zvkV_cWBmmV3ZpYL9SutHhGPuQo3C5iJtUwb2kRZ-PJp-XPADNI4U1rl06jmSInfnMN4Vv1cTqGsf7A2OTox5fjoM0wEFhwrFWgAZ_rmEMMZZTSPrW54EYKY1jCNXcuMYBnhHJeWYs6KJz7GPbP1JnY5tqiEBMs_3uSc4V0QjnfBnscYr9GyQgKw2EFOCJFsa8_9r86TcDfsO0-ubsulnpzrReLG_vd5D45aIEqHTUz6wHZ8cVDsn9DvvARqUb0bPvugCIlcUPLnI69X1JU_YD2s4ZmTr_XjNv2oVNRYbUt39EsPP12SsuCHrlLD-3r5YviGTEdTenIWtgcaz5A9Zic34qJn5Ddoiz8M0JjE7nQqlhI4YTUTjFmIulSJiOPgdeAvO1Mmy0brY4MYhy0f9bbf0A-o9H7CiivXX8ory6z1lszplPANR6gcQjdS3KNmkDGOKekstInA3LYDVnW-nyVbWfogLzpi8Fb8QpGF75cN3UAkIoE-vG0Geq-JwKl1lQErd_1Y__v_3j-_y68JnfAPbLT6ezkBbnHMGkx5r2IDsnu6mrtXwKSWplX9ZSl5OK2feQ3dikvpA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4AeeBcWCjKPa5rEjzg-oQCtCoJVhVipnCK_UiFWyarZBZVfz0ySTRcEEhLXZCaxZY_nG3vmMyEvDEAQiBJkJK3hkVBVEhnmkihxKuchkSx3XZbvLDuei3en8nSrih_TKiEU_9It0liFFYEHS2Im4zSPkSwrXvrq5bdhLwl-ogARZ3l2lexkEtD4hOzMZyfF566oaNDuCYU4RPdxC-48x8_84oY6tv4_Qcxdcm1dL83Fd7NYbLmdo5vEbBrcZ5t8PViv7IH78RuX4__06Ba5MWBSWvST6Da5Euo7ZHeLqfAuaQt6clliQDH78II2FX0TwpIiwQfoz_qMcvqxS64daprqFsUuUxvtItAP72lT00N_FkC_W6kobgfT4i0tnAM_2B39t_fI_Ojw0-vjaLivIXKwTK0iA9GOkRwiUqu1CbmrBLdKWMsybrj3mQV0KLQP2jlkleE8SEAjubfSVcZpvkcmdVOHB4RKm_rEaSmU8EIZrxmzqfI5U2nAGGtKnm2Gr1z2tBwlhDM4xuU4xlPyCgd2FEAm7e5Bc35WDoZZMpMDhAmAghNoXlYZpP-x1nuttFMhm5L9zbQoB_NuS463CAjJlJ6Sp-NrMEw8bTF1aNa9DGBPkUE77vfTaWyJQFY1nYL283F-_b0fD_9J6hG5zvBuYrzeIt0nk9X5OjwGwLSyTwab-AmDYAzG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Performance+Study+of+Deep+Neural+Network+Representations+of+Interpretable+ML+on+Edge+Devices+with+AI+Accelerators&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Julian+Schauer&rft.au=Payman+Goodarzi&rft.au=Jannis+Morsch&rft.au=Andreas+Sch%C3%BCtze&rft.date=2025-09-11&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=18&rft.spage=5681&rft_id=info:doi/10.3390%2Fs25185681&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a8152e7740b406fa3578bbdd979c7e6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon