A Performance Study of Deep Neural Network Representations of Interpretable ML on Edge Devices with AI Accelerators
With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigat...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 18; p. 5681 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
11.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25185681 |
Cover
| Abstract | With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption. |
|---|---|
| AbstractList | With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption. With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption.With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown significantly, particularly in sensor-driven use cases such as predictive maintenance (PM) and condition monitoring (CM). This study investigated a novel application-oriented approach to representing interpretable ML inference as deep neural networks (DNNs) regarding the latency and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep neural network representation (IDNNRep) was integrated into an open-source interpretable ML toolbox to demonstrate the inference time and energy efficiency improvements. The goal of this work was to enable the utilization of generic artificial intelligence (AI) accelerators for interpretable ML algorithms to achieve efficient inference on edge hardware in smart sensor applications. This novel approach was applied to one regression and one classification task from the field of PM and validated by implementing the inference on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the tensor processing unit (TPU) of the Google Coral. Different quantization levels of the implementation were tested against common Python and C++ implementations. The novel implementation reduced the inference time by up to 80% and the mean energy consumption by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to the C++ implementation. With the successful utilization of generic AI accelerators, the performance was further improved with a 94% reduction for both the inference time and the mean energy consumption. |
| Author | Morsch, Jannis Schauer, Julian Goodarzi, Payman Schütze, Andreas |
| Author_xml | – sequence: 1 givenname: Julian orcidid: 0009-0002-2830-1166 surname: Schauer fullname: Schauer, Julian – sequence: 2 givenname: Payman orcidid: 0000-0002-3937-1752 surname: Goodarzi fullname: Goodarzi, Payman – sequence: 3 givenname: Jannis surname: Morsch fullname: Morsch, Jannis – sequence: 4 givenname: Andreas orcidid: 0000-0003-3060-5177 surname: Schütze fullname: Schütze, Andreas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41012919$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUmPEzEQhS00iFngwB9AlrgwSAGv3e1jNMxApLCI5dwqu6uHDh072G6i_HucyRAhDpyqVPr8qp7fOTnxwSMhTzl7JaVhr5PQvNFVwx-QM66EmjVCsJO_-lNyntKKMSGlbB6RU8UZF4abM5Lm9BPGPsQ1eIf0S566HQ09fYO4oR9wijCWkrch_qCfcRMxoc-Qh-DTHlv4jLFMM9gR6fslDZ5ed7dY3v8aHCa6HfJ3Ol_QuXM4YoQcYnpMHvYwJnxyXy_It5vrr1fvZsuPbxdX8-XMybrKM9CagZaKCWsMYON6JW2trBWVBNl1lVVMK9OhcU5LXbyhZlw3ndWuB2fkBVkcdLsAq3YThzXEXRtgaO8GId62EPPgRmwFNFwLrGvFimrVg9R1Y23Xmdq4Gqui9fKgNfkN7LYwjkdBztp9Cu0xhQK_OMCbGH5OmHK7HlLxP4LHMKVWinK3MKrao8__QVdhir58yx1VKS3qvZNn99Rk19gdV__JsQCXB8DFkFLE_j_X_QZ0Mqoq |
| Cites_doi | 10.1016/j.comcom.2020.01.004 10.1109/ISCA.2018.00063 10.1109/SENSORS60989.2024.10784817 10.5194/jsss-14-169-2025 10.1145/3458817.3476177 10.20944/preprints202306.1068.v1 10.1145/3593044 10.1023/A:1008280620621 10.3390/math10224299 10.1016/0003-2670(86)80028-9 10.1109/ICCVW.2019.00363 10.1145/3729215 10.3390/make3040048 10.5194/jsss-7-359-2018 10.1145/3583740.3628442 10.1016/j.eng.2020.01.007 10.5194/jsss-14-119-2025 10.1002/0470846100 10.1038/nature14539 10.1109/CSCI46756.2018.00177 10.1016/j.iotcps.2023.02.004 10.1007/978-3-642-00296-0 10.1007/BF02834632 10.1007/s10994-021-06053-z 10.1109/ICFEC57925.2023.00009 10.1016/B978-075067531-4/50006-3 10.3390/s21134412 10.23919/DATE54114.2022.9774739 10.3390/infrastructures9120225 10.1561/1000000060 10.1109/MPOT.2022.3182519 10.1063/1.168556 10.1109/I2MTC60896.2024.10560978 10.1016/S1004-9541(06)60039-6 10.1109/MDAT.2022.3161126 10.1515/teme-2016-0072 10.1126/science.22.558.309 10.1016/0169-7439(87)80084-9 10.1088/1361-6501/aad1d4 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/s25185681 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2a8152e7740b406fa3578bbdd979c7e6 10.3390/s25185681 41012919 10_3390_s25185681 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: German Ministry for Education and Research grantid: 16ME0574 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c376t-a550a53402b99ae8cf43b74bb263a3dd6b40549de9cc535233e50158db5cfac93 |
| IEDL.DBID | DOA |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:29 EDT 2025 Sun Oct 26 03:54:03 EDT 2025 Thu Oct 02 21:18:36 EDT 2025 Tue Oct 07 07:13:40 EDT 2025 Wed Oct 01 06:56:48 EDT 2025 Thu Oct 16 04:44:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | interpretable ML edge computing energy efficiency latency AI accelerator smart sensors |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-a550a53402b99ae8cf43b74bb263a3dd6b40549de9cc535233e50158db5cfac93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3060-5177 0000-0002-3937-1752 0009-0002-2830-1166 |
| OpenAccessLink | https://doaj.org/article/2a8152e7740b406fa3578bbdd979c7e6 |
| PMID | 41012919 |
| PQID | 3254645279 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a8152e7740b406fa3578bbdd979c7e6 unpaywall_primary_10_3390_s25185681 proquest_miscellaneous_3254929461 proquest_journals_3254645279 pubmed_primary_41012919 crossref_primary_10_3390_s25185681 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-11 |
| PublicationDateYYYYMMDD | 2025-09-11 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kononenko (ref_38) 1997; 7 ref_50 Zhang (ref_4) 2020; 151 Silvano (ref_17) 2025; 57 Wissler (ref_40) 1905; 22 ref_14 ref_58 ref_13 ref_57 ref_12 ref_56 ref_11 ref_55 ref_53 ref_52 ref_51 Chen (ref_16) 2020; 6 ref_59 LeCun (ref_8) 2015; 521 Cheng (ref_15) 2023; 56 ref_25 ref_20 Singh (ref_7) 2023; 3 ref_28 ref_27 ref_26 Wang (ref_10) 2018; 6 Yong (ref_39) 2006; 14 Geladi (ref_43) 1986; 185 Nahshan (ref_47) 2021; 110 Rowe (ref_35) 1995; 9 ref_34 ref_33 ref_32 ref_31 ref_30 McLachlan (ref_42) 1999; 4 ref_37 Helwig (ref_6) 2018; 7 Goodarzi (ref_23) 2025; 14 Schneider (ref_21) 2017; 84 Schneider (ref_22) 2018; 29 Zoni (ref_54) 2023; 55 Zaniolo (ref_24) 2023; 42 Wold (ref_36) 1987; 2 ref_46 ref_45 Juracy (ref_18) 2023; 13 ref_44 Bavikadi (ref_9) 2022; 39 Buhrmester (ref_19) 2021; 3 ref_41 ref_1 ref_3 ref_2 ref_49 ref_48 Schauer (ref_29) 2025; 14 ref_5 |
| References_xml | – volume: 151 start-page: 556 year: 2020 ident: ref_4 article-title: Energy Aware Edge Computing: A Survey publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.01.004 – ident: ref_49 – ident: ref_32 – ident: ref_55 – ident: ref_51 – ident: ref_11 doi: 10.1109/ISCA.2018.00063 – ident: ref_30 doi: 10.1109/SENSORS60989.2024.10784817 – volume: 14 start-page: 169 year: 2025 ident: ref_29 article-title: Efficient hardware implementation of interpretable machine learning based on deep neural network representations for sensor data processing publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-14-169-2025 – ident: ref_26 doi: 10.1145/3458817.3476177 – ident: ref_59 doi: 10.20944/preprints202306.1068.v1 – volume: 55 start-page: 1 year: 2023 ident: ref_54 article-title: A Survey on Run-Time Power Monitors at the Edge publication-title: ACM Comput. Surv. doi: 10.1145/3593044 – volume: 7 start-page: 39 year: 1997 ident: ref_38 article-title: Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF publication-title: Appl. Intell. doi: 10.1023/A:1008280620621 – ident: ref_13 doi: 10.3390/math10224299 – volume: 185 start-page: 1 year: 1986 ident: ref_43 article-title: Partial Least-Squares Regression: A Tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – ident: ref_31 doi: 10.1109/ICCVW.2019.00363 – ident: ref_56 – volume: 56 start-page: 22 year: 2023 ident: ref_15 article-title: Deep Learning on Mobile Devices With Neural Processing Units publication-title: IEEE Comput. – ident: ref_52 – volume: 57 start-page: 1 year: 2025 ident: ref_17 article-title: Survey on Deep Learning Hardware Accelerators for Heterogeneous HPC Platforms publication-title: ACM Comput. Surv. doi: 10.1145/3729215 – ident: ref_48 – volume: 3 start-page: 966 year: 2021 ident: ref_19 article-title: Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make3040048 – ident: ref_41 – volume: 7 start-page: 359 year: 2018 ident: ref_6 article-title: Sensors 4.0—Smart Sensors and Measurement Technology Enable Industry 4.0 publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-7-359-2018 – ident: ref_53 doi: 10.1145/3583740.3628442 – volume: 6 start-page: 264 year: 2020 ident: ref_16 article-title: A Survey of Accelerator Architectures for Deep Neural Networks publication-title: Engineering doi: 10.1016/j.eng.2020.01.007 – ident: ref_45 – volume: 6 start-page: 12345 year: 2018 ident: ref_10 article-title: A Survey of FPGA-Based Deep Learning Accelerators: Challenges and Opportunities publication-title: IEEE Access – volume: 14 start-page: 119 year: 2025 ident: ref_23 article-title: Domain Shifts in Industrial Condition Monitoring: A Comparative Analysis of Automated Machine Learning Models publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-14-119-2025 – ident: ref_5 doi: 10.1002/0470846100 – volume: 521 start-page: 436 year: 2015 ident: ref_8 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_20 – ident: ref_25 doi: 10.1109/CSCI46756.2018.00177 – volume: 3 start-page: 71 year: 2023 ident: ref_7 article-title: Edge AI: A Survey publication-title: Internet Things Cyber-Phys. Syst. doi: 10.1016/j.iotcps.2023.02.004 – ident: ref_37 doi: 10.1007/978-3-642-00296-0 – volume: 4 start-page: 20 year: 1999 ident: ref_42 article-title: Mahalanobis Distance publication-title: Resonance doi: 10.1007/BF02834632 – volume: 110 start-page: 3245 year: 2021 ident: ref_47 article-title: Loss Aware Post-Training Quantization publication-title: Mach. Learn. doi: 10.1007/s10994-021-06053-z – ident: ref_3 – ident: ref_34 – ident: ref_58 doi: 10.1109/ICFEC57925.2023.00009 – ident: ref_1 doi: 10.1016/B978-075067531-4/50006-3 – ident: ref_14 doi: 10.3390/s21134412 – ident: ref_44 – ident: ref_27 doi: 10.23919/DATE54114.2022.9774739 – ident: ref_2 doi: 10.3390/infrastructures9120225 – volume: 13 start-page: 270 year: 2023 ident: ref_18 article-title: From CNN to DNN Hardware Accelerators: A Survey on Design, Exploration, Simulation, and Frameworks publication-title: Found. Trends® Electron. Des. Autom. doi: 10.1561/1000000060 – ident: ref_50 – volume: 42 start-page: 39 year: 2023 ident: ref_24 article-title: Deep Learning for Edge Devices publication-title: IEEE Potentials doi: 10.1109/MPOT.2022.3182519 – ident: ref_33 – volume: 9 start-page: 635 year: 1995 ident: ref_35 article-title: Daubechies Wavelets and Mathematica publication-title: Comput. Phys. doi: 10.1063/1.168556 – ident: ref_28 doi: 10.1109/I2MTC60896.2024.10560978 – volume: 14 start-page: 65 year: 2006 ident: ref_39 article-title: Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(06)60039-6 – ident: ref_46 – ident: ref_12 – volume: 39 start-page: 91 year: 2022 ident: ref_9 article-title: A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms publication-title: IEEE Des. Test doi: 10.1109/MDAT.2022.3161126 – volume: 84 start-page: 198 year: 2017 ident: ref_21 article-title: Automatic Feature Extraction and Selection for Classification of Cyclical Time Series Data publication-title: Tm-Tech. Mess. doi: 10.1515/teme-2016-0072 – volume: 22 start-page: 309 year: 1905 ident: ref_40 article-title: The Spearman Correlation Formula publication-title: Science doi: 10.1126/science.22.558.309 – volume: 2 start-page: 37 year: 1987 ident: ref_36 article-title: Principal Component Analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – ident: ref_57 – volume: 29 start-page: 094002 year: 2018 ident: ref_22 article-title: Industrial Condition Monitoring with Smart Sensors Using Automated Feature Extraction and Selection publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aad1d4 |
| SSID | ssj0023338 |
| Score | 2.4604917 |
| Snippet | With the rising adoption of machine learning (ML) and deep learning (DL) applications, the demand for deploying these algorithms closer to sensors has grown... |
| SourceID | doaj unpaywall proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 5681 |
| SubjectTerms | AI accelerator Algorithms Classification Data collection Data processing Data transmission Edge computing Energy consumption energy efficiency Feature selection Field programmable gate arrays interpretable ML latency Machine learning Methods Neural networks Power Python Sensors smart sensors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QLxZKMg8rlETP-L4gNAWtioIVlVFpd4iv9LLKlmaXaH-e2aSbLZIwDWxpcmMPfNNPP4G4L1FCIJZgkqUsyKRukoTy32apF4XIqaKF76r8l3kpxfy66W63IPF9i4MlVVufWLnqEPj6R_5kSDidqm4Nh9XPxPqGkWnq9sWGnZorRA-dBRjd2CfEzPWBPaP54uz8zEFE5iR9fxCApP9oxaje0EUXH9EpY68_2-I8wDubuqVvflll8tbUejkAdwf4COb9fZ-CHuxfgQHt0gFH0M7Y2e72wCMCgVvWFOxzzGuGHFx4PxFX_zNzrs62OH6Ud3SsF0VoltG9v0ba2o2D1cR53dOhdGfWzb7wmbeY8jqTunbJ3BxMv_x6TQZWiskHj3KOrGYmFglMHl0xthY-EoKp6VzPBdWhJA7BHLShGi8JwIYIaJC4FAEp3xlvRFPYVI3dXwOTLkspN4oqWWQ2gbDuct0KLjOIqVDU3i7VW256hk0Ssw8SP_lqP8pHJPSxwFEet09aK6vymEPldwWiDYiAtYUxcsrS0w9zoVgtPE65lM43JqsHHZiW-7WzRTejK9xD9HBiK1js-nHIEyUOcrxrDf1KIkkAjST4ex3o-3__R0v_i_CS7jHqX8wtaDIDmGyvt7EVwhq1u71sFJ_A9oe9O8 priority: 102 providerName: ProQuest – databaseName: Scholars Portal: Open Access Journals [open access] dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoAeEG-2FGQe10DiRxwfEFqgVUG0QoiVeov8Si-rZNnsiu6_ZybJpq1UblwTW3JmbM_3xeNvAN5ahCDIElSinBWJ1FWaWO7TJPW6EDFVvPBdlu9pfjyT387U2Q5sa2wOBmxvpHZUT2q2nL-7-L35iAv-AzFOpOzvW4zRBQlp3YLbGKAMVXA4keNhAhdIw3pRoevNr4WiTrH_Jpi5B3fW9cJu_tj5_EroOboP9wbMyKa9kx_ATqwfwt4VJcFH0E7Zj8srAIyyAzesqdiXGBeMBDiw_2mf8c1-dsmvw52juqVml6mHbh7ZyXfW1OwwnEfs3-0kjH7XsulXNvUe41R3NN8-htnR4a_Px8lQTyHxuI2sEotsxCqBjNEZY2PhKymcls7xXFgRQu4QvUkTovGeVF-EiArRQhGc8pX1RjyB3bqp4zNgymUh9UZJLYPUNhjOXaZDwXUWiQNN4PXWtOWil80okW6Q_cvR_hP4REYfG5DSdfegWZ6Xw8IpuS0QYkREqSkOL68syfM4F4LRxuuYT-Bg67JyO3tKQSr_UnFtJvBqfI0Lh05DbB2bdd8GsaHMcRxPe1ePI5GkemYy7P1m9P2_v2P_f3zHc7jLqbQwVafIDmB3tVzHF4h3Vu5lN5v_AhRB_Lc priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4AeeBcWCjKPa5rEjzg-oQCtCoJVhVipnCK_UiFWyarZBZVfz0ySTRcEEhLXZCaxZY_nG3vmMyEvDEAQiBJkJK3hkVBVEhnmkihxKuchkSx3XZbvLDuei3en8nSrih_TKiEU_9It0liFFYEHS2Im4zSPkSwrXvrq5bdhLwl-ogARZ3l2lexkEtD4hOzMZyfF566oaNDuCYU4RPdxC-48x8_84oY6tv4_Qcxdcm1dL83Fd7NYbLmdo5vEbBrcZ5t8PViv7IH78RuX4__06Ba5MWBSWvST6Da5Euo7ZHeLqfAuaQt6clliQDH78II2FX0TwpIiwQfoz_qMcvqxS64daprqFsUuUxvtItAP72lT00N_FkC_W6kobgfT4i0tnAM_2B39t_fI_Ojw0-vjaLivIXKwTK0iA9GOkRwiUqu1CbmrBLdKWMsybrj3mQV0KLQP2jlkleE8SEAjubfSVcZpvkcmdVOHB4RKm_rEaSmU8EIZrxmzqfI5U2nAGGtKnm2Gr1z2tBwlhDM4xuU4xlPyCgd2FEAm7e5Bc35WDoZZMpMDhAmAghNoXlYZpP-x1nuttFMhm5L9zbQoB_NuS463CAjJlJ6Sp-NrMEw8bTF1aNa9DGBPkUE77vfTaWyJQFY1nYL283F-_b0fD_9J6hG5zvBuYrzeIt0nk9X5OjwGwLSyTwab-AmDYAzG priority: 102 providerName: Unpaywall |
| Title | A Performance Study of Deep Neural Network Representations of Interpretable ML on Edge Devices with AI Accelerators |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41012919 https://www.proquest.com/docview/3254645279 https://www.proquest.com/docview/3254929461 https://www.mdpi.com/1424-8220/25/18/5681/pdf?version=1757597686 https://doaj.org/article/2a8152e7740b406fa3578bbdd979c7e6 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED606dBmKPqO28RgH6sQiQ-THJXWblo0hhHUgDsJfKmLIRuRjSD_PkdJVlygRZYuHKgjQN6JvPvE03cAnwyGIIgSRCKsYQmXZZoY6tIkdVKxkAqqXJPlOx2dz_n3hVjslfqKOWEtPXCruFNqFLqYgFFKatH5lCbSs1jrvZbaydCQbadK78BUB7UYIq-WR4ghqD-t0YurSLX1h_dpSPr_FlkewuNttTY312a53PM2k2fwtAsTSd5O7zk8CNULONwjD3wJdU5md1n_JCYE3pBVSb6EsCaRcwPHT9skb3LZ5Lt2vxlVdRS7yza0y0AufpBVRcb-d8DxzeFB4hdakn8juXPomprb-PoVzCfjn5_Pk66EQuLw5NgkBgGIEQxBotXaBOVKzqzk1tIRM8z7EeoUEaIP2rlI9MJYEBggKG-FK43T7DUcVKsqHAERNvOp04JL7rk0XlNqM-kVlVmIsGcAH3aqLdYtU0aBCCPqv-j1P4CzqPReIJJbNx1o8qIzeXGfyQdwvDNZ0e24umCR2J8LKvUA3vePca_ECxBThdW2lcFwkI9wHm9aU_cz4ZHoTGc4-mNv-3-v4-3_WMc7eEJjNeFYkCI7hoPN1TacYIizsUN4KBcSWzX5OoRHZ-Pp7HLYvOHYXnCFffPpLP91C53e_KU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5VB6QLwJFFheR6v2PrzeA0KBtkpoGiHUSrmZfbmXyA51oip_it_IjB9JkYBbr_auNJ7dmfnGO_sNIe8NQBDIEmQkreGRUEUcGebiKHYq4yGWLHNNle80HV2IrzM52yG_-rswWFbZ-8TGUfvK4T_yQ47E7UIypT8tfkbYNQpPV_sWGu22OA3ra0jZ6o_jI1jfD4ydHJ9_GUVdV4HIgTEtIwOY3EgOeZPV2oTMFYJbJaxlKTfc-9QChhHaB-0ccp9wHiTEzMxb6QrjkHwJXP4dwcGXgP2o2TbB45DvtexFnOv4sAbskCHB1x8xr2kN8Dc8u0_2VuXCrK_NfH4jxp3cJ_c6cEqH7W56QHZC-ZDs36AsfETqIf22vWtAsQxxTauCHoWwoMj0AfOnbWk5_d5U2XaXm8oah21rHO080LMJrUp67C8DzG9cFsX_wnQ4pkPnICA2NQD1Y3JxKyp-QnbLqgzPCJU28bHTUijhhTJeM2YT5TOmkoDJ1oC87VWbL1p-jhzyGtR_vtH_gHxGpW8GIKV286C6usw7C82ZyQDLBIDDMYiXFgZ5gKz1XivtVEgH5KBfsryz8zrf7soBebN5DRaKxy6mDNWqHQMgVKQgx9N2qTeSCKRX0wnMfrdZ-39_x_P_i_Ca7I3Ozyb5ZDw9fUHuMuxUjM0ukgOyu7xahZcAn5b2VbNnKflx20byG3IfK2E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQL2MHGnMMDcHqMmthPHDwgVumplo5oQk_qW-Za9VElZWk39a_w6zsmtQwLe9hrbknPsY3_H_vwdQt5rgCAQJcRBbDQPhMzDQDMbBqGVKfdhzFJbs3xnyfG5-DqP5zvkV_cWBmmV3ZpYL9SutHhGPuQo3C5iJtUwb2kRZ-PJp-XPADNI4U1rl06jmSInfnMN4Vv1cTqGsf7A2OTox5fjoM0wEFhwrFWgAZ_rmEMMZZTSPrW54EYKY1jCNXcuMYBnhHJeWYs6KJz7GPbP1JnY5tqiEBMs_3uSc4V0QjnfBnscYr9GyQgKw2EFOCJFsa8_9r86TcDfsO0-ubsulnpzrReLG_vd5D45aIEqHTUz6wHZ8cVDsn9DvvARqUb0bPvugCIlcUPLnI69X1JU_YD2s4ZmTr_XjNv2oVNRYbUt39EsPP12SsuCHrlLD-3r5YviGTEdTenIWtgcaz5A9Zic34qJn5Ddoiz8M0JjE7nQqlhI4YTUTjFmIulSJiOPgdeAvO1Mmy0brY4MYhy0f9bbf0A-o9H7CiivXX8ory6z1lszplPANR6gcQjdS3KNmkDGOKekstInA3LYDVnW-nyVbWfogLzpi8Fb8QpGF75cN3UAkIoE-vG0Geq-JwKl1lQErd_1Y__v_3j-_y68JnfAPbLT6ezkBbnHMGkx5r2IDsnu6mrtXwKSWplX9ZSl5OK2feQ3dikvpA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge4AeeBcWCjKPa5rEjzg-oQCtCoJVhVipnCK_UiFWyarZBZVfz0ySTRcEEhLXZCaxZY_nG3vmMyEvDEAQiBJkJK3hkVBVEhnmkihxKuchkSx3XZbvLDuei3en8nSrih_TKiEU_9It0liFFYEHS2Im4zSPkSwrXvrq5bdhLwl-ogARZ3l2lexkEtD4hOzMZyfF566oaNDuCYU4RPdxC-48x8_84oY6tv4_Qcxdcm1dL83Fd7NYbLmdo5vEbBrcZ5t8PViv7IH78RuX4__06Ba5MWBSWvST6Da5Euo7ZHeLqfAuaQt6clliQDH78II2FX0TwpIiwQfoz_qMcvqxS64daprqFsUuUxvtItAP72lT00N_FkC_W6kobgfT4i0tnAM_2B39t_fI_Ojw0-vjaLivIXKwTK0iA9GOkRwiUqu1CbmrBLdKWMsybrj3mQV0KLQP2jlkleE8SEAjubfSVcZpvkcmdVOHB4RKm_rEaSmU8EIZrxmzqfI5U2nAGGtKnm2Gr1z2tBwlhDM4xuU4xlPyCgd2FEAm7e5Bc35WDoZZMpMDhAmAghNoXlYZpP-x1nuttFMhm5L9zbQoB_NuS463CAjJlJ6Sp-NrMEw8bTF1aNa9DGBPkUE77vfTaWyJQFY1nYL283F-_b0fD_9J6hG5zvBuYrzeIt0nk9X5OjwGwLSyTwab-AmDYAzG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Performance+Study+of+Deep+Neural+Network+Representations+of+Interpretable+ML+on+Edge+Devices+with+AI+Accelerators&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Julian+Schauer&rft.au=Payman+Goodarzi&rft.au=Jannis+Morsch&rft.au=Andreas+Sch%C3%BCtze&rft.date=2025-09-11&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=18&rft.spage=5681&rft_id=info:doi/10.3390%2Fs25185681&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a8152e7740b406fa3578bbdd979c7e6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |