Implementation of topological derivative in the moving morphable components approach

We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was develope...

Full description

Saved in:
Bibliographic Details
Published inFinite elements in analysis and design Vol. 134; pp. 16 - 26
Main Authors Takalloozadeh, Meisam, Yoon, Gil Ho
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.10.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0168-874X
1872-6925
1872-6925
DOI10.1016/j.finel.2017.05.008

Cover

Abstract We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was developed by utilizing topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a topological derivative was used to calculate the first derivative of an objective function with respect to the shape and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The topological derivative formulation has been well developed in recent years for different structural and non-structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of topology optimization problems. Herein, the presented method is illustrated through several topology optimization problems such as stress-based and thermo-mechanical topology optimization. •Topological derivative is utilized in moving morphable components framework.•Sensitivity of strain energy with respect to change in shape and position of the components is calculated.•Optimum layout for thermo-elastic structures considering both temperature changes and mechanical loading is obtained.•Stress constrained topology optimization problems are solved.
AbstractList We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was developed by utilizing topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a topological derivative was used to calculate the first derivative of an objective function with respect to the shape and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The topological derivative formulation has been well developed in recent years for different structural and non-structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of topology optimization problems. Herein, the presented method is illustrated through several topology optimization problems such as stress-based and thermo-mechanical topology optimization. •Topological derivative is utilized in moving morphable components framework.•Sensitivity of strain energy with respect to change in shape and position of the components is calculated.•Optimum layout for thermo-elastic structures considering both temperature changes and mechanical loading is obtained.•Stress constrained topology optimization problems are solved.
We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was developed by utilizing topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a topological derivative was used to calculate the first derivative of an objective function with respect to the shape and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The topological derivative formulation has been well developed in recent years for different structural and non-structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of topology optimization problems. Herein, the presented method is illustrated through several topology optimization problems such as stress-based and thermo-mechanical topology optimization.
Author Takalloozadeh, Meisam
Yoon, Gil Ho
Author_xml – sequence: 1
  givenname: Meisam
  surname: Takalloozadeh
  fullname: Takalloozadeh, Meisam
– sequence: 2
  givenname: Gil Ho
  surname: Yoon
  fullname: Yoon, Gil Ho
  email: ghy@hanyang.ac.kr, gilho.yoon@gmail.com
BookMark eNqNkD1v2zAURYkiBeq4-QVZBHSWQuqL5NChCNLEgIEuLtCNeKKebBoUqVK0i_z70FWmDk2mN7x7Li7ONbly3iEht4wWjLL27lgMxqEtSsp4QZuCUvGBrJjgZd7Ksrkiq5QSueD1r0_kep6PlNKmbOsV2W3GyeKILkI03mV-yKKfvPV7o8FmPQZzTp8zZsZl8YDZ6M_G7dMJ0wE6i5n245TWuDhnME3Bgz58Jh8HsDPevN41-fn9YXf_lG9_PG7uv21zXfE25rLWou8Ae84qoIPAgXFEUWraMsnrBqFjXFTAunJgUnY98H7oOk6B9VoDq9akXnpPboLnP2CtmoIZITwrRtXFjDqqv2bUxYyijUpmEvZlwdLa3yecozr6U3BpqWKypVLUsuUpVS0pHfw8Bxze2S3_obRZ1MYAxr7Bfl1YTM7OBoOatUGnsTcBdVS9N__lXwDW6KK-
CitedBy_id crossref_primary_10_1007_s10338_021_00308_x
crossref_primary_10_1007_s00158_018_2114_0
crossref_primary_10_1007_s00158_022_03239_4
crossref_primary_10_1115_1_4043369
crossref_primary_10_1007_s00419_021_01886_5
crossref_primary_10_1016_j_tws_2020_106831
crossref_primary_10_1115_1_4040547
crossref_primary_10_1016_j_cma_2018_10_011
crossref_primary_10_1115_1_4041052
crossref_primary_10_1016_j_cma_2020_113187
crossref_primary_10_1155_2020_4749698
crossref_primary_10_1007_s00158_019_02353_0
crossref_primary_10_1016_j_cma_2020_113646
crossref_primary_10_1007_s00158_021_03137_1
crossref_primary_10_1155_2020_2478292
crossref_primary_10_1007_s11831_019_09362_8
crossref_primary_10_1080_0305215X_2020_1781843
crossref_primary_10_1108_EC_06_2020_0324
crossref_primary_10_32604_cmes_2021_016950
crossref_primary_10_1007_s11831_023_10053_8
crossref_primary_10_1007_s00158_020_02649_6
crossref_primary_10_1016_j_cma_2018_01_050
crossref_primary_10_1007_s11831_021_09546_1
Cites_doi 10.1051/ijsmdo/2008034
10.1080/03052150902834989
10.1016/j.finel.2016.09.006
10.1016/j.cma.2014.08.027
10.1007/s00158-016-1436-z
10.1002/nme.1422
10.1007/s00158-014-1188-6
10.1007/s00158-010-0534-6
10.1002/nme.1620381202
10.1007/s001580050176
10.1007/BF02982329
10.1007/BF01650949
10.1137/S0363012997323230
10.1002/nme.2637
10.1166/sl.2006.012
10.1007/BF01196941
10.1007/BF01197454
10.1007/s10409-009-0240-z
10.1007/BF01742933
10.1007/s00158-007-0217-0
10.1016/j.apm.2016.10.010
10.1016/j.camwa.2013.07.008
10.1016/j.cma.2007.05.006
10.1007/s00466-008-0287-x
10.1016/j.cma.2014.04.003
10.1016/j.cma.2014.01.010
10.1016/j.finel.2016.06.002
10.1016/0045-7825(88)90086-2
10.1016/j.cma.2016.12.030
10.1007/s10492-010-0018-4
10.1016/j.ijsolstr.2012.12.022
10.1016/j.jcp.2003.09.032
10.1007/s00158-015-1372-3
10.1007/s00158-008-0250-7
10.1016/j.cma.2011.11.005
10.1007/s00158-016-1399-0
10.1006/jcph.2001.6789
10.1007/s00158-008-0336-2
10.1002/nme.4416
10.1016/j.cad.2008.07.004
10.1016/S1631-073X(02)02412-3
10.1115/1.4027609
10.1007/s00158-007-0203-6
10.1016/j.cma.2011.08.016
10.1007/s001580050178
10.1016/j.compstruc.2016.02.009
10.1016/S0045-7825(02)00559-5
10.1007/s00158-013-0912-y
10.1007/s00158-013-0899-4
10.1016/j.jcp.2011.01.049
10.1007/s00158-013-0934-5
10.1007/s00158-009-0425-x
10.1016/j.cma.2012.04.004
10.1016/S0045-7825(02)00599-6
10.1007/s00158-009-0359-3
10.1115/1.4029335
10.1590/1679-78251252
10.1016/j.enganabound.2010.06.017
10.1016/j.finel.2010.06.010
10.1007/s00158-009-0440-y
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Oct 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 15, 2017
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.finel.2017.05.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
EndPage 26
ExternalDocumentID oai:repository.hanyang.ac.kr:20.500.11754/115862
10_1016_j_finel_2017_05_008
S0168874X17301014
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7SC
7TB
8FD
AGCQF
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c376t-94c8dbaed713a0f8ef17ee82c0619745eab1783a1b2f199bda7dfbb70a1dcca13
IEDL.DBID .~1
ISSN 0168-874X
1872-6925
IngestDate Sun Oct 26 03:42:16 EDT 2025
Sun Sep 07 03:14:21 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Wed Oct 01 03:52:31 EDT 2025
Fri Feb 23 02:34:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Moving morphable components
Topological derivative
Thermal loading
Stress-based optimization
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-94c8dbaed713a0f8ef17ee82c0619745eab1783a1b2f199bda7dfbb70a1dcca13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0168874X17301014?via%3Dihub
PQID 1960984967
PQPubID 2045476
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_finel_2017_05_008
proquest_journals_1960984967
crossref_primary_10_1016_j_finel_2017_05_008
crossref_citationtrail_10_1016_j_finel_2017_05_008
elsevier_sciencedirect_doi_10_1016_j_finel_2017_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-15
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Giusti, Novotny, Rivera, Rodriguez (bib59) 2013; 50
Stolpe, Svanberg (bib28) 2001; 21
Novotny, Feijóo, Taroco, Padra (bib44) 2007; 196
Yoon, Kim (bib9) 2003; 17
Novotny, Feijóo, Taroco, Padra (bib48) 2003; 192
Krishnakumar, Suresh (bib53) 2015; 137
Eschenauer, Kobelev, Schumacher (bib43) 1994; 8
Giusti, Novotny, Sokołowski (bib55) 2010; 40
Bruggi (bib27) 2008; 36
Paris, Navarrina, Colominas, Casteleiro (bib29) 2009; 39
Allaire, Jouve, Toader (bib6) 2004; 194
Lopes, Novotny (bib54) 2016; 54
Xia, Wang (bib32) 2008; 42
Guo, Zhang, Zhong (bib38) 2014; 272
Duysinx, Van Miegroet, Lemaire, Brüls, Bruyneel (bib10) 2008; 2
Zhang, Li, Yuan, Song, Guo (bib41) 2016
Zhang, Yuan, Zhang, Guo (bib40) 2016; 53
Feijoo, Novotny, Taroco, Padra (bib65) 2005
Du, Luo, Tian, Chen (bib7) 2009; 41
Rozvany (bib1) 2009; 37
Liu, Korvink, Reed (bib14) 2006; 4
Rubio, Nishiwaki, Silva (bib34) 2010; 46
Khludnev, Sokolowski, Szulc (bib62) 2010; 55
Suresh, Takalloozadeh (bib22) 2013; 48
Abe, Fujiu, Koro (bib64) 2010; 34
Yoon (bib12) 2012; 209
Yang, Chen (bib24) 1996; 12
Zhang, Zhong, Guo (bib39) 2014; 282
Turevsky, Gopalakrishnan, Suresh (bib45) 2009; 79
Yoon, Kim (bib13) 2005; 64
Jeong, Park, Choi, Yoon (bib25) 2013; 66
Amstutz, Novotny (bib51) 2010; 41
Osher, Santosa (bib4) 2001; 171
Guo, Zhang, Zhong (bib8) 2014; 81
Rodrigues, Fernandes (bib31) 1995; 38
Deng, Suresh (bib19) 2015; 51
Guest (bib36) 2009; 37
Deaton, Grandhi (bib33) 2013; 48
Sa, Amigo, Novotny, Silva (bib63) 2016; 54
Bendsøe, Kikuchi (bib2) 1988; 71
Amad, Loula, Novotny (bib57) 2017; 42
van Dijk, Maute, Langelaar, van Keulen (bib20) 2013; 48
Chen, Wang, Liu (bib35) 2008; 40
Cheng, Guo (bib26) 1997; 13
Van Goethem, Novotny (bib61) 2010; 33
Takalloozadeh, Yoon (bib60) 2017; 317
Suresh (bib49) 2010; 42
Amstutz, Novotny, Neto (bib52) 2012; 233
Bendsøe (bib3) 1989; 1
Choi, Kim (bib42) 2006
Lopes, RBd, Novotny (bib56) 2015; 12
Sokolowski, Zochowski (bib47) 1999; 37
Wang, Wang, Guo (bib17) 2003; 192
Zhang, Guo, Wang, Wei (bib23) 2013; 93
Le, Norato, Bruns, Ha, Tortorelli (bib30) 2010; 41
Deng, Suresh (bib50) 2016; 170
Takalloozadeh, Yoon (bib66) 2017; 317
Yun, Youn (bib16) 2017; 123
Guirguis, Aly (bib18) 2016; 120
Takezawa, Yoon, Jeong, Kobashi, Kitamura (bib15) 2014; 276
Novotny, Sokołowski (bib46) 2012
Canelas, Novotny, Roche (bib58) 2011; 230
Guo, Zhang, Wang, Wei (bib21) 2011; 200
Sigmund (bib11) 2001; 21
Sigmund (bib37) 2009; 25
Allaire, Jouve, Toader (bib5) 2002; 334
Le (10.1016/j.finel.2017.05.008_bib30) 2010; 41
Lopes (10.1016/j.finel.2017.05.008_bib56) 2015; 12
Liu (10.1016/j.finel.2017.05.008_bib14) 2006; 4
Choi (10.1016/j.finel.2017.05.008_bib42) 2006
Rubio (10.1016/j.finel.2017.05.008_bib34) 2010; 46
Takalloozadeh (10.1016/j.finel.2017.05.008_bib60) 2017; 317
Suresh (10.1016/j.finel.2017.05.008_bib49) 2010; 42
Sokolowski (10.1016/j.finel.2017.05.008_bib47) 1999; 37
Feijoo (10.1016/j.finel.2017.05.008_bib65) 2005
Suresh (10.1016/j.finel.2017.05.008_bib22) 2013; 48
Zhang (10.1016/j.finel.2017.05.008_bib23) 2013; 93
Yang (10.1016/j.finel.2017.05.008_bib24) 1996; 12
Guest (10.1016/j.finel.2017.05.008_bib36) 2009; 37
Guo (10.1016/j.finel.2017.05.008_bib38) 2014; 272
Sigmund (10.1016/j.finel.2017.05.008_bib11) 2001; 21
Amstutz (10.1016/j.finel.2017.05.008_bib52) 2012; 233
Giusti (10.1016/j.finel.2017.05.008_bib59) 2013; 50
Osher (10.1016/j.finel.2017.05.008_bib4) 2001; 171
Deaton (10.1016/j.finel.2017.05.008_bib33) 2013; 48
Deng (10.1016/j.finel.2017.05.008_bib50) 2016; 170
Novotny (10.1016/j.finel.2017.05.008_bib48) 2003; 192
Allaire (10.1016/j.finel.2017.05.008_bib6) 2004; 194
Guo (10.1016/j.finel.2017.05.008_bib8) 2014; 81
Xia (10.1016/j.finel.2017.05.008_bib32) 2008; 42
Du (10.1016/j.finel.2017.05.008_bib7) 2009; 41
Zhang (10.1016/j.finel.2017.05.008_bib40) 2016; 53
Allaire (10.1016/j.finel.2017.05.008_bib5) 2002; 334
Yoon (10.1016/j.finel.2017.05.008_bib12) 2012; 209
Chen (10.1016/j.finel.2017.05.008_bib35) 2008; 40
Stolpe (10.1016/j.finel.2017.05.008_bib28) 2001; 21
Duysinx (10.1016/j.finel.2017.05.008_bib10) 2008; 2
Yoon (10.1016/j.finel.2017.05.008_bib13) 2005; 64
Canelas (10.1016/j.finel.2017.05.008_bib58) 2011; 230
Bruggi (10.1016/j.finel.2017.05.008_bib27) 2008; 36
Takalloozadeh (10.1016/j.finel.2017.05.008_bib66) 2017; 317
Zhang (10.1016/j.finel.2017.05.008_bib41) 2016
Eschenauer (10.1016/j.finel.2017.05.008_bib43) 1994; 8
Sa (10.1016/j.finel.2017.05.008_bib63) 2016; 54
Paris (10.1016/j.finel.2017.05.008_bib29) 2009; 39
Lopes (10.1016/j.finel.2017.05.008_bib54) 2016; 54
Amstutz (10.1016/j.finel.2017.05.008_bib51) 2010; 41
Yoon (10.1016/j.finel.2017.05.008_bib9) 2003; 17
Amad (10.1016/j.finel.2017.05.008_bib57) 2017; 42
Wang (10.1016/j.finel.2017.05.008_bib17) 2003; 192
Guo (10.1016/j.finel.2017.05.008_bib21) 2011; 200
Sigmund (10.1016/j.finel.2017.05.008_bib37) 2009; 25
Yun (10.1016/j.finel.2017.05.008_bib16) 2017; 123
Novotny (10.1016/j.finel.2017.05.008_bib46) 2012
Van Goethem (10.1016/j.finel.2017.05.008_bib61) 2010; 33
Abe (10.1016/j.finel.2017.05.008_bib64) 2010; 34
Khludnev (10.1016/j.finel.2017.05.008_bib62) 2010; 55
Novotny (10.1016/j.finel.2017.05.008_bib44) 2007; 196
van Dijk (10.1016/j.finel.2017.05.008_bib20) 2013; 48
Takezawa (10.1016/j.finel.2017.05.008_bib15) 2014; 276
Turevsky (10.1016/j.finel.2017.05.008_bib45) 2009; 79
Rozvany (10.1016/j.finel.2017.05.008_bib1) 2009; 37
Jeong (10.1016/j.finel.2017.05.008_bib25) 2013; 66
Rodrigues (10.1016/j.finel.2017.05.008_bib31) 1995; 38
Guirguis (10.1016/j.finel.2017.05.008_bib18) 2016; 120
Bendsøe (10.1016/j.finel.2017.05.008_bib2) 1988; 71
Zhang (10.1016/j.finel.2017.05.008_bib39) 2014; 282
Bendsøe (10.1016/j.finel.2017.05.008_bib3) 1989; 1
Deng (10.1016/j.finel.2017.05.008_bib19) 2015; 51
Krishnakumar (10.1016/j.finel.2017.05.008_bib53) 2015; 137
Cheng (10.1016/j.finel.2017.05.008_bib26) 1997; 13
Giusti (10.1016/j.finel.2017.05.008_bib55) 2010; 40
References_xml – volume: 317
  start-page: 554
  year: 2017
  end-page: 579
  ident: bib66
  article-title: Development of Pareto topology optimization considering thermal loads
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 33
  start-page: 1978
  year: 2010
  end-page: 1994
  ident: bib61
  article-title: Crack nucleation sensitivity analysis
  publication-title: Math. Method Appl. Sci.
– volume: 54
  start-page: 249
  year: 2016
  end-page: 264
  ident: bib63
  article-title: Topological derivatives applied to fluid flow channel design optimization problems
  publication-title: Struct. Multidiscip. Optim.
– volume: 2
  start-page: 253
  year: 2008
  end-page: 258
  ident: bib10
  article-title: Topology and generalized shape optimization: why stress constraints are so important?
  publication-title: Int. J. Simul. Multidiscip. Des. Optim.
– volume: 42
  start-page: 209
  year: 2017
  end-page: 222
  ident: bib57
  article-title: A new method for topology design of electromagnetic antennas in hyperthermia therapy
  publication-title: Appl. Math. Model.
– volume: 171
  start-page: 272
  year: 2001
  end-page: 288
  ident: bib4
  article-title: Level set methods for optimization problems involving geometry and constraints: i. Frequencies of a two-density inhomogeneous drum
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 731
  year: 2013
  end-page: 745
  ident: bib33
  article-title: Stiffening of restrained thermal structures via topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 37
  start-page: 463
  year: 2009
  end-page: 473
  ident: bib36
  article-title: Imposing maximum length scale in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 37
  start-page: 1251
  year: 1999
  end-page: 1272
  ident: bib47
  article-title: On the topological derivative in shape optimization
  publication-title: SIAM J. Control Optim.
– volume: 46
  start-page: 1049
  year: 2010
  end-page: 1060
  ident: bib34
  article-title: Design of compliant mechanisms considering thermal effect compensation and topology optimization
  publication-title: Finite Elem. Anal. Des.
– volume: 272
  start-page: 354
  year: 2014
  end-page: 378
  ident: bib38
  article-title: Explicit feature control in structural topology optimization via level set method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 48
  start-page: 437
  year: 2013
  end-page: 472
  ident: bib20
  article-title: Level-set methods for structural topology optimization: a review
  publication-title: Struct. Multidiscip. Optim.
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: bib3
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– year: 2005
  ident: bib65
  article-title: The topological-shape sensitivity method in two-dimensional linear elasticity topology design
  publication-title: Appl. Comput. Mech. Struct. Fluids
– volume: 137
  start-page: 031406
  year: 2015
  ident: bib53
  article-title: Hinge-free compliant mechanism design via the topological level-set
  publication-title: J. Mech. Des.
– volume: 39
  start-page: 419
  year: 2009
  end-page: 437
  ident: bib29
  article-title: Topology optimization of continuum structures with local and global stress constraints
  publication-title: Struct. Multidiscip. Optim.
– volume: 40
  start-page: 53
  year: 2010
  ident: bib55
  article-title: Topological derivative for steady-state orthotropic heat diffusion problem
  publication-title: Struct. Multidiscip. Optim.
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: bib17
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2006
  ident: bib42
  article-title: Structural Sensitivity Analysis and Optimization 1: Linear Systems
– volume: 12
  start-page: 98
  year: 1996
  end-page: 105
  ident: bib24
  article-title: Stress-based topology optimization
  publication-title: Struct. Optim.
– volume: 50
  start-page: 1303
  year: 2013
  end-page: 1313
  ident: bib59
  article-title: Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
  publication-title: Int. J. Solids Struct.
– volume: 51
  start-page: 987
  year: 2015
  end-page: 1001
  ident: bib19
  article-title: Multi-constrained topology optimization via the topological sensitivity
  publication-title: Struct. Multidiscip. Optim.
– year: 2012
  ident: bib46
  article-title: Topological Derivatives in Shape Optimization
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: bib2
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 192
  start-page: 803
  year: 2003
  end-page: 829
  ident: bib48
  article-title: Topological sensitivity analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 123
  start-page: 9
  year: 2017
  end-page: 18
  ident: bib16
  article-title: Multi-material topology optimization of viscoelastically damped structures under time-dependent loading
  publication-title: Finite Elem. Anal. Des.
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  ident: bib6
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 125
  year: 2008
  end-page: 141
  ident: bib27
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 40
  start-page: 951
  year: 2008
  end-page: 962
  ident: bib35
  article-title: Shape feature control in structural topology optimization
  publication-title: Comput. Aided Des.
– volume: 41
  start-page: 407
  year: 2010
  end-page: 420
  ident: bib51
  article-title: Topological optimization of structures subject to von Mises stress constraints
  publication-title: Struct. Multidiscip. Optim.
– volume: 17
  start-page: 1496
  year: 2003
  end-page: 1506
  ident: bib9
  article-title: The role of S-shape mapping functions in the SIMP approach for topology optimization
  publication-title: KSME Int. J.
– volume: 38
  start-page: 1951
  year: 1995
  end-page: 1965
  ident: bib31
  article-title: A material based model for topology optimization of thermoelastic structures
  publication-title: Int. J. Numer. Methods Eng.
– volume: 8
  start-page: 42
  year: 1994
  end-page: 51
  ident: bib43
  article-title: Bubble method for topology and shape optimization of structures
  publication-title: Struct. Optim.
– volume: 66
  start-page: 1065
  year: 2013
  end-page: 1081
  ident: bib25
  article-title: Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information
  publication-title: Comput. Math. Appl.
– volume: 233
  start-page: 123
  year: 2012
  end-page: 136
  ident: bib52
  article-title: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 4
  start-page: 191
  year: 2006
  end-page: 199
  ident: bib14
  article-title: Multiphysics for structural topology optimization
  publication-title: Sens. Lett.
– volume: 42
  start-page: 837
  year: 2008
  end-page: 857
  ident: bib32
  article-title: Topology optimization of thermoelastic structures using level set method
  publication-title: Comput. Mech.
– volume: 120
  start-page: 41
  year: 2016
  end-page: 56
  ident: bib18
  article-title: A derivative-free level-set method for topology optimization
  publication-title: Finite Elem. Anal. Des.
– volume: 170
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib50
  article-title: Multi-constrained 3D topology optimization via augmented topological level-set
  publication-title: Comput. Struct.
– volume: 64
  start-page: 1649
  year: 2005
  end-page: 1677
  ident: bib13
  article-title: The element connectivity parameterization formulation for the topology design optimization of multiphysics systems
  publication-title: Int. J. Numer. Methods Eng.
– volume: 48
  start-page: 295
  year: 2013
  end-page: 309
  ident: bib22
  article-title: Stress-constrained topology optimization: a topological level-set approach
  publication-title: Struct. Multidiscip. Optim.
– volume: 12
  start-page: 834
  year: 2015
  end-page: 860
  ident: bib56
  article-title: Topological derivative-based topology optimization of structures subject to multiple load-cases
  publication-title: Lat. Am. J Solids Struct.
– volume: 196
  start-page: 4354
  year: 2007
  end-page: 4364
  ident: bib44
  article-title: Topological sensitivity analysis for three-dimensional linear elasticity problem
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 13
  start-page: 258
  year: 1997
  end-page: 266
  ident: bib26
  article-title: epsilon-relaxed approach in structural topology optimization
  publication-title: Struct. Optim.
– volume: 21
  start-page: 120
  year: 2001
  end-page: 127
  ident: bib11
  article-title: A 99 line topology optimization code written in Matlab
  publication-title: Struct. Multidiscip. Optim.
– volume: 55
  start-page: 433
  year: 2010
  end-page: 469
  ident: bib62
  article-title: Shape and topological sensitivity analysis in domains with cracks
  publication-title: Appl. Math.
– volume: 334
  start-page: 1125
  year: 2002
  end-page: 1130
  ident: bib5
  article-title: A level-set method for shape optimization
  publication-title: Comptes Rendus Math.
– volume: 34
  start-page: 1082
  year: 2010
  end-page: 1091
  ident: bib64
  article-title: A BE-based shape optimization method enhanced by topological derivative for sound scattering problems
  publication-title: Eng. Anal. Bound. Elem.
– volume: 79
  start-page: 1683
  year: 2009
  end-page: 1702
  ident: bib45
  article-title: An efficient numerical method for computing the topological sensitivity of arbitrary-shaped features in plate bending
  publication-title: Int. J. Numer. Methods Eng.
– start-page: 1
  year: 2016
  end-page: 19
  ident: bib41
  article-title: A new three-dimensional topology optimization method based on moving morphable components (MMCs)
  publication-title: Comput. Mech.
– volume: 41
  start-page: 753
  year: 2009
  end-page: 772
  ident: bib7
  article-title: Topology optimization for thermo-mechanical compliant actuators using mesh-free methods
  publication-title: Eng. Optim.
– volume: 282
  start-page: 71
  year: 2014
  end-page: 86
  ident: bib39
  article-title: An explicit length scale control approach in SIMP-based topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 54
  start-page: 737
  year: 2016
  end-page: 746
  ident: bib54
  article-title: Topology design of compliant mechanisms with stress constraints based on the topological derivative concept
  publication-title: Struct. Multidiscip. Optim.
– volume: 41
  start-page: 605
  year: 2010
  end-page: 620
  ident: bib30
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
– volume: 37
  start-page: 217
  year: 2009
  end-page: 237
  ident: bib1
  article-title: A critical review of established methods of structural topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 81
  year: 2014
  ident: bib8
  article-title: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework
  publication-title: J Appl. Mech.-Trans. Asme
– volume: 276
  start-page: 341
  year: 2014
  end-page: 361
  ident: bib15
  article-title: Structural topology optimization with strength and heat conduction constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 42
  start-page: 665
  year: 2010
  end-page: 679
  ident: bib49
  article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 200
  start-page: 3439
  year: 2011
  end-page: 3452
  ident: bib21
  article-title: Stress-related topology optimization via level set approach
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 93
  start-page: 942
  year: 2013
  end-page: 959
  ident: bib23
  article-title: Optimal topology design of continuum structures with stress concentration alleviation via level set method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 25
  start-page: 227
  year: 2009
  end-page: 239
  ident: bib37
  article-title: Manufacturing tolerant topology optimization
  publication-title: Acta Mech. Sin.
– volume: 230
  start-page: 3570
  year: 2011
  end-page: 3588
  ident: bib58
  article-title: A new method for inverse electromagnetic casting problems based on the topological derivative
  publication-title: J. Comput. Phys.
– volume: 53
  start-page: 1243
  year: 2016
  end-page: 1260
  ident: bib40
  article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model
  publication-title: Struct. Multidiscip. Optim.
– volume: 21
  start-page: 140
  year: 2001
  end-page: 151
  ident: bib28
  article-title: On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 317
  start-page: 554
  year: 2017
  end-page: 579
  ident: bib60
  article-title: Development of Pareto topology optimization considering thermal loads
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 209
  start-page: 28
  year: 2012
  end-page: 44
  ident: bib12
  article-title: Topological layout design of electro-fluid-thermal-compliant actuator
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 2
  start-page: 253
  year: 2008
  ident: 10.1016/j.finel.2017.05.008_bib10
  article-title: Topology and generalized shape optimization: why stress constraints are so important?
  publication-title: Int. J. Simul. Multidiscip. Des. Optim.
  doi: 10.1051/ijsmdo/2008034
– volume: 41
  start-page: 753
  year: 2009
  ident: 10.1016/j.finel.2017.05.008_bib7
  article-title: Topology optimization for thermo-mechanical compliant actuators using mesh-free methods
  publication-title: Eng. Optim.
  doi: 10.1080/03052150902834989
– year: 2006
  ident: 10.1016/j.finel.2017.05.008_bib42
– volume: 123
  start-page: 9
  year: 2017
  ident: 10.1016/j.finel.2017.05.008_bib16
  article-title: Multi-material topology optimization of viscoelastically damped structures under time-dependent loading
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2016.09.006
– volume: 282
  start-page: 71
  year: 2014
  ident: 10.1016/j.finel.2017.05.008_bib39
  article-title: An explicit length scale control approach in SIMP-based topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.08.027
– volume: 54
  start-page: 737
  year: 2016
  ident: 10.1016/j.finel.2017.05.008_bib54
  article-title: Topology design of compliant mechanisms with stress constraints based on the topological derivative concept
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1436-z
– volume: 64
  start-page: 1649
  year: 2005
  ident: 10.1016/j.finel.2017.05.008_bib13
  article-title: The element connectivity parameterization formulation for the topology design optimization of multiphysics systems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1422
– volume: 51
  start-page: 987
  year: 2015
  ident: 10.1016/j.finel.2017.05.008_bib19
  article-title: Multi-constrained topology optimization via the topological sensitivity
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1188-6
– volume: 42
  start-page: 665
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib49
  article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0534-6
– volume: 38
  start-page: 1951
  year: 1995
  ident: 10.1016/j.finel.2017.05.008_bib31
  article-title: A material based model for topology optimization of thermoelastic structures
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620381202
– volume: 21
  start-page: 120
  year: 2001
  ident: 10.1016/j.finel.2017.05.008_bib11
  article-title: A 99 line topology optimization code written in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050176
– volume: 17
  start-page: 1496
  year: 2003
  ident: 10.1016/j.finel.2017.05.008_bib9
  article-title: The role of S-shape mapping functions in the SIMP approach for topology optimization
  publication-title: KSME Int. J.
  doi: 10.1007/BF02982329
– volume: 1
  start-page: 193
  year: 1989
  ident: 10.1016/j.finel.2017.05.008_bib3
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 37
  start-page: 1251
  year: 1999
  ident: 10.1016/j.finel.2017.05.008_bib47
  article-title: On the topological derivative in shape optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012997323230
– volume: 79
  start-page: 1683
  year: 2009
  ident: 10.1016/j.finel.2017.05.008_bib45
  article-title: An efficient numerical method for computing the topological sensitivity of arbitrary-shaped features in plate bending
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2637
– volume: 4
  start-page: 191
  year: 2006
  ident: 10.1016/j.finel.2017.05.008_bib14
  article-title: Multiphysics for structural topology optimization
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2006.012
– volume: 12
  start-page: 98
  year: 1996
  ident: 10.1016/j.finel.2017.05.008_bib24
  article-title: Stress-based topology optimization
  publication-title: Struct. Optim.
  doi: 10.1007/BF01196941
– volume: 13
  start-page: 258
  year: 1997
  ident: 10.1016/j.finel.2017.05.008_bib26
  article-title: epsilon-relaxed approach in structural topology optimization
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197454
– volume: 25
  start-page: 227
  year: 2009
  ident: 10.1016/j.finel.2017.05.008_bib37
  article-title: Manufacturing tolerant topology optimization
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-009-0240-z
– volume: 8
  start-page: 42
  year: 1994
  ident: 10.1016/j.finel.2017.05.008_bib43
  article-title: Bubble method for topology and shape optimization of structures
  publication-title: Struct. Optim.
  doi: 10.1007/BF01742933
– volume: 37
  start-page: 217
  year: 2009
  ident: 10.1016/j.finel.2017.05.008_bib1
  article-title: A critical review of established methods of structural topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0217-0
– volume: 42
  start-page: 209
  year: 2017
  ident: 10.1016/j.finel.2017.05.008_bib57
  article-title: A new method for topology design of electromagnetic antennas in hyperthermia therapy
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.10.010
– volume: 66
  start-page: 1065
  year: 2013
  ident: 10.1016/j.finel.2017.05.008_bib25
  article-title: Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2013.07.008
– start-page: 1
  year: 2016
  ident: 10.1016/j.finel.2017.05.008_bib41
  article-title: A new three-dimensional topology optimization method based on moving morphable components (MMCs)
  publication-title: Comput. Mech.
– volume: 196
  start-page: 4354
  year: 2007
  ident: 10.1016/j.finel.2017.05.008_bib44
  article-title: Topological sensitivity analysis for three-dimensional linear elasticity problem
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.05.006
– volume: 42
  start-page: 837
  year: 2008
  ident: 10.1016/j.finel.2017.05.008_bib32
  article-title: Topology optimization of thermoelastic structures using level set method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0287-x
– volume: 276
  start-page: 341
  year: 2014
  ident: 10.1016/j.finel.2017.05.008_bib15
  article-title: Structural topology optimization with strength and heat conduction constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.04.003
– volume: 272
  start-page: 354
  year: 2014
  ident: 10.1016/j.finel.2017.05.008_bib38
  article-title: Explicit feature control in structural topology optimization via level set method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.01.010
– volume: 120
  start-page: 41
  year: 2016
  ident: 10.1016/j.finel.2017.05.008_bib18
  article-title: A derivative-free level-set method for topology optimization
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2016.06.002
– volume: 71
  start-page: 197
  year: 1988
  ident: 10.1016/j.finel.2017.05.008_bib2
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 317
  start-page: 554
  year: 2017
  ident: 10.1016/j.finel.2017.05.008_bib60
  article-title: Development of Pareto topology optimization considering thermal loads
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.12.030
– volume: 55
  start-page: 433
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib62
  article-title: Shape and topological sensitivity analysis in domains with cracks
  publication-title: Appl. Math.
  doi: 10.1007/s10492-010-0018-4
– volume: 50
  start-page: 1303
  year: 2013
  ident: 10.1016/j.finel.2017.05.008_bib59
  article-title: Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.12.022
– year: 2005
  ident: 10.1016/j.finel.2017.05.008_bib65
  article-title: The topological-shape sensitivity method in two-dimensional linear elasticity topology design
  publication-title: Appl. Comput. Mech. Struct. Fluids
– volume: 33
  start-page: 1978
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib61
  article-title: Crack nucleation sensitivity analysis
  publication-title: Math. Method Appl. Sci.
– volume: 194
  start-page: 363
  year: 2004
  ident: 10.1016/j.finel.2017.05.008_bib6
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.032
– volume: 53
  start-page: 1243
  year: 2016
  ident: 10.1016/j.finel.2017.05.008_bib40
  article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1372-3
– volume: 37
  start-page: 463
  year: 2009
  ident: 10.1016/j.finel.2017.05.008_bib36
  article-title: Imposing maximum length scale in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0250-7
– volume: 209
  start-page: 28
  year: 2012
  ident: 10.1016/j.finel.2017.05.008_bib12
  article-title: Topological layout design of electro-fluid-thermal-compliant actuator
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.11.005
– volume: 54
  start-page: 249
  year: 2016
  ident: 10.1016/j.finel.2017.05.008_bib63
  article-title: Topological derivatives applied to fluid flow channel design optimization problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1399-0
– volume: 171
  start-page: 272
  year: 2001
  ident: 10.1016/j.finel.2017.05.008_bib4
  article-title: Level set methods for optimization problems involving geometry and constraints: i. Frequencies of a two-density inhomogeneous drum
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6789
– volume: 39
  start-page: 419
  year: 2009
  ident: 10.1016/j.finel.2017.05.008_bib29
  article-title: Topology optimization of continuum structures with local and global stress constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0336-2
– volume: 93
  start-page: 942
  year: 2013
  ident: 10.1016/j.finel.2017.05.008_bib23
  article-title: Optimal topology design of continuum structures with stress concentration alleviation via level set method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4416
– volume: 40
  start-page: 951
  year: 2008
  ident: 10.1016/j.finel.2017.05.008_bib35
  article-title: Shape feature control in structural topology optimization
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2008.07.004
– volume: 334
  start-page: 1125
  year: 2002
  ident: 10.1016/j.finel.2017.05.008_bib5
  article-title: A level-set method for shape optimization
  publication-title: Comptes Rendus Math.
  doi: 10.1016/S1631-073X(02)02412-3
– volume: 81
  year: 2014
  ident: 10.1016/j.finel.2017.05.008_bib8
  article-title: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework
  publication-title: J Appl. Mech.-Trans. Asme
  doi: 10.1115/1.4027609
– volume: 36
  start-page: 125
  year: 2008
  ident: 10.1016/j.finel.2017.05.008_bib27
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0203-6
– volume: 200
  start-page: 3439
  year: 2011
  ident: 10.1016/j.finel.2017.05.008_bib21
  article-title: Stress-related topology optimization via level set approach
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.08.016
– volume: 21
  start-page: 140
  year: 2001
  ident: 10.1016/j.finel.2017.05.008_bib28
  article-title: On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050178
– volume: 170
  start-page: 1
  year: 2016
  ident: 10.1016/j.finel.2017.05.008_bib50
  article-title: Multi-constrained 3D topology optimization via augmented topological level-set
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.02.009
– volume: 192
  start-page: 227
  year: 2003
  ident: 10.1016/j.finel.2017.05.008_bib17
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 48
  start-page: 437
  year: 2013
  ident: 10.1016/j.finel.2017.05.008_bib20
  article-title: Level-set methods for structural topology optimization: a review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0912-y
– volume: 48
  start-page: 295
  year: 2013
  ident: 10.1016/j.finel.2017.05.008_bib22
  article-title: Stress-constrained topology optimization: a topological level-set approach
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0899-4
– volume: 230
  start-page: 3570
  year: 2011
  ident: 10.1016/j.finel.2017.05.008_bib58
  article-title: A new method for inverse electromagnetic casting problems based on the topological derivative
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.049
– volume: 48
  start-page: 731
  year: 2013
  ident: 10.1016/j.finel.2017.05.008_bib33
  article-title: Stiffening of restrained thermal structures via topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0934-5
– volume: 41
  start-page: 407
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib51
  article-title: Topological optimization of structures subject to von Mises stress constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0425-x
– volume: 233
  start-page: 123
  year: 2012
  ident: 10.1016/j.finel.2017.05.008_bib52
  article-title: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.04.004
– volume: 192
  start-page: 803
  year: 2003
  ident: 10.1016/j.finel.2017.05.008_bib48
  article-title: Topological sensitivity analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00599-6
– volume: 40
  start-page: 53
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib55
  article-title: Topological derivative for steady-state orthotropic heat diffusion problem
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0359-3
– volume: 137
  start-page: 031406
  year: 2015
  ident: 10.1016/j.finel.2017.05.008_bib53
  article-title: Hinge-free compliant mechanism design via the topological level-set
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4029335
– volume: 12
  start-page: 834
  year: 2015
  ident: 10.1016/j.finel.2017.05.008_bib56
  article-title: Topological derivative-based topology optimization of structures subject to multiple load-cases
  publication-title: Lat. Am. J Solids Struct.
  doi: 10.1590/1679-78251252
– volume: 34
  start-page: 1082
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib64
  article-title: A BE-based shape optimization method enhanced by topological derivative for sound scattering problems
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2010.06.017
– volume: 317
  start-page: 554
  year: 2017
  ident: 10.1016/j.finel.2017.05.008_bib66
  article-title: Development of Pareto topology optimization considering thermal loads
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.12.030
– year: 2012
  ident: 10.1016/j.finel.2017.05.008_bib46
– volume: 46
  start-page: 1049
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib34
  article-title: Design of compliant mechanisms considering thermal effect compensation and topology optimization
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2010.06.010
– volume: 41
  start-page: 605
  year: 2010
  ident: 10.1016/j.finel.2017.05.008_bib30
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0440-y
SSID ssj0005264
Score 2.2935271
Snippet We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Finite element method
Mathematical analysis
Moving morphable components
Optimization
Sensitivity analysis
Stress-based optimization
Studies
Thermal loading
Topological derivative
Topology
Topology optimization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6N7gF4YDBAFAbyA7zhtU78I3lCEzBNSFRIrFJ5suzY1gJdWrF0CP56zokzFYQmkHiKEp2VOHe5-y4-fwfwXHLDVZCYlvjSUI4pA7W559RmuVJ5xfPQLRe8n8mTOX-3EIsdmA17YWJZZfL9vU_vvHW6Mklvc7Ku68lHBCv4hfAFi0aKSP_VZW1e5G_qs429AbtSIDYfwe589uHoU0_wXdAoHjOwQmVUlpkYaIi6gq-AsC4uRrCeyzM2nPxzqNqCojc3zdp8_2aWy62odLwHq2E-fTHKl8NNaw-rH79RPf6_Cd-FOwnAkqN-yD3Y8c0-7CUwS5KruNiH21tMh_fhtGMhPk8bnRqyCqTt2zNEIyEOxS47CnJSNwQxKTnv_nTgAe0g7u4isfZ91cSyDzLwoD-A-fHb09cnNDV0oBX6sZaWvCqcNd5hZmymofCBKe-LrEJQgXmN8MYyVeSG2SywsrTOKBesVVPDHFoayx_CqMFbPQKS8yBdVvEgYs5VOiuFsNwJX7oiOD4dQzboTleJ7Tw23Vjqoazts-4UrqPC9VRoVPgYXl4NWvdkH9eLy8Eo9C8q1BiOrh94MJiQTi7jQrPI_VfwUqox0Cuz-pvnePyP8k_gVjyLEZiJAxi1Xzf-KUKr1j5L38tPr9Ej0w
  priority: 102
  providerName: Unpaywall
Title Implementation of topological derivative in the moving morphable components approach
URI https://dx.doi.org/10.1016/j.finel.2017.05.008
https://www.proquest.com/docview/1960984967
https://www.sciencedirect.com/science/article/pii/S0168874X17301014?via%3Dihub
UnpaywallVersion submittedVersion
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AKRWK
  dateStart: 19850401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB9ED_oOfj9cv8jBo3WbNm3a4yLKqrgIurDvFJImgX2sddFV8eLf7iRNZR-IPDyFloSGmWTmN83kNwBHOZOM2xzDElPKiGHIEKnUsEglKedpxVLrjwuuB3l_yC5H2WgBTtu7MC6tMtj-xqZ7ax3edIM0u9PxuHuLYAV3CBtRt0hjX8yaMe6qGJy8z6d55IHfu4hc75Z5yOd4WURy7vyBNvSdrsbk195pDn0uP9dT-fYqJ5M5R3S-DqsBQZJeM8kNWDD1JqwFNEnCXn3ahF9zVINbcOdpgO_DTaOaPFgya-ojOC0Rjd1ePAc4GdcEQSG5978asEFFuOtVxCWfP9Qu74K0ROTbMDw_uzvtR6GiQlShIZlFJasKraTRGJrK2BbGUm5MkVTo1TGwyIxUlBeppCqxtCyVllxbpXgsqUZV0_Q3LNb4qR0gKbO5TipmMxf0lFrlWaaYzkypC6tZ3IGklaSoAt24q3oxEW1e2V_hxS-c-EWcCRR_B44_B00bto3vu-etisQ_i0agP_h-4H6rUBH27JOgjnyvYGXOOxB9Kvl_5rH703nswYp7cr6QZvuwOHt8NgcIcmbq0K_iQ1jqXVz1B9gOBze9Px_IYf7c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heqAc-kFBbLttfeiRsHFix8mxQkXbFrh0kfZm2bEtLdoNK9gt4tLf3pnEQYtUoYpTpMRWrBl75o09fgPwpRBGqFBgWOIrkwgMGRKbe5HYLFcqr0Ue2uOC84tifCl-TOV0C076uzCUVhltf2fTW2sd34yiNEfL2Wz0C8EKrhAx5TRJUypm_ULITFEEdvxnM8-jiATfZULNe-qhNskrIJSjAwje8XdSkcl_u6cN-Lmzbpbm_s7M5xue6PQNvIoQkn3tRvkWtnyzB68jnGRxsd7uwe4G1-A7mLQ8wIt41ahh14GtugIJpCbmsNnvlgSczRqGqJAt2r0GfKAm6H4Vo-zz64YSL1jPRL4Pl6ffJifjJJZUSGq0JKukEnXprPEOY1OThtIHrrwvsxrdOkYW0hvLVZkbbrPAq8o6o1ywVqWGO9Q1zw9gu8FfHQLLRShcVosgKeqpnC2ktMJJX7kyOJEOIOslqevIN05lL-a6Tyy70q34NYlfp1Kj-Adw9NBp2dFtPN286FWkH80ajQ7h6Y7DXqE6LtpbzYl9rxRVoQaQPCj5f8bx_rnj-Aw748n5mT77fvHzA7ykL-QYuRzC9upm7T8i4lnZT-2M_gupAP7B
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6N7gF4YDBAFAbyA7zhtU78I3lCEzBNSFRIrFJ5suzY1gJdWrF0CP56zokzFYQmkHiKEp2VOHe5-y4-fwfwXHLDVZCYlvjSUI4pA7W559RmuVJ5xfPQLRe8n8mTOX-3EIsdmA17YWJZZfL9vU_vvHW6Mklvc7Ku68lHBCv4hfAFi0aKSP_VZW1e5G_qs429AbtSIDYfwe589uHoU0_wXdAoHjOwQmVUlpkYaIi6gq-AsC4uRrCeyzM2nPxzqNqCojc3zdp8_2aWy62odLwHq2E-fTHKl8NNaw-rH79RPf6_Cd-FOwnAkqN-yD3Y8c0-7CUwS5KruNiH21tMh_fhtGMhPk8bnRqyCqTt2zNEIyEOxS47CnJSNwQxKTnv_nTgAe0g7u4isfZ91cSyDzLwoD-A-fHb09cnNDV0oBX6sZaWvCqcNd5hZmymofCBKe-LrEJQgXmN8MYyVeSG2SywsrTOKBesVVPDHFoayx_CqMFbPQKS8yBdVvEgYs5VOiuFsNwJX7oiOD4dQzboTleJ7Tw23Vjqoazts-4UrqPC9VRoVPgYXl4NWvdkH9eLy8Eo9C8q1BiOrh94MJiQTi7jQrPI_VfwUqox0Cuz-pvnePyP8k_gVjyLEZiJAxi1Xzf-KUKr1j5L38tPr9Ej0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+topological+derivative+in+the+moving+morphable+components+approach&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Takalloozadeh%2C+Meisam&rft.au=Yoon%2C+Gil+Ho&rft.date=2017-10-15&rft.pub=Elsevier+BV&rft.issn=0168-874X&rft.volume=134&rft.spage=16&rft_id=info:doi/10.1016%2Fj.finel.2017.05.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon