Implementation of topological derivative in the moving morphable components approach
We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was develope...
Saved in:
| Published in | Finite elements in analysis and design Vol. 134; pp. 16 - 26 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
15.10.2017
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-874X 1872-6925 1872-6925 |
| DOI | 10.1016/j.finel.2017.05.008 |
Cover
| Abstract | We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was developed by utilizing topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a topological derivative was used to calculate the first derivative of an objective function with respect to the shape and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The topological derivative formulation has been well developed in recent years for different structural and non-structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of topology optimization problems. Herein, the presented method is illustrated through several topology optimization problems such as stress-based and thermo-mechanical topology optimization.
•Topological derivative is utilized in moving morphable components framework.•Sensitivity of strain energy with respect to change in shape and position of the components is calculated.•Optimum layout for thermo-elastic structures considering both temperature changes and mechanical loading is obtained.•Stress constrained topology optimization problems are solved. |
|---|---|
| AbstractList | We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was developed by utilizing topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a topological derivative was used to calculate the first derivative of an objective function with respect to the shape and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The topological derivative formulation has been well developed in recent years for different structural and non-structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of topology optimization problems. Herein, the presented method is illustrated through several topology optimization problems such as stress-based and thermo-mechanical topology optimization.
•Topological derivative is utilized in moving morphable components framework.•Sensitivity of strain energy with respect to change in shape and position of the components is calculated.•Optimum layout for thermo-elastic structures considering both temperature changes and mechanical loading is obtained.•Stress constrained topology optimization problems are solved. We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite number of components. The position and shape values of each component were defined as design variables. In this study, a method was developed by utilizing topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a topological derivative was used to calculate the first derivative of an objective function with respect to the shape and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The topological derivative formulation has been well developed in recent years for different structural and non-structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of topology optimization problems. Herein, the presented method is illustrated through several topology optimization problems such as stress-based and thermo-mechanical topology optimization. |
| Author | Takalloozadeh, Meisam Yoon, Gil Ho |
| Author_xml | – sequence: 1 givenname: Meisam surname: Takalloozadeh fullname: Takalloozadeh, Meisam – sequence: 2 givenname: Gil Ho surname: Yoon fullname: Yoon, Gil Ho email: ghy@hanyang.ac.kr, gilho.yoon@gmail.com |
| BookMark | eNqNkD1v2zAURYkiBeq4-QVZBHSWQuqL5NChCNLEgIEuLtCNeKKebBoUqVK0i_z70FWmDk2mN7x7Li7ONbly3iEht4wWjLL27lgMxqEtSsp4QZuCUvGBrJjgZd7Ksrkiq5QSueD1r0_kep6PlNKmbOsV2W3GyeKILkI03mV-yKKfvPV7o8FmPQZzTp8zZsZl8YDZ6M_G7dMJ0wE6i5n245TWuDhnME3Bgz58Jh8HsDPevN41-fn9YXf_lG9_PG7uv21zXfE25rLWou8Ae84qoIPAgXFEUWraMsnrBqFjXFTAunJgUnY98H7oOk6B9VoDq9akXnpPboLnP2CtmoIZITwrRtXFjDqqv2bUxYyijUpmEvZlwdLa3yecozr6U3BpqWKypVLUsuUpVS0pHfw8Bxze2S3_obRZ1MYAxr7Bfl1YTM7OBoOatUGnsTcBdVS9N__lXwDW6KK- |
| CitedBy_id | crossref_primary_10_1007_s10338_021_00308_x crossref_primary_10_1007_s00158_018_2114_0 crossref_primary_10_1007_s00158_022_03239_4 crossref_primary_10_1115_1_4043369 crossref_primary_10_1007_s00419_021_01886_5 crossref_primary_10_1016_j_tws_2020_106831 crossref_primary_10_1115_1_4040547 crossref_primary_10_1016_j_cma_2018_10_011 crossref_primary_10_1115_1_4041052 crossref_primary_10_1016_j_cma_2020_113187 crossref_primary_10_1155_2020_4749698 crossref_primary_10_1007_s00158_019_02353_0 crossref_primary_10_1016_j_cma_2020_113646 crossref_primary_10_1007_s00158_021_03137_1 crossref_primary_10_1155_2020_2478292 crossref_primary_10_1007_s11831_019_09362_8 crossref_primary_10_1080_0305215X_2020_1781843 crossref_primary_10_1108_EC_06_2020_0324 crossref_primary_10_32604_cmes_2021_016950 crossref_primary_10_1007_s11831_023_10053_8 crossref_primary_10_1007_s00158_020_02649_6 crossref_primary_10_1016_j_cma_2018_01_050 crossref_primary_10_1007_s11831_021_09546_1 |
| Cites_doi | 10.1051/ijsmdo/2008034 10.1080/03052150902834989 10.1016/j.finel.2016.09.006 10.1016/j.cma.2014.08.027 10.1007/s00158-016-1436-z 10.1002/nme.1422 10.1007/s00158-014-1188-6 10.1007/s00158-010-0534-6 10.1002/nme.1620381202 10.1007/s001580050176 10.1007/BF02982329 10.1007/BF01650949 10.1137/S0363012997323230 10.1002/nme.2637 10.1166/sl.2006.012 10.1007/BF01196941 10.1007/BF01197454 10.1007/s10409-009-0240-z 10.1007/BF01742933 10.1007/s00158-007-0217-0 10.1016/j.apm.2016.10.010 10.1016/j.camwa.2013.07.008 10.1016/j.cma.2007.05.006 10.1007/s00466-008-0287-x 10.1016/j.cma.2014.04.003 10.1016/j.cma.2014.01.010 10.1016/j.finel.2016.06.002 10.1016/0045-7825(88)90086-2 10.1016/j.cma.2016.12.030 10.1007/s10492-010-0018-4 10.1016/j.ijsolstr.2012.12.022 10.1016/j.jcp.2003.09.032 10.1007/s00158-015-1372-3 10.1007/s00158-008-0250-7 10.1016/j.cma.2011.11.005 10.1007/s00158-016-1399-0 10.1006/jcph.2001.6789 10.1007/s00158-008-0336-2 10.1002/nme.4416 10.1016/j.cad.2008.07.004 10.1016/S1631-073X(02)02412-3 10.1115/1.4027609 10.1007/s00158-007-0203-6 10.1016/j.cma.2011.08.016 10.1007/s001580050178 10.1016/j.compstruc.2016.02.009 10.1016/S0045-7825(02)00559-5 10.1007/s00158-013-0912-y 10.1007/s00158-013-0899-4 10.1016/j.jcp.2011.01.049 10.1007/s00158-013-0934-5 10.1007/s00158-009-0425-x 10.1016/j.cma.2012.04.004 10.1016/S0045-7825(02)00599-6 10.1007/s00158-009-0359-3 10.1115/1.4029335 10.1590/1679-78251252 10.1016/j.enganabound.2010.06.017 10.1016/j.finel.2010.06.010 10.1007/s00158-009-0440-y |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Oct 15, 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Oct 15, 2017 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1016/j.finel.2017.05.008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-6925 |
| EndPage | 26 |
| ExternalDocumentID | oai:repository.hanyang.ac.kr:20.500.11754/115862 10_1016_j_finel_2017_05_008 S0168874X17301014 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29H AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7SC 7TB 8FD AGCQF FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c376t-94c8dbaed713a0f8ef17ee82c0619745eab1783a1b2f199bda7dfbb70a1dcca13 |
| IEDL.DBID | .~1 |
| ISSN | 0168-874X 1872-6925 |
| IngestDate | Sun Oct 26 03:42:16 EDT 2025 Sun Sep 07 03:14:21 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Wed Oct 01 03:52:31 EDT 2025 Fri Feb 23 02:34:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Topology optimization Moving morphable components Topological derivative Thermal loading Stress-based optimization |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-94c8dbaed713a0f8ef17ee82c0619745eab1783a1b2f199bda7dfbb70a1dcca13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0168874X17301014?via%3Dihub |
| PQID | 1960984967 |
| PQPubID | 2045476 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_finel_2017_05_008 proquest_journals_1960984967 crossref_primary_10_1016_j_finel_2017_05_008 crossref_citationtrail_10_1016_j_finel_2017_05_008 elsevier_sciencedirect_doi_10_1016_j_finel_2017_05_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-15 |
| PublicationDateYYYYMMDD | 2017-10-15 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Giusti, Novotny, Rivera, Rodriguez (bib59) 2013; 50 Stolpe, Svanberg (bib28) 2001; 21 Novotny, Feijóo, Taroco, Padra (bib44) 2007; 196 Yoon, Kim (bib9) 2003; 17 Novotny, Feijóo, Taroco, Padra (bib48) 2003; 192 Krishnakumar, Suresh (bib53) 2015; 137 Eschenauer, Kobelev, Schumacher (bib43) 1994; 8 Giusti, Novotny, Sokołowski (bib55) 2010; 40 Bruggi (bib27) 2008; 36 Paris, Navarrina, Colominas, Casteleiro (bib29) 2009; 39 Allaire, Jouve, Toader (bib6) 2004; 194 Lopes, Novotny (bib54) 2016; 54 Xia, Wang (bib32) 2008; 42 Guo, Zhang, Zhong (bib38) 2014; 272 Duysinx, Van Miegroet, Lemaire, Brüls, Bruyneel (bib10) 2008; 2 Zhang, Li, Yuan, Song, Guo (bib41) 2016 Zhang, Yuan, Zhang, Guo (bib40) 2016; 53 Feijoo, Novotny, Taroco, Padra (bib65) 2005 Du, Luo, Tian, Chen (bib7) 2009; 41 Rozvany (bib1) 2009; 37 Liu, Korvink, Reed (bib14) 2006; 4 Rubio, Nishiwaki, Silva (bib34) 2010; 46 Khludnev, Sokolowski, Szulc (bib62) 2010; 55 Suresh, Takalloozadeh (bib22) 2013; 48 Abe, Fujiu, Koro (bib64) 2010; 34 Yoon (bib12) 2012; 209 Yang, Chen (bib24) 1996; 12 Zhang, Zhong, Guo (bib39) 2014; 282 Turevsky, Gopalakrishnan, Suresh (bib45) 2009; 79 Yoon, Kim (bib13) 2005; 64 Jeong, Park, Choi, Yoon (bib25) 2013; 66 Amstutz, Novotny (bib51) 2010; 41 Osher, Santosa (bib4) 2001; 171 Guo, Zhang, Zhong (bib8) 2014; 81 Rodrigues, Fernandes (bib31) 1995; 38 Deng, Suresh (bib19) 2015; 51 Guest (bib36) 2009; 37 Deaton, Grandhi (bib33) 2013; 48 Sa, Amigo, Novotny, Silva (bib63) 2016; 54 Bendsøe, Kikuchi (bib2) 1988; 71 Amad, Loula, Novotny (bib57) 2017; 42 van Dijk, Maute, Langelaar, van Keulen (bib20) 2013; 48 Chen, Wang, Liu (bib35) 2008; 40 Cheng, Guo (bib26) 1997; 13 Van Goethem, Novotny (bib61) 2010; 33 Takalloozadeh, Yoon (bib60) 2017; 317 Suresh (bib49) 2010; 42 Amstutz, Novotny, Neto (bib52) 2012; 233 Bendsøe (bib3) 1989; 1 Choi, Kim (bib42) 2006 Lopes, RBd, Novotny (bib56) 2015; 12 Sokolowski, Zochowski (bib47) 1999; 37 Wang, Wang, Guo (bib17) 2003; 192 Zhang, Guo, Wang, Wei (bib23) 2013; 93 Le, Norato, Bruns, Ha, Tortorelli (bib30) 2010; 41 Deng, Suresh (bib50) 2016; 170 Takalloozadeh, Yoon (bib66) 2017; 317 Yun, Youn (bib16) 2017; 123 Guirguis, Aly (bib18) 2016; 120 Takezawa, Yoon, Jeong, Kobashi, Kitamura (bib15) 2014; 276 Novotny, Sokołowski (bib46) 2012 Canelas, Novotny, Roche (bib58) 2011; 230 Guo, Zhang, Wang, Wei (bib21) 2011; 200 Sigmund (bib11) 2001; 21 Sigmund (bib37) 2009; 25 Allaire, Jouve, Toader (bib5) 2002; 334 Le (10.1016/j.finel.2017.05.008_bib30) 2010; 41 Lopes (10.1016/j.finel.2017.05.008_bib56) 2015; 12 Liu (10.1016/j.finel.2017.05.008_bib14) 2006; 4 Choi (10.1016/j.finel.2017.05.008_bib42) 2006 Rubio (10.1016/j.finel.2017.05.008_bib34) 2010; 46 Takalloozadeh (10.1016/j.finel.2017.05.008_bib60) 2017; 317 Suresh (10.1016/j.finel.2017.05.008_bib49) 2010; 42 Sokolowski (10.1016/j.finel.2017.05.008_bib47) 1999; 37 Feijoo (10.1016/j.finel.2017.05.008_bib65) 2005 Suresh (10.1016/j.finel.2017.05.008_bib22) 2013; 48 Zhang (10.1016/j.finel.2017.05.008_bib23) 2013; 93 Yang (10.1016/j.finel.2017.05.008_bib24) 1996; 12 Guest (10.1016/j.finel.2017.05.008_bib36) 2009; 37 Guo (10.1016/j.finel.2017.05.008_bib38) 2014; 272 Sigmund (10.1016/j.finel.2017.05.008_bib11) 2001; 21 Amstutz (10.1016/j.finel.2017.05.008_bib52) 2012; 233 Giusti (10.1016/j.finel.2017.05.008_bib59) 2013; 50 Osher (10.1016/j.finel.2017.05.008_bib4) 2001; 171 Deaton (10.1016/j.finel.2017.05.008_bib33) 2013; 48 Deng (10.1016/j.finel.2017.05.008_bib50) 2016; 170 Novotny (10.1016/j.finel.2017.05.008_bib48) 2003; 192 Allaire (10.1016/j.finel.2017.05.008_bib6) 2004; 194 Guo (10.1016/j.finel.2017.05.008_bib8) 2014; 81 Xia (10.1016/j.finel.2017.05.008_bib32) 2008; 42 Du (10.1016/j.finel.2017.05.008_bib7) 2009; 41 Zhang (10.1016/j.finel.2017.05.008_bib40) 2016; 53 Allaire (10.1016/j.finel.2017.05.008_bib5) 2002; 334 Yoon (10.1016/j.finel.2017.05.008_bib12) 2012; 209 Chen (10.1016/j.finel.2017.05.008_bib35) 2008; 40 Stolpe (10.1016/j.finel.2017.05.008_bib28) 2001; 21 Duysinx (10.1016/j.finel.2017.05.008_bib10) 2008; 2 Yoon (10.1016/j.finel.2017.05.008_bib13) 2005; 64 Canelas (10.1016/j.finel.2017.05.008_bib58) 2011; 230 Bruggi (10.1016/j.finel.2017.05.008_bib27) 2008; 36 Takalloozadeh (10.1016/j.finel.2017.05.008_bib66) 2017; 317 Zhang (10.1016/j.finel.2017.05.008_bib41) 2016 Eschenauer (10.1016/j.finel.2017.05.008_bib43) 1994; 8 Sa (10.1016/j.finel.2017.05.008_bib63) 2016; 54 Paris (10.1016/j.finel.2017.05.008_bib29) 2009; 39 Lopes (10.1016/j.finel.2017.05.008_bib54) 2016; 54 Amstutz (10.1016/j.finel.2017.05.008_bib51) 2010; 41 Yoon (10.1016/j.finel.2017.05.008_bib9) 2003; 17 Amad (10.1016/j.finel.2017.05.008_bib57) 2017; 42 Wang (10.1016/j.finel.2017.05.008_bib17) 2003; 192 Guo (10.1016/j.finel.2017.05.008_bib21) 2011; 200 Sigmund (10.1016/j.finel.2017.05.008_bib37) 2009; 25 Yun (10.1016/j.finel.2017.05.008_bib16) 2017; 123 Novotny (10.1016/j.finel.2017.05.008_bib46) 2012 Van Goethem (10.1016/j.finel.2017.05.008_bib61) 2010; 33 Abe (10.1016/j.finel.2017.05.008_bib64) 2010; 34 Khludnev (10.1016/j.finel.2017.05.008_bib62) 2010; 55 Novotny (10.1016/j.finel.2017.05.008_bib44) 2007; 196 van Dijk (10.1016/j.finel.2017.05.008_bib20) 2013; 48 Takezawa (10.1016/j.finel.2017.05.008_bib15) 2014; 276 Turevsky (10.1016/j.finel.2017.05.008_bib45) 2009; 79 Rozvany (10.1016/j.finel.2017.05.008_bib1) 2009; 37 Jeong (10.1016/j.finel.2017.05.008_bib25) 2013; 66 Rodrigues (10.1016/j.finel.2017.05.008_bib31) 1995; 38 Guirguis (10.1016/j.finel.2017.05.008_bib18) 2016; 120 Bendsøe (10.1016/j.finel.2017.05.008_bib2) 1988; 71 Zhang (10.1016/j.finel.2017.05.008_bib39) 2014; 282 Bendsøe (10.1016/j.finel.2017.05.008_bib3) 1989; 1 Deng (10.1016/j.finel.2017.05.008_bib19) 2015; 51 Krishnakumar (10.1016/j.finel.2017.05.008_bib53) 2015; 137 Cheng (10.1016/j.finel.2017.05.008_bib26) 1997; 13 Giusti (10.1016/j.finel.2017.05.008_bib55) 2010; 40 |
| References_xml | – volume: 317 start-page: 554 year: 2017 end-page: 579 ident: bib66 article-title: Development of Pareto topology optimization considering thermal loads publication-title: Comput. Methods Appl. Mech. Eng. – volume: 33 start-page: 1978 year: 2010 end-page: 1994 ident: bib61 article-title: Crack nucleation sensitivity analysis publication-title: Math. Method Appl. Sci. – volume: 54 start-page: 249 year: 2016 end-page: 264 ident: bib63 article-title: Topological derivatives applied to fluid flow channel design optimization problems publication-title: Struct. Multidiscip. Optim. – volume: 2 start-page: 253 year: 2008 end-page: 258 ident: bib10 article-title: Topology and generalized shape optimization: why stress constraints are so important? publication-title: Int. J. Simul. Multidiscip. Des. Optim. – volume: 42 start-page: 209 year: 2017 end-page: 222 ident: bib57 article-title: A new method for topology design of electromagnetic antennas in hyperthermia therapy publication-title: Appl. Math. Model. – volume: 171 start-page: 272 year: 2001 end-page: 288 ident: bib4 article-title: Level set methods for optimization problems involving geometry and constraints: i. Frequencies of a two-density inhomogeneous drum publication-title: J. Comput. Phys. – volume: 48 start-page: 731 year: 2013 end-page: 745 ident: bib33 article-title: Stiffening of restrained thermal structures via topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 37 start-page: 463 year: 2009 end-page: 473 ident: bib36 article-title: Imposing maximum length scale in topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 37 start-page: 1251 year: 1999 end-page: 1272 ident: bib47 article-title: On the topological derivative in shape optimization publication-title: SIAM J. Control Optim. – volume: 46 start-page: 1049 year: 2010 end-page: 1060 ident: bib34 article-title: Design of compliant mechanisms considering thermal effect compensation and topology optimization publication-title: Finite Elem. Anal. Des. – volume: 272 start-page: 354 year: 2014 end-page: 378 ident: bib38 article-title: Explicit feature control in structural topology optimization via level set method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 48 start-page: 437 year: 2013 end-page: 472 ident: bib20 article-title: Level-set methods for structural topology optimization: a review publication-title: Struct. Multidiscip. Optim. – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: bib3 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. – year: 2005 ident: bib65 article-title: The topological-shape sensitivity method in two-dimensional linear elasticity topology design publication-title: Appl. Comput. Mech. Struct. Fluids – volume: 137 start-page: 031406 year: 2015 ident: bib53 article-title: Hinge-free compliant mechanism design via the topological level-set publication-title: J. Mech. Des. – volume: 39 start-page: 419 year: 2009 end-page: 437 ident: bib29 article-title: Topology optimization of continuum structures with local and global stress constraints publication-title: Struct. Multidiscip. Optim. – volume: 40 start-page: 53 year: 2010 ident: bib55 article-title: Topological derivative for steady-state orthotropic heat diffusion problem publication-title: Struct. Multidiscip. Optim. – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: bib17 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – year: 2006 ident: bib42 article-title: Structural Sensitivity Analysis and Optimization 1: Linear Systems – volume: 12 start-page: 98 year: 1996 end-page: 105 ident: bib24 article-title: Stress-based topology optimization publication-title: Struct. Optim. – volume: 50 start-page: 1303 year: 2013 end-page: 1313 ident: bib59 article-title: Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system publication-title: Int. J. Solids Struct. – volume: 51 start-page: 987 year: 2015 end-page: 1001 ident: bib19 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct. Multidiscip. Optim. – year: 2012 ident: bib46 article-title: Topological Derivatives in Shape Optimization – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: bib2 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 192 start-page: 803 year: 2003 end-page: 829 ident: bib48 article-title: Topological sensitivity analysis publication-title: Comput. Methods Appl. Mech. Eng. – volume: 123 start-page: 9 year: 2017 end-page: 18 ident: bib16 article-title: Multi-material topology optimization of viscoelastically damped structures under time-dependent loading publication-title: Finite Elem. Anal. Des. – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: bib6 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J. Comput. Phys. – volume: 36 start-page: 125 year: 2008 end-page: 141 ident: bib27 article-title: On an alternative approach to stress constraints relaxation in topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 40 start-page: 951 year: 2008 end-page: 962 ident: bib35 article-title: Shape feature control in structural topology optimization publication-title: Comput. Aided Des. – volume: 41 start-page: 407 year: 2010 end-page: 420 ident: bib51 article-title: Topological optimization of structures subject to von Mises stress constraints publication-title: Struct. Multidiscip. Optim. – volume: 17 start-page: 1496 year: 2003 end-page: 1506 ident: bib9 article-title: The role of S-shape mapping functions in the SIMP approach for topology optimization publication-title: KSME Int. J. – volume: 38 start-page: 1951 year: 1995 end-page: 1965 ident: bib31 article-title: A material based model for topology optimization of thermoelastic structures publication-title: Int. J. Numer. Methods Eng. – volume: 8 start-page: 42 year: 1994 end-page: 51 ident: bib43 article-title: Bubble method for topology and shape optimization of structures publication-title: Struct. Optim. – volume: 66 start-page: 1065 year: 2013 end-page: 1081 ident: bib25 article-title: Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information publication-title: Comput. Math. Appl. – volume: 233 start-page: 123 year: 2012 end-page: 136 ident: bib52 article-title: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints publication-title: Comput. Methods Appl. Mech. Eng. – volume: 4 start-page: 191 year: 2006 end-page: 199 ident: bib14 article-title: Multiphysics for structural topology optimization publication-title: Sens. Lett. – volume: 42 start-page: 837 year: 2008 end-page: 857 ident: bib32 article-title: Topology optimization of thermoelastic structures using level set method publication-title: Comput. Mech. – volume: 120 start-page: 41 year: 2016 end-page: 56 ident: bib18 article-title: A derivative-free level-set method for topology optimization publication-title: Finite Elem. Anal. Des. – volume: 170 start-page: 1 year: 2016 end-page: 12 ident: bib50 article-title: Multi-constrained 3D topology optimization via augmented topological level-set publication-title: Comput. Struct. – volume: 64 start-page: 1649 year: 2005 end-page: 1677 ident: bib13 article-title: The element connectivity parameterization formulation for the topology design optimization of multiphysics systems publication-title: Int. J. Numer. Methods Eng. – volume: 48 start-page: 295 year: 2013 end-page: 309 ident: bib22 article-title: Stress-constrained topology optimization: a topological level-set approach publication-title: Struct. Multidiscip. Optim. – volume: 12 start-page: 834 year: 2015 end-page: 860 ident: bib56 article-title: Topological derivative-based topology optimization of structures subject to multiple load-cases publication-title: Lat. Am. J Solids Struct. – volume: 196 start-page: 4354 year: 2007 end-page: 4364 ident: bib44 article-title: Topological sensitivity analysis for three-dimensional linear elasticity problem publication-title: Comput. Methods Appl. Mech. Eng. – volume: 13 start-page: 258 year: 1997 end-page: 266 ident: bib26 article-title: epsilon-relaxed approach in structural topology optimization publication-title: Struct. Optim. – volume: 21 start-page: 120 year: 2001 end-page: 127 ident: bib11 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct. Multidiscip. Optim. – volume: 55 start-page: 433 year: 2010 end-page: 469 ident: bib62 article-title: Shape and topological sensitivity analysis in domains with cracks publication-title: Appl. Math. – volume: 334 start-page: 1125 year: 2002 end-page: 1130 ident: bib5 article-title: A level-set method for shape optimization publication-title: Comptes Rendus Math. – volume: 34 start-page: 1082 year: 2010 end-page: 1091 ident: bib64 article-title: A BE-based shape optimization method enhanced by topological derivative for sound scattering problems publication-title: Eng. Anal. Bound. Elem. – volume: 79 start-page: 1683 year: 2009 end-page: 1702 ident: bib45 article-title: An efficient numerical method for computing the topological sensitivity of arbitrary-shaped features in plate bending publication-title: Int. J. Numer. Methods Eng. – start-page: 1 year: 2016 end-page: 19 ident: bib41 article-title: A new three-dimensional topology optimization method based on moving morphable components (MMCs) publication-title: Comput. Mech. – volume: 41 start-page: 753 year: 2009 end-page: 772 ident: bib7 article-title: Topology optimization for thermo-mechanical compliant actuators using mesh-free methods publication-title: Eng. Optim. – volume: 282 start-page: 71 year: 2014 end-page: 86 ident: bib39 article-title: An explicit length scale control approach in SIMP-based topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 54 start-page: 737 year: 2016 end-page: 746 ident: bib54 article-title: Topology design of compliant mechanisms with stress constraints based on the topological derivative concept publication-title: Struct. Multidiscip. Optim. – volume: 41 start-page: 605 year: 2010 end-page: 620 ident: bib30 article-title: Stress-based topology optimization for continua publication-title: Struct. Multidiscip. Optim. – volume: 37 start-page: 217 year: 2009 end-page: 237 ident: bib1 article-title: A critical review of established methods of structural topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 81 year: 2014 ident: bib8 article-title: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework publication-title: J Appl. Mech.-Trans. Asme – volume: 276 start-page: 341 year: 2014 end-page: 361 ident: bib15 article-title: Structural topology optimization with strength and heat conduction constraints publication-title: Comput. Methods Appl. Mech. Eng. – volume: 42 start-page: 665 year: 2010 end-page: 679 ident: bib49 article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 200 start-page: 3439 year: 2011 end-page: 3452 ident: bib21 article-title: Stress-related topology optimization via level set approach publication-title: Comput. Methods Appl. Mech. Eng. – volume: 93 start-page: 942 year: 2013 end-page: 959 ident: bib23 article-title: Optimal topology design of continuum structures with stress concentration alleviation via level set method publication-title: Int. J. Numer. Methods Eng. – volume: 25 start-page: 227 year: 2009 end-page: 239 ident: bib37 article-title: Manufacturing tolerant topology optimization publication-title: Acta Mech. Sin. – volume: 230 start-page: 3570 year: 2011 end-page: 3588 ident: bib58 article-title: A new method for inverse electromagnetic casting problems based on the topological derivative publication-title: J. Comput. Phys. – volume: 53 start-page: 1243 year: 2016 end-page: 1260 ident: bib40 article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model publication-title: Struct. Multidiscip. Optim. – volume: 21 start-page: 140 year: 2001 end-page: 151 ident: bib28 article-title: On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 317 start-page: 554 year: 2017 end-page: 579 ident: bib60 article-title: Development of Pareto topology optimization considering thermal loads publication-title: Comput. Methods Appl. Mech. Eng. – volume: 209 start-page: 28 year: 2012 end-page: 44 ident: bib12 article-title: Topological layout design of electro-fluid-thermal-compliant actuator publication-title: Comput. Methods Appl. Mech. Eng. – volume: 2 start-page: 253 year: 2008 ident: 10.1016/j.finel.2017.05.008_bib10 article-title: Topology and generalized shape optimization: why stress constraints are so important? publication-title: Int. J. Simul. Multidiscip. Des. Optim. doi: 10.1051/ijsmdo/2008034 – volume: 41 start-page: 753 year: 2009 ident: 10.1016/j.finel.2017.05.008_bib7 article-title: Topology optimization for thermo-mechanical compliant actuators using mesh-free methods publication-title: Eng. Optim. doi: 10.1080/03052150902834989 – year: 2006 ident: 10.1016/j.finel.2017.05.008_bib42 – volume: 123 start-page: 9 year: 2017 ident: 10.1016/j.finel.2017.05.008_bib16 article-title: Multi-material topology optimization of viscoelastically damped structures under time-dependent loading publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2016.09.006 – volume: 282 start-page: 71 year: 2014 ident: 10.1016/j.finel.2017.05.008_bib39 article-title: An explicit length scale control approach in SIMP-based topology optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.08.027 – volume: 54 start-page: 737 year: 2016 ident: 10.1016/j.finel.2017.05.008_bib54 article-title: Topology design of compliant mechanisms with stress constraints based on the topological derivative concept publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1436-z – volume: 64 start-page: 1649 year: 2005 ident: 10.1016/j.finel.2017.05.008_bib13 article-title: The element connectivity parameterization formulation for the topology design optimization of multiphysics systems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1422 – volume: 51 start-page: 987 year: 2015 ident: 10.1016/j.finel.2017.05.008_bib19 article-title: Multi-constrained topology optimization via the topological sensitivity publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1188-6 – volume: 42 start-page: 665 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib49 article-title: A 199-line Matlab code for Pareto-optimal tracing in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0534-6 – volume: 38 start-page: 1951 year: 1995 ident: 10.1016/j.finel.2017.05.008_bib31 article-title: A material based model for topology optimization of thermoelastic structures publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620381202 – volume: 21 start-page: 120 year: 2001 ident: 10.1016/j.finel.2017.05.008_bib11 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050176 – volume: 17 start-page: 1496 year: 2003 ident: 10.1016/j.finel.2017.05.008_bib9 article-title: The role of S-shape mapping functions in the SIMP approach for topology optimization publication-title: KSME Int. J. doi: 10.1007/BF02982329 – volume: 1 start-page: 193 year: 1989 ident: 10.1016/j.finel.2017.05.008_bib3 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 37 start-page: 1251 year: 1999 ident: 10.1016/j.finel.2017.05.008_bib47 article-title: On the topological derivative in shape optimization publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012997323230 – volume: 79 start-page: 1683 year: 2009 ident: 10.1016/j.finel.2017.05.008_bib45 article-title: An efficient numerical method for computing the topological sensitivity of arbitrary-shaped features in plate bending publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2637 – volume: 4 start-page: 191 year: 2006 ident: 10.1016/j.finel.2017.05.008_bib14 article-title: Multiphysics for structural topology optimization publication-title: Sens. Lett. doi: 10.1166/sl.2006.012 – volume: 12 start-page: 98 year: 1996 ident: 10.1016/j.finel.2017.05.008_bib24 article-title: Stress-based topology optimization publication-title: Struct. Optim. doi: 10.1007/BF01196941 – volume: 13 start-page: 258 year: 1997 ident: 10.1016/j.finel.2017.05.008_bib26 article-title: epsilon-relaxed approach in structural topology optimization publication-title: Struct. Optim. doi: 10.1007/BF01197454 – volume: 25 start-page: 227 year: 2009 ident: 10.1016/j.finel.2017.05.008_bib37 article-title: Manufacturing tolerant topology optimization publication-title: Acta Mech. Sin. doi: 10.1007/s10409-009-0240-z – volume: 8 start-page: 42 year: 1994 ident: 10.1016/j.finel.2017.05.008_bib43 article-title: Bubble method for topology and shape optimization of structures publication-title: Struct. Optim. doi: 10.1007/BF01742933 – volume: 37 start-page: 217 year: 2009 ident: 10.1016/j.finel.2017.05.008_bib1 article-title: A critical review of established methods of structural topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-007-0217-0 – volume: 42 start-page: 209 year: 2017 ident: 10.1016/j.finel.2017.05.008_bib57 article-title: A new method for topology design of electromagnetic antennas in hyperthermia therapy publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.10.010 – volume: 66 start-page: 1065 year: 2013 ident: 10.1016/j.finel.2017.05.008_bib25 article-title: Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.07.008 – start-page: 1 year: 2016 ident: 10.1016/j.finel.2017.05.008_bib41 article-title: A new three-dimensional topology optimization method based on moving morphable components (MMCs) publication-title: Comput. Mech. – volume: 196 start-page: 4354 year: 2007 ident: 10.1016/j.finel.2017.05.008_bib44 article-title: Topological sensitivity analysis for three-dimensional linear elasticity problem publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.05.006 – volume: 42 start-page: 837 year: 2008 ident: 10.1016/j.finel.2017.05.008_bib32 article-title: Topology optimization of thermoelastic structures using level set method publication-title: Comput. Mech. doi: 10.1007/s00466-008-0287-x – volume: 276 start-page: 341 year: 2014 ident: 10.1016/j.finel.2017.05.008_bib15 article-title: Structural topology optimization with strength and heat conduction constraints publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.04.003 – volume: 272 start-page: 354 year: 2014 ident: 10.1016/j.finel.2017.05.008_bib38 article-title: Explicit feature control in structural topology optimization via level set method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.01.010 – volume: 120 start-page: 41 year: 2016 ident: 10.1016/j.finel.2017.05.008_bib18 article-title: A derivative-free level-set method for topology optimization publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2016.06.002 – volume: 71 start-page: 197 year: 1988 ident: 10.1016/j.finel.2017.05.008_bib2 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – volume: 317 start-page: 554 year: 2017 ident: 10.1016/j.finel.2017.05.008_bib60 article-title: Development of Pareto topology optimization considering thermal loads publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.12.030 – volume: 55 start-page: 433 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib62 article-title: Shape and topological sensitivity analysis in domains with cracks publication-title: Appl. Math. doi: 10.1007/s10492-010-0018-4 – volume: 50 start-page: 1303 year: 2013 ident: 10.1016/j.finel.2017.05.008_bib59 article-title: Strain energy change to the insertion of inclusions associated to a thermo-mechanical semi-coupled system publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.12.022 – year: 2005 ident: 10.1016/j.finel.2017.05.008_bib65 article-title: The topological-shape sensitivity method in two-dimensional linear elasticity topology design publication-title: Appl. Comput. Mech. Struct. Fluids – volume: 33 start-page: 1978 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib61 article-title: Crack nucleation sensitivity analysis publication-title: Math. Method Appl. Sci. – volume: 194 start-page: 363 year: 2004 ident: 10.1016/j.finel.2017.05.008_bib6 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.032 – volume: 53 start-page: 1243 year: 2016 ident: 10.1016/j.finel.2017.05.008_bib40 article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1372-3 – volume: 37 start-page: 463 year: 2009 ident: 10.1016/j.finel.2017.05.008_bib36 article-title: Imposing maximum length scale in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0250-7 – volume: 209 start-page: 28 year: 2012 ident: 10.1016/j.finel.2017.05.008_bib12 article-title: Topological layout design of electro-fluid-thermal-compliant actuator publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.11.005 – volume: 54 start-page: 249 year: 2016 ident: 10.1016/j.finel.2017.05.008_bib63 article-title: Topological derivatives applied to fluid flow channel design optimization problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1399-0 – volume: 171 start-page: 272 year: 2001 ident: 10.1016/j.finel.2017.05.008_bib4 article-title: Level set methods for optimization problems involving geometry and constraints: i. Frequencies of a two-density inhomogeneous drum publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6789 – volume: 39 start-page: 419 year: 2009 ident: 10.1016/j.finel.2017.05.008_bib29 article-title: Topology optimization of continuum structures with local and global stress constraints publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0336-2 – volume: 93 start-page: 942 year: 2013 ident: 10.1016/j.finel.2017.05.008_bib23 article-title: Optimal topology design of continuum structures with stress concentration alleviation via level set method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4416 – volume: 40 start-page: 951 year: 2008 ident: 10.1016/j.finel.2017.05.008_bib35 article-title: Shape feature control in structural topology optimization publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2008.07.004 – volume: 334 start-page: 1125 year: 2002 ident: 10.1016/j.finel.2017.05.008_bib5 article-title: A level-set method for shape optimization publication-title: Comptes Rendus Math. doi: 10.1016/S1631-073X(02)02412-3 – volume: 81 year: 2014 ident: 10.1016/j.finel.2017.05.008_bib8 article-title: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework publication-title: J Appl. Mech.-Trans. Asme doi: 10.1115/1.4027609 – volume: 36 start-page: 125 year: 2008 ident: 10.1016/j.finel.2017.05.008_bib27 article-title: On an alternative approach to stress constraints relaxation in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-007-0203-6 – volume: 200 start-page: 3439 year: 2011 ident: 10.1016/j.finel.2017.05.008_bib21 article-title: Stress-related topology optimization via level set approach publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.08.016 – volume: 21 start-page: 140 year: 2001 ident: 10.1016/j.finel.2017.05.008_bib28 article-title: On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050178 – volume: 170 start-page: 1 year: 2016 ident: 10.1016/j.finel.2017.05.008_bib50 article-title: Multi-constrained 3D topology optimization via augmented topological level-set publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.02.009 – volume: 192 start-page: 227 year: 2003 ident: 10.1016/j.finel.2017.05.008_bib17 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00559-5 – volume: 48 start-page: 437 year: 2013 ident: 10.1016/j.finel.2017.05.008_bib20 article-title: Level-set methods for structural topology optimization: a review publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0912-y – volume: 48 start-page: 295 year: 2013 ident: 10.1016/j.finel.2017.05.008_bib22 article-title: Stress-constrained topology optimization: a topological level-set approach publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0899-4 – volume: 230 start-page: 3570 year: 2011 ident: 10.1016/j.finel.2017.05.008_bib58 article-title: A new method for inverse electromagnetic casting problems based on the topological derivative publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.049 – volume: 48 start-page: 731 year: 2013 ident: 10.1016/j.finel.2017.05.008_bib33 article-title: Stiffening of restrained thermal structures via topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0934-5 – volume: 41 start-page: 407 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib51 article-title: Topological optimization of structures subject to von Mises stress constraints publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0425-x – volume: 233 start-page: 123 year: 2012 ident: 10.1016/j.finel.2017.05.008_bib52 article-title: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.04.004 – volume: 192 start-page: 803 year: 2003 ident: 10.1016/j.finel.2017.05.008_bib48 article-title: Topological sensitivity analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00599-6 – volume: 40 start-page: 53 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib55 article-title: Topological derivative for steady-state orthotropic heat diffusion problem publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0359-3 – volume: 137 start-page: 031406 year: 2015 ident: 10.1016/j.finel.2017.05.008_bib53 article-title: Hinge-free compliant mechanism design via the topological level-set publication-title: J. Mech. Des. doi: 10.1115/1.4029335 – volume: 12 start-page: 834 year: 2015 ident: 10.1016/j.finel.2017.05.008_bib56 article-title: Topological derivative-based topology optimization of structures subject to multiple load-cases publication-title: Lat. Am. J Solids Struct. doi: 10.1590/1679-78251252 – volume: 34 start-page: 1082 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib64 article-title: A BE-based shape optimization method enhanced by topological derivative for sound scattering problems publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2010.06.017 – volume: 317 start-page: 554 year: 2017 ident: 10.1016/j.finel.2017.05.008_bib66 article-title: Development of Pareto topology optimization considering thermal loads publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.12.030 – year: 2012 ident: 10.1016/j.finel.2017.05.008_bib46 – volume: 46 start-page: 1049 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib34 article-title: Design of compliant mechanisms considering thermal effect compensation and topology optimization publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2010.06.010 – volume: 41 start-page: 605 year: 2010 ident: 10.1016/j.finel.2017.05.008_bib30 article-title: Stress-based topology optimization for continua publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0440-y |
| SSID | ssj0005264 |
| Score | 2.2935271 |
| Snippet | We propose a new topology optimization approach based on the moving morphable components (MMC) framework with an explicitly described a layout through a finite... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16 |
| SubjectTerms | Finite element method Mathematical analysis Moving morphable components Optimization Sensitivity analysis Stress-based optimization Studies Thermal loading Topological derivative Topology Topology optimization |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6N7gF4YDBAFAbyA7zhtU78I3lCEzBNSFRIrFJ5suzY1gJdWrF0CP56zokzFYQmkHiKEp2VOHe5-y4-fwfwXHLDVZCYlvjSUI4pA7W559RmuVJ5xfPQLRe8n8mTOX-3EIsdmA17YWJZZfL9vU_vvHW6Mklvc7Ku68lHBCv4hfAFi0aKSP_VZW1e5G_qs429AbtSIDYfwe589uHoU0_wXdAoHjOwQmVUlpkYaIi6gq-AsC4uRrCeyzM2nPxzqNqCojc3zdp8_2aWy62odLwHq2E-fTHKl8NNaw-rH79RPf6_Cd-FOwnAkqN-yD3Y8c0-7CUwS5KruNiH21tMh_fhtGMhPk8bnRqyCqTt2zNEIyEOxS47CnJSNwQxKTnv_nTgAe0g7u4isfZ91cSyDzLwoD-A-fHb09cnNDV0oBX6sZaWvCqcNd5hZmymofCBKe-LrEJQgXmN8MYyVeSG2SywsrTOKBesVVPDHFoayx_CqMFbPQKS8yBdVvEgYs5VOiuFsNwJX7oiOD4dQzboTleJ7Tw23Vjqoazts-4UrqPC9VRoVPgYXl4NWvdkH9eLy8Eo9C8q1BiOrh94MJiQTi7jQrPI_VfwUqox0Cuz-pvnePyP8k_gVjyLEZiJAxi1Xzf-KUKr1j5L38tPr9Ej0w priority: 102 providerName: Unpaywall |
| Title | Implementation of topological derivative in the moving morphable components approach |
| URI | https://dx.doi.org/10.1016/j.finel.2017.05.008 https://www.proquest.com/docview/1960984967 https://www.sciencedirect.com/science/article/pii/S0168874X17301014?via%3Dihub |
| UnpaywallVersion | submittedVersion |
| Volume | 134 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6925 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AKRWK dateStart: 19850401 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB9ED_oOfj9cv8jBo3WbNm3a4yLKqrgIurDvFJImgX2sddFV8eLf7iRNZR-IPDyFloSGmWTmN83kNwBHOZOM2xzDElPKiGHIEKnUsEglKedpxVLrjwuuB3l_yC5H2WgBTtu7MC6tMtj-xqZ7ax3edIM0u9PxuHuLYAV3CBtRt0hjX8yaMe6qGJy8z6d55IHfu4hc75Z5yOd4WURy7vyBNvSdrsbk195pDn0uP9dT-fYqJ5M5R3S-DqsBQZJeM8kNWDD1JqwFNEnCXn3ahF9zVINbcOdpgO_DTaOaPFgya-ojOC0Rjd1ePAc4GdcEQSG5978asEFFuOtVxCWfP9Qu74K0ROTbMDw_uzvtR6GiQlShIZlFJasKraTRGJrK2BbGUm5MkVTo1TGwyIxUlBeppCqxtCyVllxbpXgsqUZV0_Q3LNb4qR0gKbO5TipmMxf0lFrlWaaYzkypC6tZ3IGklaSoAt24q3oxEW1e2V_hxS-c-EWcCRR_B44_B00bto3vu-etisQ_i0agP_h-4H6rUBH27JOgjnyvYGXOOxB9Kvl_5rH703nswYp7cr6QZvuwOHt8NgcIcmbq0K_iQ1jqXVz1B9gOBze9Px_IYf7c |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heqAc-kFBbLttfeiRsHFix8mxQkXbFrh0kfZm2bEtLdoNK9gt4tLf3pnEQYtUoYpTpMRWrBl75o09fgPwpRBGqFBgWOIrkwgMGRKbe5HYLFcqr0Ue2uOC84tifCl-TOV0C076uzCUVhltf2fTW2sd34yiNEfL2Wz0C8EKrhAx5TRJUypm_ULITFEEdvxnM8-jiATfZULNe-qhNskrIJSjAwje8XdSkcl_u6cN-Lmzbpbm_s7M5xue6PQNvIoQkn3tRvkWtnyzB68jnGRxsd7uwe4G1-A7mLQ8wIt41ahh14GtugIJpCbmsNnvlgSczRqGqJAt2r0GfKAm6H4Vo-zz64YSL1jPRL4Pl6ffJifjJJZUSGq0JKukEnXprPEOY1OThtIHrrwvsxrdOkYW0hvLVZkbbrPAq8o6o1ywVqWGO9Q1zw9gu8FfHQLLRShcVosgKeqpnC2ktMJJX7kyOJEOIOslqevIN05lL-a6Tyy70q34NYlfp1Kj-Adw9NBp2dFtPN286FWkH80ajQ7h6Y7DXqE6LtpbzYl9rxRVoQaQPCj5f8bx_rnj-Aw748n5mT77fvHzA7ykL-QYuRzC9upm7T8i4lnZT-2M_gupAP7B |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6N7gF4YDBAFAbyA7zhtU78I3lCEzBNSFRIrFJ5suzY1gJdWrF0CP56zokzFYQmkHiKEp2VOHe5-y4-fwfwXHLDVZCYlvjSUI4pA7W559RmuVJ5xfPQLRe8n8mTOX-3EIsdmA17YWJZZfL9vU_vvHW6Mklvc7Ku68lHBCv4hfAFi0aKSP_VZW1e5G_qs429AbtSIDYfwe589uHoU0_wXdAoHjOwQmVUlpkYaIi6gq-AsC4uRrCeyzM2nPxzqNqCojc3zdp8_2aWy62odLwHq2E-fTHKl8NNaw-rH79RPf6_Cd-FOwnAkqN-yD3Y8c0-7CUwS5KruNiH21tMh_fhtGMhPk8bnRqyCqTt2zNEIyEOxS47CnJSNwQxKTnv_nTgAe0g7u4isfZ91cSyDzLwoD-A-fHb09cnNDV0oBX6sZaWvCqcNd5hZmymofCBKe-LrEJQgXmN8MYyVeSG2SywsrTOKBesVVPDHFoayx_CqMFbPQKS8yBdVvEgYs5VOiuFsNwJX7oiOD4dQzboTleJ7Tw23Vjqoazts-4UrqPC9VRoVPgYXl4NWvdkH9eLy8Eo9C8q1BiOrh94MJiQTi7jQrPI_VfwUqox0Cuz-pvnePyP8k_gVjyLEZiJAxi1Xzf-KUKr1j5L38tPr9Ej0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+topological+derivative+in+the+moving+morphable+components+approach&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Takalloozadeh%2C+Meisam&rft.au=Yoon%2C+Gil+Ho&rft.date=2017-10-15&rft.pub=Elsevier+BV&rft.issn=0168-874X&rft.volume=134&rft.spage=16&rft_id=info:doi/10.1016%2Fj.finel.2017.05.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |