Efficient robust optimization for robust control with constraints

This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed linear constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 114; no. 1; pp. 115 - 147
Main Authors Goulart, Paul J., Kerrigan, Eric C., Ralph, Daniel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.07.2008
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-007-0096-6

Cover

Abstract This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed linear constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-convex. A recent breakthrough has been the application of robust optimization techniques to reparameterize this problem as a convex program. While the reparameterized problem is theoretically tractable, the number of variables is quadratic in the number of stages or horizon length N and has no apparent exploitable structure, leading to computational time of per iteration of an interior-point method. We focus on the case when the disturbance set is ∞-norm bounded or the linear map of a hypercube, and the cost function involves the minimization of a quadratic cost. Here we make use of state variables to regain a sparse problem structure that is related to the structure of the original problem, that is, the policy optimization problem may be decomposed into a set of coupled finite horizon control problems. This decomposition can then be formulated as a highly structured quadratic program, solvable by primal-dual interior-point methods in which each iteration requires time. This cubic iteration time can be guaranteed using a Riccati-based block factorization technique, which is standard in discrete-time optimal control. Numerical results are presented, using a standard sparse primal-dual interior point solver, that illustrate the efficiency of this approach.
AbstractList This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed linear constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-convex. A recent breakthrough has been the application of robust optimization techniques to reparameterize this problem as a convex program. While the reparameterized problem is theoretically tractable, the number of variables is quadratic in the number of stages or horizon length N and has no apparent exploitable structure, leading to computational time of [Equation] per iteration of an interior-point method. We focus on the case when the disturbance set is !-norm bounded or the linear map of a hypercube, and the cost function involves the minimization of a quadratic cost. Here we make use of state variables to regain a sparse problem structure that is related to the structure of the original problem, that is, the policy optimization problem may be decomposed into a set of coupled finite horizon control problems. This decomposition can then be formulated as a highly structured quadratic program, solvable by primal-dual interior-point methods in which each iteration requires [Equation] time. This cubic iteration time can be guaranteed using a Riccati-based block factorization technique, which is standard in discrete-time optimal control. Numerical results are presented, using a standard sparse primal-dual interior point solver, that illustrate the efficiency of this approach.
This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed linear constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-convex. A recent breakthrough has been the application of robust optimization techniques to reparameterize this problem as a convex program. While the reparameterized problem is theoretically tractable, the number of variables is quadratic in the number of stages or horizon length N and has no apparent exploitable structure, leading to computational time of per iteration of an interior-point method. We focus on the case when the disturbance set is ∞-norm bounded or the linear map of a hypercube, and the cost function involves the minimization of a quadratic cost. Here we make use of state variables to regain a sparse problem structure that is related to the structure of the original problem, that is, the policy optimization problem may be decomposed into a set of coupled finite horizon control problems. This decomposition can then be formulated as a highly structured quadratic program, solvable by primal-dual interior-point methods in which each iteration requires time. This cubic iteration time can be guaranteed using a Riccati-based block factorization technique, which is standard in discrete-time optimal control. Numerical results are presented, using a standard sparse primal-dual interior point solver, that illustrate the efficiency of this approach.
Author Kerrigan, Eric C.
Ralph, Daniel
Goulart, Paul J.
Author_xml – sequence: 1
  givenname: Paul J.
  surname: Goulart
  fullname: Goulart, Paul J.
  email: pgoulart@alum.mit.edu
  organization: Department of Engineering, University of Cambridge
– sequence: 2
  givenname: Eric C.
  surname: Kerrigan
  fullname: Kerrigan, Eric C.
  organization: Department of Aeronautics and Department of Electrical and Electronic Engineering, Imperial College London
– sequence: 3
  givenname: Daniel
  surname: Ralph
  fullname: Ralph, Daniel
  organization: Judge Business School, University of Cambridge
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20184733$$DView record in Pascal Francis
BookMark eNp9kMtKAzEUhoNUsK0-gLsi6G705DKZzLKUeoGCG12HTJpoyjSpSYro0zu9IRR0cQgJ33fOyT9APR-8QegSwy0GqO4SBgxVAduqecFPUB8zygvGGe-hPgApi5JjOEODlBYAgKkQfTSeWuu0Mz6PYmjWKY_CKrul-1bZBT-yIR7edfA5hnb06fL75pJyVM7ndI5OrWqTudifQ_R6P32ZPBaz54enyXhWaFrxXFS65EobsHwuqC01FzUogYmooMTYclIxQ7QAQjSbq8Y02gjQWDcNmZcNp3SIbnZ9VzF8rE3KcumSNm2rvAnrJCkTHJe87MCrI3AR1tF3u0lCiWCiZnUHXe8hlbRqbVReuyRX0S1V_JIEsGAV3UytdpyOIaVorNQub7PZfL-VGOQmf7nLX8K2ai55Z-Ij89D8P4fsnNSx_s3E39X_ln4AsImZXQ
CODEN MHPGA4
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_09_027
crossref_primary_10_1109_TCST_2010_2056371
crossref_primary_10_1109_TAC_2011_2170109
crossref_primary_10_1016_j_jprocont_2017_10_006
crossref_primary_10_1016_j_automatica_2019_108622
crossref_primary_10_1021_ie201408p
crossref_primary_10_1109_TCST_2009_2017934
crossref_primary_10_1109_TAC_2010_2047437
crossref_primary_10_1016_j_ejor_2011_08_001
crossref_primary_10_1109_TCST_2024_3355012
crossref_primary_10_1587_transcom_2017EBP3193
crossref_primary_10_1109_TAC_2011_2168069
crossref_primary_10_1177_0954407013516102
crossref_primary_10_1007_s10589_014_9651_2
crossref_primary_10_1021_ie303114r
crossref_primary_10_1016_j_sysconle_2018_06_002
Cites_doi 10.1109/9.489274
10.1016/S0005-1098(99)00214-9
10.1109/9.704989
10.1007/978-3-0348-8407-5_13
10.1109/TAC.2004.838489
10.1109/CDC.1998.758479
10.23919/ACC.2004.1383791
10.1002/aic.690450805
10.1109/9.718607
10.1109/9.633846
10.1016/j.automatica.2005.08.023
10.1109/TAC.1981.1102603
10.1109/CDC.2002.1185110
10.1109/TAC.1976.1101223
10.1017/CBO9780511804441
10.1016/S0005-1098(01)00051-6
10.1080/002071799220579
10.1016/S0967-0661(02)00186-7
10.1007/BF01585511
10.1109/CDC.2006.377625
10.1109/TAC.1973.1100241
10.1109/TAC.2003.816984
10.1109/TAC.1968.1098788
10.3166/ejc.7.87-99
10.1145/641876.641880
10.1007/978-1-4757-3290-0
10.1023/A:1021711402723
10.1007/s10107-005-0679-z
10.1017/CBO9780511810817
10.23919/ECC.2003.7085166
10.1137/S0363012902400713
10.1080/10556789508805606
10.1007/s10107-003-0454-y
10.1007/BF00940728
10.1007/BF00940784
10.1007/BF01399088
10.1109/CDC.2003.1272813
10.1016/j.automatica.2004.08.019
10.1016/S0005-1098(99)00113-2
10.1137/1.9781611971453
10.1007/BF00249643
ContentType Journal Article
Copyright Springer-Verlag 2007
2008 INIST-CNRS
Springer-Verlag 2008
Copyright_xml – notice: Springer-Verlag 2007
– notice: 2008 INIST-CNRS
– notice: Springer-Verlag 2008
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-007-0096-6
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database (ProQuest)
Engineering Database (ProQuest)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1436-4646
EndPage 147
ExternalDocumentID 1451889861
20184733
10_1007_s10107_007_0096_6
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c376t-7c56ace0f6d83f5c6890a812870511f6274e2c8022c4dabebce80c1cbb2d5b633
IEDL.DBID BENPR
ISSN 0025-5610
IngestDate Thu Oct 02 05:34:18 EDT 2025
Thu Sep 25 00:45:27 EDT 2025
Mon Jul 21 09:16:23 EDT 2025
Wed Oct 01 04:22:04 EDT 2025
Thu Apr 24 23:02:58 EDT 2025
Fri Feb 21 02:32:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robust control
Receding horizon control
Robust optimization
Constrained control
Optimal control
Predictive control
State feedback
Cost minimization
Optimal policy
Feedback regulation
Matrix factorization
Approximation algorithm
Combinatorial optimization
Linear control
Convex programming
Model predictive control
Control constraint
Finite horizon
Cost function
Quadratic cost
State constraint
Mathematical programming
Discrete time systems
Interior point method
Quadratic programming
Constrained optimization
Closed feedback
Linear system
Function minimization
Hypercube
Primal dual method
Discrete time
Time optimal control
Riccati equation
Non convex analysis
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-7c56ace0f6d83f5c6890a812870511f6274e2c8022c4dabebce80c1cbb2d5b633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 232848949
PQPubID 25307
PageCount 33
ParticipantIDs proquest_miscellaneous_34861565
proquest_journals_232848949
pascalfrancis_primary_20184733
crossref_citationtrail_10_1007_s10107_007_0096_6
crossref_primary_10_1007_s10107_007_0096_6
springer_journals_10_1007_s10107_007_0096_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2008
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References MayneD.Q.RawlingsJ.B.RaoC.V.ScokaertP.O.M.Constrained model predictive control: stability and optimalityAutomatica20003667898140949.9300310.1016/S0005-1098(99)00214-91829182
QinS.J.BadgwellT.A.A survey of industrial model predictive control technologyControl Eng. Practice20031173376410.1016/S0967-0661(02)00186-7
GoulartP.J.KerriganE.C.MaciejowskiJ.M.Optimization over state feedback policies for robust control with constraintsAutomatica20064245235331102.9301710.1016/j.automatica.2005.08.0232200347
van Hessem, D.H.: Stochastic inequality constrained closed-loop model predictive control. Ph.D. thesis, Technical University of Delft (2004)
Kerrigan, E.C., Maciejowski, J.M.: On robust optimization and the optimal control of constrained linear systems with bounded state disturbances. In: Proceeding 2003 European control conference. Cambridge, UK (2003)
WrightS.J.Interior point methods for optimal control of discrete-time systemsJ. Optim. Theory Appl.1993771611870796.4903410.1007/BF009407841222789
BemporadA.MorariM.GarulliA.TesiA.VicinoA.Robust model predictive control: a survey in robustness in identification and controlLecture notes in control and information sciences, vol. 2451999BerlinSpringer207226
MayneD.Q.Control of constrained dynamic systemsEur. J. Control20017879910.3166/ejc.7.87-99
AndersonB.D.O.MooreJ.B.Optimal control: linear quadratic methods1990Upper Saddle RiverPrentice-Hall, Inc.0751.49013
GondzioJ.Multiple centrality corrections in a primal-dual method for linear programmingComput. Optim. Appl.199661371560860.900841398264
BunchJ.R.KaufmanL.ParlettB.N.Decomposition of a symmetric matrixNumerische Mathematik197627951100342.6502610.1007/BF013990881553989
DirskeS.P.FerrisM.C.The PATH solver: A non-monotone stabilization scheme for mixed complementarity problemsOptim. Methods Softw.1995512315610.1080/10556789508805606
DullerudG.E.PaganiniF.A course in robust control theory: a convex approach2000New YorkSpringer
DahlehM.A.Diaz-BobilloI.J.Control of uncertain systems1995Englewood CliffsPrentice Hall0838.93007
DiehlM.BjörnbergJ.Robust dynamic programming for min-max model predictive control of constrained uncertain systemsIEEE Trans. Autom. Control200449122253225710.1109/TAC.2004.838489
SznaierM.BuJ.Mixed ℓ1/H∞ control of MIMO systems via convex optimizationIEEE Trans. Autom. Control1998439122912410960.9301110.1109/9.7186071640116
van Hessem, D.H., Bosgra, O.H.: A conic reformulation of model predictive control including bounded and stochastic disturbances under state and input constraints. In: Proceeding 41st IEEE conference on decision and control, pp. 4643–4648 (2002)
ScokaertP.O.MMayneD.Q.Min-max feedback model predictive control for constrained linear systemsIEEE Trans. Autom. Control1998438113611420957.9303410.1109/9.7049891636467
Kerrigan, E.C., Alamo, T.: A convex parameterization for solving constrained min-max problems with a quadratic cost. In: Proceeding 2004 American control conference, pp. 2220–2221. Boston, MA, USA (2004)
Bemporad, A.: Reducing conservativeness in predictive control of constrained systems with disturbances. In: Proceeding 37th IEEE conference on decision and control, pp. 1384–1391. Tampa, FL, USA (1998)
GreenM.LimebeerD.J.N.Linear Robust Control1995Englewood CliffsPrentice Hall0951.93500
GertzE.M.WrightS.J.Object-oriented software for quadratic programmingACM Trans. Math. Softw.20032958811068.9058610.1145/641876.6418802001454
YoulaD.C.JabrH.A.BongiornoJ.J.Modern Weiner-Hopf design of optimal controllers: Part IIIEEE Trans. Autom. Control1976AC-2131933810.1109/TAC.1976.1101223446637
LeeY.I.KouvaritakisB.Constrained receding horizon predictive control for systems with disturbancesInt. J. Control19997211102710320962.9303410.1080/0020717992205791705900
DunnJ.C.BertsekasD.P.Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problemsJ. Optim. Theory Appl.198963123380662.4901310.1007/BF009407281022363
MaciejowskiJ.M.Predictive control with constraints2002UKPrentice Hall
JacobsonD.MayneD.Differential dynamic programming1970New YorkElsevier0223.49022
Löfberg, J.: Minimax approaches to robust model predictive control. Ph.D. thesis, Linköping University (2003)
MayneD.Q.SeronM.M.RakovićS.V.Robust model predictive control of constrained linear systems with bounded disturbancesAutomatica2005412219241066.9301510.1016/j.automatica.2004.08.0192157656
CamachoE.F.BordonsC.Model predictive control20042LondonSpringer1080.93001
ChisciL.RossiterJ.A.ZappaG.Systems with persistent state disturbances: predictive control with restricted constraintsAutomatica2001377101910280984.9303710.1016/S0005-1098(01)00051-62109705
Biegler, L.: Efficient solution of dynamic optimization and NMPC problems. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear model predictive control, progress in systems and control theory, vol. 26, pp. 219–243. Birkhäuser (2000)
BlanchiniF.Set invariance in controlAutomatica1999351174717670935.9300510.1016/S0005-1098(99)00113-2
BemporadA.BorrelliF.MorariM.Min-max control of constrained uncertain discrete-time linear systemsIEEE Trans. Autom. Control20034891600160610.1109/TAC.2003.8169842000114
HSL: HSL 2002: A collection of Fortran codes for large scale scientific computation. http://www.cse.clrc.ac.uk/nag/hsl (2002).
ShammaJ.S.Optimization of the ℓ∞-induced norm under full state feedbackIEEE Trans. Autom. Control1996414533440958.9303610.1109/9.4892741385324
RaoC.V.WrightS.J.RawlingsJ.B.Application of interior–point methods to model predictive controlJ. Optim. Theory Appl.1998997237570973.9009210.1023/A:10217114027231657971
Guslitser, E.: Uncertainty-immunized solutions in linear programming. Master’s thesis, Technion, Israeli Institute of Technology (2002)
ScokaertP.O.MRawlingsJ.B.Feasibility issues in linear model predictive controlAIChE J.19994581649165910.1002/aic.690450805
SteinG.Respect the unstableIEEE Control Syst. Magaz.2003344122510.1109/MCS.2003.1213600
WitsenhausenH.S.A minimax control problem for sampled linear systemsIEEE Trans. Autom. Control1968AC-13152110.1109/TAC.1968.1098788230562
DiehlM.BockH.G.SchlöderJ.P.A real-time iteration scheme for nonlinear optimization in optimal feedback controlSIAM J. Optim.2005435171417361078.6506010.1137/S0363012902400713
Löfberg, J.: Approximations of closed-loop MPC. In: Proceeding~42nd IEEE conference on decision and control, pp. 1438–1442. Maui, Hawaii, USA (2003)
Steinbach, M.C.: Fast recursive SQP methods for large-scale optimal control problems. Ph.D. thesis, University of Heidelberg (1995)
DuffI.ErismanA.ReidJ.Direct methods for sparse matrices1986OxfordOxford University Press0604.65011
BertsekasD.P.RhodesI.B.Sufficiently informative functions and the minimax feedback control of uncertain dynamic systemsIEEE Trans. Autom. Control1973AC-18211712410.1109/TAC.1973.1100241439368
FialhoI.J.GeorgiouT.T.ℓ1 state-feedback control with a prescribed rate of exponential convergenceIEEE Trans. Autom. Control199742101476810891.9302810.1109/9.6338461472872
Goulart PJ, Kerrigan E.: A convex formulation for receding horizon control of constrained discrete-time systems with guaranteed ℓ2 gain. In: Proceeding 45th IEEE conference on decision and control and 2005 European control conference (2006)
ZamesG.Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inversesIEEE Trans. Autom. Control1981AC-26230132010.1109/TAC.1981.1102603613539
Ben-TalA.BoydS.NemirovskiA.Extending scope of robust optimization: comprehensive robust counterparts of uncertain problemsMath. Program.20061071–263890503243110.1007/s10107-005-0679-z2218121
BoydS.VandenbergheL.Convex optimization2004CambridgeCambridge University Press1058.90049
GarstkaS.J.WetsR.J.B.On decision rules in stochastic programmingMath. Program.197471171430326.9004910.1007/BF01585511351451
Ben-TalA.GoryashkoA.GuslitzerE.NemirovskiA.Adjustable robust solutions of uncertain linear programsMath. Program.20049923513761089.9003710.1007/s10107-003-0454-y2039045
FletcherR.Practical methods of optimization19872New YorkWiley-Interscience0905.65002
ZhouKDoyleJGloverKRobust and optimal control1996Englewood CliffsPrentice-Hall0999.49500
Goulart, P.J.: Affine Feedback Policies for Robust Control with Constraints. Ph.D. thesis, University of Cambridge (2006). Available at http://www-control.eng.cam.ac.uk
HornR.JohnsonC.Matrix analysis1985CambridgeCambridge University Press0576.15001
WrightS.J.Primal-dual interior-point methods1997PhiladelphiaSIAM Publications0863.65031
P.O.M Scokaert (96_CR48) 1999; 45
S.J. Qin (96_CR45) 2003; 11
H.S. Witsenhausen (96_CR53) 1968; AC-13
S.J. Wright (96_CR55) 1997
M.A. Dahleh (96_CR14) 1995
J. Gondzio (96_CR25) 1996; 6
R. Horn (96_CR33) 1985
S.J. Wright (96_CR54) 1993; 77
J.R. Bunch (96_CR11) 1976; 27
96_CR27
S.J. Garstka (96_CR23) 1974; 7
96_CR26
F. Blanchini (96_CR9) 1999; 35
I. Duff (96_CR18) 1986
M. Diehl (96_CR15) 2004; 49
D.Q. Mayne (96_CR44) 2005; 41
D. Jacobson (96_CR35) 1970
A. Bemporad (96_CR3) 2003; 48
96_CR31
P.O.M Scokaert (96_CR47) 1998; 43
96_CR30
96_CR34
S. Boyd (96_CR10) 2004
96_CR32
P.J. Goulart (96_CR28) 2006; 42
96_CR39
D.Q. Mayne (96_CR42) 2001; 7
96_CR37
96_CR36
A. Ben-Tal (96_CR5) 2006; 107
R. Fletcher (96_CR22) 1987
B.D.O. Anderson (96_CR1) 1990
M. Sznaier (96_CR52) 1998; 43
M. Diehl (96_CR16) 2005; 43
96_CR40
D.P. Bertsekas (96_CR7) 1973; AC-18
D.Q. Mayne (96_CR43) 2000; 36
E.M. Gertz (96_CR24) 2003; 29
G.E. Dullerud (96_CR19) 2000
D.C. Youla (96_CR56) 1976; AC-21
S.P. Dirske (96_CR17) 1995; 5
A. Ben-Tal (96_CR6) 2004; 99
96_CR2
A. Bemporad (96_CR4) 1999
G. Zames (96_CR57) 1981; AC-26
L. Chisci (96_CR13) 2001; 37
96_CR8
96_CR51
C.V. Rao (96_CR46) 1998; 99
K Zhou (96_CR58) 1996
J.S. Shamma (96_CR49) 1996; 41
I.J. Fialho (96_CR21) 1997; 42
G. Stein (96_CR50) 2003; 34
E.F. Camacho (96_CR12) 2004
M. Green (96_CR29) 1995
J.M. Maciejowski (96_CR41) 2002
Y.I. Lee (96_CR38) 1999; 72
J.C. Dunn (96_CR20) 1989; 63
References_xml – reference: DiehlM.BjörnbergJ.Robust dynamic programming for min-max model predictive control of constrained uncertain systemsIEEE Trans. Autom. Control200449122253225710.1109/TAC.2004.838489
– reference: Ben-TalA.BoydS.NemirovskiA.Extending scope of robust optimization: comprehensive robust counterparts of uncertain problemsMath. Program.20061071–263890503243110.1007/s10107-005-0679-z2218121
– reference: ZamesG.Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inversesIEEE Trans. Autom. Control1981AC-26230132010.1109/TAC.1981.1102603613539
– reference: Steinbach, M.C.: Fast recursive SQP methods for large-scale optimal control problems. Ph.D. thesis, University of Heidelberg (1995)
– reference: Löfberg, J.: Approximations of closed-loop MPC. In: Proceeding~42nd IEEE conference on decision and control, pp. 1438–1442. Maui, Hawaii, USA (2003)
– reference: QinS.J.BadgwellT.A.A survey of industrial model predictive control technologyControl Eng. Practice20031173376410.1016/S0967-0661(02)00186-7
– reference: ChisciL.RossiterJ.A.ZappaG.Systems with persistent state disturbances: predictive control with restricted constraintsAutomatica2001377101910280984.9303710.1016/S0005-1098(01)00051-62109705
– reference: BunchJ.R.KaufmanL.ParlettB.N.Decomposition of a symmetric matrixNumerische Mathematik197627951100342.6502610.1007/BF013990881553989
– reference: ScokaertP.O.MRawlingsJ.B.Feasibility issues in linear model predictive controlAIChE J.19994581649165910.1002/aic.690450805
– reference: Kerrigan, E.C., Alamo, T.: A convex parameterization for solving constrained min-max problems with a quadratic cost. In: Proceeding 2004 American control conference, pp. 2220–2221. Boston, MA, USA (2004)
– reference: GoulartP.J.KerriganE.C.MaciejowskiJ.M.Optimization over state feedback policies for robust control with constraintsAutomatica20064245235331102.9301710.1016/j.automatica.2005.08.0232200347
– reference: van Hessem, D.H.: Stochastic inequality constrained closed-loop model predictive control. Ph.D. thesis, Technical University of Delft (2004)
– reference: Kerrigan, E.C., Maciejowski, J.M.: On robust optimization and the optimal control of constrained linear systems with bounded state disturbances. In: Proceeding 2003 European control conference. Cambridge, UK (2003)
– reference: Goulart PJ, Kerrigan E.: A convex formulation for receding horizon control of constrained discrete-time systems with guaranteed ℓ2 gain. In: Proceeding 45th IEEE conference on decision and control and 2005 European control conference (2006)
– reference: MayneD.Q.RawlingsJ.B.RaoC.V.ScokaertP.O.M.Constrained model predictive control: stability and optimalityAutomatica20003667898140949.9300310.1016/S0005-1098(99)00214-91829182
– reference: ShammaJ.S.Optimization of the ℓ∞-induced norm under full state feedbackIEEE Trans. Autom. Control1996414533440958.9303610.1109/9.4892741385324
– reference: JacobsonD.MayneD.Differential dynamic programming1970New YorkElsevier0223.49022
– reference: DiehlM.BockH.G.SchlöderJ.P.A real-time iteration scheme for nonlinear optimization in optimal feedback controlSIAM J. Optim.2005435171417361078.6506010.1137/S0363012902400713
– reference: CamachoE.F.BordonsC.Model predictive control20042LondonSpringer1080.93001
– reference: ScokaertP.O.MMayneD.Q.Min-max feedback model predictive control for constrained linear systemsIEEE Trans. Autom. Control1998438113611420957.9303410.1109/9.7049891636467
– reference: HornR.JohnsonC.Matrix analysis1985CambridgeCambridge University Press0576.15001
– reference: Goulart, P.J.: Affine Feedback Policies for Robust Control with Constraints. Ph.D. thesis, University of Cambridge (2006). Available at http://www-control.eng.cam.ac.uk
– reference: MayneD.Q.Control of constrained dynamic systemsEur. J. Control20017879910.3166/ejc.7.87-99
– reference: BertsekasD.P.RhodesI.B.Sufficiently informative functions and the minimax feedback control of uncertain dynamic systemsIEEE Trans. Autom. Control1973AC-18211712410.1109/TAC.1973.1100241439368
– reference: FletcherR.Practical methods of optimization19872New YorkWiley-Interscience0905.65002
– reference: DullerudG.E.PaganiniF.A course in robust control theory: a convex approach2000New YorkSpringer
– reference: ZhouKDoyleJGloverKRobust and optimal control1996Englewood CliffsPrentice-Hall0999.49500
– reference: van Hessem, D.H., Bosgra, O.H.: A conic reformulation of model predictive control including bounded and stochastic disturbances under state and input constraints. In: Proceeding 41st IEEE conference on decision and control, pp. 4643–4648 (2002)
– reference: WrightS.J.Interior point methods for optimal control of discrete-time systemsJ. Optim. Theory Appl.1993771611870796.4903410.1007/BF009407841222789
– reference: GertzE.M.WrightS.J.Object-oriented software for quadratic programmingACM Trans. Math. Softw.20032958811068.9058610.1145/641876.6418802001454
– reference: Ben-TalA.GoryashkoA.GuslitzerE.NemirovskiA.Adjustable robust solutions of uncertain linear programsMath. Program.20049923513761089.9003710.1007/s10107-003-0454-y2039045
– reference: DunnJ.C.BertsekasD.P.Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problemsJ. Optim. Theory Appl.198963123380662.4901310.1007/BF009407281022363
– reference: Biegler, L.: Efficient solution of dynamic optimization and NMPC problems. In: Allgöwer, F., Zheng, A. (eds.) Nonlinear model predictive control, progress in systems and control theory, vol. 26, pp. 219–243. Birkhäuser (2000)
– reference: DirskeS.P.FerrisM.C.The PATH solver: A non-monotone stabilization scheme for mixed complementarity problemsOptim. Methods Softw.1995512315610.1080/10556789508805606
– reference: SteinG.Respect the unstableIEEE Control Syst. Magaz.2003344122510.1109/MCS.2003.1213600
– reference: Bemporad, A.: Reducing conservativeness in predictive control of constrained systems with disturbances. In: Proceeding 37th IEEE conference on decision and control, pp. 1384–1391. Tampa, FL, USA (1998)
– reference: GondzioJ.Multiple centrality corrections in a primal-dual method for linear programmingComput. Optim. Appl.199661371560860.900841398264
– reference: Löfberg, J.: Minimax approaches to robust model predictive control. Ph.D. thesis, Linköping University (2003)
– reference: WrightS.J.Primal-dual interior-point methods1997PhiladelphiaSIAM Publications0863.65031
– reference: DuffI.ErismanA.ReidJ.Direct methods for sparse matrices1986OxfordOxford University Press0604.65011
– reference: RaoC.V.WrightS.J.RawlingsJ.B.Application of interior–point methods to model predictive controlJ. Optim. Theory Appl.1998997237570973.9009210.1023/A:10217114027231657971
– reference: HSL: HSL 2002: A collection of Fortran codes for large scale scientific computation. http://www.cse.clrc.ac.uk/nag/hsl (2002).
– reference: BemporadA.MorariM.GarulliA.TesiA.VicinoA.Robust model predictive control: a survey in robustness in identification and controlLecture notes in control and information sciences, vol. 2451999BerlinSpringer207226
– reference: AndersonB.D.O.MooreJ.B.Optimal control: linear quadratic methods1990Upper Saddle RiverPrentice-Hall, Inc.0751.49013
– reference: WitsenhausenH.S.A minimax control problem for sampled linear systemsIEEE Trans. Autom. Control1968AC-13152110.1109/TAC.1968.1098788230562
– reference: YoulaD.C.JabrH.A.BongiornoJ.J.Modern Weiner-Hopf design of optimal controllers: Part IIIEEE Trans. Autom. Control1976AC-2131933810.1109/TAC.1976.1101223446637
– reference: FialhoI.J.GeorgiouT.T.ℓ1 state-feedback control with a prescribed rate of exponential convergenceIEEE Trans. Autom. Control199742101476810891.9302810.1109/9.6338461472872
– reference: GarstkaS.J.WetsR.J.B.On decision rules in stochastic programmingMath. Program.197471171430326.9004910.1007/BF01585511351451
– reference: LeeY.I.KouvaritakisB.Constrained receding horizon predictive control for systems with disturbancesInt. J. Control19997211102710320962.9303410.1080/0020717992205791705900
– reference: GreenM.LimebeerD.J.N.Linear Robust Control1995Englewood CliffsPrentice Hall0951.93500
– reference: MaciejowskiJ.M.Predictive control with constraints2002UKPrentice Hall
– reference: DahlehM.A.Diaz-BobilloI.J.Control of uncertain systems1995Englewood CliffsPrentice Hall0838.93007
– reference: MayneD.Q.SeronM.M.RakovićS.V.Robust model predictive control of constrained linear systems with bounded disturbancesAutomatica2005412219241066.9301510.1016/j.automatica.2004.08.0192157656
– reference: BlanchiniF.Set invariance in controlAutomatica1999351174717670935.9300510.1016/S0005-1098(99)00113-2
– reference: Guslitser, E.: Uncertainty-immunized solutions in linear programming. Master’s thesis, Technion, Israeli Institute of Technology (2002)
– reference: BemporadA.BorrelliF.MorariM.Min-max control of constrained uncertain discrete-time linear systemsIEEE Trans. Autom. Control20034891600160610.1109/TAC.2003.8169842000114
– reference: SznaierM.BuJ.Mixed ℓ1/H∞ control of MIMO systems via convex optimizationIEEE Trans. Autom. Control1998439122912410960.9301110.1109/9.7186071640116
– reference: BoydS.VandenbergheL.Convex optimization2004CambridgeCambridge University Press1058.90049
– volume: 41
  start-page: 533
  issue: 4
  year: 1996
  ident: 96_CR49
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.489274
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  ident: 96_CR43
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– volume: 43
  start-page: 1136
  issue: 8
  year: 1998
  ident: 96_CR47
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.704989
– ident: 96_CR8
  doi: 10.1007/978-3-0348-8407-5_13
– volume: 49
  start-page: 2253
  issue: 12
  year: 2004
  ident: 96_CR15
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2004.838489
– ident: 96_CR2
  doi: 10.1109/CDC.1998.758479
– start-page: 207
  volume-title: Lecture notes in control and information sciences, vol. 245
  year: 1999
  ident: 96_CR4
– ident: 96_CR36
  doi: 10.23919/ACC.2004.1383791
– volume: 45
  start-page: 1649
  issue: 8
  year: 1999
  ident: 96_CR48
  publication-title: AIChE J.
  doi: 10.1002/aic.690450805
– ident: 96_CR30
– ident: 96_CR34
– ident: 96_CR27
– volume: 34
  start-page: 12
  issue: 4
  year: 2003
  ident: 96_CR50
  publication-title: IEEE Control Syst. Magaz.
– volume: 43
  start-page: 1229
  issue: 9
  year: 1998
  ident: 96_CR52
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.718607
– volume: 42
  start-page: 1476
  issue: 10
  year: 1997
  ident: 96_CR21
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.633846
– volume-title: Differential dynamic programming
  year: 1970
  ident: 96_CR35
– volume-title: Control of uncertain systems
  year: 1995
  ident: 96_CR14
– volume: 42
  start-page: 523
  issue: 4
  year: 2006
  ident: 96_CR28
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.08.023
– volume: AC-26
  start-page: 301
  issue: 2
  year: 1981
  ident: 96_CR57
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1981.1102603
– volume-title: Optimal control: linear quadratic methods
  year: 1990
  ident: 96_CR1
– ident: 96_CR40
– ident: 96_CR32
  doi: 10.1109/CDC.2002.1185110
– volume: AC-21
  start-page: 319
  year: 1976
  ident: 96_CR56
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1976.1101223
– volume-title: Direct methods for sparse matrices
  year: 1986
  ident: 96_CR18
– volume-title: Convex optimization
  year: 2004
  ident: 96_CR10
  doi: 10.1017/CBO9780511804441
– volume: 37
  start-page: 1019
  issue: 7
  year: 2001
  ident: 96_CR13
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00051-6
– volume: 72
  start-page: 1027
  issue: 11
  year: 1999
  ident: 96_CR38
  publication-title: Int. J. Control
  doi: 10.1080/002071799220579
– volume: 11
  start-page: 733
  year: 2003
  ident: 96_CR45
  publication-title: Control Eng. Practice
  doi: 10.1016/S0967-0661(02)00186-7
– volume: 7
  start-page: 117
  year: 1974
  ident: 96_CR23
  publication-title: Math. Program.
  doi: 10.1007/BF01585511
– ident: 96_CR26
  doi: 10.1109/CDC.2006.377625
– volume-title: Model predictive control
  year: 2004
  ident: 96_CR12
– volume: AC-18
  start-page: 117
  issue: 2
  year: 1973
  ident: 96_CR7
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1973.1100241
– volume: 48
  start-page: 1600
  issue: 9
  year: 2003
  ident: 96_CR3
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2003.816984
– volume: AC-13
  start-page: 5
  issue: 1
  year: 1968
  ident: 96_CR53
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1968.1098788
– volume: 7
  start-page: 87
  year: 2001
  ident: 96_CR42
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.7.87-99
– ident: 96_CR51
– volume: 29
  start-page: 58
  year: 2003
  ident: 96_CR24
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/641876.641880
– volume-title: A course in robust control theory: a convex approach
  year: 2000
  ident: 96_CR19
  doi: 10.1007/978-1-4757-3290-0
– volume: 99
  start-page: 723
  year: 1998
  ident: 96_CR46
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021711402723
– volume: 107
  start-page: 63
  issue: 1–2
  year: 2006
  ident: 96_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0679-z
– volume-title: Matrix analysis
  year: 1985
  ident: 96_CR33
  doi: 10.1017/CBO9780511810817
– ident: 96_CR37
  doi: 10.23919/ECC.2003.7085166
– volume: 43
  start-page: 1714
  issue: 5
  year: 2005
  ident: 96_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/S0363012902400713
– volume-title: Predictive control with constraints
  year: 2002
  ident: 96_CR41
– volume: 5
  start-page: 123
  year: 1995
  ident: 96_CR17
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789508805606
– volume: 99
  start-page: 351
  issue: 2
  year: 2004
  ident: 96_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0454-y
– volume: 63
  start-page: 23
  issue: 1
  year: 1989
  ident: 96_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940728
– volume: 77
  start-page: 161
  year: 1993
  ident: 96_CR54
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940784
– volume: 27
  start-page: 95
  year: 1976
  ident: 96_CR11
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01399088
– volume-title: Practical methods of optimization
  year: 1987
  ident: 96_CR22
– ident: 96_CR31
– ident: 96_CR39
  doi: 10.1109/CDC.2003.1272813
– volume: 41
  start-page: 219
  issue: 2
  year: 2005
  ident: 96_CR44
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.08.019
– volume-title: Robust and optimal control
  year: 1996
  ident: 96_CR58
– volume: 35
  start-page: 1747
  issue: 1
  year: 1999
  ident: 96_CR9
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00113-2
– volume-title: Linear Robust Control
  year: 1995
  ident: 96_CR29
– volume-title: Primal-dual interior-point methods
  year: 1997
  ident: 96_CR55
  doi: 10.1137/1.9781611971453
– volume: 6
  start-page: 137
  year: 1996
  ident: 96_CR25
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/BF00249643
SSID ssj0001388
Score 1.9560405
Snippet This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Applied sciences
Calculus of Variations and Optimal Control; Optimization
Codes
Combinatorics
Computer science; control theory; systems
Control system synthesis
Control theory. Systems
Decomposition
Exact sciences and technology
Flows in networks. Combinatorial problems
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Optimal control
Optimization techniques
Robust control
System theory
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu4AQb0QplAxMoFRpk7jOWKGWClSmVipT5FcWIKmadOHXc07i9CFAYvDgxLZsX-78xT5_B3BHOaqBdquQnAT4gyJdm_qojzLghGl6l26k9zvGr2Q09Z5n_qy8x50ab3dzJJlb6rXLbh29rZangNhkF-o53VYN6v2nt5dBZYA7LqUmUquGB-Yw86dGNpajgzlLcWaiIqTFBubcOibNV5_hEUxMvwunk_f2MuNt8bVF6fjPgR3DYYlGrX7x-ZzAjopPYX-NoxBz44rYNT2D_iCnnMCVylokfJlmVoI257O8zGkhAjbPSx94S2_06kyaB6PI0nOYDgeTx5FdRmGwBRqfzO4JnzChnIhI6ka-IDRwGMICVHQEa5GO3aO6Qt_YFZ5kXHGhqCM6gvOu9Dlx3QuoxUmsLsGSQc9hkiEEIcwTVFLdcoeoruJRxKTfAMcIIxQlRbnu3Ee4IlfWcxU6eQpISBpwX1WZF_wcfxVubUi4qoEoCFdp121A04g8LHU5DRFzUo8GXtCA2-otKqE-WWGxSpZp6HoUkSHBATwYEa_q_9qdq3-VbsJe4auiXYWvoZYtluoGAVHGW6UCfAPBVwDV
  priority: 102
  providerName: Springer Nature
Title Efficient robust optimization for robust control with constraints
URI https://link.springer.com/article/10.1007/s10107-007-0096-6
https://www.proquest.com/docview/232848949
https://www.proquest.com/docview/34861565
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AMVHM
  dateStart: 19711201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 8FG
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jr9MwEB51uYAQYnmIvkLIgRMoemkW1zkglEIXgVohRKVyirzlBE1fk_5_ZpI4pUj0EEWO48SxPTNf7PE3AG-5RDEgtwotWYI_KDr0eIzyqBPJBNG7BDnNd6w3bLWNvuziXQ_Wdi8MuVVanVgral0omiO_Q8vPI55EycfDvUdBo2hx1UbQEG1kBf2hZhjrwzAgYqwBDGfzzbfvnWqehJzbGK4EHOwyZ7OXbkKzdvWRMI9dGKpHB1Fim-VNsIsLNPrPAmptlxZP4HELKN20GQFPoWf2z-DhXzSDmFp33Kzlc0jnNWsEGhv3WMhTWbkFqo3f7X5MF0Gsvd66sbs0V0uJso4nUZU3sF3Mf3xaeW0gBU-h_qi8qYqZUMbPmeZhHivGE1-gZUdZRbyVU_gdEyjadKsiLaSRynBfTZSUgY4lC8MXMNgXe_MSXJ1MfaEFoggmIsU1pydPmAmMzHOh4xH4ttUy1bKMU-V-ZWd-ZGrozK-PhGVsBO-6IoeGYuPazc5FV3QlEMigoQ3DEYxt32StOJZZN3hG8KbLRTmixRGxN8WpzMKII7hj-AHvbYeey_-3OrdX3zaGB417CXn3voJBdTyZ14hhKulAny-WDgzT2efZgs7Ln1_nTjteMXcbpH8AsbjyjA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4h9tBWCFFK1WVbyIFeiqJm8zD2AVXQLloKu6oqkLilfuVUNgvJCvHj-G-dSezQrVRuHHxwEieOx-P5PJ4HwB5XyAZkVmEUE7hBMUnIM-RHIxSTFN4lLkjfMZmy8WX6_Sq7WoEH7wtDZpV-TWwWalNq0pF_RsnPUy5S8WV-E1LSKDpc9Rk0pMusYA6bCGPOr-PM3t_hDq46PP2G5P4Yxyeji6_j0CUZCDXyVh0e6IxJbaOCGZ4UmWZcRBKlHs5jxCIFpaaxsSaHVJ0aqazSlkd6qJWKTaYY6UNRAvTSJBW49-sdj6Y_fnaiYJhw7nPGElDxx6qt796QtIRNESxkS4JxbS4rpFHRJtdYQr__HNg2cvBkA9YdgA2O2hn3GlbsbBNe_RXWEGuTLhZs9QaORk2UChRuwW2pFlUdlLhMXTv_zwBBs7_uzOYD0g1TpWryV9TVFlw-y5i-hdVZObPvIDDiIJJGImphMtXccHrzkNnYqqKQJutD5Ect1y6qOXXud_4Yj5kGOo-aIljO-vCpazJvQ3o89fDOEim6FgicULAnSR8Gnja5Y_8q7yZrH3a7u8i3dBgjZ7ZcVHmScgSTDH9g3xP0sf1_u7P95Nd24cX4YnKen59OzwbwsjVtIcvi97Ba3y7sB8RPtdpxszSAX8_NGH8AwaUrLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAIIVYRCm0OnEARWV3nWEGrsrTiQKXeIm85QVI16f8zztYWARKHHJzYlrfxvNgzbwBuKEcx0GYVkpMQf1CkZ9EA5VGGnDBN7-LG-rxjPCGjqf88C2ZVnNOstnavryRLnwbN0pTk93MZ3685vjn6iK14QmKRbdjxNU8CLuip22-2YsejtI7ZqoFCfa35UxUbiulgzjIco7gMbrGBPr9dmBZ6aHgEhxWANPvljB_DlkpOYH-NVhBT44aLNTuF_qBgicDOmYuUL7PcTHGb-Kz8L00ErfX7ymzd1GezOpEV8SPy7Aymw8H7w8iqAidYAveL3OqJgDCh7JhI6sWBIDS0GWpylE3EV7EOt6NcoZ1shS8ZV1woagtHcO7KgBPPO4dWkibqAkwZ9mwmGaIGwnxBJdU1O0S5iscxk4EBdj1qkahYxXXjPqIVH7Ie6MgunpBExIDbpsi8pNT4K3NnYyqaEghcULF6ngHtem6iSvyyCGEi9WnohwZ0m68oN_oyhCUqXWaR51MEcwQ7cFdP6Kr8r825_FfuLuy-PQ6j16fJSxv2SksTbeh7Ba18sVTXCGdy3imW7BcXdOsl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+robust+optimization+for+robust+control+with+constraints&rft.jtitle=Mathematical+programming&rft.au=Goulart%2C+Paul+J&rft.au=Kerrigan%2C+Eric+C&rft.au=Ralph%2C+Daniel&rft.date=2008-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=114&rft.issue=1&rft.spage=115&rft_id=info:doi/10.1007%2Fs10107-007-0096-6&rft.externalDocID=1451889861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon