Optimization of Device-Free Localization with Springback Dual Models: A Synthetic and Analytical Framework
In complex environments, traditional device-free localization (DFL) methods based on received signal strength (RSS) encounter difficulties in simultaneously achieving high accuracy and efficiency due to multipath effects and noise interference. These methods typically depend on convex sparsity regul...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 18; p. 5696 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
12.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25185696 |
Cover
| Abstract | In complex environments, traditional device-free localization (DFL) methods based on received signal strength (RSS) encounter difficulties in simultaneously achieving high accuracy and efficiency due to multipath effects and noise interference. These methods typically depend on convex sparsity regularization, which, despite its computational convenience, is insufficient in capturing the sparsity of signals. In contrast, non-convex sparsity regularization methods, while theoretically more capable of approximating ideal sparsity, are associated with higher computational complexity and a greater likelihood of getting stuck in local optima. To address these issues, this study proposes a synthetic model based on a novel weakly convex penalty function called Springback. This model combines a compression term (ℓ1) that promotes sparsity and a rebound term (ℓ2) that preserves signal amplitude, adjusting parameters to balance sparsity and computational complexity. Furthermore, to tackle the low efficiency of traditional synthetic models when dealing with large-scale data, we introduce a Springback-transform model based on an analytical transform learning framework. This model can directly extract sparse features from signals, avoiding the complex computational processes inherent in traditional synthetic models. Both models are solved using a difference of convex algorithm (DCA), significantly improving positioning accuracy and computational efficiency. Experimental results demonstrate that the proposed models exhibit high accuracy, low positioning error, and a short computation time across various environments, outperforming other state-of-the-art models. These achievements offer a new solution to the problem of DFL in complex environments, with high practical value and application prospects. |
|---|---|
| AbstractList | In complex environments, traditional device-free localization (DFL) methods based on received signal strength (RSS) encounter difficulties in simultaneously achieving high accuracy and efficiency due to multipath effects and noise interference. These methods typically depend on convex sparsity regularization, which, despite its computational convenience, is insufficient in capturing the sparsity of signals. In contrast, non-convex sparsity regularization methods, while theoretically more capable of approximating ideal sparsity, are associated with higher computational complexity and a greater likelihood of getting stuck in local optima. To address these issues, this study proposes a synthetic model based on a novel weakly convex penalty function called Springback. This model combines a compression term (ℓ1) that promotes sparsity and a rebound term (ℓ2) that preserves signal amplitude, adjusting parameters to balance sparsity and computational complexity. Furthermore, to tackle the low efficiency of traditional synthetic models when dealing with large-scale data, we introduce a Springback-transform model based on an analytical transform learning framework. This model can directly extract sparse features from signals, avoiding the complex computational processes inherent in traditional synthetic models. Both models are solved using a difference of convex algorithm (DCA), significantly improving positioning accuracy and computational efficiency. Experimental results demonstrate that the proposed models exhibit high accuracy, low positioning error, and a short computation time across various environments, outperforming other state-of-the-art models. These achievements offer a new solution to the problem of DFL in complex environments, with high practical value and application prospects. In complex environments, traditional device-free localization (DFL) methods based on received signal strength (RSS) encounter difficulties in simultaneously achieving high accuracy and efficiency due to multipath effects and noise interference. These methods typically depend on convex sparsity regularization, which, despite its computational convenience, is insufficient in capturing the sparsity of signals. In contrast, non-convex sparsity regularization methods, while theoretically more capable of approximating ideal sparsity, are associated with higher computational complexity and a greater likelihood of getting stuck in local optima. To address these issues, this study proposes a synthetic model based on a novel weakly convex penalty function called Springback. This model combines a compression term (ℓ1) that promotes sparsity and a rebound term (ℓ2) that preserves signal amplitude, adjusting parameters to balance sparsity and computational complexity. Furthermore, to tackle the low efficiency of traditional synthetic models when dealing with large-scale data, we introduce a Springback-transform model based on an analytical transform learning framework. This model can directly extract sparse features from signals, avoiding the complex computational processes inherent in traditional synthetic models. Both models are solved using a difference of convex algorithm (DCA), significantly improving positioning accuracy and computational efficiency. Experimental results demonstrate that the proposed models exhibit high accuracy, low positioning error, and a short computation time across various environments, outperforming other state-of-the-art models. These achievements offer a new solution to the problem of DFL in complex environments, with high practical value and application prospects.In complex environments, traditional device-free localization (DFL) methods based on received signal strength (RSS) encounter difficulties in simultaneously achieving high accuracy and efficiency due to multipath effects and noise interference. These methods typically depend on convex sparsity regularization, which, despite its computational convenience, is insufficient in capturing the sparsity of signals. In contrast, non-convex sparsity regularization methods, while theoretically more capable of approximating ideal sparsity, are associated with higher computational complexity and a greater likelihood of getting stuck in local optima. To address these issues, this study proposes a synthetic model based on a novel weakly convex penalty function called Springback. This model combines a compression term (ℓ1) that promotes sparsity and a rebound term (ℓ2) that preserves signal amplitude, adjusting parameters to balance sparsity and computational complexity. Furthermore, to tackle the low efficiency of traditional synthetic models when dealing with large-scale data, we introduce a Springback-transform model based on an analytical transform learning framework. This model can directly extract sparse features from signals, avoiding the complex computational processes inherent in traditional synthetic models. Both models are solved using a difference of convex algorithm (DCA), significantly improving positioning accuracy and computational efficiency. Experimental results demonstrate that the proposed models exhibit high accuracy, low positioning error, and a short computation time across various environments, outperforming other state-of-the-art models. These achievements offer a new solution to the problem of DFL in complex environments, with high practical value and application prospects. |
| Author | Qin, Yang Tan, Benying Li, Jinan Mo, Yaoyao |
| Author_xml | – sequence: 1 givenname: Jinan orcidid: 0009-0008-9059-2404 surname: Li fullname: Li, Jinan – sequence: 2 givenname: Benying orcidid: 0000-0002-9121-8499 surname: Tan fullname: Tan, Benying – sequence: 3 givenname: Yang orcidid: 0000-0001-7510-6596 surname: Qin fullname: Qin, Yang – sequence: 4 givenname: Yaoyao surname: Mo fullname: Mo, Yaoyao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41012944$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1URP_AgS-ALHGBSimO7dgxt1XLQqVFPRTO0cSZtNk68dZOWC2fHtO0K8ShF49n_NObp-djcjD4AQl5m7MzIQz7FHmRl4Uy6gU5yiWXWck5O_jnfkiOY1wzxoUQ5StyKHOWcyPlEVlfbcau737D2PmB-pZe4K_OYrYMiHTlLbint2033tLrTeiGmxrsHb2YwNHvvkEXP9MFvd4N4y2OnaUwNHQxgNulJiHLAD1ufbh7TV624CK-eawn5Ofyy4_zb9nq6uvl-WKVWaHVmCmLlrdaGWuZqUWrtQajG86EbYu8EBZZ02rOWgHSpKMwtZYNL5W2TVkDEyfkctZtPKyrZLiHsKs8dNXDwIebCkLy5rDiWAJXOVgsS8lkC0owIWpuGgUSkSet01lrGjaw24Jze8GcVX_Dr_bhJ_jDDG-Cv58wjlXfRYvOwYB-ipXghTTcpFUJff8fuvZTSKHNlJJFYXSi3j1SU91js1_99H0J-DgDNvgYA7bPuPsDSUSn_w |
| Cites_doi | 10.1109/TPDS.2012.134 10.1109/ICASSP.2017.7952400 10.1109/ACCESS.2019.2911004 10.1109/LSP.2007.898300 10.1109/LCSYS.2025.3577571 10.1111/j.1467-9868.2005.00503.x 10.1109/TMC.2014.2329007 10.23919/EuCAP60739.2024.10501090 10.1109/PERCOM.2007.8 10.1007/s13042-022-01559-x 10.1198/016214501753382273 10.1109/WAMICON64429.2025.11004111 10.1109/ACCESS.2018.2877763 10.1109/ICASSP49660.2025.10889547 10.1109/TMC.2009.174 10.1109/OJSP.2025.3529312 10.1109/DCC50243.2021.00042 10.1109/ICIP.2017.8296596 10.1016/j.acha.2022.07.002 10.1109/ACCESS.2024.3521005 10.1109/JSEN.2023.3314441 10.1049/iet-com.2011.0603 10.1109/JSEN.2022.3231611 10.1109/LAWP.2021.3132001 10.1016/j.ejor.2025.04.034 10.1109/GlobalSIP.2017.8309161 10.1109/TAP.2025.3568488 10.1109/TIE.2012.2228145 10.1109/TNSE.2023.3294414 10.1109/INES49302.2020.9147184 10.1109/ICASSP.2018.8461498 10.1109/TIM.2022.3220285 10.1109/TIM.2023.3322487 10.1016/j.comcom.2023.09.002 10.1109/ICCT56141.2022.10072722 10.1109/TSP.2009.2027765 10.1109/TCE.2023.3342834 10.1109/ACCESS.2018.2876034 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/s25185696 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2e8a261ace88404fa63033b29d6a4ee2 10.3390/s25185696 41012944 10_3390_s25185696 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The Guangxi Zhuang Autonomous Region-level Guilin University of Electronic Technology Undergraduate Innovation and Entrepreneurship Training Program. grantid: S000000000000 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c376t-6cec2f769cc09b3f777a97d203cf5153ce0df720f3a49f3a59b74d2867cd8ba03 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:29 EDT 2025 Sun Oct 26 04:11:04 EDT 2025 Thu Oct 02 21:19:11 EDT 2025 Tue Oct 07 07:44:35 EDT 2025 Tue Sep 30 01:30:36 EDT 2025 Thu Oct 16 04:37:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | Springback penalty transform learning difference of convex functions algorithm device-free localization sparse representation |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-6cec2f769cc09b3f777a97d203cf5153ce0df720f3a49f3a59b74d2867cd8ba03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7510-6596 0000-0002-9121-8499 0009-0008-9059-2404 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/s25185696 |
| PMID | 41012944 |
| PQID | 3254645597 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2e8a261ace88404fa63033b29d6a4ee2 unpaywall_primary_10_3390_s25185696 proquest_miscellaneous_3254929884 proquest_journals_3254645597 pubmed_primary_41012944 crossref_primary_10_3390_s25185696 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-12 |
| PublicationDateYYYYMMDD | 2025-09-12 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhao (ref_42) 2019; 7 Jiang (ref_32) 2023; 23 Yang (ref_11) 2009; 57 Wang (ref_9) 2013; 60 Alnoman (ref_5) 2024; 12 ref_14 ref_36 ref_13 ref_12 Li (ref_21) 2018; 6 Lu (ref_3) 2025; 74 Huang (ref_2) 2024; 70 Huang (ref_30) 2018; 6 Xue (ref_1) 2023; 23 ref_39 ref_16 ref_38 An (ref_19) 2022; 61 Wilson (ref_26) 2010; 9 Guo (ref_10) 2015; 14 Jiyuan (ref_15) 2022; 21 Wang (ref_29) 2012; 6 Chartrand (ref_18) 2007; 14 ref_25 Xia (ref_33) 2023; 211 ref_22 Zhang (ref_31) 2023; 14 Zou (ref_34) 2005; 67 ref_20 Zhang (ref_27) 2013; 24 ref_41 ref_40 Wei (ref_35) 2024; 11 Fan (ref_17) 2001; 96 Sasaki (ref_24) 2025; 6 ref_28 Liu (ref_23) 2025; 9 Zhao (ref_37) 2025; 73 Yang (ref_7) 2022; 71 ref_4 Huai (ref_8) 2023; 72 ref_6 |
| References_xml | – volume: 24 start-page: 996 year: 2013 ident: ref_27 article-title: RASS: A Real-Time, Accurate, and Scalable System for Tracking Transceiver-Free Objects publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2012.134 – ident: ref_20 doi: 10.1109/ICASSP.2017.7952400 – volume: 7 start-page: 53542 year: 2019 ident: ref_42 article-title: ℓP Norm Independently Interpretable Regularization Based Sparse Coding for Highly Correlated Data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2911004 – volume: 14 start-page: 707 year: 2007 ident: ref_18 article-title: Exact Reconstruction of Sparse Signals via Nonconvex Minimization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – volume: 9 start-page: 835 year: 2025 ident: ref_23 article-title: Optimization Over Trained Neural Networks: Difference-of-Convex Algorithm and Application to Data Center Scheduling publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2025.3577571 – volume: 67 start-page: 301 year: 2005 ident: ref_34 article-title: Regularization and Variable Selection Via the Elastic Net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 14 start-page: 484 year: 2015 ident: ref_10 article-title: An Exponential-Rayleigh Model for RSS-Based Device-Free Localization and Tracking publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2014.2329007 – ident: ref_14 doi: 10.23919/EuCAP60739.2024.10501090 – ident: ref_28 doi: 10.1109/PERCOM.2007.8 – volume: 14 start-page: 429 year: 2023 ident: ref_31 article-title: Device-free indoor localization based on sparse coding with nonconvex regularization and adaptive relaxation localization criteria publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-022-01559-x – volume: 96 start-page: 1348 year: 2001 ident: ref_17 article-title: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – ident: ref_13 doi: 10.1109/WAMICON64429.2025.11004111 – volume: 6 start-page: 65239 year: 2018 ident: ref_21 article-title: Overcomplete Transform Learning with the log Regularizer publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877763 – ident: ref_36 doi: 10.1109/ICASSP49660.2025.10889547 – volume: 9 start-page: 621 year: 2010 ident: ref_26 article-title: Radio Tomographic Imaging with Wireless Networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2009.174 – volume: 6 start-page: 57 year: 2025 ident: ref_24 article-title: Sparse Regularization With Reverse Sorted Sum of Squares via an Unrolled Difference-of-Convex Approach publication-title: IEEE Open J. Signal Process. doi: 10.1109/OJSP.2025.3529312 – ident: ref_16 doi: 10.1109/DCC50243.2021.00042 – ident: ref_40 doi: 10.1109/ICIP.2017.8296596 – volume: 61 start-page: 319 year: 2022 ident: ref_19 article-title: The springback penalty for robust signal recovery publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2022.07.002 – ident: ref_25 – volume: 12 start-page: 197877 year: 2024 ident: ref_5 article-title: Emerging AI and 6G-Based User Localization Technologies for Emergencies and Disasters publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3521005 – volume: 23 start-page: 26202 year: 2023 ident: ref_32 article-title: Device-Free Indoor Localization Based on Kernel Dictionary Learning publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3314441 – volume: 6 start-page: 2395 year: 2012 ident: ref_29 article-title: Device-Free Localization with Wireless Networks based on Compressive Sensing publication-title: Commun. IET doi: 10.1049/iet-com.2011.0603 – ident: ref_12 – volume: 23 start-page: 2750 year: 2023 ident: ref_1 article-title: Enhanced WiFi CSI Fingerprints for Device-Free Localization with Deep Learning Representations publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3231611 – volume: 21 start-page: 376 year: 2022 ident: ref_15 article-title: Irregular Subarray Design Strategy Based on Weighted L1 Norm Iterative Convex Optimization publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2021.3132001 – ident: ref_38 doi: 10.1016/j.ejor.2025.04.034 – ident: ref_39 doi: 10.1109/GlobalSIP.2017.8309161 – volume: 74 start-page: 5501111 year: 2025 ident: ref_3 article-title: DMLF: Device-Free Multitarget Adaptive Backscatter Link Fingerprint Localization publication-title: IEEE Trans. Instrum. Meas. – volume: 73 start-page: 6967 year: 2025 ident: ref_37 article-title: Graph-based regularization Robust Reconstruction of Electromagnetic Field Strength via Proximal-Splitting algorithms publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2025.3568488 – volume: 60 start-page: 5943 year: 2013 ident: ref_9 article-title: Robust Device-Free Wireless Localization Based on Differential RSS Measurements publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2228145 – ident: ref_41 – volume: 11 start-page: 212 year: 2024 ident: ref_35 article-title: Distributed Weakly Convex Optimization Under Random Time-Delay Interference publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2023.3294414 – ident: ref_6 doi: 10.1109/INES49302.2020.9147184 – ident: ref_22 doi: 10.1109/ICASSP.2018.8461498 – volume: 71 start-page: 1 year: 2022 ident: ref_7 article-title: A Device-Free Localization and Size Prediction System for Road Vehicle Surveillance via UWB Networks publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3220285 – volume: 72 start-page: 1 year: 2023 ident: ref_8 article-title: Multifeature-Based Outdoor Fingerprint Localization With Accuracy Enhancement for Cellular Network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3322487 – volume: 211 start-page: 302 year: 2023 ident: ref_33 article-title: A new device-free localization method for RSS data with considering correlations publication-title: Comput. Commun. doi: 10.1016/j.comcom.2023.09.002 – ident: ref_4 doi: 10.1109/ICCT56141.2022.10072722 – volume: 57 start-page: 4598 year: 2009 ident: ref_11 article-title: An Approximately Efficient TDOA Localization Algorithm in Closed-Form for Locating Multiple Disjoint Sources With Erroneous Sensor Positions publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2027765 – volume: 70 start-page: 2577 year: 2024 ident: ref_2 article-title: Federated Learning and Convex Hull Enhancement for Privacy Preserving WiFi-Based Device-Free Localization publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2023.3342834 – volume: 6 start-page: 61782 year: 2018 ident: ref_30 article-title: An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in Subspace publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876034 |
| SSID | ssj0023338 |
| Score | 2.4605725 |
| Snippet | In complex environments, traditional device-free localization (DFL) methods based on received signal strength (RSS) encounter difficulties in simultaneously... |
| SourceID | doaj unpaywall proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 5696 |
| SubjectTerms | Accuracy Algorithms Convex analysis Decomposition device-free localization difference of convex functions algorithm Efficiency Fines & penalties Localization Methods Optimization sparse representation Sparsity Springback penalty transform learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hLsCh4tmGlwztNSK1vXbCjdcKIaAHisQtGr8OZckidleIf884L-2BiguXKIotx57JeL5x7G8AfvGAmEmP6W9tXCpJxamJjEMqoJQYyCepeMD55lZd3surh8HDXKqvuCesoQduBHfEfY6E8tH6nGIRGVDRpCsML5xC6X09-2Z50QVTbaglKPJqeIQEBfVHE_Li-UBFZv4571OT9H-ELFdgaVY949srjkZz3ma4Ct9amMhOmu6twYKv1mFljjxwA_79IWt_ao9RsnFg5z5afTp88Z5dRxfVlcW1Vtas4Bm0j-x8Rk3HJGijyTE7YXdvFaFAehHDyrGapaRe4GbDbuPWJtwPL_6eXaZt5oTU0oQxTZX1lgetCmuzwoigtcZCO54JGwjACOszFzTPgkBZ0GVQGC0dz5W2LjeYiS1YrMaV_wEMRSBQqFBk1kknuCF9iJxj7oKhm5DAYSfR8rkhyCgpsIhiL3uxJ3AaZd1XiJzW9QPSdNlquvxM0wnsdpoqW0OblCLy-csYFiVw0BeTicT_Hlj58aypQyiQWk3ge6Phvicy8psVkkp-9ir__zi2v2IcO7DMYxLhOg_FLixOX2Z-j5DN1OzXH_E7TsD2pw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwEB6V7QP0AXF3oSBzvEYNttdJkBBqaVcVggUBlfoWjS8kuiTLHkL998zkYh-AlyiKLceZiWe-8fENwAsZEVMdMHmZWZ9oUnFimXHIRNQaI_kkwwecP8zM2bl-dzG52IFZfxaGt1X2NrEx1L52PEd-qJi4XTP-fbP4mXDWKF5d7VNoYJdawb9uKMauwa5kZqwR7B6fzj59HkIwRRFZyy-kKNg_XJF3zyeGGfu3vFJD3v83xLkH1zfVAq9-4Xy-5YWmt-BmBx_FUavv27ATqjuwt0UqeBe-fyQr8KM7XinqKE4CW4NkugxBvGfX1ZfxHKxoZ_YsuktxsqGmOTnafPVKHIkvVxWhQ3qRwMqLhr2kmfgW035D1z04n55-fXuWdBkVEkeGZJ0YF5yMmSmcSwurYpZlWGRepspFAjbKhdTHTKZRoS7oMilspr3MTeZ8bjFV92FU1VXYB4EqElg0qFLntVfShhxVLjH30dJNHMOzXqLloiXOKCngYLGXg9jHcMyyHiow13XzoF5-K7uhU0pqmeI8dCGnaFRHNOR2lZWFN6hDkGM46DVVdgNwVf75XcbwdCimocPrIViFetPWIXRIrY7hQavhoSeaec8KTSXPB5X_-zse_r8Lj-CG5LTBTeaJAxitl5vwmLDM2j7pftDfHS70tA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6oLwJLcgFrmmD7bUTblvKqkJQkGClcorGrwNdslV3I1R-PeO8ukWAuERRPHIcz9jzjZ35DPCSB8RMekxfaeNSSSpOTWQcUgGlxEA-ScUE5w8n6ngm352OTzdgr8-FWdu_FxSOHyzJ_-ZjVagbsKnGBLdHsDk7-TT52mQNcZmSg8taxqDr8tf8TEPH_ycMuQU36-ocL3_gfL7mV6bbV9k57e8kZ_v1yuzbn7-RNf6zyXfgdocq2aQ1g7uw4at7sLXGNXgfvn2kyeF7l3XJFoEd-ThJpNML79n76NH6srg0y9oFP4P2jB3VVHU8M22-fM0m7PNlRaCRXsSwcqwhNWnWw9m0_8_rAcymb7-8OU67gxZSS_PLKlXWWx60KqzNCiOC1hoL7XgmbCC8I6zPXNA8CwJlQZdxYbR0PFfautxgJh7CqFpU_jEwFIEwpEKRWSed4MbnKHKOuQuGbkICz3u1lOctn0ZJcUjsuHLouAQOo8IGgUiB3Tygbi67EVVyqpnCP7Q-pyBVBlTkjYXhhVMovecJ7PbqLrtxuSxFpP-XMYpKYG8ophEVt0mw8ou6lSHQSLUm8Kg1k6ElMtKhFZJKXgx28_fvePJfUjtwi8dDhZtzKXZhtLqo_VNCOivzrLP1Xx3K-ag priority: 102 providerName: Unpaywall |
| Title | Optimization of Device-Free Localization with Springback Dual Models: A Synthetic and Analytical Framework |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41012944 https://www.proquest.com/docview/3254645597 https://www.proquest.com/docview/3254929884 https://doi.org/10.3390/s25185696 https://doaj.org/article/2e8a261ace88404fa63033b29d6a4ee2 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB71eIA-IG4CZWWO10CwvXaChNCWNlSILhWw0vYpmvhAgiVb9hDsv2ecS61UJF6iyHaceMb2N2PH3wA85x4xkQ7jV7q0sSQVx2VgHFIepURPmKTCAeeTsTqeyA_T4XQLuhibrQCXV7p2IZ7UZDF78efX5i0N-DfB4ySX_eWSMDodqkxtwy4BVBYiOJzIfjOBC1EHtA5numLCw6QhGLr86CVYqtn7rzI59-DaujrHzW-czS7AUH4TbrT2Ixs1Cr8FW666DXsXWAXvwPdPNA38bM9Xsrlnhy5MB3G-cI59DNjV5YVFWNYs7ZVofrDDNVUdoqPNlq_ZiH3ZVGQe0osYVpbV9CX1yjfLuz-67sIkP_r67jhuQyrEhmaSVayMM9xrlRmTZKXwWmvMtOWJMJ4sG2FcYr3miRcoM7oMs1JLy1OljU1LTMQ92KnmlXsADIUna1GhSIyVVvDSpShSjqn1Jd34CJ52Ei3OG-aMgjyOIPaiF3sEB0HWfYFAdl0nzBffinbsFJxqJkcPjUvJHZUeFeGuKHlmFUrneAT7naaKrgMVIhD9y-AvRfCkz6axEzZEsHLzdVOGzEOqNYL7jYb7L5GB-CyTlPOsV_m_2_Hwfxr7CK7zED24DkCxDzurxdo9JpNmVQ5gW081XdP8_QB2D47Gp58H9fLAoO7KlDYZn47O_gIJQfjy |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKofSAeBMoYF7HqMH22gkSQoVltaXbcqCV9pZO_ECCJVn2oWp_im9knMd2D8CtlyiKo4kz7xnbMwCvuEdMpMP4jS5sLInEcREqDimPUqInm6TCAefjEzU8k5_HvfEW_O7OwoRtlZ1OrBW1rUzIke-LULhdBv_3_fRXHLpGhdXVroVGwxZHbnVBIdv83WGf6Pua88Gn04_DuO0qEBsSpkWsjDPca5UZk2SF8FprzLTliTCejLswLrFe88QLlBldelmhpeWp0samBSaC4F6D61KQLiH50ePLAE9QvNdULxIiS_bn5DukPRX6AWzYvLo1wN_82V3YWZZTXF3gZLJh4wa34GbrnLKDhptuw5Yr78DuRsnCu_D9C-mYn-3hTVZ51ndB18SDmXNsFAxjNxYyvKzJGxZofrD-kkCH1muT-Vt2wL6uSvI96UMMS8vq2ih1Wp0Nuu1i9-DsSjB7H7bLqnQPgaHw5IoqFImx0gpeuBRFyjG1vqAbH8GLDqP5tCnLkVM4E9Cer9EewYeA6_ULoZJ2_aCafctbwcw5QaYoEo1LKdaVHhUZdVHwzCqUzvEI9jpK5a14z_NLZozg-XqYBDOstmDpqmXzDvmeBDWCBw2F1zORoapaJmnk5Zrk__6PR_-fwjPYGZ4ej_LR4cnRY7jBQ4PiusfFHmwvZkv3hLymRfG0ZlUG51ctG38AGygrvA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgF9QNwsFDDXY7TB9toJEkKFJWppKUhQad_CxAcSLMmyh6r9a_w6xrm6D8BbX6IojibOjGfmGx8zAM-4R4ylw-iFLmwkScRRETIOKY9SoiefpMIB5w_Hav9Evp-MJlvwuzsLE7ZVdjaxNtS2MmGOfChC4nYZ8O_Qt9siPo2z17NfUaggFVZau3IazRA5dOtTCt8Wrw7GJOvnnGfvvrzdj9oKA5EhxVpGyjjDvVapMXFaCK-1xlRbHgvjydEL42LrNY-9QJnSZZQWWlqeKG1sUmAsiO4FuKiFSMN2Qj05C_YExX5NJiNqjIcLwhHJSIXaABv-ry4T8DdsuwOXV-UM16c4nW74u-waXG2BKttrRtZ12HLlDdjZSF94E75_JHvzsz3IySrPxi7YnSibO8eOgpPs2sJsL2vmEAs0P9h4RaRDGbbp4iXbY5_XJeFQ-hDD0rI6T0o9xc6ybuvYLTg5F87ehu2yKt1dYCg8wVKFIjZWWsELl6BIOCbWF3TjB_Ck42g-a1J05BTaBLbnPdsH8Cbwun8hZNWuH1Tzb3mrpDknyhRRonEJxb3SoyIHLwqeWoXSOT6A3U5Seavqi_xsYA7gcd9MShpWXrB01ap5h3AoUR3AnUbCfU9kyLCWSmp52ov83_9x7_9deASXSCvyo4Pjw_twhYdaxXW5i13YXs5X7gEBqGXxsB6pDL6et2r8AQAML_8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6oLwJLcgFrmmD7bUTblvKqkJQkGClcorGrwNdslV3I1R-PeO8ukWAuERRPHIcz9jzjZ35DPCSB8RMekxfaeNSSSpOTWQcUgGlxEA-ScUE5w8n6ngm352OTzdgr8-FWdu_FxSOHyzJ_-ZjVagbsKnGBLdHsDk7-TT52mQNcZmSg8taxqDr8tf8TEPH_ycMuQU36-ocL3_gfL7mV6bbV9k57e8kZ_v1yuzbn7-RNf6zyXfgdocq2aQ1g7uw4at7sLXGNXgfvn2kyeF7l3XJFoEd-ThJpNML79n76NH6srg0y9oFP4P2jB3VVHU8M22-fM0m7PNlRaCRXsSwcqwhNWnWw9m0_8_rAcymb7-8OU67gxZSS_PLKlXWWx60KqzNCiOC1hoL7XgmbCC8I6zPXNA8CwJlQZdxYbR0PFfautxgJh7CqFpU_jEwFIEwpEKRWSed4MbnKHKOuQuGbkICz3u1lOctn0ZJcUjsuHLouAQOo8IGgUiB3Tygbi67EVVyqpnCP7Q-pyBVBlTkjYXhhVMovecJ7PbqLrtxuSxFpP-XMYpKYG8ophEVt0mw8ou6lSHQSLUm8Kg1k6ElMtKhFZJKXgx28_fvePJfUjtwi8dDhZtzKXZhtLqo_VNCOivzrLP1Xx3K-ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Device-Free+Localization+with+Springback+Dual+Models%3A+A+Synthetic+and+Analytical+Framework&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Jinan&rft.au=Tan%2C+Benying&rft.au=Qin%2C+Yang&rft.au=Mo%2C+Yaoyao&rft.date=2025-09-12&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=18&rft.spage=5696&rft_id=info:doi/10.3390%2Fs25185696&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25185696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |