ROBOT LEARNING OF OBJECT MANIPULATION TASK ACTIONS FROM HUMAN DEMONSTRATIONS
Robot learning from demonstration is a method which enables robots to learn in a similar way as humans. In this paper, a framework that enables robots to learn from multiple human demonstrations via kinesthetic teaching is presented. The subject of learning is a high-level sequence of actions, as we...
Saved in:
| Published in | Facta Universitatis. Series: Mechanical Engineering Vol. 15; no. 2; pp. 217 - 229 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Nis
University of Nis
01.08.2017
University of Niš |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0354-2025 2335-0164 2335-0164 |
| DOI | 10.22190/FUME170515010K |
Cover
| Abstract | Robot learning from demonstration is a method which enables robots to learn in a similar way as humans. In this paper, a framework that enables robots to learn from multiple human demonstrations via kinesthetic teaching is presented. The subject of learning is a high-level sequence of actions, as well as the low-level trajectories necessary to be followed by the robot to perform the object manipulation task. The multiple human demonstrations are recorded and only the most similar demonstrations are selected for robot learning. The high-level learning module identifies the sequence of actions of the demonstrated task. Using Dynamic Time Warping (DTW) and Gaussian Mixture Model (GMM), the model of demonstrated trajectories is learned. The learned trajectory is generated by Gaussian mixture regression (GMR) from the learned Gaussian mixture model. In online working phase, the sequence of actions is identified and experimental results show that the robot performs the learned task successfully. |
|---|---|
| AbstractList | Robot learning from demonstration is a method which enables robots to learn in a similar way as humans. In this paper, a framework that enables robots to learn from multiple human demonstrations via kinesthetic teaching is presented. The subject of learning is a high-level sequence of actions, as well as the low-level trajectories necessary to be followed by the robot to perform the object manipulation task. The multiple human demonstrations are recorded and only the most similar demonstrations are selected for robot learning. The high-level learning module identifies the sequence of actions of the demonstrated task. Using Dynamic Time Warping (DTW) and Gaussian Mixture Model (GMM), the model of demonstrated trajectories is learned. The learned trajectory is generated by Gaussian mixture regression (GMR) from the learned Gaussian mixture model. In online working phase, the sequence of actions is identified and experimental results show that the robot performs the learned task successfully. Robot learning from demonstration is a method which enables robots to learn in a similar way as humans. In this paper, a framework that enables robots to learn from multiple human demonstrations via kinesthetic teaching is presented. The subject of learning is a high-level sequence of actions, as well as the low-level trajectories necessary to be followed by the robot to perform the object manipulation task. The multiple human demonstrations are recorded and only the most similar demonstrations are selected for robot learning. The high-level learning module identifies the sequence of actions of the demonstrated task. Using Dynamic Time Warping (DTW) and Gaussian Mixture Model (GMM), the model of demonstrated trajectories is learned. The learned trajectory is generated by Gaussian mixture regression (GMR) from the learned Gaussian mixture model. In online working phase, the sequence of actions is identified and experimental results show that the robot performs the learned task successfully. |
| Author | Haseeb, Muhammad Abdul Kyrarini, Maria Ristić-Durrant, Danijela Gräser, Axel |
| Author_xml | – sequence: 1 givenname: Maria surname: Kyrarini fullname: Kyrarini, Maria – sequence: 2 givenname: Muhammad Abdul surname: Haseeb fullname: Haseeb, Muhammad Abdul – sequence: 3 givenname: Danijela surname: Ristić-Durrant fullname: Ristić-Durrant, Danijela – sequence: 4 givenname: Axel surname: Gräser fullname: Gräser, Axel |
| BookMark | eNp1kU1r20AQhpeQQtw051wXelaz39IeFVdO1MhWseXzMlqtglxFclcyIf--il0CTehlZxne54GZ-YzOu75zCF1T8o0xqsnNYrtMaEgklYSShzM0Y5zLgFAlztGMcCkCRpi8QFfDsCOEUM4k12KGsnV-mxc4S-L1Kl3d4XyB89sfybzAy3iV_txmcZHmK1zEmwccz1__G7xY50t8v50C-HuynDrF-pjafEGfamgHd_W3XqLtIinm90GW36XzOAssD9UYSFVxkK4CJizoSrpIEaoFCcuyUoqCAlFzbUOq6lDXlaudiDRTLGRWhDqq-SVKT96qh53Z--YJ_IvpoTHHRu8fDfixsa0zTCtavT5QliKqALglkQZnXSlYCWJykZPr0O3h5Rna9k1IiTku19SHJ_e23F8T8vWE7H3_--CG0ez6g--miQ0TShERSa2n1M0pZX0_DN7VH73_Hm0i5DvCNiOMTd-NHpr2v9wfBviTFA |
| CitedBy_id | crossref_primary_10_1007_s10514_018_9725_6 crossref_primary_10_1109_TCST_2024_3423548 crossref_primary_10_3389_frobt_2019_00105 |
| ContentType | Journal Article |
| Copyright | 2017. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/about/editorialPolicies#openAccessPolicy. |
| Copyright_xml | – notice: 2017. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/about/editorialPolicies#openAccessPolicy. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.22190/FUME170515010K |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 2335-0164 |
| EndPage | 229 |
| ExternalDocumentID | oai_doaj_org_article_2961d2961abb48daa3c089aeceb42ba4 10.22190/fume170515010k 10_22190_FUME170515010K |
| GroupedDBID | AAYXX ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IPNFZ KB. KQ8 M7S OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO RIG 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c376t-56d3a5eda24ca9d5e86019407bbd661a6a4f39c716f79fdefe48926272c4798f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0354-2025 2335-0164 |
| IngestDate | Fri Oct 03 12:46:21 EDT 2025 Mon Sep 15 08:20:25 EDT 2025 Fri Jul 25 11:46:42 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Wed Oct 01 03:59:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-56d3a5eda24ca9d5e86019407bbd661a6a4f39c716f79fdefe48926272c4798f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/download/2877/1753 |
| PQID | 2466048599 |
| PQPubID | 4900015 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2961d2961abb48daa3c089aeceb42ba4 unpaywall_primary_10_22190_fume170515010k proquest_journals_2466048599 crossref_primary_10_22190_FUME170515010K crossref_citationtrail_10_22190_FUME170515010K |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Nis |
| PublicationPlace_xml | – name: Nis |
| PublicationTitle | Facta Universitatis. Series: Mechanical Engineering |
| PublicationYear | 2017 |
| Publisher | University of Nis University of Niš |
| Publisher_xml | – name: University of Nis – name: University of Niš |
| SSID | ssj0001325394 |
| Score | 2.0444467 |
| Snippet | Robot learning from demonstration is a method which enables robots to learn in a similar way as humans. In this paper, a framework that enables robots to learn... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 217 |
| SubjectTerms | Learning Probabilistic models Robot learning Robots |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSysxEMCDCKIe5Ol7Yv0iBw962Oc2yWY3xyrdV7XtPtoueFvyebFU0Yr4379Jdi0tIl7eZQ8hC8PMJJkJk98gdJa2rVHCxJHy4FZm2i7yTJiIp0alsTKchvcVgyHvlez2PrlfavXla8JqPHCtuEsieNv4j1SKZUZKquNMSKutYkTJQAKFgaVkKtyuUJJQUbOjEgauQJKa60NghcaXeTnoeo4MREPt-G7lSArk_pVwc_N19iTf3-R0unTy5D_QThMy4k4t6i5as7M9tL0EEtxDG6GQU7_8RP1RcVVMcL_bGQ1vhn9wkeMitDTBg87w5m_ZD3dSeNIZ3-G6gGSM81ExwL0SJmAwC4xM6pur8S9U5t3JdS9qOiZEGjaKeZRwQ2VijSRMS2ESm0G-JSBnU6B1UCGXzFGhIUdyqXDGOssyDwxMiWapyBzdR-uzx5k9QFjHJuOCUUMYZU7pjDidxVQKCCHAELaFfn8ordINTtx3tZhWkFYELVerWm6h88UPTzVJ4-upV94Ki2kegR0GwDGqxjGq7xyjhY4_bFg16_KlIoxz2LMSIVroYmHXz_I4OBgW8jwc_g95jtAW8SFBKB48Ruvz51d7AgHNXJ0G3_0HVYjndA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3Nb9MwFMCfRifEOCAYIAoD-cABDmGJ7TjxAaEWNXSsTaa2kXaL_BUOVG23dUL899hO0q1CcMnBciLL79l-7-X59wDeJ5HRkuswkA7cSnVUB44JE7BEyySUmhF_v2Kas3FJv1_GlweQd3dhXFpltyf6jVqvlYuRn2LKmNW2mPMvm6vAVY1yf1e7EhqiLa2gP3vE2AM4xI6M1YPD4Si_mN1FXQiOCW-YUjG1KoLjhveD7coNT7NyOnJ8GWslReH53lHlif57Zuij29VG_P4llst7J1L2FJ60piQaNLJ_BgdmdQyP7wEGj-GhT_BUN89hMiuGxQJNRoNZfpZ_Q0WGCl_qBE0H-dlFOfGxKrQYzM9Rk1gyR9msmKJxaTsgKy7bsmgiWvMXUGajxddx0FZSCJTdQLZBzDQRsdECUyW4jk1q_TBufTlppcEiwQStCVfWd6oTXmtTG5o6kGCCFU14WpOX0FutV-YVIBXqlHFKNKaE1lKluFZpSAS3poWkqenDp27SKtVixl21i2Vl3Q0_y9X-LPfhw-6FTUPY-HfXoZPCrptDY_uG9fWPql1pFeYs0u4hpB2PFoKoMOXCKCMploL24aSTYdWu15vqTrv68HEn17_HU9sDYzeen6___6k3cISdEeDTBU-gt72-NW-tCbOV71q9_AN2wORx priority: 102 providerName: ProQuest |
| Title | ROBOT LEARNING OF OBJECT MANIPULATION TASK ACTIONS FROM HUMAN DEMONSTRATIONS |
| URI | https://www.proquest.com/docview/2466048599 http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/download/2877/1753 https://doaj.org/article/2961d2961abb48daa3c089aeceb42ba4 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2335-0164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325394 issn: 0354-2025 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2335-0164 dateEnd: 20201231 omitProxy: true ssIdentifier: ssj0001325394 issn: 0354-2025 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2335-0164 dateEnd: 20200831 omitProxy: true ssIdentifier: ssj0001325394 issn: 0354-2025 databaseCode: BENPR dateStart: 20131201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7ttkLAgceyiMJS5cABDmlejhMfW9Rsl23Tqm2k5RT5lQW2Sqs-hODXYztptdWKAxKXHKxJ5HjG42_s8TcAHyJPCkaEazNN3IqEV9iaE8bGkWCRywQOzP2KUYoHGfpyE96cwL68Faeb5UoF7J0f-jC3U37XX11vHEMdqPkinCQbSf6tX9469dA6QrPKL6lwFPiPHM08eQpNHCpo3oBmlk66X81JQoiURZgirH4Q6IQ1jCqqH19NWtcplCvQ1DIKIHnu3dEqZcj8jxDo4125or9-0sXi3mKUPIdyf6WnykG56-y2rMN_P2R4_D__-QKe1bDV6lZCL-FElmfw9B6Z4Rk8MsmkfPMKhtNxbzy3hv3uNL1KL61xYo1NWRVr1E2vJtnQ7ItZ8-7s2qqSWGZWMh2PrEGmBCxlGqplXu2ezc4hS_rzzwO7rtpgc-WstnaIRUBDKaiPOCUilLGK-YiKG5nSPPYopqgICFdxWhGRQshColiTFkY-RxGJi-A1NMplKd-AxV0RY4IC4aMAFYzHfsFjN6BEwRiGYtmCzl5LOa8pzXVljUWuQhuj1lwNY_-g1usWfDy8sKrYPP4u2tNqP4hpGm7TsFzf5rVKcp9gT-gHZao_gtKAuzGhkkuGfEZRCy72RpPXvmGT-whj5TdDQlrw6WBID_tzbJFv_0H2HTzxNfoweYoX0Niud_K9wk5b1obTOLlsQ7PXTyfTttmBaNez5A8MJxIt |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKK9RyQFBABAr4ABIclu56vQ8fKpRAloTso0qyUm9bv7YHoiQ0qar-OX4b432kjRDcetmD5bVGM-PxzHj8DULvA0crwZRtCQPcSpVTWgYTxvIDJQJbKN-t3lckqT_I6Y8z72wH_W7fwpiyytYmVoZaLaTJkR8T6vugbR5jX5a_LNM1ytyuti00eNNaQZ1UEGPNw46RvrmGEG51MvwG8v5ASNSffh1YTZcBS8LmWluer1zuacUJlZwpT4cQozCIcwRQ6jvc57R0mYS4ogxYqXSpaWhA9gIiacDC0oV1H6A96lIGwd9er5-ejm-zPC7xXFZjWHkUVJJ4Nb4QAUthH0d50jd4NuCVOfZo62isOghsub37V_Mlv7nms9mdEzB6gh43rivu1rr2FO3o-SF6dAfQ8BA9rApK5eoZisdZL5viuN8dp8P0O84inFWtVXDSTYeneVzlxvC0OxnhupBlgqNxluBBDhMwqAeMTOsM2uQ5yu-Fpy_Q7nwx1y8RlrYKfUZdRYDDpZAhKWVou5yBKyNoqDvoc8u0Qjaw5qa7xqyA8KbicrHN5Q76uPlhWSN6_Htqz0hhM81AcVcDi8uLotnZBWG-o8yHC6BHce5KO2RcSy0oEZx20FErw6KxD6viVps76NNGrn_TU8IBtaHn56v_L_UO7Q-mSVzEw3T0Gh0Q44BUpYpHaHd9eaXfgPu0Fm8bHcXo_L63xR9iVCGK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrhBw4LGAKCzIBw5wSJM4jhMfs6ily_axahtpOUV-ZYGt0qoPIfj1jJ202mrFAYlLDtYkcjzj8Tf2-BuE3ieh0ZLrwJOWuJXqsPQsJ4zHEi2TQGoWufsVwxHr5_TLVXx1hHblrZRYL5YQsHd-2MPcTvXdfnW19h11oOWL8Hv50Khv3erab4bW15ZVfiG0D-A_8S3z5D10zGKA5i10nI8us6_uJCGmYBGuCCuJIpuwxmhN9UNg0gZ-Ca7AUssAQAqDm4NVypH5HyDQB9tqKX79FPP5rcWo9wRVuys9dQ7KTWe7kR31-y7D4__5z6focQNbcVYLPUNHpjpBj26RGZ6g-y6ZVK2fo8FkfDae4UE3m4zOR5_xuIfHrqwKHmaj88t84PbF8CybXuA6iWWKe5PxEPdzEMBgGtAyq3fPpi9Q3uvOPvW9pmqDp8BZbbyY6UjERgtCleA6NinEfBziRgmaZ6FggpYRVxCnlQkvtSkNTS1pYUIUTXhaRi9Rq1pU5hXCKtAp4zTShEa0lColpUqDSHCAMZKmpo06Oy0VqqE0t5U15gWENk6tBQxjd6_Wizb6sH9hWbN5_F30zKp9L2ZpuF3DYnVdNCopCGehtg8hoT9aiEgFKRdGGUmJFLSNTndGUzS-YV0Qyhj4zZjzNvq4N6S7_Tm0yNf_IPsGPSQWfbg8xVPU2qy25i1gp41818yIP8ujDrg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROBOT+LEARNING+OF+OBJECT+MANIPULATION+TASK+ACTIONS+FROM+HUMAN+DEMONSTRATIONS&rft.jtitle=Facta+Universitatis.+Series%3A+Mechanical+Engineering&rft.au=Maria+Kyrarini&rft.au=Muhammad+Abdul+Haseeb&rft.au=Danijela+Risti%C4%87-Durrant&rft.au=Axel+Gr%C3%A4ser&rft.date=2017-08-01&rft.pub=University+of+Ni%C5%A1&rft.issn=0354-2025&rft.eissn=2335-0164&rft.volume=15&rft.issue=2&rft.spage=217&rft.epage=229&rft_id=info:doi/10.22190%2FFUME170515010K&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2961d2961abb48daa3c089aeceb42ba4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0354-2025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0354-2025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0354-2025&client=summon |