Convexification of a 3-D coefficient inverse scattering problem

A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 77; no. 6; pp. 1681 - 1702
Main Authors Klibanov, Michael V., Kolesov, Aleksandr E.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.03.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0898-1221
1873-7668
DOI10.1016/j.camwa.2018.03.016

Cover

Abstract A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave on an interval of frequencies. The method converges globally. The idea is to construct a weighted Tikhonov-like functional. The key element of this functional is the presence of the so-called Carleman Weight Function (CWF). This is the function which is involved in the Carleman estimate for the Laplace operator. This functional is strictly convex on any appropriate ball in a Hilbert space for an appropriate choice of the parameters of the CWF. Thus, both the absence of local minima and convergence of minimizers to the exact solution are guaranteed. Numerical tests demonstrate a good performance of the resulting algorithm. Unlikeprevious the so-called tail functions globally convergent method, we neither do not impose the smallness assumption of the interval of wavenumbers, nor we do not iterate with respect to the so-called tail functions.
AbstractList A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave on an interval of frequencies. The method converges globally. The idea is to construct a weighted Tikhonov-like functional. The key element of this functional is the presence of the so-called Carleman Weight Function (CWF). This is the function which is involved in the Carleman estimate for the Laplace operator. This functional is strictly convex on any appropriate ball in a Hilbert space for an appropriate choice of the parameters of the CWF. Thus, both the absence of local minima and convergence of minimizers to the exact solution are guaranteed. Numerical tests demonstrate a good performance of the resulting algorithm. Unlikeprevious the so-called tail functions globally convergent method, we neither do not impose the smallness assumption of the interval of wavenumbers, nor we do not iterate with respect to the so-called tail functions.
Author Kolesov, Aleksandr E.
Klibanov, Michael V.
Author_xml – sequence: 1
  givenname: Michael V.
  surname: Klibanov
  fullname: Klibanov, Michael V.
  email: mklibanv@uncc.edu
  organization: Department of Mathematics & Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
– sequence: 2
  givenname: Aleksandr E.
  surname: Kolesov
  fullname: Kolesov, Aleksandr E.
  email: akolesov@uncc.edu
  organization: Department of Mathematics & Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
BookMark eNqFkE9LAzEUxINUsK1-Ai8Lnnd9SXY36UFE6l8oeNFzyCZvJUu7qcm26rc3bT150NODYX5vmJmQUe97JOScQkGB1pddYfTqQxcMqCyAF0k7ImMqBc9FXcsRGYOcyZwyRk_IJMYOAErOYEyu577f4qdrndGD833m20xnPL_NjMc2qQ77IXPJEyJmMZkGDK5_y9bBN0tcnZLjVi8jnv3cKXm9v3uZP-aL54en-c0iN1zUQ16WdSMbgdTKylJqRWMlUNvyVmJJbUNtVQGDiguBVW0ZMEQGra5KXlltSj4lF4e_Kfd9g3FQnd-EPkWqVIoJYFU9S67ZwWWCjzFgq4wb9r2GoN1SUVC7vVSn9nup3V4KuEpaYvkvdh3cSoevf6irA4Wp_NZhUHE3mUHrAppBWe_-5L8BId-GrA
CitedBy_id crossref_primary_10_1134_S1061830921110036
crossref_primary_10_1134_S0965542520060032
crossref_primary_10_1016_j_camwa_2022_10_021
crossref_primary_10_1134_S1990478921030054
crossref_primary_10_1088_1361_6420_ad9498
crossref_primary_10_1016_j_ultras_2022_106765
crossref_primary_10_1515_jiip_2020_0039
crossref_primary_10_1088_1361_6420_aafe8f
crossref_primary_10_1515_jiip_2020_0117
crossref_primary_10_1080_17415977_2020_1802447
crossref_primary_10_3390_axioms12070642
crossref_primary_10_1137_18M1191658
crossref_primary_10_1016_j_camwa_2024_03_038
crossref_primary_10_1137_19M1303101
crossref_primary_10_1080_17415977_2020_1772780
crossref_primary_10_1007_s40306_023_00500_w
crossref_primary_10_1134_S0965542521120046
crossref_primary_10_1137_18M1236034
crossref_primary_10_1088_1361_6420_ac4426
crossref_primary_10_1515_jiip_2020_0028
crossref_primary_10_1080_00036811_2019_1623393
crossref_primary_10_3390_math11061395
crossref_primary_10_3390_math11122610
crossref_primary_10_1088_1361_6420_ab95aa
crossref_primary_10_1515_jiip_2020_0042
crossref_primary_10_1007_s10958_023_06613_9
crossref_primary_10_1016_j_jcp_2020_109683
crossref_primary_10_1515_jiip_2017_0094
crossref_primary_10_1088_1361_6420_ac4d09
crossref_primary_10_1134_S199508022008017X
crossref_primary_10_1080_17415977_2021_1943384
Cites_doi 10.1515/jiip-2015-0083
10.1088/0266-5611/29/9/095018
10.1088/0266-5611/31/10/105006
10.1515/jip-2012-0072
10.1088/0266-5611/26/1/015007
10.1137/0151085
10.1007/s10444-013-9295-2
10.1137/140981198
10.1016/j.apnum.2015.02.003
10.1088/1361-6420/aa91e0
10.1088/0266-5611/31/9/093001
10.1515/jiip-2016-0039
10.1137/130941468
10.1088/0266-5611/32/1/015005
10.1016/j.jcp.2017.05.015
10.1137/15M1043959
10.1088/0266-5611/29/7/075004
10.1515/jiip-2014-0018
10.1088/1361-6420/33/2/025003
10.1137/16M1088776
10.1051/m2an/2018030
10.1002/mma.3531
10.3934/ipi.2018021
10.1137/S0036141096297364
10.1137/16M1063551
10.1088/0266-5611/29/9/095001
10.1088/0266-5611/31/12/125007
10.1051/m2an/2015010
10.1016/j.apnum.2017.05.007
10.1080/00036810903481166
10.1016/j.nonrwa.2016.08.008
10.1016/j.nonrwa.2014.09.015
10.1137/140972469
10.1137/17M1122487
10.1137/070711414
10.1016/j.jcp.2013.09.048
10.1137/S0036141093244039
10.1016/0021-9991(92)90400-S
10.3934/ipi.2016032
10.1088/0266-5611/29/8/085009
10.1002/num.21904
10.1137/14097519X
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Mar 15, 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 15, 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.camwa.2018.03.016
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 1702
ExternalDocumentID 10_1016_j_camwa_2018_03_016
S0898122118301512
GrantInformation_xml – fundername: Russian Federation Government
  grantid: N14.Y26.31.0013
– fundername: RFBR
  grantid: project N17-01-00689A
  funderid: http://dx.doi.org/10.13039/501100002261
– fundername: Office of Naval Research
  grantid: N00014-15-1-2330
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: US Army Research Laboratory and US Army Research Office
  grantid: W911NF-15-1-0233
  funderid: http://dx.doi.org/10.13039/100006754
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CITATION
FGOYB
G-2
HZ~
R2-
SEW
SSH
TAE
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c376t-446b8b7e1d85d11d7bd801df3f8e41db1d550205377e56d202ee20fa5435dac43
IEDL.DBID IXB
ISSN 0898-1221
IngestDate Mon Jul 14 10:47:20 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Tue Jul 01 03:39:16 EDT 2025
Fri Feb 23 02:33:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Coefficient inverse scattering problem
Carleman weight function
Globally convergent numerical method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-446b8b7e1d85d11d7bd801df3f8e41db1d550205377e56d202ee20fa5435dac43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.camwa.2018.03.016
PQID 2212702569
PQPubID 2045493
PageCount 22
ParticipantIDs proquest_journals_2212702569
crossref_citationtrail_10_1016_j_camwa_2018_03_016
crossref_primary_10_1016_j_camwa_2018_03_016
elsevier_sciencedirect_doi_10_1016_j_camwa_2018_03_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ito, Jin, Zou (b35) 2013; 29
Klibanov, Thành (b15) 2015; 75
Klibanov, Timonov (b12) 2004
Klibanov (b10) 1997; 28
Nguyen, Klibanov, Nguyen, Fiddy (b6) 2017
Bakushinskii, Klibanov, Koshev (b23) 2017; 34
Bukhgeim, Klibanov (b25) 1981; 17
Li, Li, Liu, Liu (b42) 2015; 31
Lakhal (b20) 2010; 29
Klibanov (b26) 2013; 21
Kabanikhin, Novikov, Osedelets, Shishlenin (b39) 2015; 23
Beilina, Klibanov (b8) 2015; 22
Goncharsky, Romanov (b17) 2013; 29
Romanov (b48) 2014; 2
Goncharsky, Romanov (b18) 2017; 33
Klibanov, Santosa (b57) 1991; 51
Lakhal (b21) 2018; 34
Klibanov, Koshev, Li, Yagola (b22) 2016; 24
Ammari, Chow, Zou (b29) 2014; 46
Klibanov (b11) 1997; 4
Liu, Wang, Yang (b43) 2016; 9
Gilbarg, Trudinger (b47) 1984
Klibanov, Nguyen, Nguyen, Liu (b4) 2018; 12
.
Beilina, Klibanov (b2) 2008; 31
Nguyen, Klibanov, Nguyen, Kolesov, Fiddy, Liu (b7) 2017; 345
Lakhal (b40) 2010; 26
de Buhan, Kray (b32) 2013; 29
Klibanov, Ioussoupova (b9) 1995; 26
Chow, Ito, Liu, Zou (b34) 2015; 37
M.V. Klibanov, D.-L. Nguyen, L.H. Nguyen, A coefficient inverse problem with a single measurement of phaseless scattering data, 2017.
Novotny, Hecht (b55) 2012
Klibanov (b24) 2015; 31
Kabanikhin, Satybaev, Shishlenin (b37) 2004
Bao, Li, Lin, Triki (b31) 2015; 31
Klibanov, Romanov (b45) 2016; 32
Klibanov (b49) 2015; 94
Vainikko (b52) 2000; vol. 5
Baudouin, Buhan, Ervedoza (b27) 2017; 55
Thành, Beilina, Klibanov, Fiddy (b51) 2015; 8
Klibanov, Kolesov, Nguyen, Sullivan (b1) 2017; 77
Klibanov, Kamburg (b13) 2016; 39
Chow, Zou (b33) 2015; 31
Kolesov, Klibanov, Nguyen, Nguyen, Thanh (b5) 2017; 120
E. Burman, J. Ish-Horowicz, L. Oksanen, Fully discrete finite element data assimilation method for the heat equation, 2017.
Kabanikhin, Sabelfeld, Novikov, Shishlenin (b38) 2015; 23
Ammari, Chow, Zou (b30) 2016; 76
Lechleiter, Nguyen (b53) 2014; 40
Romanov (b46) 1987
Ammari, Garnier, Jing, Kang, Lim, Solna, Wang (b28) 2013; 2098
Chavent (b16) 2009
Li, Liu, Wang (b41) 2014; 257
Kuzhuget, Klibanov (b58) 2010; 89
Klibanov, Nguyen, Sullivan, Nguyen (b14) 2016; 10
Jin, Zhou (b36) 2015; 49
Tikhonov, Goncharsky, Stepanov, Yagola (b50) 1995
Scales, Smith, Fischer (b19) 1992; 103
Beilina, Klibanov (b3) 2012
Kabanikhin (10.1016/j.camwa.2018.03.016_b37) 2004
Ammari (10.1016/j.camwa.2018.03.016_b30) 2016; 76
Klibanov (10.1016/j.camwa.2018.03.016_b10) 1997; 28
Bakushinskii (10.1016/j.camwa.2018.03.016_b23) 2017; 34
Klibanov (10.1016/j.camwa.2018.03.016_b15) 2015; 75
Baudouin (10.1016/j.camwa.2018.03.016_b27) 2017; 55
Lechleiter (10.1016/j.camwa.2018.03.016_b53) 2014; 40
Klibanov (10.1016/j.camwa.2018.03.016_b45) 2016; 32
Liu (10.1016/j.camwa.2018.03.016_b43) 2016; 9
Kabanikhin (10.1016/j.camwa.2018.03.016_b38) 2015; 23
Klibanov (10.1016/j.camwa.2018.03.016_b4) 2018; 12
Lakhal (10.1016/j.camwa.2018.03.016_b40) 2010; 26
Jin (10.1016/j.camwa.2018.03.016_b36) 2015; 49
Li (10.1016/j.camwa.2018.03.016_b42) 2015; 31
Gilbarg (10.1016/j.camwa.2018.03.016_b47) 1984
Klibanov (10.1016/j.camwa.2018.03.016_b26) 2013; 21
Klibanov (10.1016/j.camwa.2018.03.016_b22) 2016; 24
Beilina (10.1016/j.camwa.2018.03.016_b2) 2008; 31
Scales (10.1016/j.camwa.2018.03.016_b19) 1992; 103
Chavent (10.1016/j.camwa.2018.03.016_b16) 2009
Klibanov (10.1016/j.camwa.2018.03.016_b9) 1995; 26
Romanov (10.1016/j.camwa.2018.03.016_b48) 2014; 2
Klibanov (10.1016/j.camwa.2018.03.016_b49) 2015; 94
Vainikko (10.1016/j.camwa.2018.03.016_b52) 2000; vol. 5
Lakhal (10.1016/j.camwa.2018.03.016_b20) 2010; 29
Ammari (10.1016/j.camwa.2018.03.016_b29) 2014; 46
Ito (10.1016/j.camwa.2018.03.016_b35) 2013; 29
Goncharsky (10.1016/j.camwa.2018.03.016_b17) 2013; 29
Li (10.1016/j.camwa.2018.03.016_b41) 2014; 257
Bukhgeim (10.1016/j.camwa.2018.03.016_b25) 1981; 17
Bao (10.1016/j.camwa.2018.03.016_b31) 2015; 31
Goncharsky (10.1016/j.camwa.2018.03.016_b18) 2017; 33
Chow (10.1016/j.camwa.2018.03.016_b34) 2015; 37
Klibanov (10.1016/j.camwa.2018.03.016_b11) 1997; 4
Beilina (10.1016/j.camwa.2018.03.016_b8) 2015; 22
Klibanov (10.1016/j.camwa.2018.03.016_b24) 2015; 31
Chow (10.1016/j.camwa.2018.03.016_b33) 2015; 31
Klibanov (10.1016/j.camwa.2018.03.016_b14) 2016; 10
Klibanov (10.1016/j.camwa.2018.03.016_b13) 2016; 39
Romanov (10.1016/j.camwa.2018.03.016_b46) 1987
10.1016/j.camwa.2018.03.016_b44
Tikhonov (10.1016/j.camwa.2018.03.016_b50) 1995
Klibanov (10.1016/j.camwa.2018.03.016_b1) 2017; 77
Novotny (10.1016/j.camwa.2018.03.016_b55) 2012
Nguyen (10.1016/j.camwa.2018.03.016_b6) 2017
Ammari (10.1016/j.camwa.2018.03.016_b28) 2013; 2098
Nguyen (10.1016/j.camwa.2018.03.016_b7) 2017; 345
de Buhan (10.1016/j.camwa.2018.03.016_b32) 2013; 29
10.1016/j.camwa.2018.03.016_b56
10.1016/j.camwa.2018.03.016_b54
Klibanov (10.1016/j.camwa.2018.03.016_b57) 1991; 51
Kuzhuget (10.1016/j.camwa.2018.03.016_b58) 2010; 89
Beilina (10.1016/j.camwa.2018.03.016_b3) 2012
Kolesov (10.1016/j.camwa.2018.03.016_b5) 2017; 120
Klibanov (10.1016/j.camwa.2018.03.016_b12) 2004
Kabanikhin (10.1016/j.camwa.2018.03.016_b39) 2015; 23
Lakhal (10.1016/j.camwa.2018.03.016_b21) 2018; 34
Thành (10.1016/j.camwa.2018.03.016_b51) 2015; 8
References_xml – volume: 257
  start-page: 554
  year: 2014
  end-page: 571
  ident: b41
  article-title: Enhanced multilevel linear sampling methods for inverse scattering problems
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 51
  year: 2014
  end-page: 80
  ident: b48
  article-title: Inverse problems for differential equations with memory
  publication-title: Eurasian J. Math. Comput. Appl.
– volume: 17
  start-page: 244
  year: 1981
  end-page: 247
  ident: b25
  article-title: Uniqueness in the large of a class of multidimensional inverse problems
  publication-title: Soviet Math. Doklady
– volume: 89
  start-page: 125
  year: 2010
  end-page: 157
  ident: b58
  article-title: Global convergence for a 1-D inverse problem with application to imaging of land mines
  publication-title: Appl. Anal.
– start-page: 407
  year: 2012
  ident: b3
  article-title: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems
– volume: 23
  start-page: 439
  year: 2015
  end-page: 450
  ident: b38
  article-title: Numerical solution of the multidimensional Gelfand-Levitan equation
  publication-title: J. Inverse Ill-Posed Probl.
– year: 1995
  ident: b50
  article-title: Numerical Methods for the Solution of Ill-Posed Problems
– volume: 120
  start-page: 176
  year: 2017
  end-page: 196
  ident: b5
  article-title: Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method
  publication-title: Appl. Numer. Math.
– volume: 29
  start-page: 075004
  year: 2013
  ident: b17
  article-title: Supercomputer technologies in inverse problems of ultrasound tomography
  publication-title: Inverse Problems
– volume: 31
  start-page: 105006
  year: 2015
  ident: b42
  article-title: Recovering multiscale buried anomalies in a two-layered medium
  publication-title: Inverse Problems
– year: 2017
  ident: b6
  article-title: Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 22
  start-page: 272
  year: 2015
  end-page: 288
  ident: b8
  article-title: Globally strongly convex cost functional for a coefficient inverse problem
  publication-title: Nonlinear Anal. RWA
– volume: 76
  start-page: 1000
  year: 2016
  end-page: 1030
  ident: b30
  article-title: Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients
  publication-title: SIAM J. Appl. Math.
– volume: 26
  start-page: 147
  year: 1995
  end-page: 179
  ident: b9
  article-title: Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem
  publication-title: SIAM J. Math. Anal.
– volume: 29
  start-page: 095018
  year: 2013
  ident: b35
  article-title: A direct sampling method for inverse electromagnetic medium scattering
  publication-title: Inverse Problems
– volume: 10
  start-page: 1057
  year: 2016
  end-page: 1085
  ident: b14
  article-title: A globally convergent numerical method for a 1-d inverse medium problem with experimental data
  publication-title: Inverse Probl. Imaging
– volume: 103
  start-page: 258
  year: 1992
  end-page: 268
  ident: b19
  article-title: Global optimization methods for multimodal inverse problems
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 493
  year: 2018
  end-page: 523
  ident: b4
  article-title: A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data
  publication-title: Inverse Probl. Imaging
– volume: 31
  start-page: 478
  year: 2008
  end-page: 509
  ident: b2
  article-title: A globally convergent numerical method for a coefficient inverse problem
  publication-title: SIAM J. Sci. Comput.
– volume: 2098
  start-page: 125
  year: 2013
  end-page: 157
  ident: b28
  article-title: Mathematical and statistical methods for multistatic imaging
  publication-title: Lect. Notes Math.
– volume: 40
  start-page: 1
  year: 2014
  end-page: 25
  ident: b53
  article-title: A trigonometric Galerkin method for volume integral equations arising in TM grating scattering
  publication-title: Adv. Comput. Math.
– volume: 29
  start-page: 085009
  year: 2013
  ident: b32
  article-title: A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods
  publication-title: Inverse Problems
– volume: 33
  start-page: 025003
  year: 2017
  ident: b18
  article-title: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation
  publication-title: Inverse Problems
– volume: vol. 5
  start-page: 423
  year: 2000
  ident: b52
  article-title: Fast solvers of the Lippmann-Schwinger equation
  publication-title: Direct and Inverse Problems of Mathematical Physics
– year: 2004
  ident: b12
  article-title: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications
– volume: 55
  start-page: 1578
  year: 2017
  end-page: 1613
  ident: b27
  article-title: Convergent algorithm based on Carleman estimates for the recovert of a potential in the wave equation
  publication-title: SIAM J. Numer. Anal.
– year: 2012
  ident: b55
  article-title: Principles of Nano-Optics
– volume: 34
  start-page: 201
  year: 2017
  end-page: 224
  ident: b23
  article-title: Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs
  publication-title: Nonlinear Anal. RWA
– volume: 32
  start-page: 0150058
  year: 2016
  ident: b45
  article-title: Two reconstruction procedures for a 3-D phaseless inverse scattering problem for the generalized Helmholtz equation
  publication-title: Inverse Problems
– volume: 31
  start-page: 093001
  year: 2015
  ident: b31
  article-title: Inverse scattering problems with multi-frequencies
  publication-title: Inverse Problems
– volume: 9
  start-page: 822
  year: 2016
  end-page: 841
  ident: b43
  article-title: Mathematical design of a novel gesture-based instruction/input device using wave detection
  publication-title: SIAM J. Imaging Sci.
– volume: 94
  start-page: 46
  year: 2015
  end-page: 74
  ident: b49
  article-title: Carleman estimates for the regularization of ill-posed Cauchy problems
  publication-title: Appl. Numer. Math.
– volume: 39
  start-page: 930
  year: 2016
  end-page: 940
  ident: b13
  article-title: Globally strictly convex cost functional for an inverse parabolic problem
  publication-title: Math. Methods Appl. Sci.
– volume: 37
  start-page: A1658
  year: 2015
  end-page: A1684
  ident: b34
  article-title: Direct sampling method in diffuse optical tomography
  publication-title: SIAM J. Sci. Comput.
– volume: 51
  start-page: 1653
  year: 1991
  end-page: 1675
  ident: b57
  article-title: A computational quasi-reversibility method for Cauchy problems for Laplace’s equation
  publication-title: SIAM J. Appl. Math.
– volume: 26
  start-page: 015007
  year: 2010
  ident: b40
  article-title: A decoupling-based imaging method for inverse medium scattering for Maxwell’s equations
  publication-title: Inverse Problems
– volume: 24
  start-page: 761
  year: 2016
  end-page: 776
  ident: b22
  article-title: Numerical solution of an ill-posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 34
  start-page: 025002
  year: 2018
  ident: b21
  article-title: A direct method for nonlinear ill-posed problems
  publication-title: Inverse Problems
– year: 1984
  ident: b47
  article-title: Elliptic Partial Differential Equations of Second Order
– volume: 29
  start-page: 095001
  year: 2010
  ident: b20
  article-title: Kairuain-algorithm applied on electromagnetic imaging
  publication-title: Inverse Problems
– volume: 46
  start-page: 2905
  year: 2014
  end-page: 2935
  ident: b29
  article-title: The concept of heterogeneous scattering and its applications in inverse medium scattering
  publication-title: SIAM J. Math. Anal.
– volume: 8
  start-page: 757
  year: 2015
  end-page: 786
  ident: b51
  article-title: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm
  publication-title: SIAM J. Imaging Sci.
– volume: 345
  start-page: 17
  year: 2017
  end-page: 32
  ident: b7
  article-title: Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm
  publication-title: J. Comput. Phys.
– volume: 77
  start-page: 17331755
  year: 2017
  ident: b1
  article-title: Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data
  publication-title: SIAM J. Appl. Math.
– volume: 31
  start-page: 125007
  year: 2015
  ident: b24
  article-title: Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs
  publication-title: Inverse Problems
– volume: 31
  start-page: 289
  year: 2015
  end-page: 307
  ident: b33
  article-title: A numerical method for reconstructing the coefficient in a wave equation
  publication-title: Numer. Methods Partial Differential Equations
– volume: 21
  start-page: 477
  year: 2013
  end-page: 560
  ident: b26
  article-title: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems
  publication-title: J. Inverse Ill-Posed Probl.
– reference: .
– volume: 4
  start-page: 247
  year: 1997
  end-page: 265
  ident: b11
  article-title: Global convexity in diffusion tomography
  publication-title: Nonlinear World
– volume: 75
  start-page: 518
  year: 2015
  end-page: 537
  ident: b15
  article-title: Recovering dielectric constants of explosives via a globally strictly convex cost functional
  publication-title: SIAM J. Appl. Math.
– year: 2004
  ident: b37
  article-title: Direct Methods of Solving Multidimensional Inverse Hyperbolic Problem
– reference: E. Burman, J. Ish-Horowicz, L. Oksanen, Fully discrete finite element data assimilation method for the heat equation, 2017.
– volume: 28
  start-page: 1371
  year: 1997
  end-page: 1388
  ident: b10
  article-title: Global convexity in a three-dimensional inverse acoustic problem
  publication-title: SIAM J. Math. Anal.
– volume: 23
  start-page: 687
  year: 2015
  end-page: 700
  ident: b39
  article-title: Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem
  publication-title: J. Inverse Ill-Posed Probl.
– year: 1987
  ident: b46
  article-title: Inverse Problems of Mathematical Physics
– volume: 49
  start-page: 1261
  year: 2015
  end-page: 1283
  ident: b36
  article-title: A finite element method with singularity reconstruction for fractional boundary value problems
  publication-title: ESAIM Math. Model. Numer. Anal.
– year: 2009
  ident: b16
  article-title: Nonlinear Least Squares for Inverse Problems - Theoretical Foundations and Step-by-Step Guide for Applications
– reference: M.V. Klibanov, D.-L. Nguyen, L.H. Nguyen, A coefficient inverse problem with a single measurement of phaseless scattering data, 2017.
– year: 1984
  ident: 10.1016/j.camwa.2018.03.016_b47
– volume: 23
  start-page: 687
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b39
  article-title: Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2015-0083
– volume: 29
  start-page: 095018
  issue: 9
  year: 2013
  ident: 10.1016/j.camwa.2018.03.016_b35
  article-title: A direct sampling method for inverse electromagnetic medium scattering
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/9/095018
– volume: 17
  start-page: 244
  year: 1981
  ident: 10.1016/j.camwa.2018.03.016_b25
  article-title: Uniqueness in the large of a class of multidimensional inverse problems
  publication-title: Soviet Math. Doklady
– volume: 31
  start-page: 105006
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b42
  article-title: Recovering multiscale buried anomalies in a two-layered medium
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/10/105006
– volume: 21
  start-page: 477
  issue: 4
  year: 2013
  ident: 10.1016/j.camwa.2018.03.016_b26
  article-title: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jip-2012-0072
– volume: 26
  start-page: 015007
  year: 2010
  ident: 10.1016/j.camwa.2018.03.016_b40
  article-title: A decoupling-based imaging method for inverse medium scattering for Maxwell’s equations
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/26/1/015007
– volume: 51
  start-page: 1653
  year: 1991
  ident: 10.1016/j.camwa.2018.03.016_b57
  article-title: A computational quasi-reversibility method for Cauchy problems for Laplace’s equation
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0151085
– volume: 2098
  start-page: 125
  year: 2013
  ident: 10.1016/j.camwa.2018.03.016_b28
  article-title: Mathematical and statistical methods for multistatic imaging
  publication-title: Lect. Notes Math.
– volume: 40
  start-page: 1
  year: 2014
  ident: 10.1016/j.camwa.2018.03.016_b53
  article-title: A trigonometric Galerkin method for volume integral equations arising in TM grating scattering
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-013-9295-2
– volume: 75
  start-page: 518
  issue: 2
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b15
  article-title: Recovering dielectric constants of explosives via a globally strictly convex cost functional
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/140981198
– volume: 2
  start-page: 51
  issue: 4
  year: 2014
  ident: 10.1016/j.camwa.2018.03.016_b48
  article-title: Inverse problems for differential equations with memory
  publication-title: Eurasian J. Math. Comput. Appl.
– volume: 94
  start-page: 46
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b49
  article-title: Carleman estimates for the regularization of ill-posed Cauchy problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2015.02.003
– volume: vol. 5
  start-page: 423
  year: 2000
  ident: 10.1016/j.camwa.2018.03.016_b52
  article-title: Fast solvers of the Lippmann-Schwinger equation
– ident: 10.1016/j.camwa.2018.03.016_b54
– volume: 34
  start-page: 025002
  issue: 2
  year: 2018
  ident: 10.1016/j.camwa.2018.03.016_b21
  article-title: A direct method for nonlinear ill-posed problems
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aa91e0
– year: 1987
  ident: 10.1016/j.camwa.2018.03.016_b46
– volume: 31
  start-page: 093001
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b31
  article-title: Inverse scattering problems with multi-frequencies
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/9/093001
– volume: 24
  start-page: 761
  year: 2016
  ident: 10.1016/j.camwa.2018.03.016_b22
  article-title: Numerical solution of an ill-posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2016-0039
– volume: 46
  start-page: 2905
  year: 2014
  ident: 10.1016/j.camwa.2018.03.016_b29
  article-title: The concept of heterogeneous scattering and its applications in inverse medium scattering
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/130941468
– volume: 32
  start-page: 0150058
  year: 2016
  ident: 10.1016/j.camwa.2018.03.016_b45
  article-title: Two reconstruction procedures for a 3-D phaseless inverse scattering problem for the generalized Helmholtz equation
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/1/015005
– year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b6
  article-title: Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 345
  start-page: 17
  year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b7
  article-title: Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.05.015
– volume: 76
  start-page: 1000
  year: 2016
  ident: 10.1016/j.camwa.2018.03.016_b30
  article-title: Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/15M1043959
– year: 2012
  ident: 10.1016/j.camwa.2018.03.016_b55
– volume: 29
  start-page: 075004
  year: 2013
  ident: 10.1016/j.camwa.2018.03.016_b17
  article-title: Supercomputer technologies in inverse problems of ultrasound tomography
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/7/075004
– volume: 23
  start-page: 439
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b38
  article-title: Numerical solution of the multidimensional Gelfand-Levitan equation
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2014-0018
– volume: 33
  start-page: 025003
  issue: 2
  year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b18
  article-title: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/33/2/025003
– volume: 55
  start-page: 1578
  year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b27
  article-title: Convergent algorithm based on Carleman estimates for the recovert of a potential in the wave equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1088776
– ident: 10.1016/j.camwa.2018.03.016_b56
  doi: 10.1051/m2an/2018030
– volume: 39
  start-page: 930
  issue: 4
  year: 2016
  ident: 10.1016/j.camwa.2018.03.016_b13
  article-title: Globally strictly convex cost functional for an inverse parabolic problem
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3531
– volume: 12
  start-page: 493
  issue: 2
  year: 2018
  ident: 10.1016/j.camwa.2018.03.016_b4
  article-title: A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2018021
– year: 2004
  ident: 10.1016/j.camwa.2018.03.016_b12
– volume: 28
  start-page: 1371
  issue: 6
  year: 1997
  ident: 10.1016/j.camwa.2018.03.016_b10
  article-title: Global convexity in a three-dimensional inverse acoustic problem
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141096297364
– volume: 4
  start-page: 247
  year: 1997
  ident: 10.1016/j.camwa.2018.03.016_b11
  article-title: Global convexity in diffusion tomography
  publication-title: Nonlinear World
– volume: 9
  start-page: 822
  year: 2016
  ident: 10.1016/j.camwa.2018.03.016_b43
  article-title: Mathematical design of a novel gesture-based instruction/input device using wave detection
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/16M1063551
– volume: 29
  start-page: 095001
  year: 2010
  ident: 10.1016/j.camwa.2018.03.016_b20
  article-title: Kairuain-algorithm applied on electromagnetic imaging
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/9/095001
– volume: 31
  start-page: 125007
  issue: 12
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b24
  article-title: Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/12/125007
– volume: 49
  start-page: 1261
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b36
  article-title: A finite element method with singularity reconstruction for fractional boundary value problems
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2015010
– volume: 120
  start-page: 176
  year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b5
  article-title: Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2017.05.007
– start-page: 407
  year: 2012
  ident: 10.1016/j.camwa.2018.03.016_b3
– volume: 89
  start-page: 125
  year: 2010
  ident: 10.1016/j.camwa.2018.03.016_b58
  article-title: Global convergence for a 1-D inverse problem with application to imaging of land mines
  publication-title: Appl. Anal.
  doi: 10.1080/00036810903481166
– volume: 34
  start-page: 201
  year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b23
  article-title: Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2016.08.008
– volume: 22
  start-page: 272
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b8
  article-title: Globally strongly convex cost functional for a coefficient inverse problem
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2014.09.015
– volume: 8
  start-page: 757
  issue: 1
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b51
  article-title: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/140972469
– ident: 10.1016/j.camwa.2018.03.016_b44
– volume: 77
  start-page: 17331755
  issue: 5
  year: 2017
  ident: 10.1016/j.camwa.2018.03.016_b1
  article-title: Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/17M1122487
– volume: 31
  start-page: 478
  issue: 1
  year: 2008
  ident: 10.1016/j.camwa.2018.03.016_b2
  article-title: A globally convergent numerical method for a coefficient inverse problem
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070711414
– volume: 257
  start-page: 554
  year: 2014
  ident: 10.1016/j.camwa.2018.03.016_b41
  article-title: Enhanced multilevel linear sampling methods for inverse scattering problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.048
– volume: 26
  start-page: 147
  issue: 1
  year: 1995
  ident: 10.1016/j.camwa.2018.03.016_b9
  article-title: Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141093244039
– volume: 103
  start-page: 258
  issue: 2
  year: 1992
  ident: 10.1016/j.camwa.2018.03.016_b19
  article-title: Global optimization methods for multimodal inverse problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90400-S
– year: 2004
  ident: 10.1016/j.camwa.2018.03.016_b37
– year: 1995
  ident: 10.1016/j.camwa.2018.03.016_b50
– volume: 10
  start-page: 1057
  issue: 4
  year: 2016
  ident: 10.1016/j.camwa.2018.03.016_b14
  article-title: A globally convergent numerical method for a 1-d inverse medium problem with experimental data
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2016032
– volume: 29
  start-page: 085009
  year: 2013
  ident: 10.1016/j.camwa.2018.03.016_b32
  article-title: A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/8/085009
– volume: 31
  start-page: 289
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b33
  article-title: A numerical method for reconstructing the coefficient in a wave equation
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.21904
– volume: 37
  start-page: A1658
  year: 2015
  ident: 10.1016/j.camwa.2018.03.016_b34
  article-title: Direct sampling method in diffuse optical tomography
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/14097519X
– year: 2009
  ident: 10.1016/j.camwa.2018.03.016_b16
SSID ssj0004320
Score 2.4825096
Snippet A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1681
SubjectTerms Algorithms
Backscattering
Carleman weight function
Coefficient inverse scattering problem
Convergence
Globally convergent numerical method
Helmholtz equations
Hilbert space
Inverse scattering
Numerical methods
Operators (mathematics)
Plane waves
Wave propagation
Weighting functions
Title Convexification of a 3-D coefficient inverse scattering problem
URI https://dx.doi.org/10.1016/j.camwa.2018.03.016
https://www.proquest.com/docview/2212702569
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWVh4Iwql8sCIaZzEiTOhUqgKiC5QqZsVv6QiaCtaBBO_HZ_rgECIgTHWOYrO53so332H0HFZZDKycUpYbnOSUqkJj6khSmdcWpWbgkOD8-0g6w_T6xEb1VC36oUBWGXw_Uuf7r11WGkHbbZn43H7LuKFi06ugOHOSJmfNAxdpdDENzr_6o1MltSMTpiAdMU85DFeqnx6BfIhyj3TKQw9_z06_fDTPvj0NtF6yBpxZ_lhW6hmJttoo5rIgMMF3UFnXQCRvwH8x2scTy0ucUIusJoaTxbhYgweTwCLYfBceXJNF7xwmCuzi4a9y_tun4QRCUQ5z7AgrpiTXOaGas40pTqX2oUcbRPLTUq1pNpVIDFwtuSGZTqOYmPiyJbMZUm6VGmyh-qT6cTsI1zatMhUySzT8HfQlcaZlGkiC0DBGpY0UFypRqjAHw5jLB5FBRR7EF6fAvQpokS4tQY6-dw0W9Jn_C2eVToX36xAOAf_98ZmdUIiXMK5iIG9HnK64uC_7z1Ea-6pANAZZU1UXzy_mCOXhSxkC62cvtMWWu1c3fQHLW90Hx1k2_s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4IHPTitxFF7cGjDeu2bt3JEJSAfFyEhFuzfiUYBSIY_fn2HZ1GYzx47fouy9v2_ciePg9CV3mWyMCGMWGpTUlMpSY8pIYonXBpVWoyDhech6OkO4nvp2xaQe3yLgzAKn3s38T0Ilr7kab3ZnM5mzUfAp657OQaGO42KQOl4VoMotZVVGv1-t3R1_XIaMPO6OYTMCjJhwqYl8qf34B_iPKC7BR0z39PUD9CdZF_OntoxxeOuLX5tn1UMfMDtFuKMmB_Rg_RTRtw5O-AACqcjhcW5zgit1gtTMEX4dIMns0BjmHwShX8mi5_YS8tc4Qmnbtxu0u8SgJRLjisievnJJepoZozTalOpXZZR9vIchNTLal2TUgItC2pYYkOg9CYMLA5c4WSzlUcHaPqfDE3JwjnNs4SlTPLNPwgdN1xImUcyQyAsIZFdRSWrhHKU4iDksWTKLFij6LwpwB_iiASbqyOrj-NlhsGjb-nJ6XPxbeNIFyM_9uwUa6Q8OdwJUIgsIeyLjv973sv0VZ3PByIQW_UP0Pb7kkGGDTKGqi6fnk1564oWcsLv-k-AHVs3aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convexification+of+a+3-D+coefficient+inverse+scattering+problem&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Klibanov%2C+Michael+V.&rft.au=Kolesov%2C+Aleksandr+E.&rft.date=2019-03-15&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=77&rft.issue=6&rft.spage=1681&rft.epage=1702&rft_id=info:doi/10.1016%2Fj.camwa.2018.03.016&rft.externalDocID=S0898122118301512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon