Convexification of a 3-D coefficient inverse scattering problem
A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave...
Saved in:
Published in | Computers & mathematics with applications (1987) Vol. 77; no. 6; pp. 1681 - 1702 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.03.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0898-1221 1873-7668 |
DOI | 10.1016/j.camwa.2018.03.016 |
Cover
Abstract | A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave on an interval of frequencies. The method converges globally. The idea is to construct a weighted Tikhonov-like functional. The key element of this functional is the presence of the so-called Carleman Weight Function (CWF). This is the function which is involved in the Carleman estimate for the Laplace operator. This functional is strictly convex on any appropriate ball in a Hilbert space for an appropriate choice of the parameters of the CWF. Thus, both the absence of local minima and convergence of minimizers to the exact solution are guaranteed. Numerical tests demonstrate a good performance of the resulting algorithm. Unlikeprevious the so-called tail functions globally convergent method, we neither do not impose the smallness assumption of the interval of wavenumbers, nor we do not iterate with respect to the so-called tail functions. |
---|---|
AbstractList | A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave on an interval of frequencies. The method converges globally. The idea is to construct a weighted Tikhonov-like functional. The key element of this functional is the presence of the so-called Carleman Weight Function (CWF). This is the function which is involved in the Carleman estimate for the Laplace operator. This functional is strictly convex on any appropriate ball in a Hilbert space for an appropriate choice of the parameters of the CWF. Thus, both the absence of local minima and convergence of minimizers to the exact solution are guaranteed. Numerical tests demonstrate a good performance of the resulting algorithm. Unlikeprevious the so-called tail functions globally convergent method, we neither do not impose the smallness assumption of the interval of wavenumbers, nor we do not iterate with respect to the so-called tail functions. |
Author | Kolesov, Aleksandr E. Klibanov, Michael V. |
Author_xml | – sequence: 1 givenname: Michael V. surname: Klibanov fullname: Klibanov, Michael V. email: mklibanv@uncc.edu organization: Department of Mathematics & Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA – sequence: 2 givenname: Aleksandr E. surname: Kolesov fullname: Kolesov, Aleksandr E. email: akolesov@uncc.edu organization: Department of Mathematics & Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA |
BookMark | eNqFkE9LAzEUxINUsK1-Ai8Lnnd9SXY36UFE6l8oeNFzyCZvJUu7qcm26rc3bT150NODYX5vmJmQUe97JOScQkGB1pddYfTqQxcMqCyAF0k7ImMqBc9FXcsRGYOcyZwyRk_IJMYOAErOYEyu577f4qdrndGD833m20xnPL_NjMc2qQ77IXPJEyJmMZkGDK5_y9bBN0tcnZLjVi8jnv3cKXm9v3uZP-aL54en-c0iN1zUQ16WdSMbgdTKylJqRWMlUNvyVmJJbUNtVQGDiguBVW0ZMEQGra5KXlltSj4lF4e_Kfd9g3FQnd-EPkWqVIoJYFU9S67ZwWWCjzFgq4wb9r2GoN1SUVC7vVSn9nup3V4KuEpaYvkvdh3cSoevf6irA4Wp_NZhUHE3mUHrAppBWe_-5L8BId-GrA |
CitedBy_id | crossref_primary_10_1134_S1061830921110036 crossref_primary_10_1134_S0965542520060032 crossref_primary_10_1016_j_camwa_2022_10_021 crossref_primary_10_1134_S1990478921030054 crossref_primary_10_1088_1361_6420_ad9498 crossref_primary_10_1016_j_ultras_2022_106765 crossref_primary_10_1515_jiip_2020_0039 crossref_primary_10_1088_1361_6420_aafe8f crossref_primary_10_1515_jiip_2020_0117 crossref_primary_10_1080_17415977_2020_1802447 crossref_primary_10_3390_axioms12070642 crossref_primary_10_1137_18M1191658 crossref_primary_10_1016_j_camwa_2024_03_038 crossref_primary_10_1137_19M1303101 crossref_primary_10_1080_17415977_2020_1772780 crossref_primary_10_1007_s40306_023_00500_w crossref_primary_10_1134_S0965542521120046 crossref_primary_10_1137_18M1236034 crossref_primary_10_1088_1361_6420_ac4426 crossref_primary_10_1515_jiip_2020_0028 crossref_primary_10_1080_00036811_2019_1623393 crossref_primary_10_3390_math11061395 crossref_primary_10_3390_math11122610 crossref_primary_10_1088_1361_6420_ab95aa crossref_primary_10_1515_jiip_2020_0042 crossref_primary_10_1007_s10958_023_06613_9 crossref_primary_10_1016_j_jcp_2020_109683 crossref_primary_10_1515_jiip_2017_0094 crossref_primary_10_1088_1361_6420_ac4d09 crossref_primary_10_1134_S199508022008017X crossref_primary_10_1080_17415977_2021_1943384 |
Cites_doi | 10.1515/jiip-2015-0083 10.1088/0266-5611/29/9/095018 10.1088/0266-5611/31/10/105006 10.1515/jip-2012-0072 10.1088/0266-5611/26/1/015007 10.1137/0151085 10.1007/s10444-013-9295-2 10.1137/140981198 10.1016/j.apnum.2015.02.003 10.1088/1361-6420/aa91e0 10.1088/0266-5611/31/9/093001 10.1515/jiip-2016-0039 10.1137/130941468 10.1088/0266-5611/32/1/015005 10.1016/j.jcp.2017.05.015 10.1137/15M1043959 10.1088/0266-5611/29/7/075004 10.1515/jiip-2014-0018 10.1088/1361-6420/33/2/025003 10.1137/16M1088776 10.1051/m2an/2018030 10.1002/mma.3531 10.3934/ipi.2018021 10.1137/S0036141096297364 10.1137/16M1063551 10.1088/0266-5611/29/9/095001 10.1088/0266-5611/31/12/125007 10.1051/m2an/2015010 10.1016/j.apnum.2017.05.007 10.1080/00036810903481166 10.1016/j.nonrwa.2016.08.008 10.1016/j.nonrwa.2014.09.015 10.1137/140972469 10.1137/17M1122487 10.1137/070711414 10.1016/j.jcp.2013.09.048 10.1137/S0036141093244039 10.1016/0021-9991(92)90400-S 10.3934/ipi.2016032 10.1088/0266-5611/29/8/085009 10.1002/num.21904 10.1137/14097519X |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Mar 15, 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Mar 15, 2019 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.camwa.2018.03.016 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-7668 |
EndPage | 1702 |
ExternalDocumentID | 10_1016_j_camwa_2018_03_016 S0898122118301512 |
GrantInformation_xml | – fundername: Russian Federation Government grantid: N14.Y26.31.0013 – fundername: RFBR grantid: project N17-01-00689A funderid: http://dx.doi.org/10.13039/501100002261 – fundername: Office of Naval Research grantid: N00014-15-1-2330 funderid: http://dx.doi.org/10.13039/100000006 – fundername: US Army Research Laboratory and US Army Research Office grantid: W911NF-15-1-0233 funderid: http://dx.doi.org/10.13039/100006754 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CITATION FGOYB G-2 HZ~ R2- SEW SSH TAE WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c376t-446b8b7e1d85d11d7bd801df3f8e41db1d550205377e56d202ee20fa5435dac43 |
IEDL.DBID | IXB |
ISSN | 0898-1221 |
IngestDate | Mon Jul 14 10:47:20 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Tue Jul 01 03:39:16 EDT 2025 Fri Feb 23 02:33:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Coefficient inverse scattering problem Carleman weight function Globally convergent numerical method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-446b8b7e1d85d11d7bd801df3f8e41db1d550205377e56d202ee20fa5435dac43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1016/j.camwa.2018.03.016 |
PQID | 2212702569 |
PQPubID | 2045493 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2212702569 crossref_citationtrail_10_1016_j_camwa_2018_03_016 crossref_primary_10_1016_j_camwa_2018_03_016 elsevier_sciencedirect_doi_10_1016_j_camwa_2018_03_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers & mathematics with applications (1987) |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ito, Jin, Zou (b35) 2013; 29 Klibanov, Thành (b15) 2015; 75 Klibanov, Timonov (b12) 2004 Klibanov (b10) 1997; 28 Nguyen, Klibanov, Nguyen, Fiddy (b6) 2017 Bakushinskii, Klibanov, Koshev (b23) 2017; 34 Bukhgeim, Klibanov (b25) 1981; 17 Li, Li, Liu, Liu (b42) 2015; 31 Lakhal (b20) 2010; 29 Klibanov (b26) 2013; 21 Kabanikhin, Novikov, Osedelets, Shishlenin (b39) 2015; 23 Beilina, Klibanov (b8) 2015; 22 Goncharsky, Romanov (b17) 2013; 29 Romanov (b48) 2014; 2 Goncharsky, Romanov (b18) 2017; 33 Klibanov, Santosa (b57) 1991; 51 Lakhal (b21) 2018; 34 Klibanov, Koshev, Li, Yagola (b22) 2016; 24 Ammari, Chow, Zou (b29) 2014; 46 Klibanov (b11) 1997; 4 Liu, Wang, Yang (b43) 2016; 9 Gilbarg, Trudinger (b47) 1984 Klibanov, Nguyen, Nguyen, Liu (b4) 2018; 12 . Beilina, Klibanov (b2) 2008; 31 Nguyen, Klibanov, Nguyen, Kolesov, Fiddy, Liu (b7) 2017; 345 Lakhal (b40) 2010; 26 de Buhan, Kray (b32) 2013; 29 Klibanov, Ioussoupova (b9) 1995; 26 Chow, Ito, Liu, Zou (b34) 2015; 37 M.V. Klibanov, D.-L. Nguyen, L.H. Nguyen, A coefficient inverse problem with a single measurement of phaseless scattering data, 2017. Novotny, Hecht (b55) 2012 Klibanov (b24) 2015; 31 Kabanikhin, Satybaev, Shishlenin (b37) 2004 Bao, Li, Lin, Triki (b31) 2015; 31 Klibanov, Romanov (b45) 2016; 32 Klibanov (b49) 2015; 94 Vainikko (b52) 2000; vol. 5 Baudouin, Buhan, Ervedoza (b27) 2017; 55 Thành, Beilina, Klibanov, Fiddy (b51) 2015; 8 Klibanov, Kolesov, Nguyen, Sullivan (b1) 2017; 77 Klibanov, Kamburg (b13) 2016; 39 Chow, Zou (b33) 2015; 31 Kolesov, Klibanov, Nguyen, Nguyen, Thanh (b5) 2017; 120 E. Burman, J. Ish-Horowicz, L. Oksanen, Fully discrete finite element data assimilation method for the heat equation, 2017. Kabanikhin, Sabelfeld, Novikov, Shishlenin (b38) 2015; 23 Ammari, Chow, Zou (b30) 2016; 76 Lechleiter, Nguyen (b53) 2014; 40 Romanov (b46) 1987 Ammari, Garnier, Jing, Kang, Lim, Solna, Wang (b28) 2013; 2098 Chavent (b16) 2009 Li, Liu, Wang (b41) 2014; 257 Kuzhuget, Klibanov (b58) 2010; 89 Klibanov, Nguyen, Sullivan, Nguyen (b14) 2016; 10 Jin, Zhou (b36) 2015; 49 Tikhonov, Goncharsky, Stepanov, Yagola (b50) 1995 Scales, Smith, Fischer (b19) 1992; 103 Beilina, Klibanov (b3) 2012 Kabanikhin (10.1016/j.camwa.2018.03.016_b37) 2004 Ammari (10.1016/j.camwa.2018.03.016_b30) 2016; 76 Klibanov (10.1016/j.camwa.2018.03.016_b10) 1997; 28 Bakushinskii (10.1016/j.camwa.2018.03.016_b23) 2017; 34 Klibanov (10.1016/j.camwa.2018.03.016_b15) 2015; 75 Baudouin (10.1016/j.camwa.2018.03.016_b27) 2017; 55 Lechleiter (10.1016/j.camwa.2018.03.016_b53) 2014; 40 Klibanov (10.1016/j.camwa.2018.03.016_b45) 2016; 32 Liu (10.1016/j.camwa.2018.03.016_b43) 2016; 9 Kabanikhin (10.1016/j.camwa.2018.03.016_b38) 2015; 23 Klibanov (10.1016/j.camwa.2018.03.016_b4) 2018; 12 Lakhal (10.1016/j.camwa.2018.03.016_b40) 2010; 26 Jin (10.1016/j.camwa.2018.03.016_b36) 2015; 49 Li (10.1016/j.camwa.2018.03.016_b42) 2015; 31 Gilbarg (10.1016/j.camwa.2018.03.016_b47) 1984 Klibanov (10.1016/j.camwa.2018.03.016_b26) 2013; 21 Klibanov (10.1016/j.camwa.2018.03.016_b22) 2016; 24 Beilina (10.1016/j.camwa.2018.03.016_b2) 2008; 31 Scales (10.1016/j.camwa.2018.03.016_b19) 1992; 103 Chavent (10.1016/j.camwa.2018.03.016_b16) 2009 Klibanov (10.1016/j.camwa.2018.03.016_b9) 1995; 26 Romanov (10.1016/j.camwa.2018.03.016_b48) 2014; 2 Klibanov (10.1016/j.camwa.2018.03.016_b49) 2015; 94 Vainikko (10.1016/j.camwa.2018.03.016_b52) 2000; vol. 5 Lakhal (10.1016/j.camwa.2018.03.016_b20) 2010; 29 Ammari (10.1016/j.camwa.2018.03.016_b29) 2014; 46 Ito (10.1016/j.camwa.2018.03.016_b35) 2013; 29 Goncharsky (10.1016/j.camwa.2018.03.016_b17) 2013; 29 Li (10.1016/j.camwa.2018.03.016_b41) 2014; 257 Bukhgeim (10.1016/j.camwa.2018.03.016_b25) 1981; 17 Bao (10.1016/j.camwa.2018.03.016_b31) 2015; 31 Goncharsky (10.1016/j.camwa.2018.03.016_b18) 2017; 33 Chow (10.1016/j.camwa.2018.03.016_b34) 2015; 37 Klibanov (10.1016/j.camwa.2018.03.016_b11) 1997; 4 Beilina (10.1016/j.camwa.2018.03.016_b8) 2015; 22 Klibanov (10.1016/j.camwa.2018.03.016_b24) 2015; 31 Chow (10.1016/j.camwa.2018.03.016_b33) 2015; 31 Klibanov (10.1016/j.camwa.2018.03.016_b14) 2016; 10 Klibanov (10.1016/j.camwa.2018.03.016_b13) 2016; 39 Romanov (10.1016/j.camwa.2018.03.016_b46) 1987 10.1016/j.camwa.2018.03.016_b44 Tikhonov (10.1016/j.camwa.2018.03.016_b50) 1995 Klibanov (10.1016/j.camwa.2018.03.016_b1) 2017; 77 Novotny (10.1016/j.camwa.2018.03.016_b55) 2012 Nguyen (10.1016/j.camwa.2018.03.016_b6) 2017 Ammari (10.1016/j.camwa.2018.03.016_b28) 2013; 2098 Nguyen (10.1016/j.camwa.2018.03.016_b7) 2017; 345 de Buhan (10.1016/j.camwa.2018.03.016_b32) 2013; 29 10.1016/j.camwa.2018.03.016_b56 10.1016/j.camwa.2018.03.016_b54 Klibanov (10.1016/j.camwa.2018.03.016_b57) 1991; 51 Kuzhuget (10.1016/j.camwa.2018.03.016_b58) 2010; 89 Beilina (10.1016/j.camwa.2018.03.016_b3) 2012 Kolesov (10.1016/j.camwa.2018.03.016_b5) 2017; 120 Klibanov (10.1016/j.camwa.2018.03.016_b12) 2004 Kabanikhin (10.1016/j.camwa.2018.03.016_b39) 2015; 23 Lakhal (10.1016/j.camwa.2018.03.016_b21) 2018; 34 Thành (10.1016/j.camwa.2018.03.016_b51) 2015; 8 |
References_xml | – volume: 257 start-page: 554 year: 2014 end-page: 571 ident: b41 article-title: Enhanced multilevel linear sampling methods for inverse scattering problems publication-title: J. Comput. Phys. – volume: 2 start-page: 51 year: 2014 end-page: 80 ident: b48 article-title: Inverse problems for differential equations with memory publication-title: Eurasian J. Math. Comput. Appl. – volume: 17 start-page: 244 year: 1981 end-page: 247 ident: b25 article-title: Uniqueness in the large of a class of multidimensional inverse problems publication-title: Soviet Math. Doklady – volume: 89 start-page: 125 year: 2010 end-page: 157 ident: b58 article-title: Global convergence for a 1-D inverse problem with application to imaging of land mines publication-title: Appl. Anal. – start-page: 407 year: 2012 ident: b3 article-title: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems – volume: 23 start-page: 439 year: 2015 end-page: 450 ident: b38 article-title: Numerical solution of the multidimensional Gelfand-Levitan equation publication-title: J. Inverse Ill-Posed Probl. – year: 1995 ident: b50 article-title: Numerical Methods for the Solution of Ill-Posed Problems – volume: 120 start-page: 176 year: 2017 end-page: 196 ident: b5 article-title: Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method publication-title: Appl. Numer. Math. – volume: 29 start-page: 075004 year: 2013 ident: b17 article-title: Supercomputer technologies in inverse problems of ultrasound tomography publication-title: Inverse Problems – volume: 31 start-page: 105006 year: 2015 ident: b42 article-title: Recovering multiscale buried anomalies in a two-layered medium publication-title: Inverse Problems – year: 2017 ident: b6 article-title: Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method publication-title: J. Inverse Ill-Posed Probl. – volume: 22 start-page: 272 year: 2015 end-page: 288 ident: b8 article-title: Globally strongly convex cost functional for a coefficient inverse problem publication-title: Nonlinear Anal. RWA – volume: 76 start-page: 1000 year: 2016 end-page: 1030 ident: b30 article-title: Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients publication-title: SIAM J. Appl. Math. – volume: 26 start-page: 147 year: 1995 end-page: 179 ident: b9 article-title: Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem publication-title: SIAM J. Math. Anal. – volume: 29 start-page: 095018 year: 2013 ident: b35 article-title: A direct sampling method for inverse electromagnetic medium scattering publication-title: Inverse Problems – volume: 10 start-page: 1057 year: 2016 end-page: 1085 ident: b14 article-title: A globally convergent numerical method for a 1-d inverse medium problem with experimental data publication-title: Inverse Probl. Imaging – volume: 103 start-page: 258 year: 1992 end-page: 268 ident: b19 article-title: Global optimization methods for multimodal inverse problems publication-title: J. Comput. Phys. – volume: 12 start-page: 493 year: 2018 end-page: 523 ident: b4 article-title: A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data publication-title: Inverse Probl. Imaging – volume: 31 start-page: 478 year: 2008 end-page: 509 ident: b2 article-title: A globally convergent numerical method for a coefficient inverse problem publication-title: SIAM J. Sci. Comput. – volume: 2098 start-page: 125 year: 2013 end-page: 157 ident: b28 article-title: Mathematical and statistical methods for multistatic imaging publication-title: Lect. Notes Math. – volume: 40 start-page: 1 year: 2014 end-page: 25 ident: b53 article-title: A trigonometric Galerkin method for volume integral equations arising in TM grating scattering publication-title: Adv. Comput. Math. – volume: 29 start-page: 085009 year: 2013 ident: b32 article-title: A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods publication-title: Inverse Problems – volume: 33 start-page: 025003 year: 2017 ident: b18 article-title: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation publication-title: Inverse Problems – volume: vol. 5 start-page: 423 year: 2000 ident: b52 article-title: Fast solvers of the Lippmann-Schwinger equation publication-title: Direct and Inverse Problems of Mathematical Physics – year: 2004 ident: b12 article-title: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications – volume: 55 start-page: 1578 year: 2017 end-page: 1613 ident: b27 article-title: Convergent algorithm based on Carleman estimates for the recovert of a potential in the wave equation publication-title: SIAM J. Numer. Anal. – year: 2012 ident: b55 article-title: Principles of Nano-Optics – volume: 34 start-page: 201 year: 2017 end-page: 224 ident: b23 article-title: Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs publication-title: Nonlinear Anal. RWA – volume: 32 start-page: 0150058 year: 2016 ident: b45 article-title: Two reconstruction procedures for a 3-D phaseless inverse scattering problem for the generalized Helmholtz equation publication-title: Inverse Problems – volume: 31 start-page: 093001 year: 2015 ident: b31 article-title: Inverse scattering problems with multi-frequencies publication-title: Inverse Problems – volume: 9 start-page: 822 year: 2016 end-page: 841 ident: b43 article-title: Mathematical design of a novel gesture-based instruction/input device using wave detection publication-title: SIAM J. Imaging Sci. – volume: 94 start-page: 46 year: 2015 end-page: 74 ident: b49 article-title: Carleman estimates for the regularization of ill-posed Cauchy problems publication-title: Appl. Numer. Math. – volume: 39 start-page: 930 year: 2016 end-page: 940 ident: b13 article-title: Globally strictly convex cost functional for an inverse parabolic problem publication-title: Math. Methods Appl. Sci. – volume: 37 start-page: A1658 year: 2015 end-page: A1684 ident: b34 article-title: Direct sampling method in diffuse optical tomography publication-title: SIAM J. Sci. Comput. – volume: 51 start-page: 1653 year: 1991 end-page: 1675 ident: b57 article-title: A computational quasi-reversibility method for Cauchy problems for Laplace’s equation publication-title: SIAM J. Appl. Math. – volume: 26 start-page: 015007 year: 2010 ident: b40 article-title: A decoupling-based imaging method for inverse medium scattering for Maxwell’s equations publication-title: Inverse Problems – volume: 24 start-page: 761 year: 2016 end-page: 776 ident: b22 article-title: Numerical solution of an ill-posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function publication-title: J. Inverse Ill-Posed Probl. – volume: 34 start-page: 025002 year: 2018 ident: b21 article-title: A direct method for nonlinear ill-posed problems publication-title: Inverse Problems – year: 1984 ident: b47 article-title: Elliptic Partial Differential Equations of Second Order – volume: 29 start-page: 095001 year: 2010 ident: b20 article-title: Kairuain-algorithm applied on electromagnetic imaging publication-title: Inverse Problems – volume: 46 start-page: 2905 year: 2014 end-page: 2935 ident: b29 article-title: The concept of heterogeneous scattering and its applications in inverse medium scattering publication-title: SIAM J. Math. Anal. – volume: 8 start-page: 757 year: 2015 end-page: 786 ident: b51 article-title: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm publication-title: SIAM J. Imaging Sci. – volume: 345 start-page: 17 year: 2017 end-page: 32 ident: b7 article-title: Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm publication-title: J. Comput. Phys. – volume: 77 start-page: 17331755 year: 2017 ident: b1 article-title: Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data publication-title: SIAM J. Appl. Math. – volume: 31 start-page: 125007 year: 2015 ident: b24 article-title: Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs publication-title: Inverse Problems – volume: 31 start-page: 289 year: 2015 end-page: 307 ident: b33 article-title: A numerical method for reconstructing the coefficient in a wave equation publication-title: Numer. Methods Partial Differential Equations – volume: 21 start-page: 477 year: 2013 end-page: 560 ident: b26 article-title: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems publication-title: J. Inverse Ill-Posed Probl. – reference: . – volume: 4 start-page: 247 year: 1997 end-page: 265 ident: b11 article-title: Global convexity in diffusion tomography publication-title: Nonlinear World – volume: 75 start-page: 518 year: 2015 end-page: 537 ident: b15 article-title: Recovering dielectric constants of explosives via a globally strictly convex cost functional publication-title: SIAM J. Appl. Math. – year: 2004 ident: b37 article-title: Direct Methods of Solving Multidimensional Inverse Hyperbolic Problem – reference: E. Burman, J. Ish-Horowicz, L. Oksanen, Fully discrete finite element data assimilation method for the heat equation, 2017. – volume: 28 start-page: 1371 year: 1997 end-page: 1388 ident: b10 article-title: Global convexity in a three-dimensional inverse acoustic problem publication-title: SIAM J. Math. Anal. – volume: 23 start-page: 687 year: 2015 end-page: 700 ident: b39 article-title: Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem publication-title: J. Inverse Ill-Posed Probl. – year: 1987 ident: b46 article-title: Inverse Problems of Mathematical Physics – volume: 49 start-page: 1261 year: 2015 end-page: 1283 ident: b36 article-title: A finite element method with singularity reconstruction for fractional boundary value problems publication-title: ESAIM Math. Model. Numer. Anal. – year: 2009 ident: b16 article-title: Nonlinear Least Squares for Inverse Problems - Theoretical Foundations and Step-by-Step Guide for Applications – reference: M.V. Klibanov, D.-L. Nguyen, L.H. Nguyen, A coefficient inverse problem with a single measurement of phaseless scattering data, 2017. – year: 1984 ident: 10.1016/j.camwa.2018.03.016_b47 – volume: 23 start-page: 687 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b39 article-title: Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2015-0083 – volume: 29 start-page: 095018 issue: 9 year: 2013 ident: 10.1016/j.camwa.2018.03.016_b35 article-title: A direct sampling method for inverse electromagnetic medium scattering publication-title: Inverse Problems doi: 10.1088/0266-5611/29/9/095018 – volume: 17 start-page: 244 year: 1981 ident: 10.1016/j.camwa.2018.03.016_b25 article-title: Uniqueness in the large of a class of multidimensional inverse problems publication-title: Soviet Math. Doklady – volume: 31 start-page: 105006 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b42 article-title: Recovering multiscale buried anomalies in a two-layered medium publication-title: Inverse Problems doi: 10.1088/0266-5611/31/10/105006 – volume: 21 start-page: 477 issue: 4 year: 2013 ident: 10.1016/j.camwa.2018.03.016_b26 article-title: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jip-2012-0072 – volume: 26 start-page: 015007 year: 2010 ident: 10.1016/j.camwa.2018.03.016_b40 article-title: A decoupling-based imaging method for inverse medium scattering for Maxwell’s equations publication-title: Inverse Problems doi: 10.1088/0266-5611/26/1/015007 – volume: 51 start-page: 1653 year: 1991 ident: 10.1016/j.camwa.2018.03.016_b57 article-title: A computational quasi-reversibility method for Cauchy problems for Laplace’s equation publication-title: SIAM J. Appl. Math. doi: 10.1137/0151085 – volume: 2098 start-page: 125 year: 2013 ident: 10.1016/j.camwa.2018.03.016_b28 article-title: Mathematical and statistical methods for multistatic imaging publication-title: Lect. Notes Math. – volume: 40 start-page: 1 year: 2014 ident: 10.1016/j.camwa.2018.03.016_b53 article-title: A trigonometric Galerkin method for volume integral equations arising in TM grating scattering publication-title: Adv. Comput. Math. doi: 10.1007/s10444-013-9295-2 – volume: 75 start-page: 518 issue: 2 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b15 article-title: Recovering dielectric constants of explosives via a globally strictly convex cost functional publication-title: SIAM J. Appl. Math. doi: 10.1137/140981198 – volume: 2 start-page: 51 issue: 4 year: 2014 ident: 10.1016/j.camwa.2018.03.016_b48 article-title: Inverse problems for differential equations with memory publication-title: Eurasian J. Math. Comput. Appl. – volume: 94 start-page: 46 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b49 article-title: Carleman estimates for the regularization of ill-posed Cauchy problems publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2015.02.003 – volume: vol. 5 start-page: 423 year: 2000 ident: 10.1016/j.camwa.2018.03.016_b52 article-title: Fast solvers of the Lippmann-Schwinger equation – ident: 10.1016/j.camwa.2018.03.016_b54 – volume: 34 start-page: 025002 issue: 2 year: 2018 ident: 10.1016/j.camwa.2018.03.016_b21 article-title: A direct method for nonlinear ill-posed problems publication-title: Inverse Problems doi: 10.1088/1361-6420/aa91e0 – year: 1987 ident: 10.1016/j.camwa.2018.03.016_b46 – volume: 31 start-page: 093001 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b31 article-title: Inverse scattering problems with multi-frequencies publication-title: Inverse Problems doi: 10.1088/0266-5611/31/9/093001 – volume: 24 start-page: 761 year: 2016 ident: 10.1016/j.camwa.2018.03.016_b22 article-title: Numerical solution of an ill-posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2016-0039 – volume: 46 start-page: 2905 year: 2014 ident: 10.1016/j.camwa.2018.03.016_b29 article-title: The concept of heterogeneous scattering and its applications in inverse medium scattering publication-title: SIAM J. Math. Anal. doi: 10.1137/130941468 – volume: 32 start-page: 0150058 year: 2016 ident: 10.1016/j.camwa.2018.03.016_b45 article-title: Two reconstruction procedures for a 3-D phaseless inverse scattering problem for the generalized Helmholtz equation publication-title: Inverse Problems doi: 10.1088/0266-5611/32/1/015005 – year: 2017 ident: 10.1016/j.camwa.2018.03.016_b6 article-title: Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method publication-title: J. Inverse Ill-Posed Probl. – volume: 345 start-page: 17 year: 2017 ident: 10.1016/j.camwa.2018.03.016_b7 article-title: Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.05.015 – volume: 76 start-page: 1000 year: 2016 ident: 10.1016/j.camwa.2018.03.016_b30 article-title: Phased and phaseless domain reconstruction in inverse scattering problem via scattering coefficients publication-title: SIAM J. Appl. Math. doi: 10.1137/15M1043959 – year: 2012 ident: 10.1016/j.camwa.2018.03.016_b55 – volume: 29 start-page: 075004 year: 2013 ident: 10.1016/j.camwa.2018.03.016_b17 article-title: Supercomputer technologies in inverse problems of ultrasound tomography publication-title: Inverse Problems doi: 10.1088/0266-5611/29/7/075004 – volume: 23 start-page: 439 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b38 article-title: Numerical solution of the multidimensional Gelfand-Levitan equation publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/jiip-2014-0018 – volume: 33 start-page: 025003 issue: 2 year: 2017 ident: 10.1016/j.camwa.2018.03.016_b18 article-title: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation publication-title: Inverse Problems doi: 10.1088/1361-6420/33/2/025003 – volume: 55 start-page: 1578 year: 2017 ident: 10.1016/j.camwa.2018.03.016_b27 article-title: Convergent algorithm based on Carleman estimates for the recovert of a potential in the wave equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1088776 – ident: 10.1016/j.camwa.2018.03.016_b56 doi: 10.1051/m2an/2018030 – volume: 39 start-page: 930 issue: 4 year: 2016 ident: 10.1016/j.camwa.2018.03.016_b13 article-title: Globally strictly convex cost functional for an inverse parabolic problem publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3531 – volume: 12 start-page: 493 issue: 2 year: 2018 ident: 10.1016/j.camwa.2018.03.016_b4 article-title: A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2018021 – year: 2004 ident: 10.1016/j.camwa.2018.03.016_b12 – volume: 28 start-page: 1371 issue: 6 year: 1997 ident: 10.1016/j.camwa.2018.03.016_b10 article-title: Global convexity in a three-dimensional inverse acoustic problem publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141096297364 – volume: 4 start-page: 247 year: 1997 ident: 10.1016/j.camwa.2018.03.016_b11 article-title: Global convexity in diffusion tomography publication-title: Nonlinear World – volume: 9 start-page: 822 year: 2016 ident: 10.1016/j.camwa.2018.03.016_b43 article-title: Mathematical design of a novel gesture-based instruction/input device using wave detection publication-title: SIAM J. Imaging Sci. doi: 10.1137/16M1063551 – volume: 29 start-page: 095001 year: 2010 ident: 10.1016/j.camwa.2018.03.016_b20 article-title: Kairuain-algorithm applied on electromagnetic imaging publication-title: Inverse Problems doi: 10.1088/0266-5611/29/9/095001 – volume: 31 start-page: 125007 issue: 12 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b24 article-title: Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs publication-title: Inverse Problems doi: 10.1088/0266-5611/31/12/125007 – volume: 49 start-page: 1261 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b36 article-title: A finite element method with singularity reconstruction for fractional boundary value problems publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2015010 – volume: 120 start-page: 176 year: 2017 ident: 10.1016/j.camwa.2018.03.016_b5 article-title: Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2017.05.007 – start-page: 407 year: 2012 ident: 10.1016/j.camwa.2018.03.016_b3 – volume: 89 start-page: 125 year: 2010 ident: 10.1016/j.camwa.2018.03.016_b58 article-title: Global convergence for a 1-D inverse problem with application to imaging of land mines publication-title: Appl. Anal. doi: 10.1080/00036810903481166 – volume: 34 start-page: 201 year: 2017 ident: 10.1016/j.camwa.2018.03.016_b23 article-title: Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2016.08.008 – volume: 22 start-page: 272 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b8 article-title: Globally strongly convex cost functional for a coefficient inverse problem publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2014.09.015 – volume: 8 start-page: 757 issue: 1 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b51 article-title: Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm publication-title: SIAM J. Imaging Sci. doi: 10.1137/140972469 – ident: 10.1016/j.camwa.2018.03.016_b44 – volume: 77 start-page: 17331755 issue: 5 year: 2017 ident: 10.1016/j.camwa.2018.03.016_b1 article-title: Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data publication-title: SIAM J. Appl. Math. doi: 10.1137/17M1122487 – volume: 31 start-page: 478 issue: 1 year: 2008 ident: 10.1016/j.camwa.2018.03.016_b2 article-title: A globally convergent numerical method for a coefficient inverse problem publication-title: SIAM J. Sci. Comput. doi: 10.1137/070711414 – volume: 257 start-page: 554 year: 2014 ident: 10.1016/j.camwa.2018.03.016_b41 article-title: Enhanced multilevel linear sampling methods for inverse scattering problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.048 – volume: 26 start-page: 147 issue: 1 year: 1995 ident: 10.1016/j.camwa.2018.03.016_b9 article-title: Uniform strict convexity of a cost functional for three-dimensional inverse scattering problem publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141093244039 – volume: 103 start-page: 258 issue: 2 year: 1992 ident: 10.1016/j.camwa.2018.03.016_b19 article-title: Global optimization methods for multimodal inverse problems publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90400-S – year: 2004 ident: 10.1016/j.camwa.2018.03.016_b37 – year: 1995 ident: 10.1016/j.camwa.2018.03.016_b50 – volume: 10 start-page: 1057 issue: 4 year: 2016 ident: 10.1016/j.camwa.2018.03.016_b14 article-title: A globally convergent numerical method for a 1-d inverse medium problem with experimental data publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2016032 – volume: 29 start-page: 085009 year: 2013 ident: 10.1016/j.camwa.2018.03.016_b32 article-title: A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods publication-title: Inverse Problems doi: 10.1088/0266-5611/29/8/085009 – volume: 31 start-page: 289 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b33 article-title: A numerical method for reconstructing the coefficient in a wave equation publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.21904 – volume: 37 start-page: A1658 year: 2015 ident: 10.1016/j.camwa.2018.03.016_b34 article-title: Direct sampling method in diffuse optical tomography publication-title: SIAM J. Sci. Comput. doi: 10.1137/14097519X – year: 2009 ident: 10.1016/j.camwa.2018.03.016_b16 |
SSID | ssj0004320 |
Score | 2.4825096 |
Snippet | A version of the so-called “convexification” numerical method for a coefficient inverse scattering problem for the 3D Helmholtz equation is developed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1681 |
SubjectTerms | Algorithms Backscattering Carleman weight function Coefficient inverse scattering problem Convergence Globally convergent numerical method Helmholtz equations Hilbert space Inverse scattering Numerical methods Operators (mathematics) Plane waves Wave propagation Weighting functions |
Title | Convexification of a 3-D coefficient inverse scattering problem |
URI | https://dx.doi.org/10.1016/j.camwa.2018.03.016 https://www.proquest.com/docview/2212702569 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWVh4Iwql8sCIaZzEiTOhUqgKiC5QqZsVv6QiaCtaBBO_HZ_rgECIgTHWOYrO53so332H0HFZZDKycUpYbnOSUqkJj6khSmdcWpWbgkOD8-0g6w_T6xEb1VC36oUBWGXw_Uuf7r11WGkHbbZn43H7LuKFi06ugOHOSJmfNAxdpdDENzr_6o1MltSMTpiAdMU85DFeqnx6BfIhyj3TKQw9_z06_fDTPvj0NtF6yBpxZ_lhW6hmJttoo5rIgMMF3UFnXQCRvwH8x2scTy0ucUIusJoaTxbhYgweTwCLYfBceXJNF7xwmCuzi4a9y_tun4QRCUQ5z7AgrpiTXOaGas40pTqX2oUcbRPLTUq1pNpVIDFwtuSGZTqOYmPiyJbMZUm6VGmyh-qT6cTsI1zatMhUySzT8HfQlcaZlGkiC0DBGpY0UFypRqjAHw5jLB5FBRR7EF6fAvQpokS4tQY6-dw0W9Jn_C2eVToX36xAOAf_98ZmdUIiXMK5iIG9HnK64uC_7z1Ea-6pANAZZU1UXzy_mCOXhSxkC62cvtMWWu1c3fQHLW90Hx1k2_s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4IHPTitxFF7cGjDeu2bt3JEJSAfFyEhFuzfiUYBSIY_fn2HZ1GYzx47fouy9v2_ciePg9CV3mWyMCGMWGpTUlMpSY8pIYonXBpVWoyDhech6OkO4nvp2xaQe3yLgzAKn3s38T0Ilr7kab3ZnM5mzUfAp657OQaGO42KQOl4VoMotZVVGv1-t3R1_XIaMPO6OYTMCjJhwqYl8qf34B_iPKC7BR0z39PUD9CdZF_OntoxxeOuLX5tn1UMfMDtFuKMmB_Rg_RTRtw5O-AACqcjhcW5zgit1gtTMEX4dIMns0BjmHwShX8mi5_YS8tc4Qmnbtxu0u8SgJRLjisievnJJepoZozTalOpXZZR9vIchNTLal2TUgItC2pYYkOg9CYMLA5c4WSzlUcHaPqfDE3JwjnNs4SlTPLNPwgdN1xImUcyQyAsIZFdRSWrhHKU4iDksWTKLFij6LwpwB_iiASbqyOrj-NlhsGjb-nJ6XPxbeNIFyM_9uwUa6Q8OdwJUIgsIeyLjv973sv0VZ3PByIQW_UP0Pb7kkGGDTKGqi6fnk1564oWcsLv-k-AHVs3aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convexification+of+a+3-D+coefficient+inverse+scattering+problem&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Klibanov%2C+Michael+V.&rft.au=Kolesov%2C+Aleksandr+E.&rft.date=2019-03-15&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=77&rft.issue=6&rft.spage=1681&rft.epage=1702&rft_id=info:doi/10.1016%2Fj.camwa.2018.03.016&rft.externalDocID=S0898122118301512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon |