Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments
The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to proxy variables to evaluate such attributes as pressure/incentive, opportunity, and attitude/rationalization, based on the findings from prior s...
        Saved in:
      
    
          | Published in | Knowledge-based systems Vol. 89; pp. 459 - 470 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.11.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0950-7051 1872-7409  | 
| DOI | 10.1016/j.knosys.2015.08.011 | 
Cover
| Abstract | The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to proxy variables to evaluate such attributes as pressure/incentive, opportunity, and attitude/rationalization, based on the findings from prior studies in this subject field and also the Statement on Auditing Standards. The second objective is to discuss whether or not the suggestion of the experts agrees with the results obtained from adopting those novel techniques. In specific, this study uses both expert questionnaires and data mining techniques to sort out the different fraud factors and then rank the importance of them. The data mining methods employed in this research include Logistic Regression, Decision Trees (CART), and Artificial Neural Networks (ANNs). Empirically, the ANNs and CART approaches work with the training and testing samples in a correct classification rate of 91.2% (ANNs) & 90.4% (CART) and 92.8% (ANNs) & 90.3% (CART), respectively, which is more accurate than the logistic model that only reaches 83.7% and 88.5% of the correct classification in assessing the fraud presence. In addition, type II error of ANNs drops significantly to 23.9% from 43.3% and 27.8% compared to the ones using CART and logistic models. Finally, the differences between different data mining tools and expert judgments are also compared to provide more insights as a research contribution. | 
    
|---|---|
| AbstractList | The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to proxy variables to evaluate such attributes as pressure/incentive, opportunity, and attitude/rationalization, based on the findings from prior studies in this subject field and also the Statement on Auditing Standards. The second objective is to discuss whether or not the suggestion of the experts agrees with the results obtained from adopting those novel techniques. In specific, this study uses both expert questionnaires and data mining techniques to sort out the different fraud factors and then rank the importance of them. The data mining methods employed in this research include Logistic Regression, Decision Trees (CART), and Artificial Neural Networks (ANNs). Empirically, the ANNs and CART approaches work with the training and testing samples in a correct classification rate of 91.2% (ANNs) & 90.4% (CART) and 92.8% (ANNs) & 90.3% (CART), respectively, which is more accurate than the logistic model that only reaches 83.7% and 88.5% of the correct classification in assessing the fraud presence. In addition, type II error of ANNs drops significantly to 23.9% from 43.3% and 27.8% compared to the ones using CART and logistic models. Finally, the differences between different data mining tools and expert judgments are also compared to provide more insights as a research contribution. | 
    
| Author | Huang, Shaio Yan Lin, Chi-Chen Yen, David C. Chiu, An-An  | 
    
| Author_xml | – sequence: 1 givenname: Chi-Chen surname: Lin fullname: Lin, Chi-Chen email: c97ve47@yahoo.com.tw organization: Department of Accounting Information, National Taipei University of Business, No. 321, Sec. 1, Jinan Rd., Zhongzheng, Taipei, Taiwan – sequence: 2 givenname: An-An surname: Chiu fullname: Chiu, An-An email: aachiu@fcuoa.fcu.edu.tw organization: Department of International Trade, Feng Chia University, No. 100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan – sequence: 3 givenname: Shaio Yan surname: Huang fullname: Huang, Shaio Yan email: actsyh@yahoo.com.tw organization: Department of Accounting and Information Technology, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan – sequence: 4 givenname: David C. surname: Yen fullname: Yen, David C. email: David.Yen@oneonta.edu organization: School of Economics and Business, 226 Netzer Administration Bldg., SUNY College at Oneonta, Oneonta, NY 13820, United States  | 
    
| BookMark | eNqFkD1OAzEQhS0UJBLgBhS-wC7jjb3epUBC4VdCogm1ZewxOCResB0gHdfgepyEDaGigGqKN9-T3jcig9AFJOSAQcmA1Yez8jF0aZXKCpgooSmBsS0yZI2sCsmhHZAhtAIKCYLtkFFKMwCoKtYMyfspZjTZh3uaH5A6H3QwXs9pyjrjAkOmLuqlPaLTPtZBz1fJJ9q573frncOIwWCid5hfEQO1Omu68OG7Es1D8M_LPtbBUnx7wpjT5_sHnS3t_bo97ZFtp-cJ93_uLrk9P5tOLovrm4urycl1YcayzgVnrXRWitpxQMuZrASiEWNgjWm4abG22HJeg5DgNNNGmqa1fcK1NFKI8S452vSa2KUU0Snj-4m-CzlqP1cM1NqlmqmNS7V2qaBRvcse5r_gp-gXOq7-w443GPbDXjxGlYxf27I-9tKV7fzfBV-yy5b2 | 
    
| CitedBy_id | crossref_primary_10_1002_isaf_1517 crossref_primary_10_1016_j_eswa_2017_08_030 crossref_primary_10_1051_matecconf_201818903002 crossref_primary_10_1109_ACCESS_2024_3520249 crossref_primary_10_24056_KAJ_2023_04_001 crossref_primary_10_1007_s10618_025_01091_w crossref_primary_10_3934_DSFE_2021006 crossref_primary_10_2139_ssrn_3395248 crossref_primary_10_1016_j_dss_2022_113913 crossref_primary_10_1016_j_neucom_2019_03_006 crossref_primary_10_1145_3723157 crossref_primary_10_1016_j_knosys_2019_105048 crossref_primary_10_3390_su11061579 crossref_primary_10_52080_rvgluz_30_109_9 crossref_primary_10_2478_amns_2023_1_00380 crossref_primary_10_1016_j_eng_2023_07_014 crossref_primary_10_26710_jafee_v9i3_2618 crossref_primary_10_3390_computers10100121 crossref_primary_10_3846_jbem_2019_10179 crossref_primary_10_1088_1742_6596_1865_4_042101 crossref_primary_10_1108_JMLC_11_2024_0193 crossref_primary_10_3390_su11164258 crossref_primary_10_1088_1757_899X_1020_1_012012 crossref_primary_10_1108_DTA_11_2019_0208 crossref_primary_10_52547_aapc_6_12_373 crossref_primary_10_1088_1757_899X_612_5_052051 crossref_primary_10_1016_j_acclit_2017_05_003 crossref_primary_10_1016_j_irfa_2023_102827 crossref_primary_10_1108_ARA_02_2023_0062 crossref_primary_10_1016_j_chaos_2017_08_012 crossref_primary_10_1016_j_jclepro_2020_122266 crossref_primary_10_2139_ssrn_2930767 crossref_primary_10_11118_ejobsat_2023_008 crossref_primary_10_1109_ACCESS_2024_3387841 crossref_primary_10_3390_app13042272 crossref_primary_10_1108_JFC_12_2018_0136 crossref_primary_10_1109_ACCESS_2022_3153478 crossref_primary_10_1016_j_knosys_2017_05_001 crossref_primary_10_1016_j_dss_2020_113421 crossref_primary_10_1080_09720529_2017_1392470 crossref_primary_10_1002_isaf_1564 crossref_primary_10_1016_j_accinf_2024_100693 crossref_primary_10_3390_info15080432 crossref_primary_10_1016_j_asoc_2021_107487 crossref_primary_10_3390_su15031766 crossref_primary_10_18287_2412_6179_CO_656 crossref_primary_10_1007_s10997_021_09589_3 crossref_primary_10_12677_mm_2024_144069 crossref_primary_10_24136_eq_2021_007 crossref_primary_10_1016_j_autcon_2024_105361 crossref_primary_10_1155_2022_8402329 crossref_primary_10_1007_s11042_023_17334_1 crossref_primary_10_3390_su10020513 crossref_primary_10_18502_kss_v9i20_16551 crossref_primary_10_1080_17449480_2022_2046283 crossref_primary_10_1016_j_jsis_2024_101864 crossref_primary_10_1155_2022_3022726 crossref_primary_10_3390_su13179879 crossref_primary_10_29252_jsdp_17_1_3 crossref_primary_10_1049_cit2_12057 crossref_primary_10_1007_s10489_024_05861_9 crossref_primary_10_1016_j_procs_2021_04_110 crossref_primary_10_1109_ACCESS_2022_3190897 crossref_primary_10_1177_0972150920984857 crossref_primary_10_2139_ssrn_4338277 crossref_primary_10_1016_j_techfore_2023_122527 crossref_primary_10_1108_ARJ_04_2020_0079 crossref_primary_10_1155_2019_4989140 crossref_primary_10_3390_joitmc7020128 crossref_primary_10_1016_j_eswa_2016_06_016 crossref_primary_10_1108_K_01_2024_0188 crossref_primary_10_1109_ACCESS_2024_3491175 crossref_primary_10_1109_ACCESS_2021_3096799 crossref_primary_10_1051_e3sconf_202338909033 crossref_primary_10_29067_muvu_802703 crossref_primary_10_1057_s41310_019_00067_9 crossref_primary_10_1016_j_accinf_2016_12_002 crossref_primary_10_3390_joitmc8040192 crossref_primary_10_1016_j_accinf_2022_100559 crossref_primary_10_1109_ACCESS_2017_2654272 crossref_primary_10_1109_TCSS_2022_3209827 crossref_primary_10_58348_denetisim_1526298  | 
    
| Cites_doi | 10.1016/j.knosys.2014.07.008 10.1016/j.eswa.2008.02.007 10.1016/j.ymssp.2006.05.004 10.1108/02686900210424321 10.1111/j.1467-6281.2009.00278.x 10.1109/TDSC.2007.70228 10.1108/02686900410509802 10.2307/2490859 10.1016/S0957-4174(02)00051-9 10.1016/j.knosys.2008.08.002 10.1111/j.1467-8683.2004.00379.x 10.2308/aud.2008.27.2.231 10.1016/j.knosys.2010.10.003 10.2308/aud.2005.24.1.55 10.1111/joar.12002 10.1016/j.dss.2010.11.006 10.25300/MISQ/2013/37.4.09 10.1016/j.csda.2004.11.006 10.2308/bria.2001.13.1.1 10.1016/S1045-2354(03)00072-8 10.1016/j.patrec.2007.04.015 10.1016/j.im.2013.07.012 10.1016/j.eswa.2006.02.016 10.1057/jit.2013.16 10.1111/j.1540-5915.1999.tb00902.x 10.1111/j.1099-1123.2005.00102.x 10.2307/2490171 10.1016/j.knosys.2011.08.018 10.1108/02686900210424358 10.1016/j.jnca.2004.01.003 10.19030/jabr.v11i3.5858 10.1016/j.knosys.2014.08.016 10.1016/j.dss.2010.08.006 10.1016/j.dss.2010.08.018  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2015 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.knosys.2015.08.011 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7409 | 
    
| EndPage | 470 | 
    
| ExternalDocumentID | 10_1016_j_knosys_2015_08_011 S0950705115003159  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c376t-4197fd756f40ed41725eec53018c84c9e6de94460570fa1ac7c89d84c4a7c7553 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0950-7051 | 
    
| IngestDate | Wed Oct 01 05:08:49 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 23 02:28:22 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Data mining Fraud factor Fraud triangle  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c376t-4197fd756f40ed41725eec53018c84c9e6de94460570fa1ac7c89d84c4a7c7553 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2015_08_011 crossref_primary_10_1016_j_knosys_2015_08_011 elsevier_sciencedirect_doi_10_1016_j_knosys_2015_08_011  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-11-01 | 
    
| PublicationDateYYYYMMDD | 2015-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Knowledge-based systems | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Theodoridis, Koutroumbas (b0230) 2006; vol. 885 A.R. Sorkin, Pulling Back the Curtain on Fraud Inquiries, The New York Times, December 6, 2010. Goode, Lacey (b0065) 2011; 50 Kirkos, Spathis, Manolopoulos (b0095) 2007; 32 Breiman, Friedman, Olshen, Stone (b0035) 1984 Beasley (b0020) 1996; 71 Kerr, Murthy (b0090) 2013; 50 Cressey (b0050) 1973 Nigrini, Mittermaier (b0150) 1997; 16 Xing, Girolami (b0245) 2007; 28 Ngai, Hu, Wong, Chen, Sun (b0145) 2011; 50 Gillett, Uddin (b0060) 2005; 24 Mukkamala, Sung, Abraham (b0140) 2004; 28 Olszewski (b0160) 2014; 70 Apostolou, Hassell, Webber, Summers (b0015) 2001; 13 Lee, Chiu, Chou, Lu (b0105) 2006; 50 Mock, Turner (b0135) 2005; 9 Purda, Skillicorn (b0185) 2014 Beaver (b0025) 1966; 4 Olszewski (b0155) 2012; 26 Persons (b0175) 1995; 11 Apostolou, Hassell (b0010) 1993; 12 Shin, Lee (b0200) 2002; 23 Albrecht (b0005) 2003 Lennox, Lisowsky, Pittman (b0110) 2013; 51 Srivastava, Undu, Sural, Majumdar (b0215) 2008; 5 Tsang, Koh, Dobbie, Alam (b0240) 2014; 71 Posey, Roberts, Lowry, Bennett, Courtney (b0180) 2013; 37 Chen, Huang, Shih, Hsiao (b0040) 2009; 12 Han, Kamber (b0075) 2006 Owusu-Ansah, Moyes, Oyelere, Hay (b0165) 2002; 17 Kaminski, Wetzel, Guan (b0085) 2004; 19 Pai, Hsu, Wang (b0170) 2011; 24 Lee, Yeh (b0100) 2004; 12 Didimo, Liotta, Montecchiani, Palladino (b0055) 2011 Lu, Chen (b0125) 2009; 36 C.C. Lin, S.Y. Huang, A.A. Chiu, Fraud detection using fraud triangle risk factors with Analytic hierarchy process, in: 2012 Annual Meeting of the American Accounting Association, 2012. Hogan, Rezaee, Riley, Velury (b0080) 2008; 27 Srivastava, Mock, Turner (b0220) 2009; 45 Chen, Huang, Lin (b0045) 2010; 38 Magnusson, Arppe, Eklund, Back, Vanharanta, Visa (b0130) 2005; 42 Tsai (b0235) 2009; 22 S.Y. Huang, C.C. Lin, A.A. Chiu, Using data mining techniques to identify and rank the fraud factors, in: American Accounting Association Annual Meeting and Conference on Teaching and Learning in Accounting, 2014. Spathis (b0210) 2002; 17 Ravisankar, Ravi, Raghava Rao, Bose (b0190) 2011; 50 Berardi, Zhang (b0030) 1999; 30 Gozman, Currie (b0070) 2014; 29 Sugumaran, Muralidharan, Ramachandran (b0225) 2007; 21 Zmijewski (b0250) 1984; 22 Rezaee (b0195) 2005; 16 Kirkos (10.1016/j.knosys.2015.08.011_b0095) 2007; 32 Han (10.1016/j.knosys.2015.08.011_b0075) 2006 10.1016/j.knosys.2015.08.011_b0115 Owusu-Ansah (10.1016/j.knosys.2015.08.011_b0165) 2002; 17 Mukkamala (10.1016/j.knosys.2015.08.011_b0140) 2004; 28 Rezaee (10.1016/j.knosys.2015.08.011_b0195) 2005; 16 Tsang (10.1016/j.knosys.2015.08.011_b0240) 2014; 71 Mock (10.1016/j.knosys.2015.08.011_b0135) 2005; 9 Gozman (10.1016/j.knosys.2015.08.011_b0070) 2014; 29 Albrecht (10.1016/j.knosys.2015.08.011_b0005) 2003 Kerr (10.1016/j.knosys.2015.08.011_b0090) 2013; 50 Srivastava (10.1016/j.knosys.2015.08.011_b0220) 2009; 45 Beaver (10.1016/j.knosys.2015.08.011_b0025) 1966; 4 Ravisankar (10.1016/j.knosys.2015.08.011_b0190) 2011; 50 10.1016/j.knosys.2015.08.011_b0205 Sugumaran (10.1016/j.knosys.2015.08.011_b0225) 2007; 21 Chen (10.1016/j.knosys.2015.08.011_b0045) 2010; 38 Tsai (10.1016/j.knosys.2015.08.011_b0235) 2009; 22 Persons (10.1016/j.knosys.2015.08.011_b0175) 1995; 11 Nigrini (10.1016/j.knosys.2015.08.011_b0150) 1997; 16 Apostolou (10.1016/j.knosys.2015.08.011_b0015) 2001; 13 Kaminski (10.1016/j.knosys.2015.08.011_b0085) 2004; 19 Ngai (10.1016/j.knosys.2015.08.011_b0145) 2011; 50 Gillett (10.1016/j.knosys.2015.08.011_b0060) 2005; 24 Goode (10.1016/j.knosys.2015.08.011_b0065) 2011; 50 10.1016/j.knosys.2015.08.011_b0120 Lennox (10.1016/j.knosys.2015.08.011_b0110) 2013; 51 Didimo (10.1016/j.knosys.2015.08.011_b0055) 2011 Pai (10.1016/j.knosys.2015.08.011_b0170) 2011; 24 Shin (10.1016/j.knosys.2015.08.011_b0200) 2002; 23 Xing (10.1016/j.knosys.2015.08.011_b0245) 2007; 28 Posey (10.1016/j.knosys.2015.08.011_b0180) 2013; 37 Apostolou (10.1016/j.knosys.2015.08.011_b0010) 1993; 12 Beasley (10.1016/j.knosys.2015.08.011_b0020) 1996; 71 Olszewski (10.1016/j.knosys.2015.08.011_b0155) 2012; 26 Breiman (10.1016/j.knosys.2015.08.011_b0035) 1984 Lee (10.1016/j.knosys.2015.08.011_b0100) 2004; 12 Spathis (10.1016/j.knosys.2015.08.011_b0210) 2002; 17 Magnusson (10.1016/j.knosys.2015.08.011_b0130) 2005; 42 Chen (10.1016/j.knosys.2015.08.011_b0040) 2009; 12 Srivastava (10.1016/j.knosys.2015.08.011_b0215) 2008; 5 Olszewski (10.1016/j.knosys.2015.08.011_b0160) 2014; 70 Lee (10.1016/j.knosys.2015.08.011_b0105) 2006; 50 Hogan (10.1016/j.knosys.2015.08.011_b0080) 2008; 27 Zmijewski (10.1016/j.knosys.2015.08.011_b0250) 1984; 22 Berardi (10.1016/j.knosys.2015.08.011_b0030) 1999; 30 Cressey (10.1016/j.knosys.2015.08.011_b0050) 1973 Purda (10.1016/j.knosys.2015.08.011_b0185) 2014 Lu (10.1016/j.knosys.2015.08.011_b0125) 2009; 36 Theodoridis (10.1016/j.knosys.2015.08.011_b0230) 2006; vol. 885  | 
    
| References_xml | – volume: 27 start-page: 231 year: 2008 end-page: 252 ident: b0080 article-title: Financial statement fraud: insights from the academic literature publication-title: Audit.: J. Pract. Theory – volume: 28 start-page: 167 year: 2004 end-page: 182 ident: b0140 article-title: Intrusion detection using an ensemble of intelligent paradigms publication-title: J. Netw. Comput. Appl. – volume: 45 start-page: 66 year: 2009 end-page: 87 ident: b0220 article-title: Bayesian fraud risk formula for financial statement audits publication-title: Abacus – volume: 21 start-page: 930 year: 2007 end-page: 942 ident: b0225 article-title: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing publication-title: Mech. Syst. Signal Process. – volume: 17 start-page: 179 year: 2002 end-page: 191 ident: b0210 article-title: Detecting false financial statements using published data: some evidence from Greece publication-title: Manage. Audit. J. – year: 2014 ident: b0185 article-title: Accounting variables, deception, and a bag of words: assessing the tools of fraud detection publication-title: Contemp. Account. Res. – volume: 38 start-page: 78 year: 2010 end-page: 93 ident: b0045 article-title: Using financial indicator approach to construct a TSEC & OTC listed companies litigation warning model publication-title: Int. Res. J. Financ. Econ. – volume: 71 start-page: 389 year: 2014 end-page: 408 ident: b0240 article-title: SPAN: finding collaborative frauds in online auctions publication-title: Knowl.-Based Syst. – volume: 70 start-page: 324 year: 2014 end-page: 334 ident: b0160 article-title: Fraud detection using self-organizing map visualizing the user profiles publication-title: Knowl.-Based Syst. – volume: 19 start-page: 15 year: 2004 end-page: 28 ident: b0085 article-title: Can financial ratios detect fraudulent financial reporting? publication-title: Manage. Audit. J. – volume: 23 start-page: 321 year: 2002 end-page: 328 ident: b0200 article-title: A genetic algorithm application in bankruptcy prediction modeling publication-title: Expert Syst. Appl. – volume: 32 start-page: 995 year: 2007 end-page: 1003 ident: b0095 article-title: Data mining techniques for the detection of fraudulent financial statement publication-title: Expert Syst. Appl. – year: 2006 ident: b0075 article-title: Data Mining Concepts and Techniques – volume: 30 start-page: 659 year: 1999 end-page: 682 ident: b0030 article-title: The effect of misclassification costs on neural network classifiers publication-title: Decis. Sci. – volume: 50 start-page: 491 year: 2011 end-page: 500 ident: b0190 article-title: Detection of financial statement fraud and feature selection using data mining techniques publication-title: Decis. Support Syst. – volume: 29 start-page: 44 year: 2014 end-page: 58 ident: b0070 article-title: The role of investment management systems in regulatory compliance: a post-financial crisis study of displacement mechanisms publication-title: J. Inform. Technol. – volume: 42 start-page: 561 year: 2005 end-page: 574 ident: b0130 article-title: The language of quarterly reports as an indicator of change in the company’s financial status publication-title: Inform. Manage. – volume: 16 start-page: 52 year: 1997 end-page: 67 ident: b0150 article-title: The use of Benford’s Law as an aid in analytical procedures publication-title: Audit.: J. Pract. Theory – volume: 50 start-page: 1113 year: 2006 end-page: 1130 ident: b0105 article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines publication-title: Comput. Stat. Data Anal. – volume: 17 start-page: 192 year: 2002 end-page: 204 ident: b0165 article-title: An empirical analysis of the likelihood of detecting fraud in New Zealand publication-title: Manag. Audit. J. – volume: 12 start-page: 378 year: 2004 end-page: 388 ident: b0100 article-title: Corporate governance and financial distress: evidence from Taiwan publication-title: Corp. Gov. Int. Rev. – volume: 71 start-page: 443 year: 1996 end-page: 460 ident: b0020 article-title: An empirical investigation of the relation between board of director composition and financial statement fraud publication-title: Account. Rev. – year: 1984 ident: b0035 article-title: Classification and Regression Trees – volume: 36 start-page: 3536 year: 2009 end-page: 3542 ident: b0125 article-title: A study of applying data mining approach to the information disclosure for Taiwan’s stock market investors publication-title: Expert Syst. Appl. – volume: 50 start-page: 702 year: 2011 end-page: 714 ident: b0065 article-title: Detecting complex account fraud in the enterprise: the role of technical and non-technical controls publication-title: Decis. Support Syst. – volume: 16 start-page: 277 year: 2005 end-page: 298 ident: b0195 article-title: Causes, consequences, and deterrence of financial statement fraud publication-title: Crit. Perspect. Account. – volume: 4 start-page: 71 year: 1966 end-page: 111 ident: b0025 article-title: Financial ratios as predictors of failure publication-title: J. Account. Res. – volume: 24 start-page: 314 year: 2011 end-page: 321 ident: b0170 article-title: A support vector machine-based model for detecting top management fraud publication-title: Knowl.-Based Syst. – year: 2003 ident: b0005 article-title: Fraud Examination – reference: A.R. Sorkin, Pulling Back the Curtain on Fraud Inquiries, The New York Times, December 6, 2010. – volume: 28 start-page: 1727 year: 2007 end-page: 1734 ident: b0245 article-title: Employing Latent Dirichlet allocation for fraud detection in telecommunications publication-title: Pattern Recogn. Lett. – volume: 22 start-page: 59 year: 1984 end-page: 82 ident: b0250 article-title: Methodological issues related to the estimation of financial distress prediction models publication-title: J. Account. Res. – reference: C.C. Lin, S.Y. Huang, A.A. Chiu, Fraud detection using fraud triangle risk factors with Analytic hierarchy process, in: 2012 Annual Meeting of the American Accounting Association, 2012. – volume: 9 start-page: 59 year: 2005 end-page: 77 ident: b0135 article-title: Auditor identification of fraud risk factors and their impact on audit programs publication-title: Int. J. Audit. – volume: 5 start-page: 37 year: 2008 end-page: 48 ident: b0215 article-title: Credit card fraud detection using hidden Markov model publication-title: IEEE Trans. Dependable Secure Comput. – start-page: 203 year: 2011 end-page: 210 ident: b0055 article-title: An advanced network visualization system for financial crime detection publication-title: Pacific Visualization Symposium (PacificVis) – volume: 24 start-page: 55 year: 2005 end-page: 76 ident: b0060 article-title: CFO intentions of fraudulent financial reporting publication-title: Audit.: J. Pract. Theory – volume: 22 start-page: 120 year: 2009 end-page: 127 ident: b0235 article-title: Feature selection in bankruptcy prediction publication-title: Knowl.-Based Syst. – volume: 12 start-page: 1 year: 1993 end-page: 28 ident: b0010 article-title: An overview of the analytic hierarchy process and its use in accounting research publication-title: J. Account. Lit. – volume: 51 start-page: 739 year: 2013 end-page: 778 ident: b0110 article-title: Tax aggressiveness and accounting fraud publication-title: J. Account. Res. – volume: 50 start-page: 559 year: 2011 end-page: 569 ident: b0145 article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature publication-title: Decis. Support Syst. – volume: 26 start-page: 246 year: 2012 end-page: 258 ident: b0155 article-title: A probabilistic approach to fraud detection in telecommunications publication-title: Knowl.-Based Syst. – volume: 11 start-page: 38 year: 1995 end-page: 46 ident: b0175 article-title: Using financial statement data to identify factors associated with fraudulent financial reporting publication-title: J. Appl. Bus. Res. – volume: vol. 885 year: 2006 ident: b0230 publication-title: Pattern Recognition – volume: 12 start-page: 1 year: 2009 end-page: 22 ident: b0040 article-title: Discussing the financial fraud factor detection publication-title: Chin. Manage. Rev. – volume: 50 start-page: 590 year: 2013 end-page: 597 ident: b0090 article-title: The importance of the CobiT framework IT processes for effective internal control over financial reporting in organizations: an international survey publication-title: Inform. Manage. – volume: 37 start-page: 1189 year: 2013 end-page: 1210 ident: b0180 article-title: Insiders’ protection of organizational information assets: development of a systematics-based taxonomy and theory of diversity for protection-motivated behaviors publication-title: MIS Quart. – reference: S.Y. Huang, C.C. Lin, A.A. Chiu, Using data mining techniques to identify and rank the fraud factors, in: American Accounting Association Annual Meeting and Conference on Teaching and Learning in Accounting, 2014. – volume: 13 start-page: 24 year: 2001 end-page: 31 ident: b0015 article-title: The relative importance of management fraud risk factors publication-title: Behav. Res. Account. – year: 1973 ident: b0050 article-title: Other People’s Money – volume: 12 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.knosys.2015.08.011_b0010 article-title: An overview of the analytic hierarchy process and its use in accounting research publication-title: J. Account. Lit. – volume: 70 start-page: 324 year: 2014 ident: 10.1016/j.knosys.2015.08.011_b0160 article-title: Fraud detection using self-organizing map visualizing the user profiles publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.07.008 – volume: 36 start-page: 3536 issue: 2 year: 2009 ident: 10.1016/j.knosys.2015.08.011_b0125 article-title: A study of applying data mining approach to the information disclosure for Taiwan’s stock market investors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.02.007 – volume: 21 start-page: 930 issue: 2 year: 2007 ident: 10.1016/j.knosys.2015.08.011_b0225 article-title: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.05.004 – volume: 17 start-page: 179 issue: 4 year: 2002 ident: 10.1016/j.knosys.2015.08.011_b0210 article-title: Detecting false financial statements using published data: some evidence from Greece publication-title: Manage. Audit. J. doi: 10.1108/02686900210424321 – volume: 38 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.knosys.2015.08.011_b0045 article-title: Using financial indicator approach to construct a TSEC & OTC listed companies litigation warning model publication-title: Int. Res. J. Financ. Econ. – volume: 45 start-page: 66 issue: 1 year: 2009 ident: 10.1016/j.knosys.2015.08.011_b0220 article-title: Bayesian fraud risk formula for financial statement audits publication-title: Abacus doi: 10.1111/j.1467-6281.2009.00278.x – volume: 71 start-page: 443 issue: 4 year: 1996 ident: 10.1016/j.knosys.2015.08.011_b0020 article-title: An empirical investigation of the relation between board of director composition and financial statement fraud publication-title: Account. Rev. – volume: 5 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.knosys.2015.08.011_b0215 article-title: Credit card fraud detection using hidden Markov model publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2007.70228 – year: 1973 ident: 10.1016/j.knosys.2015.08.011_b0050 – volume: 19 start-page: 15 issue: 1 year: 2004 ident: 10.1016/j.knosys.2015.08.011_b0085 article-title: Can financial ratios detect fraudulent financial reporting? publication-title: Manage. Audit. J. doi: 10.1108/02686900410509802 – volume: 22 start-page: 59 issue: 1 year: 1984 ident: 10.1016/j.knosys.2015.08.011_b0250 article-title: Methodological issues related to the estimation of financial distress prediction models publication-title: J. Account. Res. doi: 10.2307/2490859 – volume: 23 start-page: 321 issue: 3 year: 2002 ident: 10.1016/j.knosys.2015.08.011_b0200 article-title: A genetic algorithm application in bankruptcy prediction modeling publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(02)00051-9 – volume: 22 start-page: 120 issue: 2 year: 2009 ident: 10.1016/j.knosys.2015.08.011_b0235 article-title: Feature selection in bankruptcy prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2008.08.002 – volume: 12 start-page: 378 issue: 3 year: 2004 ident: 10.1016/j.knosys.2015.08.011_b0100 article-title: Corporate governance and financial distress: evidence from Taiwan publication-title: Corp. Gov. Int. Rev. doi: 10.1111/j.1467-8683.2004.00379.x – volume: 16 start-page: 52 year: 1997 ident: 10.1016/j.knosys.2015.08.011_b0150 article-title: The use of Benford’s Law as an aid in analytical procedures publication-title: Audit.: J. Pract. Theory – volume: 27 start-page: 231 issue: 2 year: 2008 ident: 10.1016/j.knosys.2015.08.011_b0080 article-title: Financial statement fraud: insights from the academic literature publication-title: Audit.: J. Pract. Theory doi: 10.2308/aud.2008.27.2.231 – volume: 24 start-page: 314 issue: 2 year: 2011 ident: 10.1016/j.knosys.2015.08.011_b0170 article-title: A support vector machine-based model for detecting top management fraud publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2010.10.003 – volume: 24 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.knosys.2015.08.011_b0060 article-title: CFO intentions of fraudulent financial reporting publication-title: Audit.: J. Pract. Theory doi: 10.2308/aud.2005.24.1.55 – volume: 51 start-page: 739 issue: 4 year: 2013 ident: 10.1016/j.knosys.2015.08.011_b0110 article-title: Tax aggressiveness and accounting fraud publication-title: J. Account. Res. doi: 10.1111/joar.12002 – year: 2003 ident: 10.1016/j.knosys.2015.08.011_b0005 – volume: 12 start-page: 1 issue: 4 year: 2009 ident: 10.1016/j.knosys.2015.08.011_b0040 article-title: Discussing the financial fraud factor detection publication-title: Chin. Manage. Rev. – year: 2014 ident: 10.1016/j.knosys.2015.08.011_b0185 article-title: Accounting variables, deception, and a bag of words: assessing the tools of fraud detection publication-title: Contemp. Account. Res. – volume: 50 start-page: 491 issue: 2 year: 2011 ident: 10.1016/j.knosys.2015.08.011_b0190 article-title: Detection of financial statement fraud and feature selection using data mining techniques publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.11.006 – volume: 42 start-page: 561 issue: 4 year: 2005 ident: 10.1016/j.knosys.2015.08.011_b0130 article-title: The language of quarterly reports as an indicator of change in the company’s financial status publication-title: Inform. Manage. – volume: 37 start-page: 1189 issue: 4 year: 2013 ident: 10.1016/j.knosys.2015.08.011_b0180 article-title: Insiders’ protection of organizational information assets: development of a systematics-based taxonomy and theory of diversity for protection-motivated behaviors publication-title: MIS Quart. doi: 10.25300/MISQ/2013/37.4.09 – ident: 10.1016/j.knosys.2015.08.011_b0205 – volume: 50 start-page: 1113 issue: 4 year: 2006 ident: 10.1016/j.knosys.2015.08.011_b0105 article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2004.11.006 – volume: 13 start-page: 24 issue: 1 year: 2001 ident: 10.1016/j.knosys.2015.08.011_b0015 article-title: The relative importance of management fraud risk factors publication-title: Behav. Res. Account. doi: 10.2308/bria.2001.13.1.1 – ident: 10.1016/j.knosys.2015.08.011_b0115 – start-page: 203 year: 2011 ident: 10.1016/j.knosys.2015.08.011_b0055 article-title: An advanced network visualization system for financial crime detection – year: 1984 ident: 10.1016/j.knosys.2015.08.011_b0035 – volume: 16 start-page: 277 issue: 3 year: 2005 ident: 10.1016/j.knosys.2015.08.011_b0195 article-title: Causes, consequences, and deterrence of financial statement fraud publication-title: Crit. Perspect. Account. doi: 10.1016/S1045-2354(03)00072-8 – volume: 28 start-page: 1727 issue: 13 year: 2007 ident: 10.1016/j.knosys.2015.08.011_b0245 article-title: Employing Latent Dirichlet allocation for fraud detection in telecommunications publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2007.04.015 – volume: 50 start-page: 590 issue: 7 year: 2013 ident: 10.1016/j.knosys.2015.08.011_b0090 article-title: The importance of the CobiT framework IT processes for effective internal control over financial reporting in organizations: an international survey publication-title: Inform. Manage. doi: 10.1016/j.im.2013.07.012 – volume: 32 start-page: 995 issue: 4 year: 2007 ident: 10.1016/j.knosys.2015.08.011_b0095 article-title: Data mining techniques for the detection of fraudulent financial statement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.016 – volume: 29 start-page: 44 issue: 1 year: 2014 ident: 10.1016/j.knosys.2015.08.011_b0070 article-title: The role of investment management systems in regulatory compliance: a post-financial crisis study of displacement mechanisms publication-title: J. Inform. Technol. doi: 10.1057/jit.2013.16 – volume: 30 start-page: 659 issue: 3 year: 1999 ident: 10.1016/j.knosys.2015.08.011_b0030 article-title: The effect of misclassification costs on neural network classifiers publication-title: Decis. Sci. doi: 10.1111/j.1540-5915.1999.tb00902.x – ident: 10.1016/j.knosys.2015.08.011_b0120 – volume: 9 start-page: 59 issue: 1 year: 2005 ident: 10.1016/j.knosys.2015.08.011_b0135 article-title: Auditor identification of fraud risk factors and their impact on audit programs publication-title: Int. J. Audit. doi: 10.1111/j.1099-1123.2005.00102.x – volume: 4 start-page: 71 issue: 3 year: 1966 ident: 10.1016/j.knosys.2015.08.011_b0025 article-title: Financial ratios as predictors of failure publication-title: J. Account. Res. doi: 10.2307/2490171 – volume: 26 start-page: 246 year: 2012 ident: 10.1016/j.knosys.2015.08.011_b0155 article-title: A probabilistic approach to fraud detection in telecommunications publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.08.018 – volume: 17 start-page: 192 issue: 4 year: 2002 ident: 10.1016/j.knosys.2015.08.011_b0165 article-title: An empirical analysis of the likelihood of detecting fraud in New Zealand publication-title: Manag. Audit. J. doi: 10.1108/02686900210424358 – volume: 28 start-page: 167 issue: 2 year: 2004 ident: 10.1016/j.knosys.2015.08.011_b0140 article-title: Intrusion detection using an ensemble of intelligent paradigms publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2004.01.003 – year: 2006 ident: 10.1016/j.knosys.2015.08.011_b0075 – volume: 11 start-page: 38 issue: 3 year: 1995 ident: 10.1016/j.knosys.2015.08.011_b0175 article-title: Using financial statement data to identify factors associated with fraudulent financial reporting publication-title: J. Appl. Bus. Res. doi: 10.19030/jabr.v11i3.5858 – volume: 71 start-page: 389 year: 2014 ident: 10.1016/j.knosys.2015.08.011_b0240 article-title: SPAN: finding collaborative frauds in online auctions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.08.016 – volume: vol. 885 year: 2006 ident: 10.1016/j.knosys.2015.08.011_b0230 – volume: 50 start-page: 559 issue: 3 year: 2011 ident: 10.1016/j.knosys.2015.08.011_b0145 article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.08.006 – volume: 50 start-page: 702 issue: 4 year: 2011 ident: 10.1016/j.knosys.2015.08.011_b0065 article-title: Detecting complex account fraud in the enterprise: the role of technical and non-technical controls publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.08.018  | 
    
| SSID | ssj0002218 | 
    
| Score | 2.4157345 | 
    
| Snippet | The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 459 | 
    
| SubjectTerms | Data mining Fraud factor Fraud triangle  | 
    
| Title | Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments | 
    
| URI | https://dx.doi.org/10.1016/j.knosys.2015.08.011 | 
    
| Volume | 89 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cy9YuaVZu02AaIHaBSbtVbR5oA7ppjwMXtL_B3-OXYKfpAAmBxLGpXUWxY7uJ7Y-QU9nkENUa4zWkDDwmDOw5piIvrSuNMDWhtjhkt72w22fXAz4okXZRC4Nplc725zbdWms3UnOrWZsMh7U7CA5AXzmGNAhVgEV8jAlEMTh7_UzzCAJ7xofEHlIX5XM2x-sxG89esGm3z20jT9__2T19cTmdLbLhYkXayqezTUo62yGbBQ4DddtylywvNF4FgBOiEM5RUzTRoLZaCI__qJkmC3VOQSlo4tqQ0LGx5AVEChgM6rK2KOaN0meLHUFXXV5nwKqohQSYz96Xb3S0UA-2Qm6P9DuX9-2u55AVPAkGZY5Xv8IowUPD6loxCGK41pLDZm_KJpORDpWOGF6ZirpJ_EQK2YwUvGGJkAJEuE_K2TjTBwQmBLRpaKI0hF9NZQt16zyAzxuW8iCskEaxoLF0bccR_eIpLvLLRnEuhhjFECMopu9XiLfimuRtN_6gF4Ws4m_qE4Nn-JXz8N-cR2Qdn_LCxGNSnk8X-gQilHlatSpYJWutq5tu7wPcr-nE | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHODCGzGeOXAtW7ukabkhYBqvXQCJW9XmgTagm7buwAXxN_h7_BLsNOUhIZC4JrYUxY7tJLY_QvZkxCGqNcZrSRl4TBg4c0zFXtZUGmFqQm1xyC67YeeGnd3y2ylyVNXCYFqls_2lTbfW2o003G42hr1e4wqCA9BXjiENQhXE02SG8UDgDWz_-TPPIwjsIx9Se0he1c_ZJK_7fDB-wq7dPredPH3_Z__0xee0F8m8CxbpYbmeJTKl82WyUAExUHcuV8jLsca_APBCFOI5aqouGtSWC-H7HzWjdKIOKGgFTV0fEjowlrzCSAGLQV3aFsXEUfpowSPoR5vXMbAqajEBivHbyyvtT9SdLZFbJTftk-ujjuegFTwJFqXAv19hlOChYU2tGEQxXGvJ4bRHMmIy1qHSMcM_U9E0qZ9KIaNYwQxLhRQgwzVSywe5XiewIKDNQhNnIdw1la3UbYIcjDIs40FYJ61qQxPp-o4j_MVDUiWY9ZNSDAmKIUFUTN-vE--Da1j23fiDXlSySr7pTwKu4VfOjX9z7pLZzvXlRXJx2j3fJHM4U1YpbpFaMZrobQhXimzHquM7UNjrWQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+the+financial+statement+fraud%3A+The+analysis+of+the+differences+between+data+mining+techniques+and+experts%E2%80%99+judgments&rft.jtitle=Knowledge-based+systems&rft.au=Lin%2C+Chi-Chen&rft.au=Chiu%2C+An-An&rft.au=Huang%2C+Shaio+Yan&rft.au=Yen%2C+David+C.&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=89&rft.spage=459&rft.epage=470&rft_id=info:doi/10.1016%2Fj.knosys.2015.08.011&rft.externalDocID=S0950705115003159 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |