Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments

The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to proxy variables to evaluate such attributes as pressure/incentive, opportunity, and attitude/rationalization, based on the findings from prior s...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 89; pp. 459 - 470
Main Authors Lin, Chi-Chen, Chiu, An-An, Huang, Shaio Yan, Yen, David C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2015
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2015.08.011

Cover

Abstract The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to proxy variables to evaluate such attributes as pressure/incentive, opportunity, and attitude/rationalization, based on the findings from prior studies in this subject field and also the Statement on Auditing Standards. The second objective is to discuss whether or not the suggestion of the experts agrees with the results obtained from adopting those novel techniques. In specific, this study uses both expert questionnaires and data mining techniques to sort out the different fraud factors and then rank the importance of them. The data mining methods employed in this research include Logistic Regression, Decision Trees (CART), and Artificial Neural Networks (ANNs). Empirically, the ANNs and CART approaches work with the training and testing samples in a correct classification rate of 91.2% (ANNs) & 90.4% (CART) and 92.8% (ANNs) & 90.3% (CART), respectively, which is more accurate than the logistic model that only reaches 83.7% and 88.5% of the correct classification in assessing the fraud presence. In addition, type II error of ANNs drops significantly to 23.9% from 43.3% and 27.8% compared to the ones using CART and logistic models. Finally, the differences between different data mining tools and expert judgments are also compared to provide more insights as a research contribution.
AbstractList The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to proxy variables to evaluate such attributes as pressure/incentive, opportunity, and attitude/rationalization, based on the findings from prior studies in this subject field and also the Statement on Auditing Standards. The second objective is to discuss whether or not the suggestion of the experts agrees with the results obtained from adopting those novel techniques. In specific, this study uses both expert questionnaires and data mining techniques to sort out the different fraud factors and then rank the importance of them. The data mining methods employed in this research include Logistic Regression, Decision Trees (CART), and Artificial Neural Networks (ANNs). Empirically, the ANNs and CART approaches work with the training and testing samples in a correct classification rate of 91.2% (ANNs) & 90.4% (CART) and 92.8% (ANNs) & 90.3% (CART), respectively, which is more accurate than the logistic model that only reaches 83.7% and 88.5% of the correct classification in assessing the fraud presence. In addition, type II error of ANNs drops significantly to 23.9% from 43.3% and 27.8% compared to the ones using CART and logistic models. Finally, the differences between different data mining tools and expert judgments are also compared to provide more insights as a research contribution.
Author Huang, Shaio Yan
Lin, Chi-Chen
Yen, David C.
Chiu, An-An
Author_xml – sequence: 1
  givenname: Chi-Chen
  surname: Lin
  fullname: Lin, Chi-Chen
  email: c97ve47@yahoo.com.tw
  organization: Department of Accounting Information, National Taipei University of Business, No. 321, Sec. 1, Jinan Rd., Zhongzheng, Taipei, Taiwan
– sequence: 2
  givenname: An-An
  surname: Chiu
  fullname: Chiu, An-An
  email: aachiu@fcuoa.fcu.edu.tw
  organization: Department of International Trade, Feng Chia University, No. 100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
– sequence: 3
  givenname: Shaio Yan
  surname: Huang
  fullname: Huang, Shaio Yan
  email: actsyh@yahoo.com.tw
  organization: Department of Accounting and Information Technology, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan
– sequence: 4
  givenname: David C.
  surname: Yen
  fullname: Yen, David C.
  email: David.Yen@oneonta.edu
  organization: School of Economics and Business, 226 Netzer Administration Bldg., SUNY College at Oneonta, Oneonta, NY 13820, United States
BookMark eNqFkD1OAzEQhS0UJBLgBhS-wC7jjb3epUBC4VdCogm1ZewxOCResB0gHdfgepyEDaGigGqKN9-T3jcig9AFJOSAQcmA1Yez8jF0aZXKCpgooSmBsS0yZI2sCsmhHZAhtAIKCYLtkFFKMwCoKtYMyfspZjTZh3uaH5A6H3QwXs9pyjrjAkOmLuqlPaLTPtZBz1fJJ9q573frncOIwWCid5hfEQO1Omu68OG7Es1D8M_LPtbBUnx7wpjT5_sHnS3t_bo97ZFtp-cJ93_uLrk9P5tOLovrm4urycl1YcayzgVnrXRWitpxQMuZrASiEWNgjWm4abG22HJeg5DgNNNGmqa1fcK1NFKI8S452vSa2KUU0Snj-4m-CzlqP1cM1NqlmqmNS7V2qaBRvcse5r_gp-gXOq7-w443GPbDXjxGlYxf27I-9tKV7fzfBV-yy5b2
CitedBy_id crossref_primary_10_1002_isaf_1517
crossref_primary_10_1016_j_eswa_2017_08_030
crossref_primary_10_1051_matecconf_201818903002
crossref_primary_10_1109_ACCESS_2024_3520249
crossref_primary_10_24056_KAJ_2023_04_001
crossref_primary_10_1007_s10618_025_01091_w
crossref_primary_10_3934_DSFE_2021006
crossref_primary_10_2139_ssrn_3395248
crossref_primary_10_1016_j_dss_2022_113913
crossref_primary_10_1016_j_neucom_2019_03_006
crossref_primary_10_1145_3723157
crossref_primary_10_1016_j_knosys_2019_105048
crossref_primary_10_3390_su11061579
crossref_primary_10_52080_rvgluz_30_109_9
crossref_primary_10_2478_amns_2023_1_00380
crossref_primary_10_1016_j_eng_2023_07_014
crossref_primary_10_26710_jafee_v9i3_2618
crossref_primary_10_3390_computers10100121
crossref_primary_10_3846_jbem_2019_10179
crossref_primary_10_1088_1742_6596_1865_4_042101
crossref_primary_10_1108_JMLC_11_2024_0193
crossref_primary_10_3390_su11164258
crossref_primary_10_1088_1757_899X_1020_1_012012
crossref_primary_10_1108_DTA_11_2019_0208
crossref_primary_10_52547_aapc_6_12_373
crossref_primary_10_1088_1757_899X_612_5_052051
crossref_primary_10_1016_j_acclit_2017_05_003
crossref_primary_10_1016_j_irfa_2023_102827
crossref_primary_10_1108_ARA_02_2023_0062
crossref_primary_10_1016_j_chaos_2017_08_012
crossref_primary_10_1016_j_jclepro_2020_122266
crossref_primary_10_2139_ssrn_2930767
crossref_primary_10_11118_ejobsat_2023_008
crossref_primary_10_1109_ACCESS_2024_3387841
crossref_primary_10_3390_app13042272
crossref_primary_10_1108_JFC_12_2018_0136
crossref_primary_10_1109_ACCESS_2022_3153478
crossref_primary_10_1016_j_knosys_2017_05_001
crossref_primary_10_1016_j_dss_2020_113421
crossref_primary_10_1080_09720529_2017_1392470
crossref_primary_10_1002_isaf_1564
crossref_primary_10_1016_j_accinf_2024_100693
crossref_primary_10_3390_info15080432
crossref_primary_10_1016_j_asoc_2021_107487
crossref_primary_10_3390_su15031766
crossref_primary_10_18287_2412_6179_CO_656
crossref_primary_10_1007_s10997_021_09589_3
crossref_primary_10_12677_mm_2024_144069
crossref_primary_10_24136_eq_2021_007
crossref_primary_10_1016_j_autcon_2024_105361
crossref_primary_10_1155_2022_8402329
crossref_primary_10_1007_s11042_023_17334_1
crossref_primary_10_3390_su10020513
crossref_primary_10_18502_kss_v9i20_16551
crossref_primary_10_1080_17449480_2022_2046283
crossref_primary_10_1016_j_jsis_2024_101864
crossref_primary_10_1155_2022_3022726
crossref_primary_10_3390_su13179879
crossref_primary_10_29252_jsdp_17_1_3
crossref_primary_10_1049_cit2_12057
crossref_primary_10_1007_s10489_024_05861_9
crossref_primary_10_1016_j_procs_2021_04_110
crossref_primary_10_1109_ACCESS_2022_3190897
crossref_primary_10_1177_0972150920984857
crossref_primary_10_2139_ssrn_4338277
crossref_primary_10_1016_j_techfore_2023_122527
crossref_primary_10_1108_ARJ_04_2020_0079
crossref_primary_10_1155_2019_4989140
crossref_primary_10_3390_joitmc7020128
crossref_primary_10_1016_j_eswa_2016_06_016
crossref_primary_10_1108_K_01_2024_0188
crossref_primary_10_1109_ACCESS_2024_3491175
crossref_primary_10_1109_ACCESS_2021_3096799
crossref_primary_10_1051_e3sconf_202338909033
crossref_primary_10_29067_muvu_802703
crossref_primary_10_1057_s41310_019_00067_9
crossref_primary_10_1016_j_accinf_2016_12_002
crossref_primary_10_3390_joitmc8040192
crossref_primary_10_1016_j_accinf_2022_100559
crossref_primary_10_1109_ACCESS_2017_2654272
crossref_primary_10_1109_TCSS_2022_3209827
crossref_primary_10_58348_denetisim_1526298
Cites_doi 10.1016/j.knosys.2014.07.008
10.1016/j.eswa.2008.02.007
10.1016/j.ymssp.2006.05.004
10.1108/02686900210424321
10.1111/j.1467-6281.2009.00278.x
10.1109/TDSC.2007.70228
10.1108/02686900410509802
10.2307/2490859
10.1016/S0957-4174(02)00051-9
10.1016/j.knosys.2008.08.002
10.1111/j.1467-8683.2004.00379.x
10.2308/aud.2008.27.2.231
10.1016/j.knosys.2010.10.003
10.2308/aud.2005.24.1.55
10.1111/joar.12002
10.1016/j.dss.2010.11.006
10.25300/MISQ/2013/37.4.09
10.1016/j.csda.2004.11.006
10.2308/bria.2001.13.1.1
10.1016/S1045-2354(03)00072-8
10.1016/j.patrec.2007.04.015
10.1016/j.im.2013.07.012
10.1016/j.eswa.2006.02.016
10.1057/jit.2013.16
10.1111/j.1540-5915.1999.tb00902.x
10.1111/j.1099-1123.2005.00102.x
10.2307/2490171
10.1016/j.knosys.2011.08.018
10.1108/02686900210424358
10.1016/j.jnca.2004.01.003
10.19030/jabr.v11i3.5858
10.1016/j.knosys.2014.08.016
10.1016/j.dss.2010.08.006
10.1016/j.dss.2010.08.018
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2015.08.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 470
ExternalDocumentID 10_1016_j_knosys_2015_08_011
S0950705115003159
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c376t-4197fd756f40ed41725eec53018c84c9e6de94460570fa1ac7c89d84c4a7c7553
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Wed Oct 01 05:08:49 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data mining
Fraud factor
Fraud triangle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-4197fd756f40ed41725eec53018c84c9e6de94460570fa1ac7c89d84c4a7c7553
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2015_08_011
crossref_primary_10_1016_j_knosys_2015_08_011
elsevier_sciencedirect_doi_10_1016_j_knosys_2015_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Theodoridis, Koutroumbas (b0230) 2006; vol. 885
A.R. Sorkin, Pulling Back the Curtain on Fraud Inquiries, The New York Times, December 6, 2010.
Goode, Lacey (b0065) 2011; 50
Kirkos, Spathis, Manolopoulos (b0095) 2007; 32
Breiman, Friedman, Olshen, Stone (b0035) 1984
Beasley (b0020) 1996; 71
Kerr, Murthy (b0090) 2013; 50
Cressey (b0050) 1973
Nigrini, Mittermaier (b0150) 1997; 16
Xing, Girolami (b0245) 2007; 28
Ngai, Hu, Wong, Chen, Sun (b0145) 2011; 50
Gillett, Uddin (b0060) 2005; 24
Mukkamala, Sung, Abraham (b0140) 2004; 28
Olszewski (b0160) 2014; 70
Apostolou, Hassell, Webber, Summers (b0015) 2001; 13
Lee, Chiu, Chou, Lu (b0105) 2006; 50
Mock, Turner (b0135) 2005; 9
Purda, Skillicorn (b0185) 2014
Beaver (b0025) 1966; 4
Olszewski (b0155) 2012; 26
Persons (b0175) 1995; 11
Apostolou, Hassell (b0010) 1993; 12
Shin, Lee (b0200) 2002; 23
Albrecht (b0005) 2003
Lennox, Lisowsky, Pittman (b0110) 2013; 51
Srivastava, Undu, Sural, Majumdar (b0215) 2008; 5
Tsang, Koh, Dobbie, Alam (b0240) 2014; 71
Posey, Roberts, Lowry, Bennett, Courtney (b0180) 2013; 37
Chen, Huang, Shih, Hsiao (b0040) 2009; 12
Han, Kamber (b0075) 2006
Owusu-Ansah, Moyes, Oyelere, Hay (b0165) 2002; 17
Kaminski, Wetzel, Guan (b0085) 2004; 19
Pai, Hsu, Wang (b0170) 2011; 24
Lee, Yeh (b0100) 2004; 12
Didimo, Liotta, Montecchiani, Palladino (b0055) 2011
Lu, Chen (b0125) 2009; 36
C.C. Lin, S.Y. Huang, A.A. Chiu, Fraud detection using fraud triangle risk factors with Analytic hierarchy process, in: 2012 Annual Meeting of the American Accounting Association, 2012.
Hogan, Rezaee, Riley, Velury (b0080) 2008; 27
Srivastava, Mock, Turner (b0220) 2009; 45
Chen, Huang, Lin (b0045) 2010; 38
Magnusson, Arppe, Eklund, Back, Vanharanta, Visa (b0130) 2005; 42
Tsai (b0235) 2009; 22
S.Y. Huang, C.C. Lin, A.A. Chiu, Using data mining techniques to identify and rank the fraud factors, in: American Accounting Association Annual Meeting and Conference on Teaching and Learning in Accounting, 2014.
Spathis (b0210) 2002; 17
Ravisankar, Ravi, Raghava Rao, Bose (b0190) 2011; 50
Berardi, Zhang (b0030) 1999; 30
Gozman, Currie (b0070) 2014; 29
Sugumaran, Muralidharan, Ramachandran (b0225) 2007; 21
Zmijewski (b0250) 1984; 22
Rezaee (b0195) 2005; 16
Kirkos (10.1016/j.knosys.2015.08.011_b0095) 2007; 32
Han (10.1016/j.knosys.2015.08.011_b0075) 2006
10.1016/j.knosys.2015.08.011_b0115
Owusu-Ansah (10.1016/j.knosys.2015.08.011_b0165) 2002; 17
Mukkamala (10.1016/j.knosys.2015.08.011_b0140) 2004; 28
Rezaee (10.1016/j.knosys.2015.08.011_b0195) 2005; 16
Tsang (10.1016/j.knosys.2015.08.011_b0240) 2014; 71
Mock (10.1016/j.knosys.2015.08.011_b0135) 2005; 9
Gozman (10.1016/j.knosys.2015.08.011_b0070) 2014; 29
Albrecht (10.1016/j.knosys.2015.08.011_b0005) 2003
Kerr (10.1016/j.knosys.2015.08.011_b0090) 2013; 50
Srivastava (10.1016/j.knosys.2015.08.011_b0220) 2009; 45
Beaver (10.1016/j.knosys.2015.08.011_b0025) 1966; 4
Ravisankar (10.1016/j.knosys.2015.08.011_b0190) 2011; 50
10.1016/j.knosys.2015.08.011_b0205
Sugumaran (10.1016/j.knosys.2015.08.011_b0225) 2007; 21
Chen (10.1016/j.knosys.2015.08.011_b0045) 2010; 38
Tsai (10.1016/j.knosys.2015.08.011_b0235) 2009; 22
Persons (10.1016/j.knosys.2015.08.011_b0175) 1995; 11
Nigrini (10.1016/j.knosys.2015.08.011_b0150) 1997; 16
Apostolou (10.1016/j.knosys.2015.08.011_b0015) 2001; 13
Kaminski (10.1016/j.knosys.2015.08.011_b0085) 2004; 19
Ngai (10.1016/j.knosys.2015.08.011_b0145) 2011; 50
Gillett (10.1016/j.knosys.2015.08.011_b0060) 2005; 24
Goode (10.1016/j.knosys.2015.08.011_b0065) 2011; 50
10.1016/j.knosys.2015.08.011_b0120
Lennox (10.1016/j.knosys.2015.08.011_b0110) 2013; 51
Didimo (10.1016/j.knosys.2015.08.011_b0055) 2011
Pai (10.1016/j.knosys.2015.08.011_b0170) 2011; 24
Shin (10.1016/j.knosys.2015.08.011_b0200) 2002; 23
Xing (10.1016/j.knosys.2015.08.011_b0245) 2007; 28
Posey (10.1016/j.knosys.2015.08.011_b0180) 2013; 37
Apostolou (10.1016/j.knosys.2015.08.011_b0010) 1993; 12
Beasley (10.1016/j.knosys.2015.08.011_b0020) 1996; 71
Olszewski (10.1016/j.knosys.2015.08.011_b0155) 2012; 26
Breiman (10.1016/j.knosys.2015.08.011_b0035) 1984
Lee (10.1016/j.knosys.2015.08.011_b0100) 2004; 12
Spathis (10.1016/j.knosys.2015.08.011_b0210) 2002; 17
Magnusson (10.1016/j.knosys.2015.08.011_b0130) 2005; 42
Chen (10.1016/j.knosys.2015.08.011_b0040) 2009; 12
Srivastava (10.1016/j.knosys.2015.08.011_b0215) 2008; 5
Olszewski (10.1016/j.knosys.2015.08.011_b0160) 2014; 70
Lee (10.1016/j.knosys.2015.08.011_b0105) 2006; 50
Hogan (10.1016/j.knosys.2015.08.011_b0080) 2008; 27
Zmijewski (10.1016/j.knosys.2015.08.011_b0250) 1984; 22
Berardi (10.1016/j.knosys.2015.08.011_b0030) 1999; 30
Cressey (10.1016/j.knosys.2015.08.011_b0050) 1973
Purda (10.1016/j.knosys.2015.08.011_b0185) 2014
Lu (10.1016/j.knosys.2015.08.011_b0125) 2009; 36
Theodoridis (10.1016/j.knosys.2015.08.011_b0230) 2006; vol. 885
References_xml – volume: 27
  start-page: 231
  year: 2008
  end-page: 252
  ident: b0080
  article-title: Financial statement fraud: insights from the academic literature
  publication-title: Audit.: J. Pract. Theory
– volume: 28
  start-page: 167
  year: 2004
  end-page: 182
  ident: b0140
  article-title: Intrusion detection using an ensemble of intelligent paradigms
  publication-title: J. Netw. Comput. Appl.
– volume: 45
  start-page: 66
  year: 2009
  end-page: 87
  ident: b0220
  article-title: Bayesian fraud risk formula for financial statement audits
  publication-title: Abacus
– volume: 21
  start-page: 930
  year: 2007
  end-page: 942
  ident: b0225
  article-title: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
  publication-title: Mech. Syst. Signal Process.
– volume: 17
  start-page: 179
  year: 2002
  end-page: 191
  ident: b0210
  article-title: Detecting false financial statements using published data: some evidence from Greece
  publication-title: Manage. Audit. J.
– year: 2014
  ident: b0185
  article-title: Accounting variables, deception, and a bag of words: assessing the tools of fraud detection
  publication-title: Contemp. Account. Res.
– volume: 38
  start-page: 78
  year: 2010
  end-page: 93
  ident: b0045
  article-title: Using financial indicator approach to construct a TSEC & OTC listed companies litigation warning model
  publication-title: Int. Res. J. Financ. Econ.
– volume: 71
  start-page: 389
  year: 2014
  end-page: 408
  ident: b0240
  article-title: SPAN: finding collaborative frauds in online auctions
  publication-title: Knowl.-Based Syst.
– volume: 70
  start-page: 324
  year: 2014
  end-page: 334
  ident: b0160
  article-title: Fraud detection using self-organizing map visualizing the user profiles
  publication-title: Knowl.-Based Syst.
– volume: 19
  start-page: 15
  year: 2004
  end-page: 28
  ident: b0085
  article-title: Can financial ratios detect fraudulent financial reporting?
  publication-title: Manage. Audit. J.
– volume: 23
  start-page: 321
  year: 2002
  end-page: 328
  ident: b0200
  article-title: A genetic algorithm application in bankruptcy prediction modeling
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 995
  year: 2007
  end-page: 1003
  ident: b0095
  article-title: Data mining techniques for the detection of fraudulent financial statement
  publication-title: Expert Syst. Appl.
– year: 2006
  ident: b0075
  article-title: Data Mining Concepts and Techniques
– volume: 30
  start-page: 659
  year: 1999
  end-page: 682
  ident: b0030
  article-title: The effect of misclassification costs on neural network classifiers
  publication-title: Decis. Sci.
– volume: 50
  start-page: 491
  year: 2011
  end-page: 500
  ident: b0190
  article-title: Detection of financial statement fraud and feature selection using data mining techniques
  publication-title: Decis. Support Syst.
– volume: 29
  start-page: 44
  year: 2014
  end-page: 58
  ident: b0070
  article-title: The role of investment management systems in regulatory compliance: a post-financial crisis study of displacement mechanisms
  publication-title: J. Inform. Technol.
– volume: 42
  start-page: 561
  year: 2005
  end-page: 574
  ident: b0130
  article-title: The language of quarterly reports as an indicator of change in the company’s financial status
  publication-title: Inform. Manage.
– volume: 16
  start-page: 52
  year: 1997
  end-page: 67
  ident: b0150
  article-title: The use of Benford’s Law as an aid in analytical procedures
  publication-title: Audit.: J. Pract. Theory
– volume: 50
  start-page: 1113
  year: 2006
  end-page: 1130
  ident: b0105
  article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines
  publication-title: Comput. Stat. Data Anal.
– volume: 17
  start-page: 192
  year: 2002
  end-page: 204
  ident: b0165
  article-title: An empirical analysis of the likelihood of detecting fraud in New Zealand
  publication-title: Manag. Audit. J.
– volume: 12
  start-page: 378
  year: 2004
  end-page: 388
  ident: b0100
  article-title: Corporate governance and financial distress: evidence from Taiwan
  publication-title: Corp. Gov. Int. Rev.
– volume: 71
  start-page: 443
  year: 1996
  end-page: 460
  ident: b0020
  article-title: An empirical investigation of the relation between board of director composition and financial statement fraud
  publication-title: Account. Rev.
– year: 1984
  ident: b0035
  article-title: Classification and Regression Trees
– volume: 36
  start-page: 3536
  year: 2009
  end-page: 3542
  ident: b0125
  article-title: A study of applying data mining approach to the information disclosure for Taiwan’s stock market investors
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 702
  year: 2011
  end-page: 714
  ident: b0065
  article-title: Detecting complex account fraud in the enterprise: the role of technical and non-technical controls
  publication-title: Decis. Support Syst.
– volume: 16
  start-page: 277
  year: 2005
  end-page: 298
  ident: b0195
  article-title: Causes, consequences, and deterrence of financial statement fraud
  publication-title: Crit. Perspect. Account.
– volume: 4
  start-page: 71
  year: 1966
  end-page: 111
  ident: b0025
  article-title: Financial ratios as predictors of failure
  publication-title: J. Account. Res.
– volume: 24
  start-page: 314
  year: 2011
  end-page: 321
  ident: b0170
  article-title: A support vector machine-based model for detecting top management fraud
  publication-title: Knowl.-Based Syst.
– year: 2003
  ident: b0005
  article-title: Fraud Examination
– reference: A.R. Sorkin, Pulling Back the Curtain on Fraud Inquiries, The New York Times, December 6, 2010.
– volume: 28
  start-page: 1727
  year: 2007
  end-page: 1734
  ident: b0245
  article-title: Employing Latent Dirichlet allocation for fraud detection in telecommunications
  publication-title: Pattern Recogn. Lett.
– volume: 22
  start-page: 59
  year: 1984
  end-page: 82
  ident: b0250
  article-title: Methodological issues related to the estimation of financial distress prediction models
  publication-title: J. Account. Res.
– reference: C.C. Lin, S.Y. Huang, A.A. Chiu, Fraud detection using fraud triangle risk factors with Analytic hierarchy process, in: 2012 Annual Meeting of the American Accounting Association, 2012.
– volume: 9
  start-page: 59
  year: 2005
  end-page: 77
  ident: b0135
  article-title: Auditor identification of fraud risk factors and their impact on audit programs
  publication-title: Int. J. Audit.
– volume: 5
  start-page: 37
  year: 2008
  end-page: 48
  ident: b0215
  article-title: Credit card fraud detection using hidden Markov model
  publication-title: IEEE Trans. Dependable Secure Comput.
– start-page: 203
  year: 2011
  end-page: 210
  ident: b0055
  article-title: An advanced network visualization system for financial crime detection
  publication-title: Pacific Visualization Symposium (PacificVis)
– volume: 24
  start-page: 55
  year: 2005
  end-page: 76
  ident: b0060
  article-title: CFO intentions of fraudulent financial reporting
  publication-title: Audit.: J. Pract. Theory
– volume: 22
  start-page: 120
  year: 2009
  end-page: 127
  ident: b0235
  article-title: Feature selection in bankruptcy prediction
  publication-title: Knowl.-Based Syst.
– volume: 12
  start-page: 1
  year: 1993
  end-page: 28
  ident: b0010
  article-title: An overview of the analytic hierarchy process and its use in accounting research
  publication-title: J. Account. Lit.
– volume: 51
  start-page: 739
  year: 2013
  end-page: 778
  ident: b0110
  article-title: Tax aggressiveness and accounting fraud
  publication-title: J. Account. Res.
– volume: 50
  start-page: 559
  year: 2011
  end-page: 569
  ident: b0145
  article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
  publication-title: Decis. Support Syst.
– volume: 26
  start-page: 246
  year: 2012
  end-page: 258
  ident: b0155
  article-title: A probabilistic approach to fraud detection in telecommunications
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 38
  year: 1995
  end-page: 46
  ident: b0175
  article-title: Using financial statement data to identify factors associated with fraudulent financial reporting
  publication-title: J. Appl. Bus. Res.
– volume: vol. 885
  year: 2006
  ident: b0230
  publication-title: Pattern Recognition
– volume: 12
  start-page: 1
  year: 2009
  end-page: 22
  ident: b0040
  article-title: Discussing the financial fraud factor detection
  publication-title: Chin. Manage. Rev.
– volume: 50
  start-page: 590
  year: 2013
  end-page: 597
  ident: b0090
  article-title: The importance of the CobiT framework IT processes for effective internal control over financial reporting in organizations: an international survey
  publication-title: Inform. Manage.
– volume: 37
  start-page: 1189
  year: 2013
  end-page: 1210
  ident: b0180
  article-title: Insiders’ protection of organizational information assets: development of a systematics-based taxonomy and theory of diversity for protection-motivated behaviors
  publication-title: MIS Quart.
– reference: S.Y. Huang, C.C. Lin, A.A. Chiu, Using data mining techniques to identify and rank the fraud factors, in: American Accounting Association Annual Meeting and Conference on Teaching and Learning in Accounting, 2014.
– volume: 13
  start-page: 24
  year: 2001
  end-page: 31
  ident: b0015
  article-title: The relative importance of management fraud risk factors
  publication-title: Behav. Res. Account.
– year: 1973
  ident: b0050
  article-title: Other People’s Money
– volume: 12
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.knosys.2015.08.011_b0010
  article-title: An overview of the analytic hierarchy process and its use in accounting research
  publication-title: J. Account. Lit.
– volume: 70
  start-page: 324
  year: 2014
  ident: 10.1016/j.knosys.2015.08.011_b0160
  article-title: Fraud detection using self-organizing map visualizing the user profiles
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.07.008
– volume: 36
  start-page: 3536
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2015.08.011_b0125
  article-title: A study of applying data mining approach to the information disclosure for Taiwan’s stock market investors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.007
– volume: 21
  start-page: 930
  issue: 2
  year: 2007
  ident: 10.1016/j.knosys.2015.08.011_b0225
  article-title: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.05.004
– volume: 17
  start-page: 179
  issue: 4
  year: 2002
  ident: 10.1016/j.knosys.2015.08.011_b0210
  article-title: Detecting false financial statements using published data: some evidence from Greece
  publication-title: Manage. Audit. J.
  doi: 10.1108/02686900210424321
– volume: 38
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2015.08.011_b0045
  article-title: Using financial indicator approach to construct a TSEC & OTC listed companies litigation warning model
  publication-title: Int. Res. J. Financ. Econ.
– volume: 45
  start-page: 66
  issue: 1
  year: 2009
  ident: 10.1016/j.knosys.2015.08.011_b0220
  article-title: Bayesian fraud risk formula for financial statement audits
  publication-title: Abacus
  doi: 10.1111/j.1467-6281.2009.00278.x
– volume: 71
  start-page: 443
  issue: 4
  year: 1996
  ident: 10.1016/j.knosys.2015.08.011_b0020
  article-title: An empirical investigation of the relation between board of director composition and financial statement fraud
  publication-title: Account. Rev.
– volume: 5
  start-page: 37
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2015.08.011_b0215
  article-title: Credit card fraud detection using hidden Markov model
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2007.70228
– year: 1973
  ident: 10.1016/j.knosys.2015.08.011_b0050
– volume: 19
  start-page: 15
  issue: 1
  year: 2004
  ident: 10.1016/j.knosys.2015.08.011_b0085
  article-title: Can financial ratios detect fraudulent financial reporting?
  publication-title: Manage. Audit. J.
  doi: 10.1108/02686900410509802
– volume: 22
  start-page: 59
  issue: 1
  year: 1984
  ident: 10.1016/j.knosys.2015.08.011_b0250
  article-title: Methodological issues related to the estimation of financial distress prediction models
  publication-title: J. Account. Res.
  doi: 10.2307/2490859
– volume: 23
  start-page: 321
  issue: 3
  year: 2002
  ident: 10.1016/j.knosys.2015.08.011_b0200
  article-title: A genetic algorithm application in bankruptcy prediction modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(02)00051-9
– volume: 22
  start-page: 120
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2015.08.011_b0235
  article-title: Feature selection in bankruptcy prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2008.08.002
– volume: 12
  start-page: 378
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2015.08.011_b0100
  article-title: Corporate governance and financial distress: evidence from Taiwan
  publication-title: Corp. Gov. Int. Rev.
  doi: 10.1111/j.1467-8683.2004.00379.x
– volume: 16
  start-page: 52
  year: 1997
  ident: 10.1016/j.knosys.2015.08.011_b0150
  article-title: The use of Benford’s Law as an aid in analytical procedures
  publication-title: Audit.: J. Pract. Theory
– volume: 27
  start-page: 231
  issue: 2
  year: 2008
  ident: 10.1016/j.knosys.2015.08.011_b0080
  article-title: Financial statement fraud: insights from the academic literature
  publication-title: Audit.: J. Pract. Theory
  doi: 10.2308/aud.2008.27.2.231
– volume: 24
  start-page: 314
  issue: 2
  year: 2011
  ident: 10.1016/j.knosys.2015.08.011_b0170
  article-title: A support vector machine-based model for detecting top management fraud
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2010.10.003
– volume: 24
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2015.08.011_b0060
  article-title: CFO intentions of fraudulent financial reporting
  publication-title: Audit.: J. Pract. Theory
  doi: 10.2308/aud.2005.24.1.55
– volume: 51
  start-page: 739
  issue: 4
  year: 2013
  ident: 10.1016/j.knosys.2015.08.011_b0110
  article-title: Tax aggressiveness and accounting fraud
  publication-title: J. Account. Res.
  doi: 10.1111/joar.12002
– year: 2003
  ident: 10.1016/j.knosys.2015.08.011_b0005
– volume: 12
  start-page: 1
  issue: 4
  year: 2009
  ident: 10.1016/j.knosys.2015.08.011_b0040
  article-title: Discussing the financial fraud factor detection
  publication-title: Chin. Manage. Rev.
– year: 2014
  ident: 10.1016/j.knosys.2015.08.011_b0185
  article-title: Accounting variables, deception, and a bag of words: assessing the tools of fraud detection
  publication-title: Contemp. Account. Res.
– volume: 50
  start-page: 491
  issue: 2
  year: 2011
  ident: 10.1016/j.knosys.2015.08.011_b0190
  article-title: Detection of financial statement fraud and feature selection using data mining techniques
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.11.006
– volume: 42
  start-page: 561
  issue: 4
  year: 2005
  ident: 10.1016/j.knosys.2015.08.011_b0130
  article-title: The language of quarterly reports as an indicator of change in the company’s financial status
  publication-title: Inform. Manage.
– volume: 37
  start-page: 1189
  issue: 4
  year: 2013
  ident: 10.1016/j.knosys.2015.08.011_b0180
  article-title: Insiders’ protection of organizational information assets: development of a systematics-based taxonomy and theory of diversity for protection-motivated behaviors
  publication-title: MIS Quart.
  doi: 10.25300/MISQ/2013/37.4.09
– ident: 10.1016/j.knosys.2015.08.011_b0205
– volume: 50
  start-page: 1113
  issue: 4
  year: 2006
  ident: 10.1016/j.knosys.2015.08.011_b0105
  article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2004.11.006
– volume: 13
  start-page: 24
  issue: 1
  year: 2001
  ident: 10.1016/j.knosys.2015.08.011_b0015
  article-title: The relative importance of management fraud risk factors
  publication-title: Behav. Res. Account.
  doi: 10.2308/bria.2001.13.1.1
– ident: 10.1016/j.knosys.2015.08.011_b0115
– start-page: 203
  year: 2011
  ident: 10.1016/j.knosys.2015.08.011_b0055
  article-title: An advanced network visualization system for financial crime detection
– year: 1984
  ident: 10.1016/j.knosys.2015.08.011_b0035
– volume: 16
  start-page: 277
  issue: 3
  year: 2005
  ident: 10.1016/j.knosys.2015.08.011_b0195
  article-title: Causes, consequences, and deterrence of financial statement fraud
  publication-title: Crit. Perspect. Account.
  doi: 10.1016/S1045-2354(03)00072-8
– volume: 28
  start-page: 1727
  issue: 13
  year: 2007
  ident: 10.1016/j.knosys.2015.08.011_b0245
  article-title: Employing Latent Dirichlet allocation for fraud detection in telecommunications
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2007.04.015
– volume: 50
  start-page: 590
  issue: 7
  year: 2013
  ident: 10.1016/j.knosys.2015.08.011_b0090
  article-title: The importance of the CobiT framework IT processes for effective internal control over financial reporting in organizations: an international survey
  publication-title: Inform. Manage.
  doi: 10.1016/j.im.2013.07.012
– volume: 32
  start-page: 995
  issue: 4
  year: 2007
  ident: 10.1016/j.knosys.2015.08.011_b0095
  article-title: Data mining techniques for the detection of fraudulent financial statement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.02.016
– volume: 29
  start-page: 44
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2015.08.011_b0070
  article-title: The role of investment management systems in regulatory compliance: a post-financial crisis study of displacement mechanisms
  publication-title: J. Inform. Technol.
  doi: 10.1057/jit.2013.16
– volume: 30
  start-page: 659
  issue: 3
  year: 1999
  ident: 10.1016/j.knosys.2015.08.011_b0030
  article-title: The effect of misclassification costs on neural network classifiers
  publication-title: Decis. Sci.
  doi: 10.1111/j.1540-5915.1999.tb00902.x
– ident: 10.1016/j.knosys.2015.08.011_b0120
– volume: 9
  start-page: 59
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2015.08.011_b0135
  article-title: Auditor identification of fraud risk factors and their impact on audit programs
  publication-title: Int. J. Audit.
  doi: 10.1111/j.1099-1123.2005.00102.x
– volume: 4
  start-page: 71
  issue: 3
  year: 1966
  ident: 10.1016/j.knosys.2015.08.011_b0025
  article-title: Financial ratios as predictors of failure
  publication-title: J. Account. Res.
  doi: 10.2307/2490171
– volume: 26
  start-page: 246
  year: 2012
  ident: 10.1016/j.knosys.2015.08.011_b0155
  article-title: A probabilistic approach to fraud detection in telecommunications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.08.018
– volume: 17
  start-page: 192
  issue: 4
  year: 2002
  ident: 10.1016/j.knosys.2015.08.011_b0165
  article-title: An empirical analysis of the likelihood of detecting fraud in New Zealand
  publication-title: Manag. Audit. J.
  doi: 10.1108/02686900210424358
– volume: 28
  start-page: 167
  issue: 2
  year: 2004
  ident: 10.1016/j.knosys.2015.08.011_b0140
  article-title: Intrusion detection using an ensemble of intelligent paradigms
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2004.01.003
– year: 2006
  ident: 10.1016/j.knosys.2015.08.011_b0075
– volume: 11
  start-page: 38
  issue: 3
  year: 1995
  ident: 10.1016/j.knosys.2015.08.011_b0175
  article-title: Using financial statement data to identify factors associated with fraudulent financial reporting
  publication-title: J. Appl. Bus. Res.
  doi: 10.19030/jabr.v11i3.5858
– volume: 71
  start-page: 389
  year: 2014
  ident: 10.1016/j.knosys.2015.08.011_b0240
  article-title: SPAN: finding collaborative frauds in online auctions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.08.016
– volume: vol. 885
  year: 2006
  ident: 10.1016/j.knosys.2015.08.011_b0230
– volume: 50
  start-page: 559
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2015.08.011_b0145
  article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.006
– volume: 50
  start-page: 702
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2015.08.011_b0065
  article-title: Detecting complex account fraud in the enterprise: the role of technical and non-technical controls
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.018
SSID ssj0002218
Score 2.4157345
Snippet The objective of this study is to examine all aspects of fraud triangle using the data mining techniques and employ the available and public information to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 459
SubjectTerms Data mining
Fraud factor
Fraud triangle
Title Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments
URI https://dx.doi.org/10.1016/j.knosys.2015.08.011
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cy9YuaVZu02AaIHaBSbtVbR5oA7ppjwMXtL_B3-OXYKfpAAmBxLGpXUWxY7uJ7Y-QU9nkENUa4zWkDDwmDOw5piIvrSuNMDWhtjhkt72w22fXAz4okXZRC4Nplc725zbdWms3UnOrWZsMh7U7CA5AXzmGNAhVgEV8jAlEMTh7_UzzCAJ7xofEHlIX5XM2x-sxG89esGm3z20jT9__2T19cTmdLbLhYkXayqezTUo62yGbBQ4DddtylywvNF4FgBOiEM5RUzTRoLZaCI__qJkmC3VOQSlo4tqQ0LGx5AVEChgM6rK2KOaN0meLHUFXXV5nwKqohQSYz96Xb3S0UA-2Qm6P9DuX9-2u55AVPAkGZY5Xv8IowUPD6loxCGK41pLDZm_KJpORDpWOGF6ZirpJ_EQK2YwUvGGJkAJEuE_K2TjTBwQmBLRpaKI0hF9NZQt16zyAzxuW8iCskEaxoLF0bccR_eIpLvLLRnEuhhjFECMopu9XiLfimuRtN_6gF4Ws4m_qE4Nn-JXz8N-cR2Qdn_LCxGNSnk8X-gQilHlatSpYJWutq5tu7wPcr-nE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHODCGzGeOXAtW7ukabkhYBqvXQCJW9XmgTagm7buwAXxN_h7_BLsNOUhIZC4JrYUxY7tJLY_QvZkxCGqNcZrSRl4TBg4c0zFXtZUGmFqQm1xyC67YeeGnd3y2ylyVNXCYFqls_2lTbfW2o003G42hr1e4wqCA9BXjiENQhXE02SG8UDgDWz_-TPPIwjsIx9Se0he1c_ZJK_7fDB-wq7dPredPH3_Z__0xee0F8m8CxbpYbmeJTKl82WyUAExUHcuV8jLsca_APBCFOI5aqouGtSWC-H7HzWjdKIOKGgFTV0fEjowlrzCSAGLQV3aFsXEUfpowSPoR5vXMbAqajEBivHbyyvtT9SdLZFbJTftk-ujjuegFTwJFqXAv19hlOChYU2tGEQxXGvJ4bRHMmIy1qHSMcM_U9E0qZ9KIaNYwQxLhRQgwzVSywe5XiewIKDNQhNnIdw1la3UbYIcjDIs40FYJ61qQxPp-o4j_MVDUiWY9ZNSDAmKIUFUTN-vE--Da1j23fiDXlSySr7pTwKu4VfOjX9z7pLZzvXlRXJx2j3fJHM4U1YpbpFaMZrobQhXimzHquM7UNjrWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+the+financial+statement+fraud%3A+The+analysis+of+the+differences+between+data+mining+techniques+and+experts%E2%80%99+judgments&rft.jtitle=Knowledge-based+systems&rft.au=Lin%2C+Chi-Chen&rft.au=Chiu%2C+An-An&rft.au=Huang%2C+Shaio+Yan&rft.au=Yen%2C+David+C.&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=89&rft.spage=459&rft.epage=470&rft_id=info:doi/10.1016%2Fj.knosys.2015.08.011&rft.externalDocID=S0950705115003159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon