Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model

This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean gr...

Full description

Saved in:
Bibliographic Details
Published inResources policy Vol. 74; p. 102300
Main Authors Zheng, Xiaolei, Nguyen, Hoang, Bui, Xuan-Nam
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0301-4207
1873-7641
DOI10.1016/j.resourpol.2021.102300

Cover

Abstract This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects. •The relationships between production factors, ore grades, life of mine, and mining capital cost were explored.•CFNN model was designed and developed for forecasting mining capital cost.•Salp swarm optimization was applied to optimize and improve the accuracy of the CFNN model.•The hybrid SalpSO-CFNN model was proposed to forecast MCC with high accuracy.•A comprehensive comparison of the SalpSO-CFNN, CFNN, MLP, SVM and CART models was performed.
AbstractList This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects.
This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects. •The relationships between production factors, ore grades, life of mine, and mining capital cost were explored.•CFNN model was designed and developed for forecasting mining capital cost.•Salp swarm optimization was applied to optimize and improve the accuracy of the CFNN model.•The hybrid SalpSO-CFNN model was proposed to forecast MCC with high accuracy.•A comprehensive comparison of the SalpSO-CFNN, CFNN, MLP, SVM and CART models was performed.
ArticleNumber 102300
Author Bui, Xuan-Nam
Zheng, Xiaolei
Nguyen, Hoang
Author_xml – sequence: 1
  givenname: Xiaolei
  surname: Zheng
  fullname: Zheng, Xiaolei
  email: xiaoleitaotao@126.com
  organization: School of Construction Management, Chongqing Jianzhu College, Chongqing, 400072, China
– sequence: 2
  givenname: Hoang
  orcidid: 0000-0001-6122-8314
  surname: Nguyen
  fullname: Nguyen, Hoang
  email: nguyenhoang@humg.edu.vn
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Wards, Bac Tu Liem Dist., Hanoi, 100000, Vietnam
– sequence: 3
  givenname: Xuan-Nam
  orcidid: 0000-0001-5953-4902
  surname: Bui
  fullname: Bui, Xuan-Nam
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Wards, Bac Tu Liem Dist., Hanoi, 100000, Vietnam
BookMark eNqNUU1v1DAQtVCR2BZ-A5a4ksWOg509cKiq8iFV4gJny7HHWy-JHWynLfxAfhcTgjhwgcNoRuN5b8bvnZOzmCIQ8pyzPWdcvjrtM5S05DmN-5a1HLutYOwR2fFeiUbJjp-RHROMN13L1BNyXsqJMfZa9XJHflw_zGPKIR5pvQWaYTQ1pEgHqPcAkc45ucX-anlja8rlJU0Z6DEbB1ib6OgYPNDk6RQiUJ_yGmBNqSsrNtdkzRyqGalNpeKmnJbjLTU0pjvApikW6VbcvcmORlgyzka8IeUvzWAKOFrMONOC7xNNcw1T-L5dOiUH41Py2JuxwLPf-YJ8fnv96ep9c_Px3Yery5vGCiVrI7w8tGoQoKATEqM_DGpgwL3hvhtQEiyZBd-5_iAAmJTWD46znnnlhBMX5MXGi7p8XaBUfULpI67UrUTZu66VCqfebFM2p1IyeG3x8-u1NZswas70ap0-6T_W6dU6vVmHePUXfs5hMvnbfyAvNySgCHcBsi42QLTgAlpStUvhnxw_Aa34wYU
CitedBy_id crossref_primary_10_32604_ee_2023_027703
crossref_primary_10_1016_j_enbuild_2024_114385
crossref_primary_10_1016_j_simpa_2024_100675
crossref_primary_10_3390_app112210848
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s13563_025_00495_w
crossref_primary_10_3390_mining5010005
crossref_primary_10_1080_17480930_2024_2362579
crossref_primary_10_1016_j_eswa_2022_119269
crossref_primary_10_5004_dwt_2023_29183
crossref_primary_10_1016_j_ress_2022_109032
Cites_doi 10.1016/j.solener.2020.05.013
10.1155/2014/208502
10.1080/17480930.2018.1510300
10.1016/0893-6080(91)90032-Z
10.1016/j.petrol.2021.108836
10.1007/s11053-018-9424-1
10.1016/j.resourpol.2016.10.003
10.1007/s11053-021-09890-w
10.1016/j.egyr.2020.11.171
10.1016/j.resourpol.2016.05.005
10.1080/17480930.2017.1306674
10.1016/j.prostr.2019.08.123
10.1016/j.ress.2021.107481
10.1016/j.jclepro.2021.127672
10.1016/j.renene.2017.12.051
10.1093/biomet/52.3-4.591
10.1016/j.advengsoft.2017.07.002
10.1007/s10913-007-0009-3
10.1134/S1062739147020055
10.1007/s41247-016-0012-x
10.1007/s00521-018-3717-5
10.1016/j.cviu.2021.103171
10.1016/j.resourpol.2018.12.013
10.1016/j.resourpol.2021.102223
10.1016/j.resourpol.2021.102189
10.1016/j.gsf.2020.03.007
10.1016/j.gsf.2020.09.020
10.1007/s11053-020-09710-7
10.1016/j.isatra.2021.01.060
10.1016/j.resourpol.2021.102195
10.1016/j.jclepro.2017.09.092
10.1007/s00366-019-00833-x
10.3390/app9224868
10.1016/j.eswa.2021.115292
10.1016/j.procs.2016.02.032
10.1007/s00366-015-0408-z
10.3390/en12183454
10.3390/pr6110228
10.1016/j.engappai.2020.104015
10.1016/j.tust.2018.11.046
10.1016/j.chemosphere.2021.131012
10.1016/j.resourpol.2017.07.011
10.1080/00137910802058533
10.1016/j.resourpol.2020.101604
10.1016/j.ejor.2014.07.040
10.1016/j.asoc.2019.105507
10.1016/j.pnucene.2009.03.004
10.1016/j.ijmst.2020.03.010
10.1016/j.resourpol.2018.10.008
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Dec 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Dec 2021
DBID AAYXX
CITATION
7TA
7TQ
8BJ
8FD
DHY
DON
FQK
JBE
JG9
DOI 10.1016/j.resourpol.2021.102300
DatabaseName CrossRef
Materials Business File
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Materials Business File
PAIS International
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-7641
ExternalDocumentID 10_1016_j_resourpol_2021_102300
S030142072100310X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3R3
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACLVX
ACRLP
ACROA
ACSBN
ADBBV
ADEZE
ADFHU
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
ATOGT
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BLECG
BLXMC
BNTGB
BPUDD
BULVW
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HMY
HVGLF
HZ~
IHE
IMUCA
IXIXF
J1W
JARJE
KCYFY
KOM
LY5
LY6
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSE
SSF
SSJ
SSO
SSR
SSS
SSZ
T5K
UHS
UNMZH
WH7
WUQ
YK3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TA
7TQ
8BJ
8FD
AGCQF
AGRNS
BNPGV
DHY
DON
FQK
JBE
JG9
SSH
ID FETCH-LOGICAL-c376t-3f6927b3e7e436e4389b7b0e1fa1f4b578e1f0cef4d893ee066cfbd1080f7d3d3
IEDL.DBID .~1
ISSN 0301-4207
IngestDate Fri Jul 25 05:27:08 EDT 2025
Thu Oct 09 00:16:22 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Fri Feb 23 02:39:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cascade feedforward neural network
Salp swarm optimization
Production factors
Ore grades
Life of mine
Mining capital cost
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-3f6927b3e7e436e4389b7b0e1fa1f4b578e1f0cef4d893ee066cfbd1080f7d3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6122-8314
0000-0001-5953-4902
PQID 2623044267
PQPubID 2037026
ParticipantIDs proquest_journals_2623044267
crossref_citationtrail_10_1016_j_resourpol_2021_102300
crossref_primary_10_1016_j_resourpol_2021_102300
elsevier_sciencedirect_doi_10_1016_j_resourpol_2021_102300
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Resources policy
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Harish, Janardhan (bib24) 2021
Kassaymeh, Abdullah, Al-Betar, Alweshah (bib28) 2021
Siddique, Tokhi (bib51) 2001
Zhang, Nguyen, Bui, Pradhan, Mai, Vu (bib60) 2021; 73
O'Hara (bib47) 1980; 73
Hirose, Yamashita, Hijiya (bib26) 1991; 4
Nourali, Osanloo (bib45) 2020; 34
Wang, Gu, Liu, Wang, Xu, Zheng (bib56) 2018; 6
Koppelaar, Koppelaar (bib31) 2016; 1
Narad, Chavan (bib39) 2016; 78
Armaghani, Hatzigeorgiou, Karamani, Skentou, Zoumpoulaki, Asteris (bib3) 2019; 17
Wang, Zhang, Xing, Sun, Chen (bib55) 2021
Darling (bib15) 2011
Franco-Sepúlveda, Del Rio-Cuervo, Pachón-Hernández (bib20) 2019; 60
Çelik, Öztürk, Arya (bib13) 2021; 182
Zhang, Zhang, Wang, Zhang, Goh (bib63) 2019; 84
Zhou, Qiu, Zhu, Armaghani, Khandelwal, Mohamad (bib66) 2020
Yasrebi, Hezarkhani, Afzal (bib58) 2017; 53
Paithankar, Chatterjee (bib48) 2019; 81
Ighravwe, Mashao (bib27) 2020; 6
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib35) 2017; 114
Zhang, Zhang, Wu, Goh, Wang (bib64) 2020
Nguyen, Bui, Choi, Lee, Armaghani (bib43) 2021; 30
Armaghani, Koopialipoor, Bahri, Hasanipanah, Tahir (bib4) 2020
Zhang, Nguyen, Bui, Nguyen-Thoi, Bui, Nguyen, Vu, Mahesh, Moayedi (bib59) 2020; 66
Yang, Nguyen, Bui, Nguyen-Thoi, Zhou, Huang (bib57) 2021; 311
Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (bib67) 2021; 97
Shapiro, Wilk (bib49) 1965; 52
Nourali, Osanloo (bib44) 2019; 62
Mahpod, Das, Maiorana, Keller, Campisi (bib34) 2021; 205
Zhang, Nguyen, Vu, Bui, Pradhan (bib61) 2021; 73
Guo, Nguyen, Vu, Bui (bib22) 2019
Ke, Nguyen, Bui, Costache (bib29) 2021
Sun, Lei (bib53) 2021; 73
Castle (bib12) 1985
Armaghani, Hasanipanah, Mohamad (bib2) 2016; 32
Arteaga, Nehring, Knights (bib5) 2018; 32
Crespo Márquez, de la Fuente Carmona, Antomarioni (bib14) 2019; 12
Nguyen, Bui (bib41) 2019; 28
Khan, Niemann-Delius (bib30) 2014
Shishvan, Sattarvand (bib50) 2015; 240
Dimitrakopoulos, Martinez, Ramazan (bib17) 2007; 43
Spitz, Trudinger (bib52) 2019
Nguyen (bib40) 2019; 1
Elkington, Durham (bib19) 2011; 47
Nguyen, Bui, Bui, Mai (bib42) 2018; 32
Lee (bib32) 2021; 209
Bertisen, Davis (bib9) 2008; 53
Mohamed, El-Sayed, Metwally, Selem (bib36) 2020; 205
Guo, Nguyen, Bui (bib21) 2021; 37
Zhou, Qiu, Armaghani, Zhang, Li, Zhu, Tarinejad (bib65) 2021; 12
Gypton (bib23) 2002; 203
O'Hara (bib46) 1980
Leng, Fan, Gao, Hu (bib33) 2020; 30
Thomas (bib54) 2001
Asad, Qureshi, Jang (bib6) 2016; 49
Bennet (bib8) 1996
Bui, Nguyen, Choi, Bui, Nguyen-Thoi, Zandi (bib11) 2019; 9
Zhang, Wu, Zhong, Li, Wang (bib62) 2021; 12
Mohammadi, Hemmati-Sarapardeh, Schaffie, Husein, Ranjbar (bib37) 2021; 205
Bottou (bib10) 1991; 91
Mousavi, Kozan, Liu (bib38) 2014
Hedayat, Davilu, Barfrosh, Sepanloo (bib25) 2009; 51
El-Fergany (bib18) 2018; 119
Abujazar, Fatihah, Ibrahim, Kabeel, Sharil (bib1) 2018; 170
Del Castillo, Dimitrakopoulos (bib16) 2016; 50
Bac, Nguyen, Thao, Duyen, Hanh, Dung, Khang, An (bib7) 2021; 282
Gypton (10.1016/j.resourpol.2021.102300_bib23) 2002; 203
Armaghani (10.1016/j.resourpol.2021.102300_bib4) 2020
Hirose (10.1016/j.resourpol.2021.102300_bib26) 1991; 4
O'Hara (10.1016/j.resourpol.2021.102300_bib47) 1980; 73
Elkington (10.1016/j.resourpol.2021.102300_bib19) 2011; 47
Zhang (10.1016/j.resourpol.2021.102300_bib62) 2021; 12
Nguyen (10.1016/j.resourpol.2021.102300_bib43) 2021; 30
Arteaga (10.1016/j.resourpol.2021.102300_bib5) 2018; 32
Zhang (10.1016/j.resourpol.2021.102300_bib59) 2020; 66
Shapiro (10.1016/j.resourpol.2021.102300_bib49) 1965; 52
Bui (10.1016/j.resourpol.2021.102300_bib11) 2019; 9
Bertisen (10.1016/j.resourpol.2021.102300_bib9) 2008; 53
Franco-Sepúlveda (10.1016/j.resourpol.2021.102300_bib20) 2019; 60
Khan (10.1016/j.resourpol.2021.102300_bib30) 2014
Sun (10.1016/j.resourpol.2021.102300_bib53) 2021; 73
Mohamed (10.1016/j.resourpol.2021.102300_bib36) 2020; 205
Dimitrakopoulos (10.1016/j.resourpol.2021.102300_bib17) 2007; 43
Kassaymeh (10.1016/j.resourpol.2021.102300_bib28) 2021
Koppelaar (10.1016/j.resourpol.2021.102300_bib31) 2016; 1
Spitz (10.1016/j.resourpol.2021.102300_bib52) 2019
Zhang (10.1016/j.resourpol.2021.102300_bib60) 2021; 73
Wang (10.1016/j.resourpol.2021.102300_bib55) 2021
Shishvan (10.1016/j.resourpol.2021.102300_bib50) 2015; 240
Asad (10.1016/j.resourpol.2021.102300_bib6) 2016; 49
Armaghani (10.1016/j.resourpol.2021.102300_bib3) 2019; 17
Mahpod (10.1016/j.resourpol.2021.102300_bib34) 2021; 205
Mousavi (10.1016/j.resourpol.2021.102300_bib38) 2014
El-Fergany (10.1016/j.resourpol.2021.102300_bib18) 2018; 119
Paithankar (10.1016/j.resourpol.2021.102300_bib48) 2019; 81
Zhou (10.1016/j.resourpol.2021.102300_bib65) 2021; 12
Darling (10.1016/j.resourpol.2021.102300_bib15) 2011
Narad (10.1016/j.resourpol.2021.102300_bib39) 2016; 78
Leng (10.1016/j.resourpol.2021.102300_bib33) 2020; 30
Bac (10.1016/j.resourpol.2021.102300_bib7) 2021; 282
Zhou (10.1016/j.resourpol.2021.102300_bib66) 2020
O'Hara (10.1016/j.resourpol.2021.102300_bib46) 1980
Nguyen (10.1016/j.resourpol.2021.102300_bib40) 2019; 1
Zhang (10.1016/j.resourpol.2021.102300_bib61) 2021; 73
Mirjalili (10.1016/j.resourpol.2021.102300_bib35) 2017; 114
Nguyen (10.1016/j.resourpol.2021.102300_bib41) 2019; 28
Lee (10.1016/j.resourpol.2021.102300_bib32) 2021; 209
Yang (10.1016/j.resourpol.2021.102300_bib57) 2021; 311
Çelik (10.1016/j.resourpol.2021.102300_bib13) 2021; 182
Armaghani (10.1016/j.resourpol.2021.102300_bib2) 2016; 32
Thomas (10.1016/j.resourpol.2021.102300_bib54) 2001
Bennet (10.1016/j.resourpol.2021.102300_bib8) 1996
Mohammadi (10.1016/j.resourpol.2021.102300_bib37) 2021; 205
Zhang (10.1016/j.resourpol.2021.102300_bib64) 2020
Crespo Márquez (10.1016/j.resourpol.2021.102300_bib14) 2019; 12
Abujazar (10.1016/j.resourpol.2021.102300_bib1) 2018; 170
Bottou (10.1016/j.resourpol.2021.102300_bib10) 1991; 91
Hedayat (10.1016/j.resourpol.2021.102300_bib25) 2009; 51
Nourali (10.1016/j.resourpol.2021.102300_bib45) 2020; 34
Yasrebi (10.1016/j.resourpol.2021.102300_bib58) 2017; 53
Wang (10.1016/j.resourpol.2021.102300_bib56) 2018; 6
Guo (10.1016/j.resourpol.2021.102300_bib21) 2021; 37
Nguyen (10.1016/j.resourpol.2021.102300_bib42) 2018; 32
Del Castillo (10.1016/j.resourpol.2021.102300_bib16) 2016; 50
Castle (10.1016/j.resourpol.2021.102300_bib12) 1985
Guo (10.1016/j.resourpol.2021.102300_bib22) 2019
Zhang (10.1016/j.resourpol.2021.102300_bib63) 2019; 84
Nourali (10.1016/j.resourpol.2021.102300_bib44) 2019; 62
Harish (10.1016/j.resourpol.2021.102300_bib24) 2021
Ighravwe (10.1016/j.resourpol.2021.102300_bib27) 2020; 6
Zhou (10.1016/j.resourpol.2021.102300_bib67) 2021; 97
Siddique (10.1016/j.resourpol.2021.102300_bib51) 2001
Ke (10.1016/j.resourpol.2021.102300_bib29) 2021
References_xml – volume: 170
  start-page: 147
  year: 2018
  end-page: 159
  ident: bib1
  article-title: Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model
  publication-title: J. Clean. Prod.
– volume: 43
  start-page: 73
  year: 2007
  end-page: 82
  ident: bib17
  article-title: A maximum upside/minimum downside approach to the traditional optimization of open pit mine design
  publication-title: J. Min. Sci.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib31
  article-title: The ore grade and depth influence on copper energy inputs
  publication-title: Biophys. Econ. Resour. Qual.
– year: 1996
  ident: bib8
  article-title: Technical Due Diligence Requirements for Mining Project Finance, Randol at Vancouver 1996 85th Annual Global Mining Opportunities and 2nd Annual Copper Hydromet Rountable, Conference Proceedings
– volume: 73
  start-page: 87
  year: 1980
  end-page: 99
  ident: bib47
  article-title: Quick guide to the evaluation of ore bodies
  publication-title: Cim. Bull.
– volume: 73
  year: 2021
  ident: bib60
  article-title: Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms
  publication-title: Resour. Pol.
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: bib62
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
– volume: 203
  start-page: 40
  year: 2002
  ident: bib23
  article-title: How have we done?
  publication-title: Eng. Min. J.
– volume: 6
  start-page: 228
  year: 2018
  ident: bib56
  article-title: Production process optimization of metal mines considering economic benefit and resource efficiency using an NSGA-II model
  publication-title: Processes
– year: 2020
  ident: bib64
  article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression
  publication-title: Undergr. Space
– year: 2020
  ident: bib66
  article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization
  publication-title: Undergr. Space
– volume: 30
  start-page: 191
  year: 2021
  end-page: 207
  ident: bib43
  article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines
  publication-title: Nat. Resour. Res.
– year: 2014
  ident: bib30
  article-title: Production scheduling of open pit mines using particle swarm optimization algorithm
  publication-title: Adv. Operat. Res. 2014
– volume: 73
  year: 2021
  ident: bib53
  article-title: Research on financial early warning of mining listed companies based on BP neural network model
  publication-title: Resour. Pol.
– volume: 51
  start-page: 709
  year: 2009
  end-page: 718
  ident: bib25
  article-title: Estimation of research reactor core parameters using cascade feed forward artificial neural networks
  publication-title: Prog. Nucl. Energy
– volume: 30
  start-page: 373
  year: 2020
  end-page: 380
  ident: bib33
  article-title: Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine
  publication-title: Int. J. Min. Sci. Technol.
– volume: 205
  year: 2021
  ident: bib34
  article-title: Facial landmarks localization using cascaded neural networks
  publication-title: Comput. Vis. Image Understand.
– volume: 209
  year: 2021
  ident: bib32
  article-title: Monte Carlo simulation using support vector machine and kernel density for failure probability estimation
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 205
  year: 2021
  ident: bib37
  article-title: Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery
  publication-title: J. Petrol. Sci. Eng.
– volume: 73
  year: 2021
  ident: bib61
  article-title: Forecasting monthly copper price: a comparative study of various machine learning-based methods
  publication-title: Resour. Pol.
– volume: 52
  start-page: 591
  year: 1965
  end-page: 611
  ident: bib49
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
– volume: 60
  start-page: 125
  year: 2019
  end-page: 133
  ident: bib20
  article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining
  publication-title: Resour. Pol.
– year: 2019
  ident: bib22
  article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach
  publication-title: Resour. Pol.
– volume: 32
  start-page: 3939
  year: 2018
  end-page: 3955
  ident: bib42
  article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine
  publication-title: Vietnam. Neural Comput. Appl.
– volume: 62
  start-page: 527
  year: 2019
  end-page: 540
  ident: bib44
  article-title: Mining capital cost estimation using Support Vector Regression (SVR)
  publication-title: Resour. Pol.
– volume: 91
  start-page: 12
  year: 1991
  ident: bib10
  article-title: Stochastic gradient learning in neural networks
  publication-title: Proc. Neuro-Nimes
– volume: 119
  start-page: 641
  year: 2018
  end-page: 648
  ident: bib18
  article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer
  publication-title: Renew. Energy
– volume: 182
  year: 2021
  ident: bib13
  article-title: Advancement of the search process of salp swarm algorithm for global optimization problems
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: bib28
  article-title: Salp swarm optimizer for modeling the software fault prediction problem
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– start-page: 2673
  year: 2001
  end-page: 2678
  ident: bib51
  article-title: Training neural networks: backpropagation vs. genetic algorithms, IJCNN'01. International Joint Conference on Neural Networks
  publication-title: Proceedings (Cat. No. 01CH37222)
– volume: 17
  start-page: 924
  year: 2019
  end-page: 933
  ident: bib3
  article-title: Soft computing-based techniques for concrete beams shear strength
  publication-title: Procedia Struct. Integr.
– volume: 53
  start-page: 384
  year: 2017
  end-page: 393
  ident: bib58
  article-title: Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection
  publication-title: Resour. Pol.
– volume: 50
  start-page: 322
  year: 2016
  end-page: 332
  ident: bib16
  article-title: A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering
  publication-title: Resour. Pol.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib35
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
– volume: 4
  start-page: 61
  year: 1991
  end-page: 66
  ident: bib26
  article-title: Back-propagation algorithm which varies the number of hidden units
  publication-title: Neural Network.
– year: 2001
  ident: bib54
  article-title: Project Development Costs—Estimates versus Reality
– volume: 205
  start-page: 170
  year: 2020
  end-page: 182
  ident: bib36
  article-title: Grid integration of a PV system supporting an EV charging station using Salp Swarm Optimization
  publication-title: Sol. Energy
– year: 2019
  ident: bib52
  article-title: Mining and the Environment: from Ore to Metal
– year: 2021
  ident: bib55
  article-title: Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis
  publication-title: ISA (Instrum. Soc. Am.) Trans.
– volume: 6
  start-page: 634
  year: 2020
  end-page: 639
  ident: bib27
  article-title: Analysis of support vector regression kernels for energy storage efficiency prediction
  publication-title: Energy Rep.
– volume: 311
  year: 2021
  ident: bib57
  article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm
  publication-title: J. Clean. Prod.
– volume: 47
  start-page: 177
  year: 2011
  end-page: 190
  ident: bib19
  article-title: Integrated open pit pushback selection and production capacity optimization
  publication-title: J. Min. Sci.
– volume: 49
  start-page: 142
  year: 2016
  end-page: 152
  ident: bib6
  article-title: A review of cut-off grade policy models for open pit mining operations
  publication-title: Resour. Pol.
– volume: 37
  start-page: 421
  year: 2021
  end-page: 435
  ident: bib21
  article-title: A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET
  publication-title: Eng. Comput.
– volume: 34
  start-page: 88
  year: 2020
  end-page: 100
  ident: bib45
  article-title: A regression-tree-based model for mining capital cost estimation
  publication-title: Int. J. Min. Reclamat. Environ.
– volume: 282
  start-page: 131012
  year: 2021
  ident: bib7
  article-title: Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm
  publication-title: Chemosphere
– volume: 1
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib40
  article-title: Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam
  publication-title: SN Appl. Sci.
– year: 2011
  ident: bib15
  article-title: SME Mining Engineering Handbook
– volume: 78
  start-page: 185
  year: 2016
  end-page: 191
  ident: bib39
  article-title: Cascade forward back-propagation neural network based group Authentication using (n,n) secret sharing scheme
  publication-title: Procedia Comput. Sci.
– volume: 97
  year: 2021
  ident: bib67
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intell.
– volume: 81
  year: 2019
  ident: bib48
  article-title: Open pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms
  publication-title: Appl. Soft Comput.
– year: 1980
  ident: bib46
  article-title: A Parametric Cost Estimation Method for Open Pit Mines
– volume: 12
  year: 2021
  ident: bib65
  article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques
  publication-title: Geosci. Front.
– volume: 12
  start-page: 3454
  year: 2019
  ident: bib14
  article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency
  publication-title: Energies
– volume: 84
  start-page: 461
  year: 2019
  end-page: 471
  ident: bib63
  article-title: A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays
  publication-title: Tunn. Undergr. Space Technol.
– year: 2021
  ident: bib29
  article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model
  publication-title: Nat. Resour. Res.
– volume: 32
  start-page: 495
  year: 2018
  end-page: 518
  ident: bib5
  article-title: The equipment utilisation versus mining rate trade-off in open pit mining
  publication-title: Int. J. Min. Reclamat. Environ.
– volume: 66
  year: 2020
  ident: bib59
  article-title: Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm
  publication-title: Resour. Pol.
– start-page: 83
  year: 2014
  end-page: 98
  ident: bib38
  article-title: Integrated approach to optimize open-pit mine block sequencing
  publication-title: Industrial Eng. Non-Trad. Appl. Int. Settings
– start-page: 1
  year: 2020
  end-page: 17
  ident: bib4
  article-title: A SVR-GWO technique to minimize flyrock distance resulting from blasting
  publication-title: Bull. Eng. Geol. Environ.
– volume: 9
  start-page: 4868
  year: 2019
  ident: bib11
  article-title: A novel artificial intelligence technique to estimate the gross calorific value of coal based on meta-heuristic and support vector regression algorithms
  publication-title: Appl. Sci.
– year: 2021
  ident: bib24
  article-title: Support vector machine in predicting epoxy glass powder mixed cement concrete
  publication-title: Mater. Today: Proc.
– volume: 28
  start-page: 893
  year: 2019
  end-page: 907
  ident: bib41
  article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest
  publication-title: Nat. Resour. Res.
– year: 1985
  ident: bib12
  article-title: Feasibility studies and other pre-project estimates: how reliable are they
  publication-title: Proceedings of the Finance for the Minerals Industry
– volume: 53
  start-page: 118
  year: 2008
  end-page: 139
  ident: bib9
  article-title: Bias and error in mine project capital cost estimation
  publication-title: Eng. Econ.
– volume: 32
  start-page: 155
  year: 2016
  end-page: 171
  ident: bib2
  article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting
  publication-title: Eng. Comput.
– volume: 240
  start-page: 825
  year: 2015
  end-page: 836
  ident: bib50
  article-title: Long term production planning of open pit mines by ant colony optimization
  publication-title: Eur. J. Oper. Res.
– volume: 205
  start-page: 170
  year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib36
  article-title: Grid integration of a PV system supporting an EV charging station using Salp Swarm Optimization
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.013
– year: 2014
  ident: 10.1016/j.resourpol.2021.102300_bib30
  article-title: Production scheduling of open pit mines using particle swarm optimization algorithm
  publication-title: Adv. Operat. Res. 2014
  doi: 10.1155/2014/208502
– volume: 34
  start-page: 88
  year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib45
  article-title: A regression-tree-based model for mining capital cost estimation
  publication-title: Int. J. Min. Reclamat. Environ.
  doi: 10.1080/17480930.2018.1510300
– volume: 4
  start-page: 61
  year: 1991
  ident: 10.1016/j.resourpol.2021.102300_bib26
  article-title: Back-propagation algorithm which varies the number of hidden units
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(91)90032-Z
– volume: 205
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib37
  article-title: Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108836
– volume: 91
  start-page: 12
  year: 1991
  ident: 10.1016/j.resourpol.2021.102300_bib10
  article-title: Stochastic gradient learning in neural networks
  publication-title: Proc. Neuro-Nimes
– volume: 28
  start-page: 893
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib41
  article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9424-1
– volume: 50
  start-page: 322
  year: 2016
  ident: 10.1016/j.resourpol.2021.102300_bib16
  article-title: A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2016.10.003
– year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib29
  article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09890-w
– volume: 6
  start-page: 634
  year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib27
  article-title: Analysis of support vector regression kernels for energy storage efficiency prediction
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.171
– year: 1980
  ident: 10.1016/j.resourpol.2021.102300_bib46
– volume: 49
  start-page: 142
  year: 2016
  ident: 10.1016/j.resourpol.2021.102300_bib6
  article-title: A review of cut-off grade policy models for open pit mining operations
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2016.05.005
– year: 2001
  ident: 10.1016/j.resourpol.2021.102300_bib54
– volume: 32
  start-page: 495
  year: 2018
  ident: 10.1016/j.resourpol.2021.102300_bib5
  article-title: The equipment utilisation versus mining rate trade-off in open pit mining
  publication-title: Int. J. Min. Reclamat. Environ.
  doi: 10.1080/17480930.2017.1306674
– volume: 17
  start-page: 924
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib3
  article-title: Soft computing-based techniques for concrete beams shear strength
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2019.08.123
– volume: 209
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib32
  article-title: Monte Carlo simulation using support vector machine and kernel density for failure probability estimation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107481
– volume: 311
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib57
  article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127672
– start-page: 1
  year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib4
  article-title: A SVR-GWO technique to minimize flyrock distance resulting from blasting
  publication-title: Bull. Eng. Geol. Environ.
– volume: 119
  start-page: 641
  year: 2018
  ident: 10.1016/j.resourpol.2021.102300_bib18
  article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.12.051
– volume: 52
  start-page: 591
  year: 1965
  ident: 10.1016/j.resourpol.2021.102300_bib49
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.resourpol.2021.102300_bib35
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 43
  start-page: 73
  year: 2007
  ident: 10.1016/j.resourpol.2021.102300_bib17
  article-title: A maximum upside/minimum downside approach to the traditional optimization of open pit mine design
  publication-title: J. Min. Sci.
  doi: 10.1007/s10913-007-0009-3
– volume: 47
  start-page: 177
  year: 2011
  ident: 10.1016/j.resourpol.2021.102300_bib19
  article-title: Integrated open pit pushback selection and production capacity optimization
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739147020055
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.resourpol.2021.102300_bib31
  article-title: The ore grade and depth influence on copper energy inputs
  publication-title: Biophys. Econ. Resour. Qual.
  doi: 10.1007/s41247-016-0012-x
– volume: 32
  start-page: 3939
  year: 2018
  ident: 10.1016/j.resourpol.2021.102300_bib42
  article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine
  publication-title: Vietnam. Neural Comput. Appl.
  doi: 10.1007/s00521-018-3717-5
– year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib28
  article-title: Salp swarm optimizer for modeling the software fault prediction problem
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib22
  article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach
  publication-title: Resour. Pol.
– volume: 205
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib34
  article-title: Facial landmarks localization using cascaded neural networks
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2021.103171
– volume: 60
  start-page: 125
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib20
  article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2018.12.013
– volume: 73
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib53
  article-title: Research on financial early warning of mining listed companies based on BP neural network model
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2021.102223
– year: 2011
  ident: 10.1016/j.resourpol.2021.102300_bib15
– year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib52
– volume: 73
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib61
  article-title: Forecasting monthly copper price: a comparative study of various machine learning-based methods
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2021.102189
– volume: 73
  start-page: 87
  year: 1980
  ident: 10.1016/j.resourpol.2021.102300_bib47
  article-title: Quick guide to the evaluation of ore bodies
  publication-title: Cim. Bull.
– volume: 12
  start-page: 469
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib62
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– volume: 12
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib65
  article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.09.020
– year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib24
  article-title: Support vector machine in predicting epoxy glass powder mixed cement concrete
  publication-title: Mater. Today: Proc.
– volume: 30
  start-page: 191
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib43
  article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09710-7
– year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib55
  article-title: Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis
  publication-title: ISA (Instrum. Soc. Am.) Trans.
  doi: 10.1016/j.isatra.2021.01.060
– year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib64
  article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression
  publication-title: Undergr. Space
– volume: 73
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib60
  article-title: Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2021.102195
– volume: 170
  start-page: 147
  year: 2018
  ident: 10.1016/j.resourpol.2021.102300_bib1
  article-title: Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.092
– volume: 37
  start-page: 421
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib21
  article-title: A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00833-x
– volume: 9
  start-page: 4868
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib11
  article-title: A novel artificial intelligence technique to estimate the gross calorific value of coal based on meta-heuristic and support vector regression algorithms
  publication-title: Appl. Sci.
  doi: 10.3390/app9224868
– volume: 182
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib13
  article-title: Advancement of the search process of salp swarm algorithm for global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115292
– year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib66
  article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization
  publication-title: Undergr. Space
– volume: 78
  start-page: 185
  year: 2016
  ident: 10.1016/j.resourpol.2021.102300_bib39
  article-title: Cascade forward back-propagation neural network based group Authentication using (n,n) secret sharing scheme
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.02.032
– volume: 32
  start-page: 155
  year: 2016
  ident: 10.1016/j.resourpol.2021.102300_bib2
  article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0408-z
– volume: 12
  start-page: 3454
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib14
  article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency
  publication-title: Energies
  doi: 10.3390/en12183454
– volume: 6
  start-page: 228
  year: 2018
  ident: 10.1016/j.resourpol.2021.102300_bib56
  article-title: Production process optimization of metal mines considering economic benefit and resource efficiency using an NSGA-II model
  publication-title: Processes
  doi: 10.3390/pr6110228
– volume: 97
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib67
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.104015
– year: 1985
  ident: 10.1016/j.resourpol.2021.102300_bib12
  article-title: Feasibility studies and other pre-project estimates: how reliable are they
– volume: 84
  start-page: 461
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib63
  article-title: A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.11.046
– volume: 282
  start-page: 131012
  year: 2021
  ident: 10.1016/j.resourpol.2021.102300_bib7
  article-title: Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131012
– volume: 203
  start-page: 40
  year: 2002
  ident: 10.1016/j.resourpol.2021.102300_bib23
  article-title: How have we done?
  publication-title: Eng. Min. J.
– start-page: 2673
  year: 2001
  ident: 10.1016/j.resourpol.2021.102300_bib51
  article-title: Training neural networks: backpropagation vs. genetic algorithms, IJCNN'01. International Joint Conference on Neural Networks
– volume: 53
  start-page: 384
  year: 2017
  ident: 10.1016/j.resourpol.2021.102300_bib58
  article-title: Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2017.07.011
– volume: 53
  start-page: 118
  year: 2008
  ident: 10.1016/j.resourpol.2021.102300_bib9
  article-title: Bias and error in mine project capital cost estimation
  publication-title: Eng. Econ.
  doi: 10.1080/00137910802058533
– volume: 66
  year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib59
  article-title: Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2020.101604
– year: 1996
  ident: 10.1016/j.resourpol.2021.102300_bib8
– volume: 240
  start-page: 825
  year: 2015
  ident: 10.1016/j.resourpol.2021.102300_bib50
  article-title: Long term production planning of open pit mines by ant colony optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.07.040
– volume: 81
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib48
  article-title: Open pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105507
– start-page: 83
  year: 2014
  ident: 10.1016/j.resourpol.2021.102300_bib38
  article-title: Integrated approach to optimize open-pit mine block sequencing
  publication-title: Industrial Eng. Non-Trad. Appl. Int. Settings
– volume: 51
  start-page: 709
  year: 2009
  ident: 10.1016/j.resourpol.2021.102300_bib25
  article-title: Estimation of research reactor core parameters using cascade feed forward artificial neural networks
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2009.03.004
– volume: 30
  start-page: 373
  year: 2020
  ident: 10.1016/j.resourpol.2021.102300_bib33
  article-title: Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2020.03.010
– volume: 62
  start-page: 527
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib44
  article-title: Mining capital cost estimation using Support Vector Regression (SVR)
  publication-title: Resour. Pol.
  doi: 10.1016/j.resourpol.2018.10.008
– volume: 1
  start-page: 1
  year: 2019
  ident: 10.1016/j.resourpol.2021.102300_bib40
  article-title: Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam
  publication-title: SN Appl. Sci.
SSID ssj0005786
Score 2.3362334
Snippet This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102300
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Capital costs
Cascade feedforward neural network
Classification
Economic forecasting
Forecasting
Life of mine
Mathematical models
Mining
Mining capital cost
Mining industry
Networks
Neural networks
Open pit mining
Optimization
Optimization models
Ore grades
Parameters
Production
Production factors
Regression analysis
Root-mean-square errors
Salp swarm optimization
Sensitivity analysis
Support vector machines
Title Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model
URI https://dx.doi.org/10.1016/j.resourpol.2021.102300
https://www.proquest.com/docview/2623044267
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: AKRWK
  dateStart: 19740101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq9gIHBIWKQqnmwJGwu4k33uVWrVptC1QIqLQ3yx8TtGg3iZJtj_w8fhczjrNtEVIPHCI7jp1Emcl4nLx5I8Rbn2bkpuYmIUvoEpnjJLETI5ORY3azcSG94UDhz5f5_EpeLMaLHTHrY2EYVhltf2fTg7WOLYP4NAf1cjn4FlYDKfN7BX7LBUewS8VZDN7_ugPzUJPufyUtm7n3PYxXEz6R1xX_g0hHgcaAQ93-PUP9ZavDBHT2VDyJniOcdDf3TOxguS8e3-ET3BcHp7dha9Q1vrftc_F7C7UDcvigiQg4iCgtqDveV26KCXjeQdUg_GiMR6qb0sNqWSBUBazpekCuLm_oTMu4aW7kwpmQhARc1W4gpgACA2V1g9RoWgbj8ziG6gJTaVLfsgOiJzyfemjNqoaWjq-hImu2jmGiEDL2vBBXZ6ffZ_MkZnBIHBmuTZIV-TRVNkOFMsuRM61bZYc4KsyokJZkQ9WhQ1IJ8psQyf9xhfWMeyyUz3x2IHbLqsSXAvxUGkX9aVFtJSnH1ErlTYZOjWVup-mhyHupaRfpzTnLxkr3OLafeituzeLWnbgPxXA7sO4YPh4e8qFXC31PWTXNQw8PPuoVSUd70eo054_z5C2pV_9z7tfiEe91cJsjsbtprvENOU0bexzeimOxdzL7-ukLl-cf55d_AK0XICo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKOQCHCgoVLQXmwJGwu4k33u0NVa0WaHuhlfZm-WOCFu0mUbL02J_X38WM4ywtQuqBQxTLsZMoMx6PnTdvhPjg04zc1NwkZAldInOcJHZiZDJyzG42LqQ3HCh8fpHPruTX-Xi-JY77WBiGVUbb39n0YK1jzSB-zUG9WAy-h9VAyvxegd9y_kg8luNU8Qrs080dnIeadD8sad3Mze-BvJqwR15X_BMiHQUeA451-_cU9ZexDjPQ6XOxE11H-Ny93QuxheWueHaHUHBX7J38iVujpnHgti_F7QZrB-TxQRMhcBBhWlB3xK9cFTPwfISqQfjRGI9UNqWH5aJAqApY0fOAfF0-0JmWgdNcySdnQhYScFW7hpgDCAyU1TVSpWkZjc_9GKsLzKVJbcsOiZ7whOqhNcsaWrq-gorM2SrGiUJI2fNKXJ2eXB7PkpjCIXFkudZJVuTTVNkMFcosR061bpUd4qgwo0Jakg0Vhw5JJ8hxQiQHyBXWM_CxUD7z2Z7YLqsSXwvwU2kUtadVtZWkHVMrlTcZOjWWuZ2m-yLvpaZd5DfnNBtL3QPZfuqNuDWLW3fi3hfDTce6o_h4uMtRrxb6nrZqmoge7nzYK5KOBqPVac678-QuqYP_ufd78WR2eX6mz75cfHsjnvKVDntzKLbXzS98Sx7U2r4LI-Q3GwogKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+relation+between+production+factors%2C+ore+grades%2C+and+life+of+mine+for+forecasting+mining+capital+cost+through+a+novel+cascade+forward+neural+network-based+salp+swarm+optimization+model&rft.jtitle=Resources+policy&rft.au=Zheng%2C+Xiaolei&rft.au=Nguyen%2C+Hoang&rft.au=Bui%2C+Xuan-Nam&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4207&rft.eissn=1873-7641&rft.volume=74&rft_id=info:doi/10.1016%2Fj.resourpol.2021.102300&rft.externalDocID=S030142072100310X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4207&client=summon