Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model
This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean gr...
Saved in:
| Published in | Resources policy Vol. 74; p. 102300 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.12.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0301-4207 1873-7641 |
| DOI | 10.1016/j.resourpol.2021.102300 |
Cover
| Abstract | This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects.
•The relationships between production factors, ore grades, life of mine, and mining capital cost were explored.•CFNN model was designed and developed for forecasting mining capital cost.•Salp swarm optimization was applied to optimize and improve the accuracy of the CFNN model.•The hybrid SalpSO-CFNN model was proposed to forecast MCC with high accuracy.•A comprehensive comparison of the SalpSO-CFNN, CFNN, MLP, SVM and CART models was performed. |
|---|---|
| AbstractList | This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects. This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit mining projects. Accordingly, the relationship between annual mine and mill production (MineAP, MillAP), stripping ratio (SR), reserve mean grade (RMG), the life of mine (LOM), and MCC of 80 open pit mining projects were investigated and thoroughly evaluated. The dataset was then divided into two sections, with 56 observations used to develop the forecast models. The remaining 24 observations were used to test the accuracy of the developed models. Subsequently, the cascade feedforward neural network (CFNN) was developed to forecast MCC based on the influential parameters. In order to improve the accuracy of the CFNN model, the salp swarm optimization (SalpSO) algorithm was applied to train the CFNN model and optimize the weights of the model, called the SalpSO-CFNN model. The benchmark models which were developed in the previous studies, such as support vector machine (SVM), classification and regression tree (CART), and multiple layers perceptron (MLP) neural network, were also developed in this study to compare with the proposed SalpSO-CFNN model in terms of MCC forecast. The results revealed that production factors, ore grades, and LOM are closely related to MCC, and they are statistically significant. The forecast results also indicated that the proposed novel SalpSO-CFNN model provided a good accuracy with a mean absolute error (MAE) of 179.567, root-mean-squared error (RMSE) of 248.401, and determination coefficient (R2) of 0.980. This result is higher by 18% compared with the CART model and 2–6% compared with the remaining forecast models. A sensitivity analysis also indicated that MineAP, MillAP are the most influential parameters on the forecast of MCC, and they should be specially taken into account when forecasting MCC of open pit mining projects. •The relationships between production factors, ore grades, life of mine, and mining capital cost were explored.•CFNN model was designed and developed for forecasting mining capital cost.•Salp swarm optimization was applied to optimize and improve the accuracy of the CFNN model.•The hybrid SalpSO-CFNN model was proposed to forecast MCC with high accuracy.•A comprehensive comparison of the SalpSO-CFNN, CFNN, MLP, SVM and CART models was performed. |
| ArticleNumber | 102300 |
| Author | Bui, Xuan-Nam Zheng, Xiaolei Nguyen, Hoang |
| Author_xml | – sequence: 1 givenname: Xiaolei surname: Zheng fullname: Zheng, Xiaolei email: xiaoleitaotao@126.com organization: School of Construction Management, Chongqing Jianzhu College, Chongqing, 400072, China – sequence: 2 givenname: Hoang orcidid: 0000-0001-6122-8314 surname: Nguyen fullname: Nguyen, Hoang email: nguyenhoang@humg.edu.vn organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Wards, Bac Tu Liem Dist., Hanoi, 100000, Vietnam – sequence: 3 givenname: Xuan-Nam orcidid: 0000-0001-5953-4902 surname: Bui fullname: Bui, Xuan-Nam organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien Str., Duc Thang Wards, Bac Tu Liem Dist., Hanoi, 100000, Vietnam |
| BookMark | eNqNUU1v1DAQtVCR2BZ-A5a4ksWOg509cKiq8iFV4gJny7HHWy-JHWynLfxAfhcTgjhwgcNoRuN5b8bvnZOzmCIQ8pyzPWdcvjrtM5S05DmN-5a1HLutYOwR2fFeiUbJjp-RHROMN13L1BNyXsqJMfZa9XJHflw_zGPKIR5pvQWaYTQ1pEgHqPcAkc45ucX-anlja8rlJU0Z6DEbB1ib6OgYPNDk6RQiUJ_yGmBNqSsrNtdkzRyqGalNpeKmnJbjLTU0pjvApikW6VbcvcmORlgyzka8IeUvzWAKOFrMONOC7xNNcw1T-L5dOiUH41Py2JuxwLPf-YJ8fnv96ep9c_Px3Yery5vGCiVrI7w8tGoQoKATEqM_DGpgwL3hvhtQEiyZBd-5_iAAmJTWD46znnnlhBMX5MXGi7p8XaBUfULpI67UrUTZu66VCqfebFM2p1IyeG3x8-u1NZswas70ap0-6T_W6dU6vVmHePUXfs5hMvnbfyAvNySgCHcBsi42QLTgAlpStUvhnxw_Aa34wYU |
| CitedBy_id | crossref_primary_10_32604_ee_2023_027703 crossref_primary_10_1016_j_enbuild_2024_114385 crossref_primary_10_1016_j_simpa_2024_100675 crossref_primary_10_3390_app112210848 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s13563_025_00495_w crossref_primary_10_3390_mining5010005 crossref_primary_10_1080_17480930_2024_2362579 crossref_primary_10_1016_j_eswa_2022_119269 crossref_primary_10_5004_dwt_2023_29183 crossref_primary_10_1016_j_ress_2022_109032 |
| Cites_doi | 10.1016/j.solener.2020.05.013 10.1155/2014/208502 10.1080/17480930.2018.1510300 10.1016/0893-6080(91)90032-Z 10.1016/j.petrol.2021.108836 10.1007/s11053-018-9424-1 10.1016/j.resourpol.2016.10.003 10.1007/s11053-021-09890-w 10.1016/j.egyr.2020.11.171 10.1016/j.resourpol.2016.05.005 10.1080/17480930.2017.1306674 10.1016/j.prostr.2019.08.123 10.1016/j.ress.2021.107481 10.1016/j.jclepro.2021.127672 10.1016/j.renene.2017.12.051 10.1093/biomet/52.3-4.591 10.1016/j.advengsoft.2017.07.002 10.1007/s10913-007-0009-3 10.1134/S1062739147020055 10.1007/s41247-016-0012-x 10.1007/s00521-018-3717-5 10.1016/j.cviu.2021.103171 10.1016/j.resourpol.2018.12.013 10.1016/j.resourpol.2021.102223 10.1016/j.resourpol.2021.102189 10.1016/j.gsf.2020.03.007 10.1016/j.gsf.2020.09.020 10.1007/s11053-020-09710-7 10.1016/j.isatra.2021.01.060 10.1016/j.resourpol.2021.102195 10.1016/j.jclepro.2017.09.092 10.1007/s00366-019-00833-x 10.3390/app9224868 10.1016/j.eswa.2021.115292 10.1016/j.procs.2016.02.032 10.1007/s00366-015-0408-z 10.3390/en12183454 10.3390/pr6110228 10.1016/j.engappai.2020.104015 10.1016/j.tust.2018.11.046 10.1016/j.chemosphere.2021.131012 10.1016/j.resourpol.2017.07.011 10.1080/00137910802058533 10.1016/j.resourpol.2020.101604 10.1016/j.ejor.2014.07.040 10.1016/j.asoc.2019.105507 10.1016/j.pnucene.2009.03.004 10.1016/j.ijmst.2020.03.010 10.1016/j.resourpol.2018.10.008 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Dec 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Dec 2021 |
| DBID | AAYXX CITATION 7TA 7TQ 8BJ 8FD DHY DON FQK JBE JG9 |
| DOI | 10.1016/j.resourpol.2021.102300 |
| DatabaseName | CrossRef Materials Business File PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International PAIS International (Ovid) International Bibliography of the Social Sciences International Bibliography of the Social Sciences Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database International Bibliography of the Social Sciences (IBSS) Technology Research Database Materials Business File PAIS International |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1873-7641 |
| ExternalDocumentID | 10_1016_j_resourpol_2021_102300 S030142072100310X |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3R3 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFFL AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIWK ACLVX ACRLP ACROA ACSBN ADBBV ADEZE ADFHU ADMUD AEBSH AEFWE AEKER AEYQN AFKWA AFODL AFTJW AFXIZ AGHFR AGTHC AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG ATOGT AVARZ AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BLECG BLXMC BNTGB BPUDD BULVW CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HMY HVGLF HZ~ IHE IMUCA IXIXF J1W JARJE KCYFY KOM LY5 LY6 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAC SDF SDG SEB SEE SES SEW SPC SPCBC SSB SSE SSF SSJ SSO SSR SSS SSZ T5K UHS UNMZH WH7 WUQ YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TA 7TQ 8BJ 8FD AGCQF AGRNS BNPGV DHY DON FQK JBE JG9 SSH |
| ID | FETCH-LOGICAL-c376t-3f6927b3e7e436e4389b7b0e1fa1f4b578e1f0cef4d893ee066cfbd1080f7d3d3 |
| IEDL.DBID | .~1 |
| ISSN | 0301-4207 |
| IngestDate | Fri Jul 25 05:27:08 EDT 2025 Thu Oct 09 00:16:22 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Fri Feb 23 02:39:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cascade feedforward neural network Salp swarm optimization Production factors Ore grades Life of mine Mining capital cost |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-3f6927b3e7e436e4389b7b0e1fa1f4b578e1f0cef4d893ee066cfbd1080f7d3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6122-8314 0000-0001-5953-4902 |
| PQID | 2623044267 |
| PQPubID | 2037026 |
| ParticipantIDs | proquest_journals_2623044267 crossref_citationtrail_10_1016_j_resourpol_2021_102300 crossref_primary_10_1016_j_resourpol_2021_102300 elsevier_sciencedirect_doi_10_1016_j_resourpol_2021_102300 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Resources policy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Harish, Janardhan (bib24) 2021 Kassaymeh, Abdullah, Al-Betar, Alweshah (bib28) 2021 Siddique, Tokhi (bib51) 2001 Zhang, Nguyen, Bui, Pradhan, Mai, Vu (bib60) 2021; 73 O'Hara (bib47) 1980; 73 Hirose, Yamashita, Hijiya (bib26) 1991; 4 Nourali, Osanloo (bib45) 2020; 34 Wang, Gu, Liu, Wang, Xu, Zheng (bib56) 2018; 6 Koppelaar, Koppelaar (bib31) 2016; 1 Narad, Chavan (bib39) 2016; 78 Armaghani, Hatzigeorgiou, Karamani, Skentou, Zoumpoulaki, Asteris (bib3) 2019; 17 Wang, Zhang, Xing, Sun, Chen (bib55) 2021 Darling (bib15) 2011 Franco-Sepúlveda, Del Rio-Cuervo, Pachón-Hernández (bib20) 2019; 60 Çelik, Öztürk, Arya (bib13) 2021; 182 Zhang, Zhang, Wang, Zhang, Goh (bib63) 2019; 84 Zhou, Qiu, Zhu, Armaghani, Khandelwal, Mohamad (bib66) 2020 Yasrebi, Hezarkhani, Afzal (bib58) 2017; 53 Paithankar, Chatterjee (bib48) 2019; 81 Ighravwe, Mashao (bib27) 2020; 6 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib35) 2017; 114 Zhang, Zhang, Wu, Goh, Wang (bib64) 2020 Nguyen, Bui, Choi, Lee, Armaghani (bib43) 2021; 30 Armaghani, Koopialipoor, Bahri, Hasanipanah, Tahir (bib4) 2020 Zhang, Nguyen, Bui, Nguyen-Thoi, Bui, Nguyen, Vu, Mahesh, Moayedi (bib59) 2020; 66 Yang, Nguyen, Bui, Nguyen-Thoi, Zhou, Huang (bib57) 2021; 311 Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (bib67) 2021; 97 Shapiro, Wilk (bib49) 1965; 52 Nourali, Osanloo (bib44) 2019; 62 Mahpod, Das, Maiorana, Keller, Campisi (bib34) 2021; 205 Zhang, Nguyen, Vu, Bui, Pradhan (bib61) 2021; 73 Guo, Nguyen, Vu, Bui (bib22) 2019 Ke, Nguyen, Bui, Costache (bib29) 2021 Sun, Lei (bib53) 2021; 73 Castle (bib12) 1985 Armaghani, Hasanipanah, Mohamad (bib2) 2016; 32 Arteaga, Nehring, Knights (bib5) 2018; 32 Crespo Márquez, de la Fuente Carmona, Antomarioni (bib14) 2019; 12 Nguyen, Bui (bib41) 2019; 28 Khan, Niemann-Delius (bib30) 2014 Shishvan, Sattarvand (bib50) 2015; 240 Dimitrakopoulos, Martinez, Ramazan (bib17) 2007; 43 Spitz, Trudinger (bib52) 2019 Nguyen (bib40) 2019; 1 Elkington, Durham (bib19) 2011; 47 Nguyen, Bui, Bui, Mai (bib42) 2018; 32 Lee (bib32) 2021; 209 Bertisen, Davis (bib9) 2008; 53 Mohamed, El-Sayed, Metwally, Selem (bib36) 2020; 205 Guo, Nguyen, Bui (bib21) 2021; 37 Zhou, Qiu, Armaghani, Zhang, Li, Zhu, Tarinejad (bib65) 2021; 12 Gypton (bib23) 2002; 203 O'Hara (bib46) 1980 Leng, Fan, Gao, Hu (bib33) 2020; 30 Thomas (bib54) 2001 Asad, Qureshi, Jang (bib6) 2016; 49 Bennet (bib8) 1996 Bui, Nguyen, Choi, Bui, Nguyen-Thoi, Zandi (bib11) 2019; 9 Zhang, Wu, Zhong, Li, Wang (bib62) 2021; 12 Mohammadi, Hemmati-Sarapardeh, Schaffie, Husein, Ranjbar (bib37) 2021; 205 Bottou (bib10) 1991; 91 Mousavi, Kozan, Liu (bib38) 2014 Hedayat, Davilu, Barfrosh, Sepanloo (bib25) 2009; 51 El-Fergany (bib18) 2018; 119 Abujazar, Fatihah, Ibrahim, Kabeel, Sharil (bib1) 2018; 170 Del Castillo, Dimitrakopoulos (bib16) 2016; 50 Bac, Nguyen, Thao, Duyen, Hanh, Dung, Khang, An (bib7) 2021; 282 Gypton (10.1016/j.resourpol.2021.102300_bib23) 2002; 203 Armaghani (10.1016/j.resourpol.2021.102300_bib4) 2020 Hirose (10.1016/j.resourpol.2021.102300_bib26) 1991; 4 O'Hara (10.1016/j.resourpol.2021.102300_bib47) 1980; 73 Elkington (10.1016/j.resourpol.2021.102300_bib19) 2011; 47 Zhang (10.1016/j.resourpol.2021.102300_bib62) 2021; 12 Nguyen (10.1016/j.resourpol.2021.102300_bib43) 2021; 30 Arteaga (10.1016/j.resourpol.2021.102300_bib5) 2018; 32 Zhang (10.1016/j.resourpol.2021.102300_bib59) 2020; 66 Shapiro (10.1016/j.resourpol.2021.102300_bib49) 1965; 52 Bui (10.1016/j.resourpol.2021.102300_bib11) 2019; 9 Bertisen (10.1016/j.resourpol.2021.102300_bib9) 2008; 53 Franco-Sepúlveda (10.1016/j.resourpol.2021.102300_bib20) 2019; 60 Khan (10.1016/j.resourpol.2021.102300_bib30) 2014 Sun (10.1016/j.resourpol.2021.102300_bib53) 2021; 73 Mohamed (10.1016/j.resourpol.2021.102300_bib36) 2020; 205 Dimitrakopoulos (10.1016/j.resourpol.2021.102300_bib17) 2007; 43 Kassaymeh (10.1016/j.resourpol.2021.102300_bib28) 2021 Koppelaar (10.1016/j.resourpol.2021.102300_bib31) 2016; 1 Spitz (10.1016/j.resourpol.2021.102300_bib52) 2019 Zhang (10.1016/j.resourpol.2021.102300_bib60) 2021; 73 Wang (10.1016/j.resourpol.2021.102300_bib55) 2021 Shishvan (10.1016/j.resourpol.2021.102300_bib50) 2015; 240 Asad (10.1016/j.resourpol.2021.102300_bib6) 2016; 49 Armaghani (10.1016/j.resourpol.2021.102300_bib3) 2019; 17 Mahpod (10.1016/j.resourpol.2021.102300_bib34) 2021; 205 Mousavi (10.1016/j.resourpol.2021.102300_bib38) 2014 El-Fergany (10.1016/j.resourpol.2021.102300_bib18) 2018; 119 Paithankar (10.1016/j.resourpol.2021.102300_bib48) 2019; 81 Zhou (10.1016/j.resourpol.2021.102300_bib65) 2021; 12 Darling (10.1016/j.resourpol.2021.102300_bib15) 2011 Narad (10.1016/j.resourpol.2021.102300_bib39) 2016; 78 Leng (10.1016/j.resourpol.2021.102300_bib33) 2020; 30 Bac (10.1016/j.resourpol.2021.102300_bib7) 2021; 282 Zhou (10.1016/j.resourpol.2021.102300_bib66) 2020 O'Hara (10.1016/j.resourpol.2021.102300_bib46) 1980 Nguyen (10.1016/j.resourpol.2021.102300_bib40) 2019; 1 Zhang (10.1016/j.resourpol.2021.102300_bib61) 2021; 73 Mirjalili (10.1016/j.resourpol.2021.102300_bib35) 2017; 114 Nguyen (10.1016/j.resourpol.2021.102300_bib41) 2019; 28 Lee (10.1016/j.resourpol.2021.102300_bib32) 2021; 209 Yang (10.1016/j.resourpol.2021.102300_bib57) 2021; 311 Çelik (10.1016/j.resourpol.2021.102300_bib13) 2021; 182 Armaghani (10.1016/j.resourpol.2021.102300_bib2) 2016; 32 Thomas (10.1016/j.resourpol.2021.102300_bib54) 2001 Bennet (10.1016/j.resourpol.2021.102300_bib8) 1996 Mohammadi (10.1016/j.resourpol.2021.102300_bib37) 2021; 205 Zhang (10.1016/j.resourpol.2021.102300_bib64) 2020 Crespo Márquez (10.1016/j.resourpol.2021.102300_bib14) 2019; 12 Abujazar (10.1016/j.resourpol.2021.102300_bib1) 2018; 170 Bottou (10.1016/j.resourpol.2021.102300_bib10) 1991; 91 Hedayat (10.1016/j.resourpol.2021.102300_bib25) 2009; 51 Nourali (10.1016/j.resourpol.2021.102300_bib45) 2020; 34 Yasrebi (10.1016/j.resourpol.2021.102300_bib58) 2017; 53 Wang (10.1016/j.resourpol.2021.102300_bib56) 2018; 6 Guo (10.1016/j.resourpol.2021.102300_bib21) 2021; 37 Nguyen (10.1016/j.resourpol.2021.102300_bib42) 2018; 32 Del Castillo (10.1016/j.resourpol.2021.102300_bib16) 2016; 50 Castle (10.1016/j.resourpol.2021.102300_bib12) 1985 Guo (10.1016/j.resourpol.2021.102300_bib22) 2019 Zhang (10.1016/j.resourpol.2021.102300_bib63) 2019; 84 Nourali (10.1016/j.resourpol.2021.102300_bib44) 2019; 62 Harish (10.1016/j.resourpol.2021.102300_bib24) 2021 Ighravwe (10.1016/j.resourpol.2021.102300_bib27) 2020; 6 Zhou (10.1016/j.resourpol.2021.102300_bib67) 2021; 97 Siddique (10.1016/j.resourpol.2021.102300_bib51) 2001 Ke (10.1016/j.resourpol.2021.102300_bib29) 2021 |
| References_xml | – volume: 170 start-page: 147 year: 2018 end-page: 159 ident: bib1 article-title: Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model publication-title: J. Clean. Prod. – volume: 43 start-page: 73 year: 2007 end-page: 82 ident: bib17 article-title: A maximum upside/minimum downside approach to the traditional optimization of open pit mine design publication-title: J. Min. Sci. – volume: 1 start-page: 1 year: 2016 end-page: 16 ident: bib31 article-title: The ore grade and depth influence on copper energy inputs publication-title: Biophys. Econ. Resour. Qual. – year: 1996 ident: bib8 article-title: Technical Due Diligence Requirements for Mining Project Finance, Randol at Vancouver 1996 85th Annual Global Mining Opportunities and 2nd Annual Copper Hydromet Rountable, Conference Proceedings – volume: 73 start-page: 87 year: 1980 end-page: 99 ident: bib47 article-title: Quick guide to the evaluation of ore bodies publication-title: Cim. Bull. – volume: 73 year: 2021 ident: bib60 article-title: Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms publication-title: Resour. Pol. – volume: 12 start-page: 469 year: 2021 end-page: 477 ident: bib62 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. – volume: 203 start-page: 40 year: 2002 ident: bib23 article-title: How have we done? publication-title: Eng. Min. J. – volume: 6 start-page: 228 year: 2018 ident: bib56 article-title: Production process optimization of metal mines considering economic benefit and resource efficiency using an NSGA-II model publication-title: Processes – year: 2020 ident: bib64 article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression publication-title: Undergr. Space – year: 2020 ident: bib66 article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization publication-title: Undergr. Space – volume: 30 start-page: 191 year: 2021 end-page: 207 ident: bib43 article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines publication-title: Nat. Resour. Res. – year: 2014 ident: bib30 article-title: Production scheduling of open pit mines using particle swarm optimization algorithm publication-title: Adv. Operat. Res. 2014 – volume: 73 year: 2021 ident: bib53 article-title: Research on financial early warning of mining listed companies based on BP neural network model publication-title: Resour. Pol. – volume: 51 start-page: 709 year: 2009 end-page: 718 ident: bib25 article-title: Estimation of research reactor core parameters using cascade feed forward artificial neural networks publication-title: Prog. Nucl. Energy – volume: 30 start-page: 373 year: 2020 end-page: 380 ident: bib33 article-title: Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine publication-title: Int. J. Min. Sci. Technol. – volume: 205 year: 2021 ident: bib34 article-title: Facial landmarks localization using cascaded neural networks publication-title: Comput. Vis. Image Understand. – volume: 209 year: 2021 ident: bib32 article-title: Monte Carlo simulation using support vector machine and kernel density for failure probability estimation publication-title: Reliab. Eng. Syst. Saf. – volume: 205 year: 2021 ident: bib37 article-title: Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery publication-title: J. Petrol. Sci. Eng. – volume: 73 year: 2021 ident: bib61 article-title: Forecasting monthly copper price: a comparative study of various machine learning-based methods publication-title: Resour. Pol. – volume: 52 start-page: 591 year: 1965 end-page: 611 ident: bib49 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika – volume: 60 start-page: 125 year: 2019 end-page: 133 ident: bib20 article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining publication-title: Resour. Pol. – year: 2019 ident: bib22 article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach publication-title: Resour. Pol. – volume: 32 start-page: 3939 year: 2018 end-page: 3955 ident: bib42 article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine publication-title: Vietnam. Neural Comput. Appl. – volume: 62 start-page: 527 year: 2019 end-page: 540 ident: bib44 article-title: Mining capital cost estimation using Support Vector Regression (SVR) publication-title: Resour. Pol. – volume: 91 start-page: 12 year: 1991 ident: bib10 article-title: Stochastic gradient learning in neural networks publication-title: Proc. Neuro-Nimes – volume: 119 start-page: 641 year: 2018 end-page: 648 ident: bib18 article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer publication-title: Renew. Energy – volume: 182 year: 2021 ident: bib13 article-title: Advancement of the search process of salp swarm algorithm for global optimization problems publication-title: Expert Syst. Appl. – year: 2021 ident: bib28 article-title: Salp swarm optimizer for modeling the software fault prediction problem publication-title: J. King Saud Univ. Comput. Inform. Sci. – start-page: 2673 year: 2001 end-page: 2678 ident: bib51 article-title: Training neural networks: backpropagation vs. genetic algorithms, IJCNN'01. International Joint Conference on Neural Networks publication-title: Proceedings (Cat. No. 01CH37222) – volume: 17 start-page: 924 year: 2019 end-page: 933 ident: bib3 article-title: Soft computing-based techniques for concrete beams shear strength publication-title: Procedia Struct. Integr. – volume: 53 start-page: 384 year: 2017 end-page: 393 ident: bib58 article-title: Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection publication-title: Resour. Pol. – volume: 50 start-page: 322 year: 2016 end-page: 332 ident: bib16 article-title: A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering publication-title: Resour. Pol. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib35 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software – volume: 4 start-page: 61 year: 1991 end-page: 66 ident: bib26 article-title: Back-propagation algorithm which varies the number of hidden units publication-title: Neural Network. – year: 2001 ident: bib54 article-title: Project Development Costs—Estimates versus Reality – volume: 205 start-page: 170 year: 2020 end-page: 182 ident: bib36 article-title: Grid integration of a PV system supporting an EV charging station using Salp Swarm Optimization publication-title: Sol. Energy – year: 2019 ident: bib52 article-title: Mining and the Environment: from Ore to Metal – year: 2021 ident: bib55 article-title: Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis publication-title: ISA (Instrum. Soc. Am.) Trans. – volume: 6 start-page: 634 year: 2020 end-page: 639 ident: bib27 article-title: Analysis of support vector regression kernels for energy storage efficiency prediction publication-title: Energy Rep. – volume: 311 year: 2021 ident: bib57 article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm publication-title: J. Clean. Prod. – volume: 47 start-page: 177 year: 2011 end-page: 190 ident: bib19 article-title: Integrated open pit pushback selection and production capacity optimization publication-title: J. Min. Sci. – volume: 49 start-page: 142 year: 2016 end-page: 152 ident: bib6 article-title: A review of cut-off grade policy models for open pit mining operations publication-title: Resour. Pol. – volume: 37 start-page: 421 year: 2021 end-page: 435 ident: bib21 article-title: A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET publication-title: Eng. Comput. – volume: 34 start-page: 88 year: 2020 end-page: 100 ident: bib45 article-title: A regression-tree-based model for mining capital cost estimation publication-title: Int. J. Min. Reclamat. Environ. – volume: 282 start-page: 131012 year: 2021 ident: bib7 article-title: Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm publication-title: Chemosphere – volume: 1 start-page: 1 year: 2019 end-page: 10 ident: bib40 article-title: Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam publication-title: SN Appl. Sci. – year: 2011 ident: bib15 article-title: SME Mining Engineering Handbook – volume: 78 start-page: 185 year: 2016 end-page: 191 ident: bib39 article-title: Cascade forward back-propagation neural network based group Authentication using (n,n) secret sharing scheme publication-title: Procedia Comput. Sci. – volume: 97 year: 2021 ident: bib67 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. – volume: 81 year: 2019 ident: bib48 article-title: Open pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms publication-title: Appl. Soft Comput. – year: 1980 ident: bib46 article-title: A Parametric Cost Estimation Method for Open Pit Mines – volume: 12 year: 2021 ident: bib65 article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques publication-title: Geosci. Front. – volume: 12 start-page: 3454 year: 2019 ident: bib14 article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency publication-title: Energies – volume: 84 start-page: 461 year: 2019 end-page: 471 ident: bib63 article-title: A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays publication-title: Tunn. Undergr. Space Technol. – year: 2021 ident: bib29 article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model publication-title: Nat. Resour. Res. – volume: 32 start-page: 495 year: 2018 end-page: 518 ident: bib5 article-title: The equipment utilisation versus mining rate trade-off in open pit mining publication-title: Int. J. Min. Reclamat. Environ. – volume: 66 year: 2020 ident: bib59 article-title: Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm publication-title: Resour. Pol. – start-page: 83 year: 2014 end-page: 98 ident: bib38 article-title: Integrated approach to optimize open-pit mine block sequencing publication-title: Industrial Eng. Non-Trad. Appl. Int. Settings – start-page: 1 year: 2020 end-page: 17 ident: bib4 article-title: A SVR-GWO technique to minimize flyrock distance resulting from blasting publication-title: Bull. Eng. Geol. Environ. – volume: 9 start-page: 4868 year: 2019 ident: bib11 article-title: A novel artificial intelligence technique to estimate the gross calorific value of coal based on meta-heuristic and support vector regression algorithms publication-title: Appl. Sci. – year: 2021 ident: bib24 article-title: Support vector machine in predicting epoxy glass powder mixed cement concrete publication-title: Mater. Today: Proc. – volume: 28 start-page: 893 year: 2019 end-page: 907 ident: bib41 article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest publication-title: Nat. Resour. Res. – year: 1985 ident: bib12 article-title: Feasibility studies and other pre-project estimates: how reliable are they publication-title: Proceedings of the Finance for the Minerals Industry – volume: 53 start-page: 118 year: 2008 end-page: 139 ident: bib9 article-title: Bias and error in mine project capital cost estimation publication-title: Eng. Econ. – volume: 32 start-page: 155 year: 2016 end-page: 171 ident: bib2 article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting publication-title: Eng. Comput. – volume: 240 start-page: 825 year: 2015 end-page: 836 ident: bib50 article-title: Long term production planning of open pit mines by ant colony optimization publication-title: Eur. J. Oper. Res. – volume: 205 start-page: 170 year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib36 article-title: Grid integration of a PV system supporting an EV charging station using Salp Swarm Optimization publication-title: Sol. Energy doi: 10.1016/j.solener.2020.05.013 – year: 2014 ident: 10.1016/j.resourpol.2021.102300_bib30 article-title: Production scheduling of open pit mines using particle swarm optimization algorithm publication-title: Adv. Operat. Res. 2014 doi: 10.1155/2014/208502 – volume: 34 start-page: 88 year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib45 article-title: A regression-tree-based model for mining capital cost estimation publication-title: Int. J. Min. Reclamat. Environ. doi: 10.1080/17480930.2018.1510300 – volume: 4 start-page: 61 year: 1991 ident: 10.1016/j.resourpol.2021.102300_bib26 article-title: Back-propagation algorithm which varies the number of hidden units publication-title: Neural Network. doi: 10.1016/0893-6080(91)90032-Z – volume: 205 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib37 article-title: Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108836 – volume: 91 start-page: 12 year: 1991 ident: 10.1016/j.resourpol.2021.102300_bib10 article-title: Stochastic gradient learning in neural networks publication-title: Proc. Neuro-Nimes – volume: 28 start-page: 893 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib41 article-title: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest publication-title: Nat. Resour. Res. doi: 10.1007/s11053-018-9424-1 – volume: 50 start-page: 322 year: 2016 ident: 10.1016/j.resourpol.2021.102300_bib16 article-title: A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2016.10.003 – year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib29 article-title: Estimation of ground vibration intensity induced by mine blasting using a state-of-the-art hybrid autoencoder neural network and support vector regression model publication-title: Nat. Resour. Res. doi: 10.1007/s11053-021-09890-w – volume: 6 start-page: 634 year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib27 article-title: Analysis of support vector regression kernels for energy storage efficiency prediction publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.11.171 – year: 1980 ident: 10.1016/j.resourpol.2021.102300_bib46 – volume: 49 start-page: 142 year: 2016 ident: 10.1016/j.resourpol.2021.102300_bib6 article-title: A review of cut-off grade policy models for open pit mining operations publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2016.05.005 – year: 2001 ident: 10.1016/j.resourpol.2021.102300_bib54 – volume: 32 start-page: 495 year: 2018 ident: 10.1016/j.resourpol.2021.102300_bib5 article-title: The equipment utilisation versus mining rate trade-off in open pit mining publication-title: Int. J. Min. Reclamat. Environ. doi: 10.1080/17480930.2017.1306674 – volume: 17 start-page: 924 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib3 article-title: Soft computing-based techniques for concrete beams shear strength publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2019.08.123 – volume: 209 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib32 article-title: Monte Carlo simulation using support vector machine and kernel density for failure probability estimation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107481 – volume: 311 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib57 article-title: Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127672 – start-page: 1 year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib4 article-title: A SVR-GWO technique to minimize flyrock distance resulting from blasting publication-title: Bull. Eng. Geol. Environ. – volume: 119 start-page: 641 year: 2018 ident: 10.1016/j.resourpol.2021.102300_bib18 article-title: Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.051 – volume: 52 start-page: 591 year: 1965 ident: 10.1016/j.resourpol.2021.102300_bib49 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.resourpol.2021.102300_bib35 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 43 start-page: 73 year: 2007 ident: 10.1016/j.resourpol.2021.102300_bib17 article-title: A maximum upside/minimum downside approach to the traditional optimization of open pit mine design publication-title: J. Min. Sci. doi: 10.1007/s10913-007-0009-3 – volume: 47 start-page: 177 year: 2011 ident: 10.1016/j.resourpol.2021.102300_bib19 article-title: Integrated open pit pushback selection and production capacity optimization publication-title: J. Min. Sci. doi: 10.1134/S1062739147020055 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.resourpol.2021.102300_bib31 article-title: The ore grade and depth influence on copper energy inputs publication-title: Biophys. Econ. Resour. Qual. doi: 10.1007/s41247-016-0012-x – volume: 32 start-page: 3939 year: 2018 ident: 10.1016/j.resourpol.2021.102300_bib42 article-title: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine publication-title: Vietnam. Neural Comput. Appl. doi: 10.1007/s00521-018-3717-5 – year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib28 article-title: Salp swarm optimizer for modeling the software fault prediction problem publication-title: J. King Saud Univ. Comput. Inform. Sci. – year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib22 article-title: Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach publication-title: Resour. Pol. – volume: 205 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib34 article-title: Facial landmarks localization using cascaded neural networks publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2021.103171 – volume: 60 start-page: 125 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib20 article-title: State of the art about metaheuristics and artificial neural networks applied to open pit mining publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2018.12.013 – volume: 73 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib53 article-title: Research on financial early warning of mining listed companies based on BP neural network model publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2021.102223 – year: 2011 ident: 10.1016/j.resourpol.2021.102300_bib15 – year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib52 – volume: 73 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib61 article-title: Forecasting monthly copper price: a comparative study of various machine learning-based methods publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2021.102189 – volume: 73 start-page: 87 year: 1980 ident: 10.1016/j.resourpol.2021.102300_bib47 article-title: Quick guide to the evaluation of ore bodies publication-title: Cim. Bull. – volume: 12 start-page: 469 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib62 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.007 – volume: 12 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib65 article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.09.020 – year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib24 article-title: Support vector machine in predicting epoxy glass powder mixed cement concrete publication-title: Mater. Today: Proc. – volume: 30 start-page: 191 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib43 article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09710-7 – year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib55 article-title: Sparse representation theory for support vector machine kernel function selection and its application in high-speed bearing fault diagnosis publication-title: ISA (Instrum. Soc. Am.) Trans. doi: 10.1016/j.isatra.2021.01.060 – year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib64 article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression publication-title: Undergr. Space – volume: 73 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib60 article-title: Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2021.102195 – volume: 170 start-page: 147 year: 2018 ident: 10.1016/j.resourpol.2021.102300_bib1 article-title: Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.092 – volume: 37 start-page: 421 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib21 article-title: A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET publication-title: Eng. Comput. doi: 10.1007/s00366-019-00833-x – volume: 9 start-page: 4868 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib11 article-title: A novel artificial intelligence technique to estimate the gross calorific value of coal based on meta-heuristic and support vector regression algorithms publication-title: Appl. Sci. doi: 10.3390/app9224868 – volume: 182 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib13 article-title: Advancement of the search process of salp swarm algorithm for global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115292 – year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib66 article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization publication-title: Undergr. Space – volume: 78 start-page: 185 year: 2016 ident: 10.1016/j.resourpol.2021.102300_bib39 article-title: Cascade forward back-propagation neural network based group Authentication using (n,n) secret sharing scheme publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.02.032 – volume: 32 start-page: 155 year: 2016 ident: 10.1016/j.resourpol.2021.102300_bib2 article-title: A combination of the ICA-ANN model to predict air-overpressure resulting from blasting publication-title: Eng. Comput. doi: 10.1007/s00366-015-0408-z – volume: 12 start-page: 3454 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib14 article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency publication-title: Energies doi: 10.3390/en12183454 – volume: 6 start-page: 228 year: 2018 ident: 10.1016/j.resourpol.2021.102300_bib56 article-title: Production process optimization of metal mines considering economic benefit and resource efficiency using an NSGA-II model publication-title: Processes doi: 10.3390/pr6110228 – volume: 97 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib67 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104015 – year: 1985 ident: 10.1016/j.resourpol.2021.102300_bib12 article-title: Feasibility studies and other pre-project estimates: how reliable are they – volume: 84 start-page: 461 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib63 article-title: A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2018.11.046 – volume: 282 start-page: 131012 year: 2021 ident: 10.1016/j.resourpol.2021.102300_bib7 article-title: Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131012 – volume: 203 start-page: 40 year: 2002 ident: 10.1016/j.resourpol.2021.102300_bib23 article-title: How have we done? publication-title: Eng. Min. J. – start-page: 2673 year: 2001 ident: 10.1016/j.resourpol.2021.102300_bib51 article-title: Training neural networks: backpropagation vs. genetic algorithms, IJCNN'01. International Joint Conference on Neural Networks – volume: 53 start-page: 384 year: 2017 ident: 10.1016/j.resourpol.2021.102300_bib58 article-title: Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2017.07.011 – volume: 53 start-page: 118 year: 2008 ident: 10.1016/j.resourpol.2021.102300_bib9 article-title: Bias and error in mine project capital cost estimation publication-title: Eng. Econ. doi: 10.1080/00137910802058533 – volume: 66 year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib59 article-title: Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2020.101604 – year: 1996 ident: 10.1016/j.resourpol.2021.102300_bib8 – volume: 240 start-page: 825 year: 2015 ident: 10.1016/j.resourpol.2021.102300_bib50 article-title: Long term production planning of open pit mines by ant colony optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.07.040 – volume: 81 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib48 article-title: Open pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105507 – start-page: 83 year: 2014 ident: 10.1016/j.resourpol.2021.102300_bib38 article-title: Integrated approach to optimize open-pit mine block sequencing publication-title: Industrial Eng. Non-Trad. Appl. Int. Settings – volume: 51 start-page: 709 year: 2009 ident: 10.1016/j.resourpol.2021.102300_bib25 article-title: Estimation of research reactor core parameters using cascade feed forward artificial neural networks publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2009.03.004 – volume: 30 start-page: 373 year: 2020 ident: 10.1016/j.resourpol.2021.102300_bib33 article-title: Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2020.03.010 – volume: 62 start-page: 527 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib44 article-title: Mining capital cost estimation using Support Vector Regression (SVR) publication-title: Resour. Pol. doi: 10.1016/j.resourpol.2018.10.008 – volume: 1 start-page: 1 year: 2019 ident: 10.1016/j.resourpol.2021.102300_bib40 article-title: Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam publication-title: SN Appl. Sci. |
| SSID | ssj0005786 |
| Score | 2.3362334 |
| Snippet | This paper aims at exploring the relationship between production factors, ore grades, and life of mine for forecasting mining capital cost (MCC) for open pit... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102300 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Capital costs Cascade feedforward neural network Classification Economic forecasting Forecasting Life of mine Mathematical models Mining Mining capital cost Mining industry Networks Neural networks Open pit mining Optimization Optimization models Ore grades Parameters Production Production factors Regression analysis Root-mean-square errors Salp swarm optimization Sensitivity analysis Support vector machines |
| Title | Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model |
| URI | https://dx.doi.org/10.1016/j.resourpol.2021.102300 https://www.proquest.com/docview/2623044267 |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7641 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005786 issn: 0301-4207 databaseCode: AKRWK dateStart: 19740101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq9gIHBIWKQqnmwJGwu4k33uVWrVptC1QIqLQ3yx8TtGg3iZJtj_w8fhczjrNtEVIPHCI7jp1Emcl4nLx5I8Rbn2bkpuYmIUvoEpnjJLETI5ORY3azcSG94UDhz5f5_EpeLMaLHTHrY2EYVhltf2fTg7WOLYP4NAf1cjn4FlYDKfN7BX7LBUewS8VZDN7_ugPzUJPufyUtm7n3PYxXEz6R1xX_g0hHgcaAQ93-PUP9ZavDBHT2VDyJniOcdDf3TOxguS8e3-ET3BcHp7dha9Q1vrftc_F7C7UDcvigiQg4iCgtqDveV26KCXjeQdUg_GiMR6qb0sNqWSBUBazpekCuLm_oTMu4aW7kwpmQhARc1W4gpgACA2V1g9RoWgbj8ziG6gJTaVLfsgOiJzyfemjNqoaWjq-hImu2jmGiEDL2vBBXZ6ffZ_MkZnBIHBmuTZIV-TRVNkOFMsuRM61bZYc4KsyokJZkQ9WhQ1IJ8psQyf9xhfWMeyyUz3x2IHbLqsSXAvxUGkX9aVFtJSnH1ErlTYZOjWVup-mhyHupaRfpzTnLxkr3OLafeituzeLWnbgPxXA7sO4YPh4e8qFXC31PWTXNQw8PPuoVSUd70eo054_z5C2pV_9z7tfiEe91cJsjsbtprvENOU0bexzeimOxdzL7-ukLl-cf55d_AK0XICo |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKOQCHCgoVLQXmwJGwu4k33u0NVa0WaHuhlfZm-WOCFu0mUbL02J_X38WM4ywtQuqBQxTLsZMoMx6PnTdvhPjg04zc1NwkZAldInOcJHZiZDJyzG42LqQ3HCh8fpHPruTX-Xi-JY77WBiGVUbb39n0YK1jzSB-zUG9WAy-h9VAyvxegd9y_kg8luNU8Qrs080dnIeadD8sad3Mze-BvJqwR15X_BMiHQUeA451-_cU9ZexDjPQ6XOxE11H-Ny93QuxheWueHaHUHBX7J38iVujpnHgti_F7QZrB-TxQRMhcBBhWlB3xK9cFTPwfISqQfjRGI9UNqWH5aJAqApY0fOAfF0-0JmWgdNcySdnQhYScFW7hpgDCAyU1TVSpWkZjc_9GKsLzKVJbcsOiZ7whOqhNcsaWrq-gorM2SrGiUJI2fNKXJ2eXB7PkpjCIXFkudZJVuTTVNkMFcosR061bpUd4qgwo0Jakg0Vhw5JJ8hxQiQHyBXWM_CxUD7z2Z7YLqsSXwvwU2kUtadVtZWkHVMrlTcZOjWWuZ2m-yLvpaZd5DfnNBtL3QPZfuqNuDWLW3fi3hfDTce6o_h4uMtRrxb6nrZqmoge7nzYK5KOBqPVac678-QuqYP_ufd78WR2eX6mz75cfHsjnvKVDntzKLbXzS98Sx7U2r4LI-Q3GwogKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+relation+between+production+factors%2C+ore+grades%2C+and+life+of+mine+for+forecasting+mining+capital+cost+through+a+novel+cascade+forward+neural+network-based+salp+swarm+optimization+model&rft.jtitle=Resources+policy&rft.au=Zheng%2C+Xiaolei&rft.au=Nguyen%2C+Hoang&rft.au=Bui%2C+Xuan-Nam&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4207&rft.eissn=1873-7641&rft.volume=74&rft_id=info:doi/10.1016%2Fj.resourpol.2021.102300&rft.externalDocID=S030142072100310X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4207&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4207&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4207&client=summon |