Identifying risk factors for adverse diseases using dynamic rare association rule mining

•Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining algorithm.•Evaluation of the algorithm based on transaction modification and threshold update.•Analysis of risk factors for three clinical diseases using...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 113; pp. 233 - 263
Main Authors Borah, Anindita, Nath, Bhabesh
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.12.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2018.07.010

Cover

Abstract •Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining algorithm.•Evaluation of the algorithm based on transaction modification and threshold update.•Analysis of risk factors for three clinical diseases using proposed approach.•Comparison with existing approaches using synthetic and real-life datasets. The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus becomes necessary to reduce the severity of their side effects. Computational intelligence techniques like rare association rule mining can be extensively used for the analysis of diseases. This paper introduces an efficient technique to identify the symptoms and risk factors for three adverse diseases: cardiovascular disease, hepatitis and breast cancer, in terms of rare association rules. Existing research on rare association rule mining is based on the notion that the entire data to be operated on is available at the onset of the mining process. The medical databases in practice may get modified over time due to the addition of new records or deletion of previous records. Moreover, the user may switch to a new threshold for generating the desired set of rare association rules when the database gets updated. A straightforward yet incompetent solution for generating the current set of rare association rules would be to re-execute the entire mining algorithm from scratch, for each modified bunch of data and updated threshold. The algorithm proposed in this study is capable of generating the new set of rare association rules from updated medical databases in a single database scan without re-executing the entire mining process. It can efficiently handle the cases of transaction insertion and deletion and also provides flexibility to the user to generate the new set of rare association rules when threshold is updated. Experimental analysis illustrates the significance of proposed approach over traditional approach of repeatedly mining the entire updated database.
AbstractList •Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining algorithm.•Evaluation of the algorithm based on transaction modification and threshold update.•Analysis of risk factors for three clinical diseases using proposed approach.•Comparison with existing approaches using synthetic and real-life datasets. The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus becomes necessary to reduce the severity of their side effects. Computational intelligence techniques like rare association rule mining can be extensively used for the analysis of diseases. This paper introduces an efficient technique to identify the symptoms and risk factors for three adverse diseases: cardiovascular disease, hepatitis and breast cancer, in terms of rare association rules. Existing research on rare association rule mining is based on the notion that the entire data to be operated on is available at the onset of the mining process. The medical databases in practice may get modified over time due to the addition of new records or deletion of previous records. Moreover, the user may switch to a new threshold for generating the desired set of rare association rules when the database gets updated. A straightforward yet incompetent solution for generating the current set of rare association rules would be to re-execute the entire mining algorithm from scratch, for each modified bunch of data and updated threshold. The algorithm proposed in this study is capable of generating the new set of rare association rules from updated medical databases in a single database scan without re-executing the entire mining process. It can efficiently handle the cases of transaction insertion and deletion and also provides flexibility to the user to generate the new set of rare association rules when threshold is updated. Experimental analysis illustrates the significance of proposed approach over traditional approach of repeatedly mining the entire updated database.
The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus becomes necessary to reduce the severity of their side effects. Computational intelligence techniques like rare association rule mining can be extensively used for the analysis of diseases. This paper introduces an efficient technique to identify the symptoms and risk factors for three adverse diseases: cardiovascular disease, hepatitis and breast cancer, in terms of rare association rules. Existing research on rare association rule mining is based on the notion that the entire data to be operated on is available at the onset of the mining process. The medical databases in practice may get modified over time due to the addition of new records or deletion of previous records. Moreover, the user may switch to a new threshold for generating the desired set of rare association rules when the database gets updated. A straightforward yet incompetent solution for generating the current set of rare association rules would be to re-execute the entire mining algorithm from scratch, for each modified bunch of data and updated threshold. The algorithm proposed in this study is capable of generating the new set of rare association rules from updated medical databases in a single database scan without re-executing the entire mining process. It can efficiently handle the cases of transaction insertion and deletion and also provides flexibility to the user to generate the new set of rare association rules when threshold is updated. Experimental analysis illustrates the significance of proposed approach over traditional approach of repeatedly mining the entire updated database.
Author Borah, Anindita
Nath, Bhabesh
Author_xml – sequence: 1
  givenname: Anindita
  orcidid: 0000-0001-6023-849X
  surname: Borah
  fullname: Borah, Anindita
  email: anindita01.borah@gmail.com
– sequence: 2
  givenname: Bhabesh
  orcidid: 0000-0003-3042-8457
  surname: Nath
  fullname: Nath, Bhabesh
  email: bnath@tezu.ernet.in
BookMark eNp9kEtLAzEUhYNUsK3-AVcB1zPezEyaGXAj4gsENwruQia5kdQ20dyp0n9vH65cdHU333cu50zYKKaIjJ0LKAWI2eW8RPoxZQWiLUGVIOCIjUWr6mKmunrExtBJVTRCNSdsQjQHEApAjdnbo8M4BL8O8Z3nQB_cGzukTNynzI37xkzIXSA0hMRXtOXcOpplsDybjNwQJRvMEFLkebVAvgxxA52yY28WhGd_d8pe725fbh6Kp-f7x5vrp8LWajYUlap636NqG2VlA01jGyt7abFzxmNfqxaMdOjQC-gU1jU4L6VsevCArvf1lF3scz9z-lohDXqeVjluXupKVGKmZCdgQ1V7yuZElNHrzxyWJq-1AL1dUM_1dkG9XVCD0rCT2n-SDcOu6JBNWBxWr_Yqbqp_B8yabMBo0YWMdtAuhUP6L-kQkJ4
CitedBy_id crossref_primary_10_1016_j_eswa_2019_01_006
crossref_primary_10_1007_s11192_023_04760_z
crossref_primary_10_1007_s11277_024_11605_2
crossref_primary_10_3233_JCM_194079
crossref_primary_10_1016_j_matpr_2020_12_865
crossref_primary_10_1016_j_procs_2018_10_268
crossref_primary_10_1016_j_tranpol_2021_02_006
crossref_primary_10_1061_JPEODX_0000355
crossref_primary_10_1007_s11042_022_13285_1
crossref_primary_10_1016_j_artmed_2022_102347
crossref_primary_10_1007_s42979_021_00525_8
crossref_primary_10_1016_j_eswa_2021_115898
crossref_primary_10_2196_24642
crossref_primary_10_1016_j_eswa_2019_01_082
crossref_primary_10_1016_j_eswa_2022_118617
crossref_primary_10_1007_s12652_021_03049_4
crossref_primary_10_1080_01969722_2022_2097981
crossref_primary_10_3233_JIFS_200349
crossref_primary_10_1002_qre_2942
crossref_primary_10_1515_jisys_2022_0044
crossref_primary_10_2478_cait_2019_0031
crossref_primary_10_32628_CSEIT2063111
crossref_primary_10_1109_ACCESS_2023_3308820
crossref_primary_10_4015_S1016237222500107
crossref_primary_10_1016_j_eswa_2021_115603
crossref_primary_10_1007_s12652_020_02706_4
crossref_primary_10_1007_s10044_018_0759_3
crossref_primary_10_1016_j_scs_2021_103185
crossref_primary_10_1080_00365513_2022_2148121
crossref_primary_10_1016_j_eswa_2021_115642
crossref_primary_10_1016_j_datak_2023_102237
crossref_primary_10_1109_ACCESS_2019_2897078
crossref_primary_10_1007_s12553_021_00635_6
crossref_primary_10_1038_s41598_024_51230_4
crossref_primary_10_1007_s12652_020_02611_w
crossref_primary_10_1007_s40747_020_00226_4
crossref_primary_10_1016_j_compbiomed_2021_104249
crossref_primary_10_1016_j_eswa_2021_115038
crossref_primary_10_1109_ACCESS_2024_3350737
crossref_primary_10_1111_exsy_13122
crossref_primary_10_1007_s12652_020_02816_z
crossref_primary_10_1080_20479700_2022_2099335
crossref_primary_10_1007_s11356_023_28329_8
crossref_primary_10_1016_j_neucom_2020_04_101
crossref_primary_10_1007_s42452_019_1043_x
crossref_primary_10_18267_j_aip_135
crossref_primary_10_1007_s42979_022_01043_x
crossref_primary_10_1016_j_asoc_2019_105824
crossref_primary_10_1016_j_imu_2023_101351
crossref_primary_10_1016_j_nlp_2023_100021
Cites_doi 10.1109/TITB.2006.864475
10.1016/S0933-3657(00)00092-0
10.1007/s11767-002-0073-4
10.1016/j.jksuci.2011.09.002
10.1109/TKDE.2012.28
10.1016/j.asoc.2013.03.008
10.1016/j.eswa.2012.01.117
10.1023/A:1026482903537
10.1016/j.eswa.2013.08.044
10.1109/TITB.2007.900808
10.1016/j.eswa.2011.01.014
10.1016/j.eswa.2012.08.028
10.3844/ajassp.2007.999.1008
10.1016/j.eswa.2008.02.064
10.1016/j.ijar.2004.11.006
10.1016/j.compbiomed.2005.08.003
10.1023/A:1007656703224
10.1016/j.eswa.2011.01.120
10.1016/j.asoc.2013.10.024
10.1016/j.cmpb.2011.08.003
10.1016/j.eswa.2016.01.049
10.1007/s10115-005-0226-5
10.1016/S0895-4356(96)00002-9
10.1016/j.eswa.2008.03.014
10.1371/journal.pone.0040561
10.1016/j.artmed.2004.07.002
10.1016/j.cmpb.2013.03.004
10.1016/j.procs.2015.07.391
10.15585/mmwr.mm6503a2
10.1023/B:DAMI.0000005258.31418.83
10.1016/j.eswa.2008.09.013
10.1007/s10115-006-0032-8
10.1016/j.eswa.2009.02.053
10.1016/j.eswa.2006.09.012
10.1155/2015/460189
10.3322/caac.21442
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.07.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 263
ExternalDocumentID 10_1016_j_eswa_2018_07_010
S0957417418304251
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c376t-272bfbe7847c54044c4c5b5ce9dafeb3780a5dedef1097e330df5554b0f0edbf3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Wed Sep 03 08:10:29 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Sat Oct 25 04:57:03 EDT 2025
Fri Feb 23 02:24:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rare pattern
Adverse diseases
Association rule
Rare association rule
Dynamic databases
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-272bfbe7847c54044c4c5b5ce9dafeb3780a5dedef1097e330df5554b0f0edbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3042-8457
0000-0001-6023-849X
PQID 2121675910
PQPubID 2045477
PageCount 31
ParticipantIDs proquest_journals_2121675910
crossref_primary_10_1016_j_eswa_2018_07_010
crossref_citationtrail_10_1016_j_eswa_2018_07_010
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_07_010
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Karabatak, Ince (bib0035) 2009; 36
Szathmary, Napoli, Valtchev (bib0058) 2007; 1
Ahmed, Tanbeer, Jeong, Lee, Choi (bib0004) 2012; 39
Ji, Ying, Tran, Dews, Mansour, Massanari (bib0033) 2013; 25
Lin, Hong, Lu (bib0042) 2009; 36
Wang, Guo, Xu, Wu, Sun, Ye (bib0063) 2012; 7
Xu, Yi, Wu, Chen (bib0064) 2002; 19
Liu, Hsu, Ma (bib0044) 1999
Cheung, Lee, Kao (bib0018) 1997; 6
Feldman, Netzer, Peretz, Rosenfeld (bib0026) 2015
Kaya, Uyar (bib0036) 2013; 13
Ashidi, Isa, Esugasini (bib0007) 2007; 4
Aumann, Feldman, Lipshtat, Manilla (bib0008) 1999; 12
Jin, Chen, He, Williams, Kelman, O’Keefe (bib0034) 2008; 12
Anooj (bib0006) 2012; 24
Mullins, Siadaty, Lyman, Scully, Garrett, Miller (bib0045) 2006; 36
Nahato, Harichandran, Arputharaj (bib0047) 2015; 2015
Alizadehsani, Habibi, Hosseini, Mashayekhi, Boghrati, Ghandeharioun (bib0005) 2013; 111
Koh (bib0039) 2009; 3
Delen, Walker, Kadam (bib0021) 2005; 34
Agrawal, Imieliński, Swami (bib0002) 1993; 22
Flach, Lachiche (bib0027) 2001; 42
.
Ya-Qin, Cheng, Lu (bib0065) 2009
Eberhart, Dobbins, Webber (bib0024) 1989
Çalişir, Dogantekin (bib0012) 2011; 38
Han, Pei, Yin, Mao (bib0029) 2004; 8
Troiano, Scibelli, Birtolo (bib0060) 2009
Delgado, SáNchez, MartıN-Bautista, Vila (bib0022) 2001; 21
Polat, Güneş, Arslan (bib0054) 2008; 34
Ordonez (bib0050) 2006
Nath, Bhattacharyya, Ghosh (bib0048) 2013; 3
Cheung, Zaiane (bib0019) 2003
Cheung, Han, Ng, Wong (bib0017) 1996
Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30. doi
Das, Turkoglu, Sengur (bib0020) 2009; 36
Adda, Wu, Feng (bib0001) 2007
Heron, M. P. (2017). Deaths: Leading causes for 2015.
Avci (bib0009) 2009; 36
Lee, Hong, Lin (bib0040) 2005; 40
Cao, Mamoulis, Cheung (bib0013) 2005
Chen, He, Williams, Jin (bib0016) 2004
Nahar, Imam, Tickle, Chen (bib0046) 2013; 40
Scheffer (bib0056) 2001
Leung, Khan, Li, Hoque (bib0041) 2007; 11
Chen, Yang, Liu, Liu (bib0015) 2011; 38
Yun, Lee (bib0066) 2016; 54
Agrawal, Srikant (bib0003) 1994; 1215
Zheng, Yoon, Lam (bib0067) 2014; 41
Organization (bib0052) 2017
Downs, Wallace (bib0023) 2000
Koh, Tan (bib0038) 2011; 19
Ordonez, Ezquerra, Santana (bib0051) 2006; 9
Tan, Kumar (bib0059) 2005; 321321367
Chen (bib0014) 2014; 20
Palaniappan, Awang (bib0053) 2008
Bhatt, Patel (bib0010) 2015; 57
Ezeife, Su (bib0025) 2002
Harris (bib0030) 2016; 65
Ordonez (bib0049) 2006; 10
Sartakhti, Zangooei, Mozafari (bib0055) 2012; 108
Kiran, Krishna Re (bib0037) 2009
Gulbinat (bib0028) 1997
Tsang, Koh, Dobbie (bib0061) 2011
Hong, Lin, Wu (bib0032) 2006; 3
Tu (bib0062) 1996; 49
Adda (10.1016/j.eswa.2018.07.010_bib0001) 2007
Koh (10.1016/j.eswa.2018.07.010_bib0039) 2009; 3
Chen (10.1016/j.eswa.2018.07.010_bib0016) 2004
Alizadehsani (10.1016/j.eswa.2018.07.010_bib0005) 2013; 111
Kaya (10.1016/j.eswa.2018.07.010_bib0036) 2013; 13
Eberhart (10.1016/j.eswa.2018.07.010_bib0024) 1989
Aumann (10.1016/j.eswa.2018.07.010_bib0008) 1999; 12
Ezeife (10.1016/j.eswa.2018.07.010_bib0025) 2002
Cheung (10.1016/j.eswa.2018.07.010_bib0018) 1997; 6
Çalişir (10.1016/j.eswa.2018.07.010_bib0012) 2011; 38
Harris (10.1016/j.eswa.2018.07.010_bib0030) 2016; 65
Ordonez (10.1016/j.eswa.2018.07.010_bib0050) 2006
Hong (10.1016/j.eswa.2018.07.010_bib0032) 2006; 3
Kiran (10.1016/j.eswa.2018.07.010_bib0037) 2009
Sartakhti (10.1016/j.eswa.2018.07.010_bib0055) 2012; 108
Scheffer (10.1016/j.eswa.2018.07.010_bib0056) 2001
Nahar (10.1016/j.eswa.2018.07.010_bib0046) 2013; 40
Wang (10.1016/j.eswa.2018.07.010_bib0063) 2012; 7
Cheung (10.1016/j.eswa.2018.07.010_bib0017) 1996
Han (10.1016/j.eswa.2018.07.010_bib0029) 2004; 8
Ahmed (10.1016/j.eswa.2018.07.010_bib0004) 2012; 39
Tu (10.1016/j.eswa.2018.07.010_bib0062) 1996; 49
Jin (10.1016/j.eswa.2018.07.010_bib0034) 2008; 12
Ashidi (10.1016/j.eswa.2018.07.010_bib0007) 2007; 4
Tan (10.1016/j.eswa.2018.07.010_bib0059) 2005; 321321367
Avci (10.1016/j.eswa.2018.07.010_bib0009) 2009; 36
Karabatak (10.1016/j.eswa.2018.07.010_bib0035) 2009; 36
Agrawal (10.1016/j.eswa.2018.07.010_bib0002) 1993; 22
10.1016/j.eswa.2018.07.010_bib0031
Tsang (10.1016/j.eswa.2018.07.010_bib0061) 2011
Lee (10.1016/j.eswa.2018.07.010_bib0040) 2005; 40
Xu (10.1016/j.eswa.2018.07.010_bib0064) 2002; 19
Nath (10.1016/j.eswa.2018.07.010_bib0048) 2013; 3
Ya-Qin (10.1016/j.eswa.2018.07.010_bib0065) 2009
Delgado (10.1016/j.eswa.2018.07.010_bib0022) 2001; 21
Flach (10.1016/j.eswa.2018.07.010_bib0027) 2001; 42
Leung (10.1016/j.eswa.2018.07.010_bib0041) 2007; 11
Chen (10.1016/j.eswa.2018.07.010_bib0015) 2011; 38
Palaniappan (10.1016/j.eswa.2018.07.010_bib0053) 2008
Downs (10.1016/j.eswa.2018.07.010_bib0023) 2000
Feldman (10.1016/j.eswa.2018.07.010_bib0026) 2015
Gulbinat (10.1016/j.eswa.2018.07.010_sbref0028) 1997
Anooj (10.1016/j.eswa.2018.07.010_bib0006) 2012; 24
Nahato (10.1016/j.eswa.2018.07.010_bib0047) 2015; 2015
Koh (10.1016/j.eswa.2018.07.010_bib0038) 2011; 19
Chen (10.1016/j.eswa.2018.07.010_bib0014) 2014; 20
Zheng (10.1016/j.eswa.2018.07.010_bib0067) 2014; 41
Cao (10.1016/j.eswa.2018.07.010_bib0013) 2005
Organization (10.1016/j.eswa.2018.07.010_bib0052) 2017
Agrawal (10.1016/j.eswa.2018.07.010_bib0003) 1994; 1215
Das (10.1016/j.eswa.2018.07.010_bib0020) 2009; 36
Szathmary (10.1016/j.eswa.2018.07.010_bib0058) 2007; 1
Yun (10.1016/j.eswa.2018.07.010_bib0066) 2016; 54
Ji (10.1016/j.eswa.2018.07.010_bib0033) 2013; 25
10.1016/j.eswa.2018.07.010_bib0057
Polat (10.1016/j.eswa.2018.07.010_bib0054) 2008; 34
Troiano (10.1016/j.eswa.2018.07.010_bib0060) 2009
Cheung (10.1016/j.eswa.2018.07.010_bib0019) 2003
Lin (10.1016/j.eswa.2018.07.010_bib0042) 2009; 36
Mullins (10.1016/j.eswa.2018.07.010_bib0045) 2006; 36
Liu (10.1016/j.eswa.2018.07.010_bib0044) 1999
Ordonez (10.1016/j.eswa.2018.07.010_bib0051) 2006; 9
Bhatt (10.1016/j.eswa.2018.07.010_bib0010) 2015; 57
Delen (10.1016/j.eswa.2018.07.010_bib0021) 2005; 34
Ordonez (10.1016/j.eswa.2018.07.010_bib0049) 2006; 10
References_xml – volume: 12
  start-page: 61
  year: 1999
  end-page: 73
  ident: bib0008
  article-title: Borders: An efficient algorithm for association generation in dynamic databases
  publication-title: Journal of Intelligent Information Systems
– volume: 20
  start-page: 4
  year: 2014
  end-page: 14
  ident: bib0014
  article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection
  publication-title: Applied Soft Computing
– volume: 34
  start-page: 113
  year: 2005
  end-page: 127
  ident: bib0021
  article-title: Predicting breast cancer survivability: A comparison of three data mining methods
  publication-title: Artificial Intelligence in Medicine
– start-page: 1779
  year: 2015
  end-page: 1788
  ident: bib0026
  article-title: Utilizing text mining on online medical forums to predict label change due to adverse drug reactions
  publication-title: Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining
– volume: 3
  start-page: 2167
  year: 2006
  end-page: 2172
  ident: bib0032
  article-title: A fast updated frequent pattern tree
  publication-title: 2006 ieee international conference on systems, man and cybernetics
– volume: 38
  start-page: 10705
  year: 2011
  end-page: 10708
  ident: bib0012
  article-title: A new intelligent hepatitis diagnosis system: Pca–lssvm
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 7675
  year: 2009
  end-page: 7680
  ident: bib0020
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert Systems with Applications
– start-page: 340
  year: 2009
  end-page: 347
  ident: bib0037
  article-title: An improved multiple minimum support based approach to mine rare association rules
  publication-title: Computational intelligence and data mining, 2009. cidm’09. IEEE symposium on
– start-page: 337
  year: 1999
  end-page: 341
  ident: bib0044
  article-title: Mining association rules with multiple minimum supports
  publication-title: Proceedings of the fifth acm sigkdd international conference on knowledge discovery and data mining
– volume: 13
  start-page: 3429
  year: 2013
  end-page: 3438
  ident: bib0036
  article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease
  publication-title: Applied Soft Computing
– year: 1997
  ident: bib0028
  article-title: What is the role of who as an intergovernmental organisation in: The coordination of telematics in healthcare
  publication-title: World Health Organisation. Geneva, Switzerland
– start-page: 200
  year: 2000
  ident: bib0023
  article-title: Mining association rules from a pediatric primary care decision support system
  publication-title: Proceedings of the amia symposium
– start-page: 17
  year: 2006
  end-page: 24
  ident: bib0050
  article-title: Comparing association rules and decision trees for disease prediction
  publication-title: Proceedings of the international workshop on healthcare information and knowledge management
– volume: 7
  start-page: e40561
  year: 2012
  ident: bib0063
  article-title: Exploration of the association rules mining technique for the signal detection of adverse drug events in spontaneous reporting systems
  publication-title: PloS one
– start-page: 108
  year: 2008
  end-page: 115
  ident: bib0053
  article-title: Intelligent heart disease prediction system using data mining techniques
  publication-title: Computer systems and applications, 2008. aiccsa 2008. ieee/acs international conference on
– volume: 25
  start-page: 721
  year: 2013
  end-page: 733
  ident: bib0033
  article-title: A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 111
  year: 2003
  end-page: 116
  ident: bib0019
  article-title: Incremental mining of frequent patterns without candidate generation or support constraint
  publication-title: Database engineering and applications symposium, 2003. Proceedings. Seventh international
– volume: 2015
  year: 2015
  ident: bib0047
  article-title: Knowledge mining from clinical datasets using rough sets and backpropagation neural network
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 49
  start-page: 1225
  year: 1996
  end-page: 1231
  ident: bib0062
  article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
  publication-title: Journal of Clinical Epidemiology
– start-page: 147
  year: 2002
  end-page: 160
  ident: bib0025
  article-title: Mining incremental association rules with generalized fp-tree
  publication-title: Conference of the canadian society for computational studies of intelligence
– volume: 1215
  start-page: 487
  year: 1994
  end-page: 499
  ident: bib0003
  article-title: Fast algorithms for mining association rules
  publication-title: Proceedings of the 20th international conference on very large data bases, vldb
– volume: 6
  start-page: 185
  year: 1997
  end-page: 194
  ident: bib0018
  article-title: A general incremental technique for maintaining discovered association rules
  publication-title: Dasfaa
– volume: 38
  start-page: 9014
  year: 2011
  end-page: 9022
  ident: bib0015
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Systems with Applications
– year: 2017
  ident: bib0052
  article-title: Global hepatitis report 2017
– volume: 108
  start-page: 570
  year: 2012
  end-page: 579
  ident: bib0055
  article-title: Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (svm-sa)
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 41
  start-page: 1476
  year: 2014
  end-page: 1482
  ident: bib0067
  article-title: Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 207
  year: 1993
  end-page: 216
  ident: bib0002
  article-title: Mining association rules between sets of items in large databases
  publication-title: Acm sigmod record
– volume: 19
  start-page: 403
  year: 2002
  end-page: 407
  ident: bib0064
  article-title: An incremental updating algorithm for mining association rules
  publication-title: Journal of Electronics (China)
– volume: 8
  start-page: 53
  year: 2004
  end-page: 87
  ident: bib0029
  article-title: Mining frequent patterns without candidate generation: A frequent-pattern tree approach
  publication-title: Data Mining and Knowledge Discovery
– volume: 34
  start-page: 482
  year: 2008
  end-page: 487
  ident: bib0054
  article-title: A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
  publication-title: Expert Dystems with Applications
– start-page: 424
  year: 2001
  end-page: 435
  ident: bib0056
  article-title: Finding association rules that trade support optimally against confidence
  publication-title: European conference on principles of data mining and knowledge discovery
– volume: 36
  start-page: 10618
  year: 2009
  end-page: 10626
  ident: bib0009
  article-title: A new intelligent diagnosis system for the heart valve diseases by using genetic-svm classifier
  publication-title: Expert Systems with Applications
– start-page: 73
  year: 2007
  end-page: 80
  ident: bib0001
  article-title: Rare itemset mining
  publication-title: Machine learning and applications, 2007. icmla 2007. sixth international conference on
– volume: 4
  start-page: 999
  year: 2007
  end-page: 1008
  ident: bib0007
  article-title: Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network
  publication-title: American Journal of applied sciences
– volume: 321321367
  year: 2005
  ident: bib0059
  article-title: Chapter 6. association analysis: Basic concepts and algorithms
  publication-title: Introduction to data mining
– volume: 3
  year: 2009
  ident: bib0039
  article-title: Rare association rule mining and knowledge discovery: technologies for infrequent and critical event detection: Technologies for infrequent and critical event detection
– volume: 36
  start-page: 3465
  year: 2009
  end-page: 3469
  ident: bib0035
  article-title: An expert system for detection of breast cancer based on association rules and neural network
  publication-title: Expert Systems with Applications
– start-page: 277
  year: 2011
  end-page: 288
  ident: bib0061
  article-title: Rp-tree: Rare pattern tree mining
  publication-title: Data warehousing and knowledge discovery
– volume: 39
  start-page: 7976
  year: 2012
  end-page: 7994
  ident: bib0004
  article-title: Single-pass incremental and interactive mining for weighted frequent patterns
  publication-title: Expert Systems with Applications
– start-page: 8
  year: 2005
  end-page: pp
  ident: bib0013
  article-title: Mining frequent spatio-temporal sequential patterns
  publication-title: Fifth ieee international conference on data mining (icdm’05)
– volume: 40
  start-page: 1086
  year: 2013
  end-page: 1093
  ident: bib0046
  article-title: Association rule mining to detect factors which contribute to heart disease in males and females
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 1351
  year: 2006
  end-page: 1377
  ident: bib0045
  article-title: Data mining and clinical data repositories: Insights from a 667,000 patient data set
  publication-title: Computers in Biology and Medicine
– volume: 10
  start-page: 334
  year: 2006
  end-page: 343
  ident: bib0049
  article-title: Association rule discovery with the train and test approach for heart disease prediction
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 111
  start-page: 52
  year: 2013
  end-page: 61
  ident: bib0005
  article-title: A data mining approach for diagnosis of coronary artery disease
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 21
  start-page: 241
  year: 2001
  end-page: 245
  ident: bib0022
  article-title: Mining association rules with improved semantics in medical databases
  publication-title: Artificial Intelligence in Medicine
– volume: 12
  start-page: 488
  year: 2008
  end-page: 500
  ident: bib0034
  article-title: Mining unexpected temporal associations: Applications in detecting adverse drug reactions
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– start-page: 106
  year: 1996
  end-page: 114
  ident: bib0017
  article-title: Maintenance of discovered association rules in large databases: An incremental updating technique
  publication-title: Data engineering, 1996. Proceedings of the twelfth international conference on
– volume: 9
  start-page: 1
  year: 2006
  end-page: 2
  ident: bib0051
  article-title: Constraining and summarizing association rules in medical data
  publication-title: Knowledge and Information Systems
– volume: 1
  start-page: 305
  year: 2007
  end-page: 312
  ident: bib0058
  article-title: Towards rare itemset mining
  publication-title: Tools with artificial intelligence, 2007. ictai 2007. 19th ieee international conference on
– volume: 40
  start-page: 44
  year: 2005
  end-page: 54
  ident: bib0040
  article-title: Mining association rules with multiple minimum supports using maximum constraints
  publication-title: International Journal of Approximate Reasoning
– volume: 3
  start-page: 157
  year: 2013
  end-page: 169
  ident: bib0048
  article-title: Incremental association rule mining: A survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 24
  start-page: 27
  year: 2012
  end-page: 40
  ident: bib0006
  article-title: Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 36
  start-page: 9498
  year: 2009
  end-page: 9505
  ident: bib0042
  article-title: The pre-fufp algorithm for incremental mining
  publication-title: Expert Systems with Applications
– start-page: 235
  year: 2004
  end-page: 239
  ident: bib0016
  article-title: Temporal sequence associations for rare events
  publication-title: Pacific-asia conference on knowledge discovery and data mining
– start-page: 1149
  year: 2009
  end-page: 1155
  ident: bib0060
  article-title: A fast algorithm for mining rare itemsets
  publication-title: 2009 ninth international conference on intelligent systems design and applications
– volume: 54
  start-page: 304
  year: 2016
  end-page: 327
  ident: bib0066
  article-title: Incremental mining of weighted maximal frequent itemsets from dynamic databases
  publication-title: Expert Systems with Applications
– reference: .
– start-page: 60
  year: 1989
  end-page: 68
  ident: bib0024
  article-title: Casenet: A neural network tool for eeg waveform classification
  publication-title: Computer-based medical systems, 1989. proceedings., second annual ieee symposium on
– volume: 42
  start-page: 61
  year: 2001
  end-page: 95
  ident: bib0027
  article-title: Confirmation-guided discovery of first-order rules with tertius
  publication-title: Machine Learning
– year: 2009
  ident: bib0065
  article-title: Decision tree based predictive models for breast cancer survivability on imbalanced data
  publication-title: 2009 3rd international conference on bioinformatics and biomedical engineering
– reference: Heron, M. P. (2017). Deaths: Leading causes for 2015.
– volume: 11
  start-page: 287
  year: 2007
  end-page: 311
  ident: bib0041
  article-title: Cantree: A canonical-order tree for incremental frequent-pattern mining
  publication-title: Knowledge and Information Systems
– volume: 57
  start-page: 1088
  year: 2015
  end-page: 1095
  ident: bib0010
  article-title: A novel approach for finding rare items based on multiple minimum support framework
  publication-title: Procedia Computer Science
– volume: 19
  start-page: 65
  year: 2011
  ident: bib0038
  article-title: Data mining applications in healthcare
  publication-title: Journal of Healthcare Information Management
– reference: Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30. doi:
– volume: 65
  year: 2016
  ident: bib0030
  article-title: Increases in acute hepatitis b virus infectionskentucky, tennessee, and west virginia, 2006–2013
  publication-title: MMWR. Morbidity and Mortality Weekly Report
– start-page: 424
  year: 2001
  ident: 10.1016/j.eswa.2018.07.010_bib0056
  article-title: Finding association rules that trade support optimally against confidence
– start-page: 60
  year: 1989
  ident: 10.1016/j.eswa.2018.07.010_bib0024
  article-title: Casenet: A neural network tool for eeg waveform classification
– volume: 10
  start-page: 334
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2018.07.010_bib0049
  article-title: Association rule discovery with the train and test approach for heart disease prediction
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2006.864475
– volume: 3
  start-page: 2167
  year: 2006
  ident: 10.1016/j.eswa.2018.07.010_bib0032
  article-title: A fast updated frequent pattern tree
– volume: 21
  start-page: 241
  issue: 1–3
  year: 2001
  ident: 10.1016/j.eswa.2018.07.010_bib0022
  article-title: Mining association rules with improved semantics in medical databases
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/S0933-3657(00)00092-0
– year: 1997
  ident: 10.1016/j.eswa.2018.07.010_sbref0028
  article-title: What is the role of who as an intergovernmental organisation in: The coordination of telematics in healthcare
– volume: 19
  start-page: 403
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2018.07.010_bib0064
  article-title: An incremental updating algorithm for mining association rules
  publication-title: Journal of Electronics (China)
  doi: 10.1007/s11767-002-0073-4
– volume: 24
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2018.07.010_bib0006
  article-title: Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2011.09.002
– volume: 25
  start-page: 721
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2018.07.010_bib0033
  article-title: A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.28
– volume: 13
  start-page: 3429
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2018.07.010_bib0036
  article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.03.008
– volume: 22
  start-page: 207
  year: 1993
  ident: 10.1016/j.eswa.2018.07.010_bib0002
  article-title: Mining association rules between sets of items in large databases
– volume: 39
  start-page: 7976
  issue: 9
  year: 2012
  ident: 10.1016/j.eswa.2018.07.010_bib0004
  article-title: Single-pass incremental and interactive mining for weighted frequent patterns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.117
– volume: 12
  start-page: 61
  issue: 1
  year: 1999
  ident: 10.1016/j.eswa.2018.07.010_bib0008
  article-title: Borders: An efficient algorithm for association generation in dynamic databases
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1023/A:1026482903537
– start-page: 17
  year: 2006
  ident: 10.1016/j.eswa.2018.07.010_bib0050
  article-title: Comparing association rules and decision trees for disease prediction
– start-page: 277
  year: 2011
  ident: 10.1016/j.eswa.2018.07.010_bib0061
  article-title: Rp-tree: Rare pattern tree mining
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2018.07.010_bib0067
  article-title: Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.044
– start-page: 340
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0037
  article-title: An improved multiple minimum support based approach to mine rare association rules
– volume: 12
  start-page: 488
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2018.07.010_bib0034
  article-title: Mining unexpected temporal associations: Applications in detecting adverse drug reactions
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2007.900808
– volume: 38
  start-page: 10705
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2018.07.010_bib0012
  article-title: A new intelligent hepatitis diagnosis system: Pca–lssvm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.014
– ident: 10.1016/j.eswa.2018.07.010_bib0031
– volume: 40
  start-page: 1086
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2018.07.010_bib0046
  article-title: Association rule mining to detect factors which contribute to heart disease in males and females
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.08.028
– volume: 4
  start-page: 999
  issue: 12
  year: 2007
  ident: 10.1016/j.eswa.2018.07.010_bib0007
  article-title: Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network
  publication-title: American Journal of applied sciences
  doi: 10.3844/ajassp.2007.999.1008
– start-page: 1149
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0060
  article-title: A fast algorithm for mining rare itemsets
– volume: 36
  start-page: 3465
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0035
  article-title: An expert system for detection of breast cancer based on association rules and neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.064
– start-page: 337
  year: 1999
  ident: 10.1016/j.eswa.2018.07.010_bib0044
  article-title: Mining association rules with multiple minimum supports
– volume: 40
  start-page: 44
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2018.07.010_bib0040
  article-title: Mining association rules with multiple minimum supports using maximum constraints
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2004.11.006
– start-page: 106
  year: 1996
  ident: 10.1016/j.eswa.2018.07.010_bib0017
  article-title: Maintenance of discovered association rules in large databases: An incremental updating technique
– volume: 36
  start-page: 1351
  issue: 12
  year: 2006
  ident: 10.1016/j.eswa.2018.07.010_bib0045
  article-title: Data mining and clinical data repositories: Insights from a 667,000 patient data set
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2005.08.003
– volume: 42
  start-page: 61
  issue: 1–2
  year: 2001
  ident: 10.1016/j.eswa.2018.07.010_bib0027
  article-title: Confirmation-guided discovery of first-order rules with tertius
  publication-title: Machine Learning
  doi: 10.1023/A:1007656703224
– volume: 1
  start-page: 305
  year: 2007
  ident: 10.1016/j.eswa.2018.07.010_bib0058
  article-title: Towards rare itemset mining
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2018.07.010_bib0015
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.120
– volume: 20
  start-page: 4
  year: 2014
  ident: 10.1016/j.eswa.2018.07.010_bib0014
  article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.10.024
– year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0065
  article-title: Decision tree based predictive models for breast cancer survivability on imbalanced data
– volume: 1215
  start-page: 487
  year: 1994
  ident: 10.1016/j.eswa.2018.07.010_bib0003
  article-title: Fast algorithms for mining association rules
– volume: 19
  start-page: 65
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2018.07.010_bib0038
  article-title: Data mining applications in healthcare
  publication-title: Journal of Healthcare Information Management
– volume: 108
  start-page: 570
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2018.07.010_bib0055
  article-title: Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (svm-sa)
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.08.003
– volume: 54
  start-page: 304
  year: 2016
  ident: 10.1016/j.eswa.2018.07.010_bib0066
  article-title: Incremental mining of weighted maximal frequent itemsets from dynamic databases
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.049
– volume: 9
  start-page: 1
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2018.07.010_bib0051
  article-title: Constraining and summarizing association rules in medical data
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-005-0226-5
– volume: 49
  start-page: 1225
  issue: 11
  year: 1996
  ident: 10.1016/j.eswa.2018.07.010_bib0062
  article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/S0895-4356(96)00002-9
– volume: 36
  start-page: 9498
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0042
  article-title: The pre-fufp algorithm for incremental mining
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.03.014
– volume: 7
  start-page: e40561
  issue: 7
  year: 2012
  ident: 10.1016/j.eswa.2018.07.010_bib0063
  article-title: Exploration of the association rules mining technique for the signal detection of adverse drug events in spontaneous reporting systems
  publication-title: PloS one
  doi: 10.1371/journal.pone.0040561
– volume: 34
  start-page: 113
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2018.07.010_bib0021
  article-title: Predicting breast cancer survivability: A comparison of three data mining methods
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2004.07.002
– start-page: 8
  year: 2005
  ident: 10.1016/j.eswa.2018.07.010_bib0013
  article-title: Mining frequent spatio-temporal sequential patterns
– volume: 6
  start-page: 185
  year: 1997
  ident: 10.1016/j.eswa.2018.07.010_bib0018
  article-title: A general incremental technique for maintaining discovered association rules
– volume: 3
  start-page: 157
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2018.07.010_bib0048
  article-title: Incremental association rule mining: A survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– start-page: 1779
  year: 2015
  ident: 10.1016/j.eswa.2018.07.010_bib0026
  article-title: Utilizing text mining on online medical forums to predict label change due to adverse drug reactions
– volume: 111
  start-page: 52
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.07.010_bib0005
  article-title: A data mining approach for diagnosis of coronary artery disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2013.03.004
– start-page: 200
  year: 2000
  ident: 10.1016/j.eswa.2018.07.010_bib0023
  article-title: Mining association rules from a pediatric primary care decision support system
– start-page: 108
  year: 2008
  ident: 10.1016/j.eswa.2018.07.010_bib0053
  article-title: Intelligent heart disease prediction system using data mining techniques
– volume: 57
  start-page: 1088
  year: 2015
  ident: 10.1016/j.eswa.2018.07.010_bib0010
  article-title: A novel approach for finding rare items based on multiple minimum support framework
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.07.391
– volume: 65
  year: 2016
  ident: 10.1016/j.eswa.2018.07.010_bib0030
  article-title: Increases in acute hepatitis b virus infectionskentucky, tennessee, and west virginia, 2006–2013
  publication-title: MMWR. Morbidity and Mortality Weekly Report
  doi: 10.15585/mmwr.mm6503a2
– volume: 8
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2018.07.010_bib0029
  article-title: Mining frequent patterns without candidate generation: A frequent-pattern tree approach
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/B:DAMI.0000005258.31418.83
– start-page: 73
  year: 2007
  ident: 10.1016/j.eswa.2018.07.010_bib0001
  article-title: Rare itemset mining
– volume: 36
  start-page: 7675
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0020
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.09.013
– start-page: 235
  year: 2004
  ident: 10.1016/j.eswa.2018.07.010_bib0016
  article-title: Temporal sequence associations for rare events
– volume: 11
  start-page: 287
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2018.07.010_bib0041
  article-title: Cantree: A canonical-order tree for incremental frequent-pattern mining
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-006-0032-8
– volume: 3
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0039
– start-page: 111
  year: 2003
  ident: 10.1016/j.eswa.2018.07.010_bib0019
  article-title: Incremental mining of frequent patterns without candidate generation or support constraint
– volume: 36
  start-page: 10618
  issue: 7
  year: 2009
  ident: 10.1016/j.eswa.2018.07.010_bib0009
  article-title: A new intelligent diagnosis system for the heart valve diseases by using genetic-svm classifier
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.053
– volume: 34
  start-page: 482
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2018.07.010_bib0054
  article-title: A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
  publication-title: Expert Dystems with Applications
  doi: 10.1016/j.eswa.2006.09.012
– volume: 2015
  year: 2015
  ident: 10.1016/j.eswa.2018.07.010_bib0047
  article-title: Knowledge mining from clinical datasets using rough sets and backpropagation neural network
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2015/460189
– year: 2017
  ident: 10.1016/j.eswa.2018.07.010_bib0052
– start-page: 147
  year: 2002
  ident: 10.1016/j.eswa.2018.07.010_bib0025
  article-title: Mining incremental association rules with generalized fp-tree
– volume: 321321367
  year: 2005
  ident: 10.1016/j.eswa.2018.07.010_bib0059
  article-title: Chapter 6. association analysis: Basic concepts and algorithms
– ident: 10.1016/j.eswa.2018.07.010_bib0057
  doi: 10.3322/caac.21442
SSID ssj0017007
Score 2.4905608
Snippet •Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining...
The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 233
SubjectTerms Adverse diseases
Algorithms
Association rule
Data mining
Decision making
Deletion
Disease
Dynamic databases
Hepatitis
Mortality
Neural networks
Rare association rule
Rare pattern
Risk analysis
Risk factors
Side effects
Title Identifying risk factors for adverse diseases using dynamic rare association rule mining
URI https://dx.doi.org/10.1016/j.eswa.2018.07.010
https://www.proquest.com/docview/2121675910
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4bUSR9ODNTDbWbuxIiAQ1clESbs36ZTCIhEG8-bf7XtdhNIaDxy1t07z2faW_936EXEVJJ7QSFMnaLA1YrkLQOYfckUrhLZGOi-BxlAzH7H7CJzXSr2phEFbpbX9p05219n_aXprtxXTafoLgANwhdl_BlNyVUTOWIovBzecG5oHt59Ky3x5sBUb7wpkS42WKD-w9FHVdA0-sov3bOf0y0873DA7Ing8aaa_c1yGpmfkR2a8IGajXz2MyKctuXekSRdA49XQ6FEJTmiP3cmGof5MpKGLeX6guOekpZM2G5t-nRZfrmaFvjkDihIwHt8_9YeCpEwIFFmMVdNKOtNKk4HsUxGSMKaa45MpkOreQP6fdMOfaaGPxBdrEcagth8hChjY0Wtr4lNTn73NzRqhOIq1znrE4ySG2ijPZYQksaXUCE5hukKiSmVC-rzjSW8xEBSB7FShngXIWYSpAzg1yvZmzKLtqbB3Nq6MQP-6GALO_dV6zOjfhNbMQ4KojSJIgSjr_57IXZBe_ENMS8Sapr5ZrcwmRyUq23NVrkZ3e3cNw9AWAWuNc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHvTi24ii9uDNrOyj3WWPhkhQgYuQcGu2L4NBJDzizd_uzG4XozEcvO62TTPtvNJv5iPkOohD30pQJGvTxGOZ8kHncuSOVApvicy5CHr9uDNkjyM-qpBWWQuDsEpn-wubnltr96XhpNmYjceNZwgOwB1i9xVMybGMeovxMMEM7PZzjfPA_nNJ0XAP9gLDXeVMAfIyiw9sPhQ08w6eWEb7t3f6Zadz59PeJ7suaqR3xcYOSMVMD8leychAnYIekVFRd5vXLlFEjVPHp0MhNqUZki8vDHWPMguKoPcXqgtSegpps6HZ93HR-Wpi6FvOIHFMhu37QavjOe4ET4HJWHphEkorTQLOR0FQxphiikuuTKozCwl00vQzro02Fp-gTRT52nIILaRvfaOljU5Idfo-NaeE6jjQOuMpi-IMgqsolSGLYUmrY5jAdI0EpcyEco3Fkd9iIkoE2atAOQuUs_ATAXKukZv1nFnRVmPjaF4ehfhxOQTY_Y3z6uW5CaeaCwG-OoAsCcKks38ue0W2O4NeV3Qf-k_nZAf_IMAl4HVSXc5X5gLClKW8zK_hF9hS5PE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+risk+factors+for+adverse+diseases+using+dynamic+rare+association+rule+mining&rft.jtitle=Expert+systems+with+applications&rft.au=Borah%2C+Anindita&rft.au=Nath%2C+Bhabesh&rft.date=2018-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=113&rft.spage=233&rft.epage=263&rft_id=info:doi/10.1016%2Fj.eswa.2018.07.010&rft.externalDocID=S0957417418304251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon