Identifying risk factors for adverse diseases using dynamic rare association rule mining
•Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining algorithm.•Evaluation of the algorithm based on transaction modification and threshold update.•Analysis of risk factors for three clinical diseases using...
Saved in:
| Published in | Expert systems with applications Vol. 113; pp. 233 - 263 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
15.12.2018
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2018.07.010 |
Cover
| Abstract | •Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining algorithm.•Evaluation of the algorithm based on transaction modification and threshold update.•Analysis of risk factors for three clinical diseases using proposed approach.•Comparison with existing approaches using synthetic and real-life datasets.
The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus becomes necessary to reduce the severity of their side effects. Computational intelligence techniques like rare association rule mining can be extensively used for the analysis of diseases. This paper introduces an efficient technique to identify the symptoms and risk factors for three adverse diseases: cardiovascular disease, hepatitis and breast cancer, in terms of rare association rules. Existing research on rare association rule mining is based on the notion that the entire data to be operated on is available at the onset of the mining process. The medical databases in practice may get modified over time due to the addition of new records or deletion of previous records. Moreover, the user may switch to a new threshold for generating the desired set of rare association rules when the database gets updated. A straightforward yet incompetent solution for generating the current set of rare association rules would be to re-execute the entire mining algorithm from scratch, for each modified bunch of data and updated threshold. The algorithm proposed in this study is capable of generating the new set of rare association rules from updated medical databases in a single database scan without re-executing the entire mining process. It can efficiently handle the cases of transaction insertion and deletion and also provides flexibility to the user to generate the new set of rare association rules when threshold is updated. Experimental analysis illustrates the significance of proposed approach over traditional approach of repeatedly mining the entire updated database. |
|---|---|
| AbstractList | •Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining algorithm.•Evaluation of the algorithm based on transaction modification and threshold update.•Analysis of risk factors for three clinical diseases using proposed approach.•Comparison with existing approaches using synthetic and real-life datasets.
The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus becomes necessary to reduce the severity of their side effects. Computational intelligence techniques like rare association rule mining can be extensively used for the analysis of diseases. This paper introduces an efficient technique to identify the symptoms and risk factors for three adverse diseases: cardiovascular disease, hepatitis and breast cancer, in terms of rare association rules. Existing research on rare association rule mining is based on the notion that the entire data to be operated on is available at the onset of the mining process. The medical databases in practice may get modified over time due to the addition of new records or deletion of previous records. Moreover, the user may switch to a new threshold for generating the desired set of rare association rules when the database gets updated. A straightforward yet incompetent solution for generating the current set of rare association rules would be to re-execute the entire mining algorithm from scratch, for each modified bunch of data and updated threshold. The algorithm proposed in this study is capable of generating the new set of rare association rules from updated medical databases in a single database scan without re-executing the entire mining process. It can efficiently handle the cases of transaction insertion and deletion and also provides flexibility to the user to generate the new set of rare association rules when threshold is updated. Experimental analysis illustrates the significance of proposed approach over traditional approach of repeatedly mining the entire updated database. The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus becomes necessary to reduce the severity of their side effects. Computational intelligence techniques like rare association rule mining can be extensively used for the analysis of diseases. This paper introduces an efficient technique to identify the symptoms and risk factors for three adverse diseases: cardiovascular disease, hepatitis and breast cancer, in terms of rare association rules. Existing research on rare association rule mining is based on the notion that the entire data to be operated on is available at the onset of the mining process. The medical databases in practice may get modified over time due to the addition of new records or deletion of previous records. Moreover, the user may switch to a new threshold for generating the desired set of rare association rules when the database gets updated. A straightforward yet incompetent solution for generating the current set of rare association rules would be to re-execute the entire mining algorithm from scratch, for each modified bunch of data and updated threshold. The algorithm proposed in this study is capable of generating the new set of rare association rules from updated medical databases in a single database scan without re-executing the entire mining process. It can efficiently handle the cases of transaction insertion and deletion and also provides flexibility to the user to generate the new set of rare association rules when threshold is updated. Experimental analysis illustrates the significance of proposed approach over traditional approach of repeatedly mining the entire updated database. |
| Author | Borah, Anindita Nath, Bhabesh |
| Author_xml | – sequence: 1 givenname: Anindita orcidid: 0000-0001-6023-849X surname: Borah fullname: Borah, Anindita email: anindita01.borah@gmail.com – sequence: 2 givenname: Bhabesh orcidid: 0000-0003-3042-8457 surname: Nath fullname: Nath, Bhabesh email: bnath@tezu.ernet.in |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcB1zPezEyaGXAj4gsENwruQia5kdQ20dyp0n9vH65cdHU333cu50zYKKaIjJ0LKAWI2eW8RPoxZQWiLUGVIOCIjUWr6mKmunrExtBJVTRCNSdsQjQHEApAjdnbo8M4BL8O8Z3nQB_cGzukTNynzI37xkzIXSA0hMRXtOXcOpplsDybjNwQJRvMEFLkebVAvgxxA52yY28WhGd_d8pe725fbh6Kp-f7x5vrp8LWajYUlap636NqG2VlA01jGyt7abFzxmNfqxaMdOjQC-gU1jU4L6VsevCArvf1lF3scz9z-lohDXqeVjluXupKVGKmZCdgQ1V7yuZElNHrzxyWJq-1AL1dUM_1dkG9XVCD0rCT2n-SDcOu6JBNWBxWr_Yqbqp_B8yabMBo0YWMdtAuhUP6L-kQkJ4 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2019_01_006 crossref_primary_10_1007_s11192_023_04760_z crossref_primary_10_1007_s11277_024_11605_2 crossref_primary_10_3233_JCM_194079 crossref_primary_10_1016_j_matpr_2020_12_865 crossref_primary_10_1016_j_procs_2018_10_268 crossref_primary_10_1016_j_tranpol_2021_02_006 crossref_primary_10_1061_JPEODX_0000355 crossref_primary_10_1007_s11042_022_13285_1 crossref_primary_10_1016_j_artmed_2022_102347 crossref_primary_10_1007_s42979_021_00525_8 crossref_primary_10_1016_j_eswa_2021_115898 crossref_primary_10_2196_24642 crossref_primary_10_1016_j_eswa_2019_01_082 crossref_primary_10_1016_j_eswa_2022_118617 crossref_primary_10_1007_s12652_021_03049_4 crossref_primary_10_1080_01969722_2022_2097981 crossref_primary_10_3233_JIFS_200349 crossref_primary_10_1002_qre_2942 crossref_primary_10_1515_jisys_2022_0044 crossref_primary_10_2478_cait_2019_0031 crossref_primary_10_32628_CSEIT2063111 crossref_primary_10_1109_ACCESS_2023_3308820 crossref_primary_10_4015_S1016237222500107 crossref_primary_10_1016_j_eswa_2021_115603 crossref_primary_10_1007_s12652_020_02706_4 crossref_primary_10_1007_s10044_018_0759_3 crossref_primary_10_1016_j_scs_2021_103185 crossref_primary_10_1080_00365513_2022_2148121 crossref_primary_10_1016_j_eswa_2021_115642 crossref_primary_10_1016_j_datak_2023_102237 crossref_primary_10_1109_ACCESS_2019_2897078 crossref_primary_10_1007_s12553_021_00635_6 crossref_primary_10_1038_s41598_024_51230_4 crossref_primary_10_1007_s12652_020_02611_w crossref_primary_10_1007_s40747_020_00226_4 crossref_primary_10_1016_j_compbiomed_2021_104249 crossref_primary_10_1016_j_eswa_2021_115038 crossref_primary_10_1109_ACCESS_2024_3350737 crossref_primary_10_1111_exsy_13122 crossref_primary_10_1007_s12652_020_02816_z crossref_primary_10_1080_20479700_2022_2099335 crossref_primary_10_1007_s11356_023_28329_8 crossref_primary_10_1016_j_neucom_2020_04_101 crossref_primary_10_1007_s42452_019_1043_x crossref_primary_10_18267_j_aip_135 crossref_primary_10_1007_s42979_022_01043_x crossref_primary_10_1016_j_asoc_2019_105824 crossref_primary_10_1016_j_imu_2023_101351 crossref_primary_10_1016_j_nlp_2023_100021 |
| Cites_doi | 10.1109/TITB.2006.864475 10.1016/S0933-3657(00)00092-0 10.1007/s11767-002-0073-4 10.1016/j.jksuci.2011.09.002 10.1109/TKDE.2012.28 10.1016/j.asoc.2013.03.008 10.1016/j.eswa.2012.01.117 10.1023/A:1026482903537 10.1016/j.eswa.2013.08.044 10.1109/TITB.2007.900808 10.1016/j.eswa.2011.01.014 10.1016/j.eswa.2012.08.028 10.3844/ajassp.2007.999.1008 10.1016/j.eswa.2008.02.064 10.1016/j.ijar.2004.11.006 10.1016/j.compbiomed.2005.08.003 10.1023/A:1007656703224 10.1016/j.eswa.2011.01.120 10.1016/j.asoc.2013.10.024 10.1016/j.cmpb.2011.08.003 10.1016/j.eswa.2016.01.049 10.1007/s10115-005-0226-5 10.1016/S0895-4356(96)00002-9 10.1016/j.eswa.2008.03.014 10.1371/journal.pone.0040561 10.1016/j.artmed.2004.07.002 10.1016/j.cmpb.2013.03.004 10.1016/j.procs.2015.07.391 10.15585/mmwr.mm6503a2 10.1023/B:DAMI.0000005258.31418.83 10.1016/j.eswa.2008.09.013 10.1007/s10115-006-0032-8 10.1016/j.eswa.2009.02.053 10.1016/j.eswa.2006.09.012 10.1155/2015/460189 10.3322/caac.21442 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 15, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2018 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2018.07.010 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 263 |
| ExternalDocumentID | 10_1016_j_eswa_2018_07_010 S0957417418304251 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c376t-272bfbe7847c54044c4c5b5ce9dafeb3780a5dedef1097e330df5554b0f0edbf3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Wed Sep 03 08:10:29 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Sat Oct 25 04:57:03 EDT 2025 Fri Feb 23 02:24:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Rare pattern Adverse diseases Association rule Rare association rule Dynamic databases |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-272bfbe7847c54044c4c5b5ce9dafeb3780a5dedef1097e330df5554b0f0edbf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3042-8457 0000-0001-6023-849X |
| PQID | 2121675910 |
| PQPubID | 2045477 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_2121675910 crossref_primary_10_1016_j_eswa_2018_07_010 crossref_citationtrail_10_1016_j_eswa_2018_07_010 elsevier_sciencedirect_doi_10_1016_j_eswa_2018_07_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-15 |
| PublicationDateYYYYMMDD | 2018-12-15 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Karabatak, Ince (bib0035) 2009; 36 Szathmary, Napoli, Valtchev (bib0058) 2007; 1 Ahmed, Tanbeer, Jeong, Lee, Choi (bib0004) 2012; 39 Ji, Ying, Tran, Dews, Mansour, Massanari (bib0033) 2013; 25 Lin, Hong, Lu (bib0042) 2009; 36 Wang, Guo, Xu, Wu, Sun, Ye (bib0063) 2012; 7 Xu, Yi, Wu, Chen (bib0064) 2002; 19 Liu, Hsu, Ma (bib0044) 1999 Cheung, Lee, Kao (bib0018) 1997; 6 Feldman, Netzer, Peretz, Rosenfeld (bib0026) 2015 Kaya, Uyar (bib0036) 2013; 13 Ashidi, Isa, Esugasini (bib0007) 2007; 4 Aumann, Feldman, Lipshtat, Manilla (bib0008) 1999; 12 Jin, Chen, He, Williams, Kelman, O’Keefe (bib0034) 2008; 12 Anooj (bib0006) 2012; 24 Mullins, Siadaty, Lyman, Scully, Garrett, Miller (bib0045) 2006; 36 Nahato, Harichandran, Arputharaj (bib0047) 2015; 2015 Alizadehsani, Habibi, Hosseini, Mashayekhi, Boghrati, Ghandeharioun (bib0005) 2013; 111 Koh (bib0039) 2009; 3 Delen, Walker, Kadam (bib0021) 2005; 34 Agrawal, Imieliński, Swami (bib0002) 1993; 22 Flach, Lachiche (bib0027) 2001; 42 . Ya-Qin, Cheng, Lu (bib0065) 2009 Eberhart, Dobbins, Webber (bib0024) 1989 Çalişir, Dogantekin (bib0012) 2011; 38 Han, Pei, Yin, Mao (bib0029) 2004; 8 Troiano, Scibelli, Birtolo (bib0060) 2009 Delgado, SáNchez, MartıN-Bautista, Vila (bib0022) 2001; 21 Polat, Güneş, Arslan (bib0054) 2008; 34 Ordonez (bib0050) 2006 Nath, Bhattacharyya, Ghosh (bib0048) 2013; 3 Cheung, Zaiane (bib0019) 2003 Cheung, Han, Ng, Wong (bib0017) 1996 Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30. doi Das, Turkoglu, Sengur (bib0020) 2009; 36 Adda, Wu, Feng (bib0001) 2007 Heron, M. P. (2017). Deaths: Leading causes for 2015. Avci (bib0009) 2009; 36 Lee, Hong, Lin (bib0040) 2005; 40 Cao, Mamoulis, Cheung (bib0013) 2005 Chen, He, Williams, Jin (bib0016) 2004 Nahar, Imam, Tickle, Chen (bib0046) 2013; 40 Scheffer (bib0056) 2001 Leung, Khan, Li, Hoque (bib0041) 2007; 11 Chen, Yang, Liu, Liu (bib0015) 2011; 38 Yun, Lee (bib0066) 2016; 54 Agrawal, Srikant (bib0003) 1994; 1215 Zheng, Yoon, Lam (bib0067) 2014; 41 Organization (bib0052) 2017 Downs, Wallace (bib0023) 2000 Koh, Tan (bib0038) 2011; 19 Ordonez, Ezquerra, Santana (bib0051) 2006; 9 Tan, Kumar (bib0059) 2005; 321321367 Chen (bib0014) 2014; 20 Palaniappan, Awang (bib0053) 2008 Bhatt, Patel (bib0010) 2015; 57 Ezeife, Su (bib0025) 2002 Harris (bib0030) 2016; 65 Ordonez (bib0049) 2006; 10 Sartakhti, Zangooei, Mozafari (bib0055) 2012; 108 Kiran, Krishna Re (bib0037) 2009 Gulbinat (bib0028) 1997 Tsang, Koh, Dobbie (bib0061) 2011 Hong, Lin, Wu (bib0032) 2006; 3 Tu (bib0062) 1996; 49 Adda (10.1016/j.eswa.2018.07.010_bib0001) 2007 Koh (10.1016/j.eswa.2018.07.010_bib0039) 2009; 3 Chen (10.1016/j.eswa.2018.07.010_bib0016) 2004 Alizadehsani (10.1016/j.eswa.2018.07.010_bib0005) 2013; 111 Kaya (10.1016/j.eswa.2018.07.010_bib0036) 2013; 13 Eberhart (10.1016/j.eswa.2018.07.010_bib0024) 1989 Aumann (10.1016/j.eswa.2018.07.010_bib0008) 1999; 12 Ezeife (10.1016/j.eswa.2018.07.010_bib0025) 2002 Cheung (10.1016/j.eswa.2018.07.010_bib0018) 1997; 6 Çalişir (10.1016/j.eswa.2018.07.010_bib0012) 2011; 38 Harris (10.1016/j.eswa.2018.07.010_bib0030) 2016; 65 Ordonez (10.1016/j.eswa.2018.07.010_bib0050) 2006 Hong (10.1016/j.eswa.2018.07.010_bib0032) 2006; 3 Kiran (10.1016/j.eswa.2018.07.010_bib0037) 2009 Sartakhti (10.1016/j.eswa.2018.07.010_bib0055) 2012; 108 Scheffer (10.1016/j.eswa.2018.07.010_bib0056) 2001 Nahar (10.1016/j.eswa.2018.07.010_bib0046) 2013; 40 Wang (10.1016/j.eswa.2018.07.010_bib0063) 2012; 7 Cheung (10.1016/j.eswa.2018.07.010_bib0017) 1996 Han (10.1016/j.eswa.2018.07.010_bib0029) 2004; 8 Ahmed (10.1016/j.eswa.2018.07.010_bib0004) 2012; 39 Tu (10.1016/j.eswa.2018.07.010_bib0062) 1996; 49 Jin (10.1016/j.eswa.2018.07.010_bib0034) 2008; 12 Ashidi (10.1016/j.eswa.2018.07.010_bib0007) 2007; 4 Tan (10.1016/j.eswa.2018.07.010_bib0059) 2005; 321321367 Avci (10.1016/j.eswa.2018.07.010_bib0009) 2009; 36 Karabatak (10.1016/j.eswa.2018.07.010_bib0035) 2009; 36 Agrawal (10.1016/j.eswa.2018.07.010_bib0002) 1993; 22 10.1016/j.eswa.2018.07.010_bib0031 Tsang (10.1016/j.eswa.2018.07.010_bib0061) 2011 Lee (10.1016/j.eswa.2018.07.010_bib0040) 2005; 40 Xu (10.1016/j.eswa.2018.07.010_bib0064) 2002; 19 Nath (10.1016/j.eswa.2018.07.010_bib0048) 2013; 3 Ya-Qin (10.1016/j.eswa.2018.07.010_bib0065) 2009 Delgado (10.1016/j.eswa.2018.07.010_bib0022) 2001; 21 Flach (10.1016/j.eswa.2018.07.010_bib0027) 2001; 42 Leung (10.1016/j.eswa.2018.07.010_bib0041) 2007; 11 Chen (10.1016/j.eswa.2018.07.010_bib0015) 2011; 38 Palaniappan (10.1016/j.eswa.2018.07.010_bib0053) 2008 Downs (10.1016/j.eswa.2018.07.010_bib0023) 2000 Feldman (10.1016/j.eswa.2018.07.010_bib0026) 2015 Gulbinat (10.1016/j.eswa.2018.07.010_sbref0028) 1997 Anooj (10.1016/j.eswa.2018.07.010_bib0006) 2012; 24 Nahato (10.1016/j.eswa.2018.07.010_bib0047) 2015; 2015 Koh (10.1016/j.eswa.2018.07.010_bib0038) 2011; 19 Chen (10.1016/j.eswa.2018.07.010_bib0014) 2014; 20 Zheng (10.1016/j.eswa.2018.07.010_bib0067) 2014; 41 Cao (10.1016/j.eswa.2018.07.010_bib0013) 2005 Organization (10.1016/j.eswa.2018.07.010_bib0052) 2017 Agrawal (10.1016/j.eswa.2018.07.010_bib0003) 1994; 1215 Das (10.1016/j.eswa.2018.07.010_bib0020) 2009; 36 Szathmary (10.1016/j.eswa.2018.07.010_bib0058) 2007; 1 Yun (10.1016/j.eswa.2018.07.010_bib0066) 2016; 54 Ji (10.1016/j.eswa.2018.07.010_bib0033) 2013; 25 10.1016/j.eswa.2018.07.010_bib0057 Polat (10.1016/j.eswa.2018.07.010_bib0054) 2008; 34 Troiano (10.1016/j.eswa.2018.07.010_bib0060) 2009 Cheung (10.1016/j.eswa.2018.07.010_bib0019) 2003 Lin (10.1016/j.eswa.2018.07.010_bib0042) 2009; 36 Mullins (10.1016/j.eswa.2018.07.010_bib0045) 2006; 36 Liu (10.1016/j.eswa.2018.07.010_bib0044) 1999 Ordonez (10.1016/j.eswa.2018.07.010_bib0051) 2006; 9 Bhatt (10.1016/j.eswa.2018.07.010_bib0010) 2015; 57 Delen (10.1016/j.eswa.2018.07.010_bib0021) 2005; 34 Ordonez (10.1016/j.eswa.2018.07.010_bib0049) 2006; 10 |
| References_xml | – volume: 12 start-page: 61 year: 1999 end-page: 73 ident: bib0008 article-title: Borders: An efficient algorithm for association generation in dynamic databases publication-title: Journal of Intelligent Information Systems – volume: 20 start-page: 4 year: 2014 end-page: 14 ident: bib0014 article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection publication-title: Applied Soft Computing – volume: 34 start-page: 113 year: 2005 end-page: 127 ident: bib0021 article-title: Predicting breast cancer survivability: A comparison of three data mining methods publication-title: Artificial Intelligence in Medicine – start-page: 1779 year: 2015 end-page: 1788 ident: bib0026 article-title: Utilizing text mining on online medical forums to predict label change due to adverse drug reactions publication-title: Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining – volume: 3 start-page: 2167 year: 2006 end-page: 2172 ident: bib0032 article-title: A fast updated frequent pattern tree publication-title: 2006 ieee international conference on systems, man and cybernetics – volume: 38 start-page: 10705 year: 2011 end-page: 10708 ident: bib0012 article-title: A new intelligent hepatitis diagnosis system: Pca–lssvm publication-title: Expert Systems with Applications – volume: 36 start-page: 7675 year: 2009 end-page: 7680 ident: bib0020 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert Systems with Applications – start-page: 340 year: 2009 end-page: 347 ident: bib0037 article-title: An improved multiple minimum support based approach to mine rare association rules publication-title: Computational intelligence and data mining, 2009. cidm’09. IEEE symposium on – start-page: 337 year: 1999 end-page: 341 ident: bib0044 article-title: Mining association rules with multiple minimum supports publication-title: Proceedings of the fifth acm sigkdd international conference on knowledge discovery and data mining – volume: 13 start-page: 3429 year: 2013 end-page: 3438 ident: bib0036 article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease publication-title: Applied Soft Computing – year: 1997 ident: bib0028 article-title: What is the role of who as an intergovernmental organisation in: The coordination of telematics in healthcare publication-title: World Health Organisation. Geneva, Switzerland – start-page: 200 year: 2000 ident: bib0023 article-title: Mining association rules from a pediatric primary care decision support system publication-title: Proceedings of the amia symposium – start-page: 17 year: 2006 end-page: 24 ident: bib0050 article-title: Comparing association rules and decision trees for disease prediction publication-title: Proceedings of the international workshop on healthcare information and knowledge management – volume: 7 start-page: e40561 year: 2012 ident: bib0063 article-title: Exploration of the association rules mining technique for the signal detection of adverse drug events in spontaneous reporting systems publication-title: PloS one – start-page: 108 year: 2008 end-page: 115 ident: bib0053 article-title: Intelligent heart disease prediction system using data mining techniques publication-title: Computer systems and applications, 2008. aiccsa 2008. ieee/acs international conference on – volume: 25 start-page: 721 year: 2013 end-page: 733 ident: bib0033 article-title: A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 111 year: 2003 end-page: 116 ident: bib0019 article-title: Incremental mining of frequent patterns without candidate generation or support constraint publication-title: Database engineering and applications symposium, 2003. Proceedings. Seventh international – volume: 2015 year: 2015 ident: bib0047 article-title: Knowledge mining from clinical datasets using rough sets and backpropagation neural network publication-title: Computational and Mathematical Methods in Medicine – volume: 49 start-page: 1225 year: 1996 end-page: 1231 ident: bib0062 article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes publication-title: Journal of Clinical Epidemiology – start-page: 147 year: 2002 end-page: 160 ident: bib0025 article-title: Mining incremental association rules with generalized fp-tree publication-title: Conference of the canadian society for computational studies of intelligence – volume: 1215 start-page: 487 year: 1994 end-page: 499 ident: bib0003 article-title: Fast algorithms for mining association rules publication-title: Proceedings of the 20th international conference on very large data bases, vldb – volume: 6 start-page: 185 year: 1997 end-page: 194 ident: bib0018 article-title: A general incremental technique for maintaining discovered association rules publication-title: Dasfaa – volume: 38 start-page: 9014 year: 2011 end-page: 9022 ident: bib0015 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Systems with Applications – year: 2017 ident: bib0052 article-title: Global hepatitis report 2017 – volume: 108 start-page: 570 year: 2012 end-page: 579 ident: bib0055 article-title: Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (svm-sa) publication-title: Computer Methods and Programs in Biomedicine – volume: 41 start-page: 1476 year: 2014 end-page: 1482 ident: bib0067 article-title: Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms publication-title: Expert Systems with Applications – volume: 22 start-page: 207 year: 1993 end-page: 216 ident: bib0002 article-title: Mining association rules between sets of items in large databases publication-title: Acm sigmod record – volume: 19 start-page: 403 year: 2002 end-page: 407 ident: bib0064 article-title: An incremental updating algorithm for mining association rules publication-title: Journal of Electronics (China) – volume: 8 start-page: 53 year: 2004 end-page: 87 ident: bib0029 article-title: Mining frequent patterns without candidate generation: A frequent-pattern tree approach publication-title: Data Mining and Knowledge Discovery – volume: 34 start-page: 482 year: 2008 end-page: 487 ident: bib0054 article-title: A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine publication-title: Expert Dystems with Applications – start-page: 424 year: 2001 end-page: 435 ident: bib0056 article-title: Finding association rules that trade support optimally against confidence publication-title: European conference on principles of data mining and knowledge discovery – volume: 36 start-page: 10618 year: 2009 end-page: 10626 ident: bib0009 article-title: A new intelligent diagnosis system for the heart valve diseases by using genetic-svm classifier publication-title: Expert Systems with Applications – start-page: 73 year: 2007 end-page: 80 ident: bib0001 article-title: Rare itemset mining publication-title: Machine learning and applications, 2007. icmla 2007. sixth international conference on – volume: 4 start-page: 999 year: 2007 end-page: 1008 ident: bib0007 article-title: Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network publication-title: American Journal of applied sciences – volume: 321321367 year: 2005 ident: bib0059 article-title: Chapter 6. association analysis: Basic concepts and algorithms publication-title: Introduction to data mining – volume: 3 year: 2009 ident: bib0039 article-title: Rare association rule mining and knowledge discovery: technologies for infrequent and critical event detection: Technologies for infrequent and critical event detection – volume: 36 start-page: 3465 year: 2009 end-page: 3469 ident: bib0035 article-title: An expert system for detection of breast cancer based on association rules and neural network publication-title: Expert Systems with Applications – start-page: 277 year: 2011 end-page: 288 ident: bib0061 article-title: Rp-tree: Rare pattern tree mining publication-title: Data warehousing and knowledge discovery – volume: 39 start-page: 7976 year: 2012 end-page: 7994 ident: bib0004 article-title: Single-pass incremental and interactive mining for weighted frequent patterns publication-title: Expert Systems with Applications – start-page: 8 year: 2005 end-page: pp ident: bib0013 article-title: Mining frequent spatio-temporal sequential patterns publication-title: Fifth ieee international conference on data mining (icdm’05) – volume: 40 start-page: 1086 year: 2013 end-page: 1093 ident: bib0046 article-title: Association rule mining to detect factors which contribute to heart disease in males and females publication-title: Expert Systems with Applications – volume: 36 start-page: 1351 year: 2006 end-page: 1377 ident: bib0045 article-title: Data mining and clinical data repositories: Insights from a 667,000 patient data set publication-title: Computers in Biology and Medicine – volume: 10 start-page: 334 year: 2006 end-page: 343 ident: bib0049 article-title: Association rule discovery with the train and test approach for heart disease prediction publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 111 start-page: 52 year: 2013 end-page: 61 ident: bib0005 article-title: A data mining approach for diagnosis of coronary artery disease publication-title: Computer Methods and Programs in Biomedicine – volume: 21 start-page: 241 year: 2001 end-page: 245 ident: bib0022 article-title: Mining association rules with improved semantics in medical databases publication-title: Artificial Intelligence in Medicine – volume: 12 start-page: 488 year: 2008 end-page: 500 ident: bib0034 article-title: Mining unexpected temporal associations: Applications in detecting adverse drug reactions publication-title: IEEE Transactions on Information Technology in Biomedicine – start-page: 106 year: 1996 end-page: 114 ident: bib0017 article-title: Maintenance of discovered association rules in large databases: An incremental updating technique publication-title: Data engineering, 1996. Proceedings of the twelfth international conference on – volume: 9 start-page: 1 year: 2006 end-page: 2 ident: bib0051 article-title: Constraining and summarizing association rules in medical data publication-title: Knowledge and Information Systems – volume: 1 start-page: 305 year: 2007 end-page: 312 ident: bib0058 article-title: Towards rare itemset mining publication-title: Tools with artificial intelligence, 2007. ictai 2007. 19th ieee international conference on – volume: 40 start-page: 44 year: 2005 end-page: 54 ident: bib0040 article-title: Mining association rules with multiple minimum supports using maximum constraints publication-title: International Journal of Approximate Reasoning – volume: 3 start-page: 157 year: 2013 end-page: 169 ident: bib0048 article-title: Incremental association rule mining: A survey publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 24 start-page: 27 year: 2012 end-page: 40 ident: bib0006 article-title: Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 36 start-page: 9498 year: 2009 end-page: 9505 ident: bib0042 article-title: The pre-fufp algorithm for incremental mining publication-title: Expert Systems with Applications – start-page: 235 year: 2004 end-page: 239 ident: bib0016 article-title: Temporal sequence associations for rare events publication-title: Pacific-asia conference on knowledge discovery and data mining – start-page: 1149 year: 2009 end-page: 1155 ident: bib0060 article-title: A fast algorithm for mining rare itemsets publication-title: 2009 ninth international conference on intelligent systems design and applications – volume: 54 start-page: 304 year: 2016 end-page: 327 ident: bib0066 article-title: Incremental mining of weighted maximal frequent itemsets from dynamic databases publication-title: Expert Systems with Applications – reference: . – start-page: 60 year: 1989 end-page: 68 ident: bib0024 article-title: Casenet: A neural network tool for eeg waveform classification publication-title: Computer-based medical systems, 1989. proceedings., second annual ieee symposium on – volume: 42 start-page: 61 year: 2001 end-page: 95 ident: bib0027 article-title: Confirmation-guided discovery of first-order rules with tertius publication-title: Machine Learning – year: 2009 ident: bib0065 article-title: Decision tree based predictive models for breast cancer survivability on imbalanced data publication-title: 2009 3rd international conference on bioinformatics and biomedical engineering – reference: Heron, M. P. (2017). Deaths: Leading causes for 2015. – volume: 11 start-page: 287 year: 2007 end-page: 311 ident: bib0041 article-title: Cantree: A canonical-order tree for incremental frequent-pattern mining publication-title: Knowledge and Information Systems – volume: 57 start-page: 1088 year: 2015 end-page: 1095 ident: bib0010 article-title: A novel approach for finding rare items based on multiple minimum support framework publication-title: Procedia Computer Science – volume: 19 start-page: 65 year: 2011 ident: bib0038 article-title: Data mining applications in healthcare publication-title: Journal of Healthcare Information Management – reference: Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7–30. doi: – volume: 65 year: 2016 ident: bib0030 article-title: Increases in acute hepatitis b virus infectionskentucky, tennessee, and west virginia, 2006–2013 publication-title: MMWR. Morbidity and Mortality Weekly Report – start-page: 424 year: 2001 ident: 10.1016/j.eswa.2018.07.010_bib0056 article-title: Finding association rules that trade support optimally against confidence – start-page: 60 year: 1989 ident: 10.1016/j.eswa.2018.07.010_bib0024 article-title: Casenet: A neural network tool for eeg waveform classification – volume: 10 start-page: 334 issue: 2 year: 2006 ident: 10.1016/j.eswa.2018.07.010_bib0049 article-title: Association rule discovery with the train and test approach for heart disease prediction publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2006.864475 – volume: 3 start-page: 2167 year: 2006 ident: 10.1016/j.eswa.2018.07.010_bib0032 article-title: A fast updated frequent pattern tree – volume: 21 start-page: 241 issue: 1–3 year: 2001 ident: 10.1016/j.eswa.2018.07.010_bib0022 article-title: Mining association rules with improved semantics in medical databases publication-title: Artificial Intelligence in Medicine doi: 10.1016/S0933-3657(00)00092-0 – year: 1997 ident: 10.1016/j.eswa.2018.07.010_sbref0028 article-title: What is the role of who as an intergovernmental organisation in: The coordination of telematics in healthcare – volume: 19 start-page: 403 issue: 4 year: 2002 ident: 10.1016/j.eswa.2018.07.010_bib0064 article-title: An incremental updating algorithm for mining association rules publication-title: Journal of Electronics (China) doi: 10.1007/s11767-002-0073-4 – volume: 24 start-page: 27 issue: 1 year: 2012 ident: 10.1016/j.eswa.2018.07.010_bib0006 article-title: Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2011.09.002 – volume: 25 start-page: 721 issue: 4 year: 2013 ident: 10.1016/j.eswa.2018.07.010_bib0033 article-title: A method for mining infrequent causal associations and its application in finding adverse drug reaction signal pairs publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.28 – volume: 13 start-page: 3429 issue: 8 year: 2013 ident: 10.1016/j.eswa.2018.07.010_bib0036 article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.03.008 – volume: 22 start-page: 207 year: 1993 ident: 10.1016/j.eswa.2018.07.010_bib0002 article-title: Mining association rules between sets of items in large databases – volume: 39 start-page: 7976 issue: 9 year: 2012 ident: 10.1016/j.eswa.2018.07.010_bib0004 article-title: Single-pass incremental and interactive mining for weighted frequent patterns publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.117 – volume: 12 start-page: 61 issue: 1 year: 1999 ident: 10.1016/j.eswa.2018.07.010_bib0008 article-title: Borders: An efficient algorithm for association generation in dynamic databases publication-title: Journal of Intelligent Information Systems doi: 10.1023/A:1026482903537 – start-page: 17 year: 2006 ident: 10.1016/j.eswa.2018.07.010_bib0050 article-title: Comparing association rules and decision trees for disease prediction – start-page: 277 year: 2011 ident: 10.1016/j.eswa.2018.07.010_bib0061 article-title: Rp-tree: Rare pattern tree mining – volume: 41 start-page: 1476 issue: 4 year: 2014 ident: 10.1016/j.eswa.2018.07.010_bib0067 article-title: Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.08.044 – start-page: 340 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0037 article-title: An improved multiple minimum support based approach to mine rare association rules – volume: 12 start-page: 488 issue: 4 year: 2008 ident: 10.1016/j.eswa.2018.07.010_bib0034 article-title: Mining unexpected temporal associations: Applications in detecting adverse drug reactions publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2007.900808 – volume: 38 start-page: 10705 issue: 8 year: 2011 ident: 10.1016/j.eswa.2018.07.010_bib0012 article-title: A new intelligent hepatitis diagnosis system: Pca–lssvm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.014 – ident: 10.1016/j.eswa.2018.07.010_bib0031 – volume: 40 start-page: 1086 issue: 4 year: 2013 ident: 10.1016/j.eswa.2018.07.010_bib0046 article-title: Association rule mining to detect factors which contribute to heart disease in males and females publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.08.028 – volume: 4 start-page: 999 issue: 12 year: 2007 ident: 10.1016/j.eswa.2018.07.010_bib0007 article-title: Fine needle aspiration cytology evaluation for classifying breast cancer using artificial neural network publication-title: American Journal of applied sciences doi: 10.3844/ajassp.2007.999.1008 – start-page: 1149 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0060 article-title: A fast algorithm for mining rare itemsets – volume: 36 start-page: 3465 issue: 2 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0035 article-title: An expert system for detection of breast cancer based on association rules and neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.02.064 – start-page: 337 year: 1999 ident: 10.1016/j.eswa.2018.07.010_bib0044 article-title: Mining association rules with multiple minimum supports – volume: 40 start-page: 44 issue: 1 year: 2005 ident: 10.1016/j.eswa.2018.07.010_bib0040 article-title: Mining association rules with multiple minimum supports using maximum constraints publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2004.11.006 – start-page: 106 year: 1996 ident: 10.1016/j.eswa.2018.07.010_bib0017 article-title: Maintenance of discovered association rules in large databases: An incremental updating technique – volume: 36 start-page: 1351 issue: 12 year: 2006 ident: 10.1016/j.eswa.2018.07.010_bib0045 article-title: Data mining and clinical data repositories: Insights from a 667,000 patient data set publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2005.08.003 – volume: 42 start-page: 61 issue: 1–2 year: 2001 ident: 10.1016/j.eswa.2018.07.010_bib0027 article-title: Confirmation-guided discovery of first-order rules with tertius publication-title: Machine Learning doi: 10.1023/A:1007656703224 – volume: 1 start-page: 305 year: 2007 ident: 10.1016/j.eswa.2018.07.010_bib0058 article-title: Towards rare itemset mining – volume: 38 start-page: 9014 issue: 7 year: 2011 ident: 10.1016/j.eswa.2018.07.010_bib0015 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.120 – volume: 20 start-page: 4 year: 2014 ident: 10.1016/j.eswa.2018.07.010_bib0014 article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.10.024 – year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0065 article-title: Decision tree based predictive models for breast cancer survivability on imbalanced data – volume: 1215 start-page: 487 year: 1994 ident: 10.1016/j.eswa.2018.07.010_bib0003 article-title: Fast algorithms for mining association rules – volume: 19 start-page: 65 issue: 2 year: 2011 ident: 10.1016/j.eswa.2018.07.010_bib0038 article-title: Data mining applications in healthcare publication-title: Journal of Healthcare Information Management – volume: 108 start-page: 570 issue: 2 year: 2012 ident: 10.1016/j.eswa.2018.07.010_bib0055 article-title: Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (svm-sa) publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2011.08.003 – volume: 54 start-page: 304 year: 2016 ident: 10.1016/j.eswa.2018.07.010_bib0066 article-title: Incremental mining of weighted maximal frequent itemsets from dynamic databases publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.01.049 – volume: 9 start-page: 1 issue: 3 year: 2006 ident: 10.1016/j.eswa.2018.07.010_bib0051 article-title: Constraining and summarizing association rules in medical data publication-title: Knowledge and Information Systems doi: 10.1007/s10115-005-0226-5 – volume: 49 start-page: 1225 issue: 11 year: 1996 ident: 10.1016/j.eswa.2018.07.010_bib0062 article-title: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes publication-title: Journal of Clinical Epidemiology doi: 10.1016/S0895-4356(96)00002-9 – volume: 36 start-page: 9498 issue: 5 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0042 article-title: The pre-fufp algorithm for incremental mining publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.03.014 – volume: 7 start-page: e40561 issue: 7 year: 2012 ident: 10.1016/j.eswa.2018.07.010_bib0063 article-title: Exploration of the association rules mining technique for the signal detection of adverse drug events in spontaneous reporting systems publication-title: PloS one doi: 10.1371/journal.pone.0040561 – volume: 34 start-page: 113 issue: 2 year: 2005 ident: 10.1016/j.eswa.2018.07.010_bib0021 article-title: Predicting breast cancer survivability: A comparison of three data mining methods publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2004.07.002 – start-page: 8 year: 2005 ident: 10.1016/j.eswa.2018.07.010_bib0013 article-title: Mining frequent spatio-temporal sequential patterns – volume: 6 start-page: 185 year: 1997 ident: 10.1016/j.eswa.2018.07.010_bib0018 article-title: A general incremental technique for maintaining discovered association rules – volume: 3 start-page: 157 issue: 3 year: 2013 ident: 10.1016/j.eswa.2018.07.010_bib0048 article-title: Incremental association rule mining: A survey publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – start-page: 1779 year: 2015 ident: 10.1016/j.eswa.2018.07.010_bib0026 article-title: Utilizing text mining on online medical forums to predict label change due to adverse drug reactions – volume: 111 start-page: 52 issue: 1 year: 2013 ident: 10.1016/j.eswa.2018.07.010_bib0005 article-title: A data mining approach for diagnosis of coronary artery disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2013.03.004 – start-page: 200 year: 2000 ident: 10.1016/j.eswa.2018.07.010_bib0023 article-title: Mining association rules from a pediatric primary care decision support system – start-page: 108 year: 2008 ident: 10.1016/j.eswa.2018.07.010_bib0053 article-title: Intelligent heart disease prediction system using data mining techniques – volume: 57 start-page: 1088 year: 2015 ident: 10.1016/j.eswa.2018.07.010_bib0010 article-title: A novel approach for finding rare items based on multiple minimum support framework publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.07.391 – volume: 65 year: 2016 ident: 10.1016/j.eswa.2018.07.010_bib0030 article-title: Increases in acute hepatitis b virus infectionskentucky, tennessee, and west virginia, 2006–2013 publication-title: MMWR. Morbidity and Mortality Weekly Report doi: 10.15585/mmwr.mm6503a2 – volume: 8 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.eswa.2018.07.010_bib0029 article-title: Mining frequent patterns without candidate generation: A frequent-pattern tree approach publication-title: Data Mining and Knowledge Discovery doi: 10.1023/B:DAMI.0000005258.31418.83 – start-page: 73 year: 2007 ident: 10.1016/j.eswa.2018.07.010_bib0001 article-title: Rare itemset mining – volume: 36 start-page: 7675 issue: 4 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0020 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.09.013 – start-page: 235 year: 2004 ident: 10.1016/j.eswa.2018.07.010_bib0016 article-title: Temporal sequence associations for rare events – volume: 11 start-page: 287 issue: 3 year: 2007 ident: 10.1016/j.eswa.2018.07.010_bib0041 article-title: Cantree: A canonical-order tree for incremental frequent-pattern mining publication-title: Knowledge and Information Systems doi: 10.1007/s10115-006-0032-8 – volume: 3 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0039 – start-page: 111 year: 2003 ident: 10.1016/j.eswa.2018.07.010_bib0019 article-title: Incremental mining of frequent patterns without candidate generation or support constraint – volume: 36 start-page: 10618 issue: 7 year: 2009 ident: 10.1016/j.eswa.2018.07.010_bib0009 article-title: A new intelligent diagnosis system for the heart valve diseases by using genetic-svm classifier publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.02.053 – volume: 34 start-page: 482 issue: 1 year: 2008 ident: 10.1016/j.eswa.2018.07.010_bib0054 article-title: A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine publication-title: Expert Dystems with Applications doi: 10.1016/j.eswa.2006.09.012 – volume: 2015 year: 2015 ident: 10.1016/j.eswa.2018.07.010_bib0047 article-title: Knowledge mining from clinical datasets using rough sets and backpropagation neural network publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2015/460189 – year: 2017 ident: 10.1016/j.eswa.2018.07.010_bib0052 – start-page: 147 year: 2002 ident: 10.1016/j.eswa.2018.07.010_bib0025 article-title: Mining incremental association rules with generalized fp-tree – volume: 321321367 year: 2005 ident: 10.1016/j.eswa.2018.07.010_bib0059 article-title: Chapter 6. association analysis: Basic concepts and algorithms – ident: 10.1016/j.eswa.2018.07.010_bib0057 doi: 10.3322/caac.21442 |
| SSID | ssj0017007 |
| Score | 2.4905608 |
| Snippet | •Devising a tree structure for efficient generation of complete set of patterns.•Development of a single pass dynamic rare association rule mining... The increase in mortality rate due to life-threatening diseases has become an issue of concern in today’s world. Early detection and diagnosis of diseases thus... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 233 |
| SubjectTerms | Adverse diseases Algorithms Association rule Data mining Decision making Deletion Disease Dynamic databases Hepatitis Mortality Neural networks Rare association rule Rare pattern Risk analysis Risk factors Side effects |
| Title | Identifying risk factors for adverse diseases using dynamic rare association rule mining |
| URI | https://dx.doi.org/10.1016/j.eswa.2018.07.010 https://www.proquest.com/docview/2121675910 |
| Volume | 113 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4bUSR9ODNTDbWbuxIiAQ1clESbs36ZTCIhEG8-bf7XtdhNIaDxy1t07z2faW_936EXEVJJ7QSFMnaLA1YrkLQOYfckUrhLZGOi-BxlAzH7H7CJzXSr2phEFbpbX9p05219n_aXprtxXTafoLgANwhdl_BlNyVUTOWIovBzecG5oHt59Ky3x5sBUb7wpkS42WKD-w9FHVdA0-sov3bOf0y0873DA7Ing8aaa_c1yGpmfkR2a8IGajXz2MyKctuXekSRdA49XQ6FEJTmiP3cmGof5MpKGLeX6guOekpZM2G5t-nRZfrmaFvjkDihIwHt8_9YeCpEwIFFmMVdNKOtNKk4HsUxGSMKaa45MpkOreQP6fdMOfaaGPxBdrEcagth8hChjY0Wtr4lNTn73NzRqhOIq1znrE4ySG2ijPZYQksaXUCE5hukKiSmVC-rzjSW8xEBSB7FShngXIWYSpAzg1yvZmzKLtqbB3Nq6MQP-6GALO_dV6zOjfhNbMQ4KojSJIgSjr_57IXZBe_ENMS8Sapr5ZrcwmRyUq23NVrkZ3e3cNw9AWAWuNc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHvTi24ii9uDNrOyj3WWPhkhQgYuQcGu2L4NBJDzizd_uzG4XozEcvO62TTPtvNJv5iPkOohD30pQJGvTxGOZ8kHncuSOVApvicy5CHr9uDNkjyM-qpBWWQuDsEpn-wubnltr96XhpNmYjceNZwgOwB1i9xVMybGMeovxMMEM7PZzjfPA_nNJ0XAP9gLDXeVMAfIyiw9sPhQ08w6eWEb7t3f6Zadz59PeJ7suaqR3xcYOSMVMD8leychAnYIekVFRd5vXLlFEjVPHp0MhNqUZki8vDHWPMguKoPcXqgtSegpps6HZ93HR-Wpi6FvOIHFMhu37QavjOe4ET4HJWHphEkorTQLOR0FQxphiikuuTKozCwl00vQzro02Fp-gTRT52nIILaRvfaOljU5Idfo-NaeE6jjQOuMpi-IMgqsolSGLYUmrY5jAdI0EpcyEco3Fkd9iIkoE2atAOQuUs_ATAXKukZv1nFnRVmPjaF4ehfhxOQTY_Y3z6uW5CaeaCwG-OoAsCcKks38ue0W2O4NeV3Qf-k_nZAf_IMAl4HVSXc5X5gLClKW8zK_hF9hS5PE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+risk+factors+for+adverse+diseases+using+dynamic+rare+association+rule+mining&rft.jtitle=Expert+systems+with+applications&rft.au=Borah%2C+Anindita&rft.au=Nath%2C+Bhabesh&rft.date=2018-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=113&rft.spage=233&rft.epage=263&rft_id=info:doi/10.1016%2Fj.eswa.2018.07.010&rft.externalDocID=S0957417418304251 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |