Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accur...

Full description

Saved in:
Bibliographic Details
Published inComputer communications Vol. 170; pp. 19 - 41
Main Authors Abbasi, Mahmoud, Shahraki, Amin, Taherkordi, Amir
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2021
Subjects
Online AccessGet full text
ISSN0140-3664
1873-703X
DOI10.1016/j.comcom.2021.01.021

Cover

Abstract Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.
AbstractList Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.
Author Taherkordi, Amir
Abbasi, Mahmoud
Shahraki, Amin
Author_xml – sequence: 1
  givenname: Mahmoud
  orcidid: 0000-0002-1886-8284
  surname: Abbasi
  fullname: Abbasi, Mahmoud
  organization: Department of Computer Sciences, Islamic Azad University, Mashhad, Iran
– sequence: 2
  givenname: Amin
  orcidid: 0000-0002-5065-9968
  surname: Shahraki
  fullname: Shahraki, Amin
  email: am.shahraki@ieee.org
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 3
  givenname: Amir
  surname: Taherkordi
  fullname: Taherkordi, Amir
  organization: Department of Informatics, University of Oslo, Oslo, Norway
BookMark eNqFkEtLAzEUhYNUsD7-gWCWuph6M5mZzHQhFN_S1oUV3IVM5kZSa1KSsdJ_75TqxoXCgbO45ztwzz7pOe-QkGMGAwasOJ8PtH_vNEghZQPolLId0mel4IkA_tIjfWAZJLwosj2yH-McADIheJ88XCEu6RhVcNa9UuMDnWL76cMbnQVljNV04p1tfdiclWvoyKnFOtpIT6ezyehsSEf06SOscH1Ido1aRDz69gPyfHM9u7xLxo-395ejcaK5KNqEFZiJPEPIFa8rBqKpDWeqrPMKi0oJhLJgWugSja4LYRpWYZnVoq5ykzU58gNysu3VwcbWOul8UJJBmaeyrIBDlxj-JHyMAY3UtlWt9a4Nyi66rNzsJudyu5vc7CahU8o6OPsFL4N9V2H9H3axxbB7fWUxyKgtOo2NDahb2Xj7d8EXch6Jow
CitedBy_id crossref_primary_10_1109_LCOMM_2023_3275327
crossref_primary_10_1051_itmconf_20224602005
crossref_primary_10_3233_JIFS_220051
crossref_primary_10_1016_j_cose_2024_104311
crossref_primary_10_1108_IJPCC_06_2022_0244
crossref_primary_10_1109_ACCESS_2024_3384460
crossref_primary_10_1016_j_comnet_2023_109648
crossref_primary_10_1007_s10586_024_04798_5
crossref_primary_10_61453_INTIj_202451
crossref_primary_10_1016_j_engstruct_2022_114385
crossref_primary_10_1109_TITS_2023_3236274
crossref_primary_10_1109_TITS_2022_3221388
crossref_primary_10_1109_TWC_2024_3396276
crossref_primary_10_1109_TNSM_2022_3193748
crossref_primary_10_1007_s10586_024_04424_4
crossref_primary_10_1016_j_comnet_2022_109537
crossref_primary_10_1016_j_engappai_2021_104234
crossref_primary_10_1109_JIOT_2023_3309832
crossref_primary_10_3390_ai5030077
crossref_primary_10_1007_s41870_024_02032_4
crossref_primary_10_1016_j_adhoc_2024_103541
crossref_primary_10_1016_j_aeue_2024_155220
crossref_primary_10_1109_TCCN_2021_3119062
crossref_primary_10_1109_TITS_2023_3237804
crossref_primary_10_1155_2021_5366222
crossref_primary_10_1016_j_patrec_2025_01_010
crossref_primary_10_1109_ACCESS_2024_3469730
crossref_primary_10_4018_IJITWE_297971
crossref_primary_10_1016_j_iot_2024_101473
crossref_primary_10_1088_1361_6501_ad1ddb
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_1016_j_comcom_2023_08_002
crossref_primary_10_1016_j_comnet_2024_110598
crossref_primary_10_1109_MCOMSTD_0001_2400042
crossref_primary_10_1016_j_asoc_2023_109984
crossref_primary_10_1155_2022_3553622
crossref_primary_10_1109_ACCESS_2024_3525000
crossref_primary_10_1109_TNSM_2022_3223902
crossref_primary_10_1016_j_comcom_2023_01_003
crossref_primary_10_1016_j_comcom_2024_02_004
crossref_primary_10_1007_s10489_021_02648_0
crossref_primary_10_1109_ACCESS_2022_3215132
crossref_primary_10_1007_s12517_022_09659_2
crossref_primary_10_1016_j_future_2024_107487
crossref_primary_10_1142_S0218488522400165
crossref_primary_10_1109_OJCOMS_2024_3407708
crossref_primary_10_1186_s42400_024_00297_7
crossref_primary_10_1109_ACCESS_2025_3528006
crossref_primary_10_1007_s12652_021_03609_8
crossref_primary_10_32604_cmc_2023_039463
crossref_primary_10_32604_cmes_2024_057272
crossref_primary_10_1016_j_comnet_2023_109660
crossref_primary_10_1109_TMC_2022_3226448
crossref_primary_10_3390_smartcities4020046
crossref_primary_10_1109_ACCESS_2025_3535943
crossref_primary_10_32604_cmes_2022_021160
crossref_primary_10_1007_s41060_023_00488_4
crossref_primary_10_1016_j_eswa_2023_121493
crossref_primary_10_28948_ngumuh_1184020
crossref_primary_10_1002_spy2_459
crossref_primary_10_1109_ACCESS_2024_3393981
crossref_primary_10_3390_s23125485
crossref_primary_10_1016_j_comnet_2021_108125
crossref_primary_10_1016_j_trip_2025_101361
crossref_primary_10_3390_s23115340
crossref_primary_10_56294_sctconf20251333
crossref_primary_10_1016_j_comcom_2022_07_052
crossref_primary_10_1109_TNSM_2024_3488568
crossref_primary_10_3390_e25010039
crossref_primary_10_1109_ACCESS_2022_3205351
crossref_primary_10_1109_TIM_2021_3094223
crossref_primary_10_3390_s23136012
crossref_primary_10_1155_2022_8481452
crossref_primary_10_1007_s11280_023_01206_7
crossref_primary_10_1142_S0219265923500226
crossref_primary_10_3390_s23062946
crossref_primary_10_1109_ACCESS_2025_3529287
crossref_primary_10_1155_2022_1746373
crossref_primary_10_1142_S201032472550002X
crossref_primary_10_1016_j_comcom_2022_10_023
crossref_primary_10_1016_j_comnet_2022_109446
crossref_primary_10_1016_j_cose_2024_103702
crossref_primary_10_3390_jcp5020012
crossref_primary_10_1016_j_imavis_2024_105190
crossref_primary_10_3390_electronics13183617
crossref_primary_10_1108_IJICC_12_2022_0312
crossref_primary_10_3390_s23208362
crossref_primary_10_3390_electronics11203371
crossref_primary_10_1016_j_cmpb_2023_107745
crossref_primary_10_1016_j_jnca_2023_103603
crossref_primary_10_3390_network5010001
crossref_primary_10_1109_ACCESS_2022_3214506
crossref_primary_10_1007_s10922_022_09691_3
crossref_primary_10_1016_j_comnet_2022_109285
crossref_primary_10_32604_csse_2023_036864
crossref_primary_10_1109_ACCESS_2024_3365505
crossref_primary_10_1080_1206212X_2024_2401069
crossref_primary_10_3390_math13020288
crossref_primary_10_1016_j_comnet_2021_108742
crossref_primary_10_1109_TNSM_2024_3373887
crossref_primary_10_1002_ett_4394
crossref_primary_10_1109_ACCESS_2023_3288420
crossref_primary_10_25136_2409_7543_2024_1_69882
crossref_primary_10_1007_s42835_022_01314_w
crossref_primary_10_1016_j_comnet_2024_110790
crossref_primary_10_3390_s24113529
crossref_primary_10_1155_2021_2353875
crossref_primary_10_1109_TVT_2024_3409179
crossref_primary_10_3390_s21196555
crossref_primary_10_3390_fi14120353
crossref_primary_10_29130_dubited_1131544
crossref_primary_10_3390_cryptography8020022
crossref_primary_10_32604_cmc_2022_020727
crossref_primary_10_53759_7669_jmc202404023
crossref_primary_10_1140_epjb_s10051_024_00752_x
crossref_primary_10_3390_sym15061134
crossref_primary_10_1016_j_jnca_2024_104002
crossref_primary_10_1109_ACCESS_2025_3538170
crossref_primary_10_1109_TNSE_2023_3294406
crossref_primary_10_3390_sym14112319
crossref_primary_10_1016_j_cose_2022_102830
crossref_primary_10_1109_TAI_2023_3244168
crossref_primary_10_32628_IJSRST229151
crossref_primary_10_1007_s00521_023_08475_3
crossref_primary_10_1109_COMST_2023_3330953
crossref_primary_10_1007_s10586_023_04234_0
crossref_primary_10_1007_s11227_023_05388_9
crossref_primary_10_1016_j_engappai_2024_109586
crossref_primary_10_1007_s10236_024_01657_0
crossref_primary_10_1016_j_comcom_2021_12_015
crossref_primary_10_1016_j_comnet_2024_110984
crossref_primary_10_1145_3703447
crossref_primary_10_1016_j_inffus_2024_102922
crossref_primary_10_54392_irjmt2459
crossref_primary_10_1007_s11235_024_01185_8
crossref_primary_10_46632_daai_3_2_23
crossref_primary_10_1002_ett_4970
crossref_primary_10_1007_s10489_022_04335_0
crossref_primary_10_1155_2023_3629831
crossref_primary_10_1049_2024_1056705
crossref_primary_10_1109_TNSM_2023_3288875
crossref_primary_10_1007_s12083_024_01899_1
crossref_primary_10_1109_ACCESS_2021_3110266
crossref_primary_10_1186_s42400_024_00249_1
crossref_primary_10_1016_j_cose_2024_104023
crossref_primary_10_1109_TNSM_2024_3402074
crossref_primary_10_1016_j_cose_2021_102542
crossref_primary_10_31772_2712_8970_2023_24_4_663_672
crossref_primary_10_1007_s13198_023_01998_x
crossref_primary_10_1109_ACCESS_2024_3493753
crossref_primary_10_3390_app13137649
crossref_primary_10_3390_s24113509
crossref_primary_10_62660_bcstu_1_2024_24
crossref_primary_10_1007_s00500_023_08982_4
crossref_primary_10_1016_j_comnet_2022_109154
crossref_primary_10_1007_s44163_024_00209_1
Cites_doi 10.3390/info10040122
10.1126/science.1127647
10.1162/089976602760128018
10.1109/TSUSC.2018.2809665
10.14778/2367502.2367572
10.1109/TNSM.2019.2927886
10.1016/j.amc.2014.06.108
10.1109/TIFS.2017.2730819
10.1162/neco.1997.9.8.1735
10.1145/3155133.3155175
10.1038/nature14539
10.1109/TNSM.2020.3035315
10.1145/2940116.2940117
10.1109/ACCESS.2015.2467174
10.1109/TSC.2016.2599878
10.1109/TMC.2018.2870135
10.1109/SURV.2011.092311.00031
10.1109/SURV.2013.052213.00000
10.1109/MNET.2019.1800458
10.1016/j.future.2012.09.001
10.1109/COMST.2018.2825786
10.1145/1559845.1559865
10.1145/3021304.3021305
10.1109/TNSM.2019.2933358
10.1109/MNET.2014.6963801
10.1155/2018/1260860
10.1016/j.comnet.2014.03.007
10.1109/MNET.2014.6863129
10.1109/MPRV.2018.03367731
10.1109/MNET.2018.1800078
10.1109/ACCESS.2014.2325029
10.1109/COMST.2018.2844341
10.1109/ACCESS.2016.2613278
10.1109/ACCESS.2019.2893871
10.1186/s13174-018-0087-2
10.1109/COMST.2017.2694469
10.1016/j.scs.2017.12.022
10.1109/MWC.2006.275197
10.1109/ACCESS.2019.2938410
10.1016/j.eswa.2019.04.064
10.1007/s00500-019-04030-2
10.1109/TITS.2020.3027390
10.1145/3298981
10.1145/2076796.2082137
10.1016/j.cose.2019.101645
10.1109/SURV.2012.021312.00116
10.1109/COMST.2017.2707140
10.1109/TLA.2016.7430108
10.1186/s13174-015-0041-5
10.1145/2043164.2018452
10.1109/MNET.2016.7474340
10.3390/su11010189
10.1145/3126555
10.1109/ACCESS.2018.2863036
10.1109/JSAC.2019.2904348
10.1145/2785956.2787502
10.1109/MNET.2012.6135854
10.1109/SURV.2012.100412.00017
10.1145/2413176.2413205
10.1093/ietcom/e88-b.10.3992
10.1016/j.giq.2018.10.001
10.1109/COMST.2017.2719862
10.1145/3209582.3209606
10.1145/3167132.3167306
10.1016/j.compeleceng.2020.106955
10.1109/ACCESS.2018.2872430
10.1109/MCOM.2019.1800819
10.1016/j.adhoc.2020.102258
10.1109/ACCESS.2017.2747560
10.1109/MCOM.001.1900283
10.1109/ACCESS.2017.2787696
10.1504/IJBDI.2016.073903
10.1109/JIOT.2018.2832071
10.1109/LCOMM.2018.2841832
10.1016/j.comnet.2020.107376
10.1007/s11227-016-1805-9
10.1109/MNET.2018.1700411
10.1016/j.jnca.2018.05.004
10.1007/s00521-018-3595-x
10.1016/j.jbusres.2016.08.001
10.1145/3314545.3316278
10.1109/ACCESS.2017.2780250
10.1109/MCOM.2014.6829969
10.1109/JIOT.2019.2908019
10.1016/j.cose.2018.11.001
10.1016/j.engappai.2020.103770
10.1109/MCOM.2018.1700332
10.1109/ACCESS.2019.2962106
10.1145/1390156.1390290
10.1109/TNSM.2019.2899085
10.1186/s40537-014-0007-7
10.1109/MNET.2018.1800127
10.1109/TCAD.2018.2858384
10.1145/3291533.3291540
10.1109/TKDE.2019.2946162
10.1186/s40537-019-0206-3
10.1109/COMST.2016.2570599
ContentType Journal Article
Copyright 2021 The Author(s)
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2021 The Author(s)
– notice: info:eu-repo/semantics/openAccess
DBID 6I.
AAFTH
AAYXX
CITATION
3HK
DOI 10.1016/j.comcom.2021.01.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-703X
EndPage 41
ExternalDocumentID 10852_89030
10_1016_j_comcom_2021_01_021
S0140366421000426
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
3HK
AAGJQ
AALMO
ABPIF
ABTAH
AJBFU
ID FETCH-LOGICAL-c376t-16e4754e05a3b9107dbf31a8b59e69a7e0861c7c8efcb67fd19e84b7b95f4d5e3
IEDL.DBID AIKHN
ISSN 0140-3664
IngestDate Sat Apr 29 05:44:12 EDT 2023
Tue Jul 01 02:43:06 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Fri Feb 23 02:47:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Survey
Network Traffic Monitoring and Analysis
QoS
Machine learning
Edge Intelligence
Network management
NTMA
IoT
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-16e4754e05a3b9107dbf31a8b59e69a7e0861c7c8efcb67fd19e84b7b95f4d5e3
ORCID 0000-0002-5065-9968
0000-0002-1886-8284
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0140366421000426
PageCount 23
ParticipantIDs cristin_nora_10852_89030
crossref_citationtrail_10_1016_j_comcom_2021_01_021
crossref_primary_10_1016_j_comcom_2021_01_021
elsevier_sciencedirect_doi_10_1016_j_comcom_2021_01_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Labrinidis, Jagadish (b10) 2012; 5
Rezaei, Liu (b27) 2019; 57
Miller, Curran, Lunney (b90) 2018
Sutskever, Vinyals, Le (b66) 2014
Cecil (b3) 2006
Aliu, Imran, Imran, Evans (b157) 2012; 15
Ren, He, Girshick, Sun (b69) 2015
Bega, Gramaglia, Fiore, Banchs, Costa-Perez (b131) 2019
Goodfellow, Bengio, Courville (b56) 2016
Ehrlich, Biendarra, Trsek, Wojtkowiak, Jasperneite (b8) 2017
Chen, Lin (b47) 2014; 2
Mulvey, Foh, Imran, Tafazolli (b139) 2019; 7
Konečnỳ, McMahan, Yu, Richtárik, Suresh, Bacon (b79) 2016
Qi, Yao, Uzunov (b149) 2017
Tikunov, Nishimura (b117) 2007
Yousefi-Azar, Varadharajan, Hamey, Tupakula (b167) 2017
Motamedi, Fong, Ghiasi (b185) 2017; 16
Graves (b67) 2013
Yeo, Koo, Yoon, Hwang, Ryu, Song, Park (b97) 2018
Imran, Zoha, Abu-Dayya (b109) 2014; 28
Masood, Asghar, Imran, Mian (b146) 2018
Shahraki, Taherkordi, Haugen, Eliassen (b14) 2020
Meidan, Bohadana, Mathov, Mirsky, Shabtai, Breitenbacher, Elovici (b178) 2018; 17
ElSawy, Hossain, Haenggi (b156) 2013; 15
Verma, Kawamoto, Fadlullah, Nishiyama, Kato (b31) 2017; 19
Zhao, Zhang, Sang (b102) 2019
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (b25) 2015; 2
Hardy, Chen, Hou, Ye, Li (b174) 2016
T. Benson, A. Akella, D. Maltz, Unraveling the complexity of network management, in: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, ser. NSDI’09, 2009.
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mane, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viegas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b181) 2016
Ricciato (b32) 2006; 13
Nie, Wang, Wan, Yu, Song, Jiang (b135) 2018; 2018
Mahmoud Abbasi, Amin Shahraki, Hamid R Barzegar, Claus Pahl, Synchronization Techniques in “Device to Device-and Vehicle to Vehicle-Enabled” Cellular Networks: A survey, Comput. Electr. Eng., 90 106955.
Wang, Zhu, Zeng, Ye, Sheng (b100) 2017
(b40) 2020
Abduljabbar, Dia, Liyanage, Bagloee (b52) 2019; 11
(b39) 2020
Marinchak, Forrest, Hoanca (b54) 2018
So-In (b2) 2009
Alsheikh, Niyato, Lin, Tan, Han (b76) 2016; 30
Roh, Heo, Whang (b180) 2019
Hinton, Salakhutdinov (b72) 2006; 313
Suter (b57) 1990; 1
Masala, Servetti, Basso, De Martin (b15) 2014
Naseer, Saleem, Khalid, Bashir, Han, Iqbal, Han (b163) 2018; 6
Ferreira, Shinoda (b84) 2016; 14
Asghar, Farooq, Imran (b153) 2018; 20
Rathore, Paul, Hong, Seo, Awan, Saeed (b24) 2018; 40
Pedro Casas, Alessandro D Alconzo, Tanja Zseby, Marco Mellia, Big-DAMA: big data analytics for network traffic monitoring and analysis, in: Proceedings of the 2016 Workshop on Fostering Latin-American Research in Data Communication Networks, 2016, pp. 1–3.
Li, Chen, Yang, Gao, Zhang, Deen (b103) 2018; 32
Lo’ai, Mehmood, Benkhlifa, Song (b46) 2016; 4
Kiros, Salakhutdinov, Zemel (b68) 2014
Azmoodeh, Dehghantanha, Choo (b175) 2018; 4
D Alconzo, Drago, Morichetta, Mellia, Casas (b1) 2019; 16
Oliner, Ganapathi, Xu (b21) 2011; 9
Chaoyun Zhang, Paul Patras, Long-term mobile traffic forecasting using deep spatio-temporal neural networks, in: Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2018, pp. 231–240.
Gupta, Salman, Das, Erbad, Jain, Samaka (b148) 2019
Liu, Li, Wu, Li (b50) 2018; 32
Gheisari, Wang, Bhuiyan (b26) 2017
Qing Lyu, Xingjian Lu, Effective Media Traffic Classification Using Deep Learning, in: Proceedings of the 2019 3rd International Conference on Compute and Data Analysis, 2019, pp. 139–146.
Shahraki, Haugen (b13) 2019
Haytham Assem, Declan O’Sullivan, Discovering new socio-demographic regional patterns in cities, in: Proceedings of the 9th ACM SIGSPATIAL Workshop on Location-Based Social Networks, 2016, pp. 1–9.
Hinton (b74) 2002; 14
Ly Vu, Cong Thanh Bui, Quang Uy Nguyen, A deep learning based method for handling imbalanced problem in network traffic classification, in: Proceedings of the Eighth International Symposium on Information and Communication Technology, 2017, pp. 333–339.
Joshi, Hadi (b121) 2015
Dusia, Sethi (b147) 2016; 18
Boutaba, Salahuddin, Limam, Ayoubi, Shahriar, Estrada-Solano, Caicedo (b9) 2018; 9
Shu, Zhou, Zhang, Du, Guizani (b171) 2020
Pektaş, Acarman (b177) 2019; 31
Aceto, Ciuonzo, Montieri, Pescapé (b81) 2019; 16
Huang, Zhao, Huang, Guo (b144) 2020; 58
Van Efferen, Ali-Eldin (b89) 2017
Bär, Finamore, Casas, Golab, Mellia (b37) 2014
Shahraki, Geitle, Haugen (b12) 2020; 31
Mohammadi, Al-Fuqaha, Sorour, Guizani (b77) 2018; 20
Modi, Acha (b160) 2017; 73
Barabas, Boanea, Rus, Dobrota, Domingo-Pascual (b122) 2011
Salih, Abdulrazaq (b87) 2019
Hu, Guo, Ratazzi, Gong (b189) 2020
Feng, Chen, Gao, Zeng, Li (b126) 2018; 32
Hwang, Chen (b45) 2017
Demchenko, De Laat, Membrey (b22) 2014
Iliyasu, Deng (b107) 2019; 8
Anestis Dalgkitsis, Malamati Louta, George T. Karetsos, Traffic forecasting in cellular networks using the LSTM RNN, in: Proceedings of the 22nd Pan-Hellenic Conference on Informatics, 2018, pp. 28–33.
Ding, Ding, Morozov, Fabarisov, Janschek (b151) 2019
Zhang, Xu, Min, Jiang, Pelechrinis, Zhang (b154) 2016
Jebara (b75) 2012
Wang, Zhu, Wang, Zeng, Yang (b93) 2017
Zhong, Gu (b173) 2019; 133
Tong, Tran, Souihi, Mellouk (b99) 2018
Thing (b168) 2017
Sundaresan, De Donato, Feamster, Teixeira, Crawford, Pescapè (b17) 2011; 41
Cooley, Mobasher, Srivastava (b38) 1997
Graves, Jaitly (b64) 2014
Li, Zhao, Zhou, Palicot, Zhang (b108) 2014; 52
Oliveira, Barbar, Soares (b130) 2014
Jiang, Wu, Wang, Xin (b162) 2018
Sivarajah, Kamal, Irani, Weerakkody (b11) 2017; 70
Torres, Catania, Garcia, Garino (b179) 2016
Wang, Tao, Ranjan, Marten, Streit, Chen, Chen (b41) 2013; 29
Basso, Servetti, De Martin (b16) 2010
da Rocha Fonseca, Mota (b141) 2017; 19
Al Nuaimi, Al Neyadi, Mohamed, Al-Jaroodi (b44) 2015; 6
Huang, Chiang, Li (b113) 2017
Mismar, Evans (b152) 2018
Oh, Wang, Tang, Sjoding, Wiens (b61) 2019
Alom, Bontupalli, Taha (b106) 2015
LeCun (b58) 1989
Xu, Lin, Huang, Wu, Shi, Song, Li (b110) 2016; 9
Bega, Gramaglia, Fiore, Banchs, Costa-Perez (b132) 2020
Khunteta, Chavva (b150) 2017
Dainotti, Pescape, Claffy (b80) 2012; 26
Tijmen Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1064–1071.
Cisco (b111) 2012
ITU, global ICT statistics.
Berman, Buczak, Chavis, Corbett (b155) 2019; 10
Hochreiter, Schmidhuber (b63) 1997; 9
Zhou, Yan, Fu, Yao (b18) 2018; 116
Papamartzivanos, Mármol, Kambourakis (b161) 2019; 7
Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J DeWitt, Samuel Madden, Michael Stonebraker, A comparison of approaches to large-scale data analysis, in: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, 2009, pp. 165–178.
Wang, Tuor, Salonidis, Leung, Makaya, He, Chan (b188) 2019; 37
Salakhutdinov, Hinton (b73) 2009
Cao, Zhong, Zhou, Wang, Zhu, Zhang (b134) 2017; 6
Chen, Zhang, Maharjan, Alam, Wu (b169) 2019; 33
Bkassiny, Li, Jayaweera (b184) 2012; 15
Hariri, Fredericks, Bowers (b23) 2019; 6
Morariu, Stiller (b19) 2008
Lotfollahi, Siavoshani, Zade, Saberian (b49) 2020; 24
Hongyi Zeng, Peyman Kazemian, George Varghese, Nick McKeown, Automatic test packet generation, in: Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, 2012, pp. 241–252.
Fang, Cheng, Wang, Yang (b128) 2018; 5
Wang, Tang, Xu, Wang, Xue, Zhang, Yang (b42) 2017
Sreekesh (b88) 2016
Garg, Kaur, Kumar, Kaddoum, Zomaya, Ranjan (b166) 2019; 16
Shahraki, Abbasi, Haugen (b35) 2020; 94
Fadlullah, Tang, Mao, Kato, Akashi, Inoue, Mizutani (b30) 2017; 19
Wang, Ye, Chen, Qian (b82) 2018; 6
Lopez-Martin, Carro, Sanchez-Esguevillas, Lloret (b98) 2017; 5
Conti, Li, Maragno, Spolaor (b29) 2017
Liu, Liu, Ansari (b6) 2014; 28
Tavallaee, Bagheri, Lu, Ghorbani (b164) 2009
Han, Kim, Ju, Hong (b7) 2002
Sahay, Geethakumari, Modugu, Mitra (b91) 2018
Madan, SarathiMangipudi (b124) 2018
Mulvey, Foh, Imran, Tafazolli (b145) 2018
Androutsopoulou, Karacapilidis, Loukis, Charalabidis (b53) 2019; 36
Yang, Liu, Chen, Tong (b78) 2019; 10
Chen, He, Li, Geng (b94) 2017
Lee, Levanti, Kim (b20) 2014; 65
Wang, Lu, Qin (b92) 2020; 88
Ucci, Aniello, Baldoni (b28) 2019; 81
Wang, Li, Leung (b183) 2015; 3
Shu, Yu, Yang, Liu, Feng (b118) 2005; 88
Malaiya, Kwon, Kim, Suh, Kim, Kim (b165) 2018
Dubin, Dvir, Pele, Hadar (b33) 2017; 12
Nguyen, Hoang, Niyato, Wang, Nguyen, Dutkiewicz (b170) 2018
Salek, Madani, Azmi (b86) 2013
Assem, Caglayan, Buda, O’Sullivan (b114) 2018
Andreoletti, Troia, Musumeci, Giordano, Maier, Tornatore (b125) 2019
Zhang, Zhang, Yuan, Zhang (b133) 2018; 22
Shahraki, Taherkordi, Haugen, Eliassen (b5) 2020; 180
Fahlman, Hinton, Sejnowski (b70) 1983
Terran Lane, Carla E. Brodley, An application of machine learning to anomaly detection, in: Proceedings of the 20th National Information Systems Security Conference, Vol. 377, Baltimore, USA, 1997, pp. 366–380.
Rafsanjani, Rezaei, Shahraki, Saeid (b119) 2014; 244
Shahraki, Taherzadeh, Haugen (b4) 2017
Radford, Apolonio, Trias, Simpson (b101) 2018
Wang, Zhou, Xiao, Xing, Yang, Liu, Peng (b137) 2018; 18
Oliveira, Barbar, Soares (b120) 2016; 3
Jos van Roosmalen, Harald Vranken, Marko van Eekelen, Applying deep learning on packet flows for botnet detection, in: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp. 1629–1636.
LeCun, Bengio, Hinton (b51) 2015; 521
Pwint, Shwe (b85) 2019
Graves, Schmidhuber (b65) 2009
Abeshu, Chilamkurti (b104) 2018; 56
Chollet (b182) 2015
Li, Wang, Wang, Zheng (b136) 2020; 107
Justine Sherry, Chang Lan, Raluca Ada Popa, Sylvia Ratnasamy, Blindbox: Deep packet inspection over encrypted traffic, in: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, 2015, pp. 213–226.
Zhao, Barijough, Gerstlauer (b187) 2018; 37
Rezaei, Liu (b95) 2018
Gruslys, Munos, Danihelka, Lanctot, Graves (b62) 2016
Hasan, Boostanimehr, Bhargava (b112) 2011; 13
Srinivasan, Truong-Huu, Gurusamy (b143) 2019; 6
Salmi, Kiljander, Pakkala (b59) 2020
Rumelhart, Hinton, Williams (b60) 1985
Az
Ehrlich (10.1016/j.comcom.2021.01.021_b8) 2017
Hinton (10.1016/j.comcom.2021.01.021_b72) 2006; 313
Imteaj (10.1016/j.comcom.2021.01.021_b186) 2020
Meidan (10.1016/j.comcom.2021.01.021_b178) 2018; 17
Morariu (10.1016/j.comcom.2021.01.021_b19) 2008
Oliveira (10.1016/j.comcom.2021.01.021_b130) 2014
Azmoodeh (10.1016/j.comcom.2021.01.021_b175) 2018; 4
Yousefi-Azar (10.1016/j.comcom.2021.01.021_b167) 2017
Alom (10.1016/j.comcom.2021.01.021_b106) 2015
Tikunov (10.1016/j.comcom.2021.01.021_b117) 2007
Qi (10.1016/j.comcom.2021.01.021_b149) 2017
Chen (10.1016/j.comcom.2021.01.021_b169) 2019; 33
Papamartzivanos (10.1016/j.comcom.2021.01.021_b161) 2019; 7
Aliu (10.1016/j.comcom.2021.01.021_b157) 2012; 15
Dainotti (10.1016/j.comcom.2021.01.021_b80) 2012; 26
Gruslys (10.1016/j.comcom.2021.01.021_b62) 2016
Salek (10.1016/j.comcom.2021.01.021_b86) 2013
Huang (10.1016/j.comcom.2021.01.021_b113) 2017
Wang (10.1016/j.comcom.2021.01.021_b42) 2017
10.1016/j.comcom.2021.01.021_b127
Berman (10.1016/j.comcom.2021.01.021_b155) 2019; 10
10.1016/j.comcom.2021.01.021_b123
Shahraki (10.1016/j.comcom.2021.01.021_b5) 2020; 180
Shahraki (10.1016/j.comcom.2021.01.021_b14) 2020
10.1016/j.comcom.2021.01.021_b129
Lopez-Martin (10.1016/j.comcom.2021.01.021_b98) 2017; 5
Lee (10.1016/j.comcom.2021.01.021_b20) 2014; 65
Lotfollahi (10.1016/j.comcom.2021.01.021_b49) 2020; 24
Cisco (10.1016/j.comcom.2021.01.021_b111) 2012
Dusia (10.1016/j.comcom.2021.01.021_b147) 2016; 18
Najafabadi (10.1016/j.comcom.2021.01.021_b25) 2015; 2
Shahraki (10.1016/j.comcom.2021.01.021_b35) 2020; 94
10.1016/j.comcom.2021.01.021_b71
Pektaş (10.1016/j.comcom.2021.01.021_b177) 2019; 31
Zhang (10.1016/j.comcom.2021.01.021_b133) 2018; 22
Miller (10.1016/j.comcom.2021.01.021_b90) 2018
Bega (10.1016/j.comcom.2021.01.021_b132) 2020
Baras (10.1016/j.comcom.2021.01.021_b142) 1997
10.1016/j.comcom.2021.01.021_b172
Dubin (10.1016/j.comcom.2021.01.021_b33) 2017; 12
Jiang (10.1016/j.comcom.2021.01.021_b162) 2018
Kiros (10.1016/j.comcom.2021.01.021_b68) 2014
Androutsopoulou (10.1016/j.comcom.2021.01.021_b53) 2019; 36
Tavallaee (10.1016/j.comcom.2021.01.021_b164) 2009
Radford (10.1016/j.comcom.2021.01.021_b101) 2018
10.1016/j.comcom.2021.01.021_b176
Sundaresan (10.1016/j.comcom.2021.01.021_b17) 2011; 41
Zhao (10.1016/j.comcom.2021.01.021_b102) 2019
da Rocha Fonseca (10.1016/j.comcom.2021.01.021_b141) 2017; 19
Li (10.1016/j.comcom.2021.01.021_b103) 2018; 32
Bega (10.1016/j.comcom.2021.01.021_b131) 2019
Joshi (10.1016/j.comcom.2021.01.021_b121) 2015
Bär (10.1016/j.comcom.2021.01.021_b37) 2014
(10.1016/j.comcom.2021.01.021_b40) 2020
Al Nuaimi (10.1016/j.comcom.2021.01.021_b44) 2015; 6
Gupta (10.1016/j.comcom.2021.01.021_b148) 2019
Conti (10.1016/j.comcom.2021.01.021_b29) 2017
Mohammadi (10.1016/j.comcom.2021.01.021_b77) 2018; 20
Cooley (10.1016/j.comcom.2021.01.021_b38) 1997
Goodfellow (10.1016/j.comcom.2021.01.021_b56) 2016
Shahraki (10.1016/j.comcom.2021.01.021_b4) 2017
Hinton (10.1016/j.comcom.2021.01.021_b74) 2002; 14
10.1016/j.comcom.2021.01.021_b83
Rezaei (10.1016/j.comcom.2021.01.021_b95) 2018
Sivarajah (10.1016/j.comcom.2021.01.021_b11) 2017; 70
Thing (10.1016/j.comcom.2021.01.021_b168) 2017
Srinivasan (10.1016/j.comcom.2021.01.021_b143) 2019; 6
Wang (10.1016/j.comcom.2021.01.021_b92) 2020; 88
Ricciato (10.1016/j.comcom.2021.01.021_b32) 2006; 13
D Alconzo (10.1016/j.comcom.2021.01.021_b1) 2019; 16
Modi (10.1016/j.comcom.2021.01.021_b160) 2017; 73
10.1016/j.comcom.2021.01.021_b105
Hasan (10.1016/j.comcom.2021.01.021_b112) 2011; 13
Cao (10.1016/j.comcom.2021.01.021_b134) 2017; 6
Roh (10.1016/j.comcom.2021.01.021_b180) 2019
Wang (10.1016/j.comcom.2021.01.021_b82) 2018; 6
Suter (10.1016/j.comcom.2021.01.021_b57) 1990; 1
Shahraki (10.1016/j.comcom.2021.01.021_b13) 2019
Shahraki (10.1016/j.comcom.2021.01.021_b12) 2020; 31
Salih (10.1016/j.comcom.2021.01.021_b87) 2019
Ding (10.1016/j.comcom.2021.01.021_b151) 2019
Hardy (10.1016/j.comcom.2021.01.021_b174) 2016
Fadlullah (10.1016/j.comcom.2021.01.021_b30) 2017; 19
Mulvey (10.1016/j.comcom.2021.01.021_b139) 2019; 7
Verma (10.1016/j.comcom.2021.01.021_b31) 2017; 19
(10.1016/j.comcom.2021.01.021_b159) 2019
LeCun (10.1016/j.comcom.2021.01.021_b58) 1989
Imran (10.1016/j.comcom.2021.01.021_b109) 2014; 28
Marinchak (10.1016/j.comcom.2021.01.021_b54) 2018
ElSawy (10.1016/j.comcom.2021.01.021_b156) 2013; 15
Shu (10.1016/j.comcom.2021.01.021_b171) 2020
Demchenko (10.1016/j.comcom.2021.01.021_b22) 2014
Russell (10.1016/j.comcom.2021.01.021_b55) 2002
Mismar (10.1016/j.comcom.2021.01.021_b152) 2018
Basso (10.1016/j.comcom.2021.01.021_b16) 2010
Rumelhart (10.1016/j.comcom.2021.01.021_b60) 1985
Rezaei (10.1016/j.comcom.2021.01.021_b27) 2019; 57
Pwint (10.1016/j.comcom.2021.01.021_b85) 2019
Nie (10.1016/j.comcom.2021.01.021_b135) 2018; 2018
10.1016/j.comcom.2021.01.021_b158
Sutskever (10.1016/j.comcom.2021.01.021_b66) 2014
Chen (10.1016/j.comcom.2021.01.021_b94) 2017
Chollet (10.1016/j.comcom.2021.01.021_b182) 2015
(10.1016/j.comcom.2021.01.021_b39) 2020
LeCun (10.1016/j.comcom.2021.01.021_b51) 2015; 521
Wang (10.1016/j.comcom.2021.01.021_b96) 2017; 6
Ferreira (10.1016/j.comcom.2021.01.021_b84) 2016; 14
Zhang (10.1016/j.comcom.2021.01.021_b154) 2016
Nguyen (10.1016/j.comcom.2021.01.021_b170) 2018
Li (10.1016/j.comcom.2021.01.021_b108) 2014; 52
Andreoletti (10.1016/j.comcom.2021.01.021_b125) 2019
Labrinidis (10.1016/j.comcom.2021.01.021_b10) 2012; 5
Graves (10.1016/j.comcom.2021.01.021_b64) 2014
Yeo (10.1016/j.comcom.2021.01.021_b97) 2018
Salmi (10.1016/j.comcom.2021.01.021_b59) 2020
Garg (10.1016/j.comcom.2021.01.021_b166) 2019; 16
Hariri (10.1016/j.comcom.2021.01.021_b23) 2019; 6
Wang (10.1016/j.comcom.2021.01.021_b93) 2017
Oliveira (10.1016/j.comcom.2021.01.021_b120) 2016; 3
Oh (10.1016/j.comcom.2021.01.021_b61) 2019
Madan (10.1016/j.comcom.2021.01.021_b124) 2018
Sreekesh (10.1016/j.comcom.2021.01.021_b88) 2016
Mulvey (10.1016/j.comcom.2021.01.021_b145) 2018
Graves (10.1016/j.comcom.2021.01.021_b67) 2013
Torres (10.1016/j.comcom.2021.01.021_b179) 2016
Aceto (10.1016/j.comcom.2021.01.021_b81) 2019; 16
Zhong (10.1016/j.comcom.2021.01.021_b173) 2019; 133
Bkassiny (10.1016/j.comcom.2021.01.021_b184) 2012; 15
Rathore (10.1016/j.comcom.2021.01.021_b24) 2018; 40
Yang (10.1016/j.comcom.2021.01.021_b78) 2019; 10
Masood (10.1016/j.comcom.2021.01.021_b146) 2018
Hochreiter (10.1016/j.comcom.2021.01.021_b63) 1997; 9
Fahlman (10.1016/j.comcom.2021.01.021_b70) 1983
10.1016/j.comcom.2021.01.021_b36
Wang (10.1016/j.comcom.2021.01.021_b100) 2017
Fang (10.1016/j.comcom.2021.01.021_b128) 2018; 5
Rafsanjani (10.1016/j.comcom.2021.01.021_b119) 2014; 244
10.1016/j.comcom.2021.01.021_b34
Jebara (10.1016/j.comcom.2021.01.021_b75) 2012
Oliner (10.1016/j.comcom.2021.01.021_b21) 2011; 9
Boutaba (10.1016/j.comcom.2021.01.021_b9) 2018; 9
Khunteta (10.1016/j.comcom.2021.01.021_b150) 2017
Wang (10.1016/j.comcom.2021.01.021_b188) 2019; 37
Chen (10.1016/j.comcom.2021.01.021_b47) 2014; 2
Li (10.1016/j.comcom.2021.01.021_b136) 2020; 107
Ren (10.1016/j.comcom.2021.01.021_b69) 2015
Naseer (10.1016/j.comcom.2021.01.021_b163) 2018; 6
Gheisari (10.1016/j.comcom.2021.01.021_b26) 2017
Abeshu (10.1016/j.comcom.2021.01.021_b104) 2018; 56
Hu (10.1016/j.comcom.2021.01.021_b189) 2020
Han (10.1016/j.comcom.2021.01.021_b7) 2002
Liu (10.1016/j.comcom.2021.01.021_b50) 2018; 32
Salakhutdinov (10.1016/j.comcom.2021.01.021_b73) 2009
Tong (10.1016/j.comcom.2021.01.021_b99) 2018
So-In (10.1016/j.comcom.2021.01.021_b2) 2009
10.1016/j.comcom.2021.01.021_b138
Wang (10.1016/j.comcom.2021.01.021_b183) 2015; 3
Cecil (10.1016/j.comcom.2021.01.021_b3) 2006
Shu (10.1016/j.comcom.2021.01.021_b118) 2005; 88
Konečnỳ (10.1016/j.comcom.2021.01.021_b79) 2016
Zare Moayedi (10.1016/j.comcom.2021.01.021_b115) 2008
Zhou (10.1016/j.comcom.2021.01.021_b18) 2018; 116
Malaiya (10.1016/j.comcom.2021.01.021_b165) 2018
Liu (10.1016/j.comcom.2021.01.021_b6) 2014; 28
Xu (10.1016/j.comcom.2021.01.021_b110) 2016; 9
Barabas (10.1016/j.comcom.2021.01.021_b122) 2011
Lo’ai (10.1016/j.comcom.2021.01.021_b46) 2016; 4
Iliyasu (10.1016/j.comcom.2021.01.021_b107) 2019; 8
10.1016/j.comcom.2021.01.021_b48
Graves (10.1016/j.comcom.2021.01.021_b65) 2009
10.1016/j.comcom.2021.01.021_b43
Asghar (10.1016/j.comcom.2021.01.021_b153) 2018; 20
Sahay (10.1016/j.comcom.2021.01.021_b91) 2018
Huang (10.1016/j.comcom.2021.01.021_b144) 2020; 58
Assem (10.1016/j.comcom.2021.01.021_b114) 2018
Azari (10.1016/j.comcom.2021.01.021_b116) 2019
Van Efferen (10.1016/j.comcom.2021.01.021_b89) 2017
10.1016/j.comcom.2021.01.021_b140
Masala (10.1016/j.comcom.2021.01.021_b15) 2014
Feng (10.1016/j.comcom.2021.01.021_b126) 2018; 32
Ucci (10.1016/j.comcom.2021.01.021_b28) 2019; 81
Hwang (10.1016/j.comcom.2021.01.021_b45) 2017
Wang (10.1016/j.comcom.2021.01.021_b41) 2013; 29
Alsheikh (10.1016/j.comcom.2021.01.021_b76) 2016; 30
Abduljabbar (10.1016/j.comcom.2021.01.021_b52) 2019; 11
Abadi (10.1016/j.comcom.2021.01.021_b181) 2016
Zhao (10.1016/j.comcom.2021.01.021_b187) 2018; 37
Motamedi (10.1016/j.comcom.2021.01.021_b185) 2017; 16
Wang (10.1016/j.comcom.2021.01.021_b137) 2018; 18
References_xml – volume: 9
  start-page: 16
  year: 2018
  ident: b9
  article-title: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities
  publication-title: J. Internet Serv. Appl.
– volume: 31
  start-page: 8021
  year: 2019
  end-page: 8033
  ident: b177
  article-title: Deep learning to detect botnet via network flow summaries
  publication-title: Neural Comput. Appl.
– start-page: 173
  year: 2017
  end-page: 180
  ident: b26
  article-title: A survey on deep learning in big data
  publication-title: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Vol. 2
– start-page: 1
  year: 2013
  end-page: 6
  ident: b86
  article-title: Intrusion detection using neuarl networks trained by differential evaluation algorithm
  publication-title: 2013 10th International ISC Conference on Information Security and Cryptology (ISCISC)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b51
  article-title: Deep learning
  publication-title: Nature
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b63
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 794
  year: 2020
  end-page: 803
  ident: b132
  article-title: AZTEC: Anticipatory capacity allocation for zero-touch network slicing
  publication-title: IEEE INFOCOM 2020-IEEE Conference on Computer Communications
– volume: 133
  start-page: 151
  year: 2019
  end-page: 162
  ident: b173
  article-title: A multi-level deep learning system for malware detection
  publication-title: Expert Syst. Appl.
– reference: Chaoyun Zhang, Paul Patras, Long-term mobile traffic forecasting using deep spatio-temporal neural networks, in: Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2018, pp. 231–240.
– year: 2012
  ident: b75
  article-title: Machine learning: discriminative and generative, Vol. 755
– year: 2016
  ident: b181
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– volume: 6
  start-page: 25
  year: 2015
  ident: b44
  article-title: Applications of big data to smart cities
  publication-title: J. Internet Serv. Appl.
– year: 2010
  ident: b16
  article-title: Rationale, design, and implementation of the network neutrality bot
  publication-title: Congresso AICA 2010 (L’Aquila)
– volume: 18
  start-page: 2190
  year: 2018
  end-page: 2202
  ident: b137
  article-title: Spatio-temporal analysis and prediction of cellular traffic in metropolis
  publication-title: IEEE Trans. Mob. Comput.
– volume: 2
  start-page: 1
  year: 2015
  ident: b25
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 32
  start-page: 22
  year: 2018
  end-page: 27
  ident: b103
  article-title: An improved stacked auto-encoder for network traffic flow classification
  publication-title: IEEE Netw.
– year: 2019
  ident: b13
  article-title: An outlier detection method to improve gathered datasets for network behavior analysis in IoT
– start-page: 3854
  year: 2017
  end-page: 3861
  ident: b167
  article-title: Autoencoder-based feature learning for cyber security applications
  publication-title: 2017 International Joint Conference on Neural Networks (IJCNN)
– year: 2020
  ident: b171
  article-title: Collaborative intrusion detection for VANETs: A deep learning-based distributed SDN approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 16
  start-page: 1
  year: 2017
  end-page: 19
  ident: b185
  article-title: Machine intelligence on resource-constrained IoT devices: The case of thread granularity optimization for CNN inference
  publication-title: ACM Trans. Embedded Comput. Syst. (TECS)
– reference: Pedro Casas, Alessandro D Alconzo, Tanja Zseby, Marco Mellia, Big-DAMA: big data analytics for network traffic monitoring and analysis, in: Proceedings of the 2016 Workshop on Fostering Latin-American Research in Data Communication Networks, 2016, pp. 1–3.
– volume: 13
  start-page: 524
  year: 2011
  end-page: 540
  ident: b112
  article-title: Green cellular networks: A survey, some research issues and challenges
  publication-title: IEEE Commun. Surv. Tutor.
– reference: Anestis Dalgkitsis, Malamati Louta, George T. Karetsos, Traffic forecasting in cellular networks using the LSTM RNN, in: Proceedings of the 22nd Pan-Hellenic Conference on Informatics, 2018, pp. 28–33.
– reference: ITU, global ICT statistics.
– volume: 7
  start-page: 124514
  year: 2019
  end-page: 124539
  ident: b139
  article-title: Cell fault management using machine learning techniques
  publication-title: IEEE Access
– year: 2012
  ident: b111
  article-title: Cisco visual networking index: Forecast and methodology, 2011–2016, Vol. 518
– start-page: 33
  year: 2017
  end-page: 48
  ident: b149
  article-title: Fault detection and localization in distributed systems using recurrent convolutional neural networks
  publication-title: International Conference on Advanced Data Mining and Applications
– start-page: 7
  year: 2019
  end-page: 14
  ident: b151
  article-title: On-line error detection and mitigation for time-series data of cyber-physical systems using deep learning based methods
  publication-title: 2019 15th European Dependable Computing Conference (EDCC)
– year: 2017
  ident: b8
  article-title: Passive flow monitoring of hybrid network connections regarding quality of service parameters for the industrial automation
  publication-title: 8. Jahreskolloquium “Kommunikation in der Automation–KommA
– volume: 6
  start-page: 55380
  year: 2018
  end-page: 55391
  ident: b82
  article-title: Datanet: Deep learning based encrypted network traffic classification in sdn home gateway
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 7
  ident: b4
  article-title: Last significant trend change detection method for offline poisson distribution datasets
  publication-title: 2017 International Symposium on Networks, Computers and Communications (ISNCC)
– start-page: 1764
  year: 2014
  end-page: 1772
  ident: b64
  article-title: Towards end-to-end speech recognition with recurrent neural networks
  publication-title: International Conference on Machine Learning
– volume: 3
  start-page: 1379
  year: 2015
  end-page: 1391
  ident: b183
  article-title: Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges
  publication-title: IEEE Access
– volume: 31
  year: 2020
  ident: b12
  article-title: A comparative node evaluation model for highly heterogeneous massive-scale internet of things-mist networks
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 56
  start-page: 169
  year: 2018
  end-page: 175
  ident: b104
  article-title: Deep learning: The frontier for distributed attack detection in fog-to-things computing
  publication-title: IEEE Commun. Mag.
– start-page: 1271
  year: 2017
  end-page: 1276
  ident: b94
  article-title: Seq2img: A sequence-to-image based approach towards IP traffic classification using convolutional neural networks
  publication-title: 2017 IEEE International Conference on Big Data (Big Data)
– start-page: 1
  year: 2008
  end-page: 6
  ident: b115
  article-title: Arima model for network traffic prediction and anomaly detection
  publication-title: 2008 International Symposium on Information Technology, Vol. 4
– year: 2002
  ident: b55
  article-title: Artificial intelligence: a modern approach
– volume: 57
  start-page: 76
  year: 2019
  end-page: 81
  ident: b27
  article-title: Deep learning for encrypted traffic classification: An overview
  publication-title: IEEE Commun. Mag.
– start-page: 141
  year: 2019
  end-page: 147
  ident: b148
  article-title: HYPER-VINES: A hybrid learning fault and performance issues eradicator for virtual network services over multi-cloud systems
  publication-title: 2019 International Conference on Computing, Networking and Communications (ICNC)
– volume: 16
  start-page: 445
  year: 2019
  end-page: 458
  ident: b81
  article-title: Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b72
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 30
  start-page: 22
  year: 2016
  end-page: 29
  ident: b76
  article-title: Mobile big data analytics using deep learning and apache spark
  publication-title: IEEE Netw.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b90
  article-title: Multilayer perceptron neural network for detection of encrypted vpn network traffic
  publication-title: 2018 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (Cyber SA)
– start-page: 1
  year: 2007
  end-page: 5
  ident: b117
  article-title: Traffic prediction for mobile network using holt-winter’s exponential smoothing
  publication-title: 2007 15th International Conference on Software, Telecommunications and Computer Networks
– volume: 52
  start-page: 234
  year: 2014
  end-page: 240
  ident: b108
  article-title: The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice
  publication-title: IEEE Commun. Mag.
– start-page: 203
  year: 2014
  end-page: 212
  ident: b15
  article-title: Challenges and issues on collecting and analyzing large volumes of network data measurements
  publication-title: New Trends in Databases and Information Systems
– volume: 22
  start-page: 1656
  year: 2018
  end-page: 1659
  ident: b133
  article-title: Citywide cellular traffic prediction based on densely connected convolutional neural networks
  publication-title: IEEE Commun. Lett.
– volume: 7
  start-page: 13546
  year: 2019
  end-page: 13560
  ident: b161
  article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems
  publication-title: IEEE Access
– year: 2019
  ident: b159
  article-title: Official annual cybercrime report
– start-page: 95
  year: 2011
  end-page: 102
  ident: b122
  article-title: Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition
  publication-title: 2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing
– start-page: 246
  year: 2019
  end-page: 251
  ident: b125
  article-title: Network traffic prediction based on diffusion convolutional recurrent neural networks
  publication-title: IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
– start-page: 85
  year: 2019
  end-page: 89
  ident: b102
  article-title: Towards unknown traffic identification via embeddings and deep autoencoders
  publication-title: 2019 26th International Conference on Telecommunications (ICT)
– year: 2013
  ident: b67
  article-title: Generating sequences with recurrent neural networks
– start-page: 4125
  year: 2016
  end-page: 4133
  ident: b62
  article-title: Memory-efficient backpropagation through time
  publication-title: Advances in Neural Information Processing Systems
– start-page: 545
  year: 2009
  end-page: 552
  ident: b65
  article-title: Offline handwriting recognition with multidimensional recurrent neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2019
  ident: b116
  article-title: Cellular traffic prediction and classification: a comparative evaluation of LSTM and ARIMA
– volume: 17
  start-page: 12
  year: 2018
  end-page: 22
  ident: b178
  article-title: N-baiot—network-based detection of iot botnet attacks using deep autoencoders
  publication-title: IEEE Pervasive Comput.
– start-page: 1244
  year: 1997
  end-page: 1250
  ident: b142
  article-title: Automated network fault management
  publication-title: MILCOM 97 MILCOM 97 Proceedings, Vol. 3
– year: 2009
  ident: b2
  article-title: A survey of network traffic monitoring and analysis tools
  publication-title: Cse 576m computer system analysis project
– start-page: 712
  year: 2017
  end-page: 717
  ident: b100
  article-title: Malware traffic classification using convolutional neural network for representation learning
  publication-title: 2017 International Conference on Information Networking (ICOIN)
– start-page: 104
  year: 2014
  end-page: 112
  ident: b22
  article-title: Defining architecture components of the big data ecosystem
  publication-title: 2014 International Conference on Collaboration Technologies and Systems (CTS)
– volume: 19
  start-page: 1457
  year: 2017
  end-page: 1477
  ident: b31
  article-title: A survey on network methodologies for real-time analytics of massive IoT data and open research issues
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2018
  ident: b101
  article-title: Network traffic anomaly detection using recurrent neural networks
– start-page: 280
  year: 2019
  end-page: 288
  ident: b131
  article-title: Deepcog: Cognitive network management in sliced 5g networks with deep learning
  publication-title: IEEE INFOCOM 2019-IEEE Conference on Computer Communications
– volume: 4
  start-page: 6171
  year: 2016
  end-page: 6180
  ident: b46
  article-title: Mobile cloud computing model and big data analysis for healthcare applications
  publication-title: IEEE Access
– volume: 73
  start-page: 1192
  year: 2017
  end-page: 1234
  ident: b160
  article-title: Virtualization layer security challenges and intrusion detection/prevention systems in cloud computing: a comprehensive review
  publication-title: J. Supercomput.
– year: 2020
  ident: b59
  article-title: Stacked boosters network architecture for short term load forecasting in buildings
– start-page: 43
  year: 2017
  end-page: 48
  ident: b93
  article-title: End-to-end encrypted traffic classification with one-dimensional convolution neural networks
  publication-title: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI)
– start-page: 1457
  year: 2018
  end-page: 1461
  ident: b152
  article-title: Deep Q-learning for self-organizing networks fault management and radio performance improvement
  publication-title: 2018 52nd Asilomar Conference on Signals, Systems, and Computers
– year: 2018
  ident: b95
  article-title: How to achieve high classification accuracy with just a few labels: A semi-supervised approach using sampled packets
– volume: 26
  start-page: 35
  year: 2012
  end-page: 40
  ident: b80
  article-title: Issues and future directions in traffic classification
  publication-title: IEEE Netw.
– start-page: 91
  year: 2015
  end-page: 99
  ident: b69
  article-title: Advances in neural information processing systems
  publication-title: Faster R-CNN: towards real-time object detection with region proposal networks
– start-page: 1
  year: 2017
  end-page: 6
  ident: b89
  article-title: A multi-layer perceptron approach for flow-based anomaly detection
  publication-title: 2017 International Symposium on Networks, Computers and Communications (ISNCC)
– year: 2020
  ident: b186
  article-title: Federated learning for resource-constrained IoT devices: Panoramas and state-of-the-art
– volume: 9
  start-page: 30
  year: 2011
  end-page: 40
  ident: b21
  article-title: Advances and challenges in log analysis: Logs contain a wealth of information for help in managing systems.
  publication-title: Queue
– reference: Qing Lyu, Xingjian Lu, Effective Media Traffic Classification Using Deep Learning, in: Proceedings of the 2019 3rd International Conference on Compute and Data Analysis, 2019, pp. 139–146.
– start-page: 94
  year: 2019
  end-page: 99
  ident: b87
  article-title: Combining best features selection using three classifiers in intrusion detection system
  publication-title: 2019 International Conference on Advanced Science and Engineering (ICOASE)
– start-page: 339
  year: 2015
  end-page: 344
  ident: b106
  article-title: Intrusion detection using deep belief networks
  publication-title: 2015 National Aerospace and Electronics Conference (NAECON)
– volume: 88
  start-page: 3992
  year: 2005
  end-page: 3999
  ident: b118
  article-title: Wireless traffic modeling and prediction using seasonal ARIMA models
  publication-title: IEICE Trans. Commun.
– volume: 5
  start-page: 18042
  year: 2017
  end-page: 18050
  ident: b98
  article-title: Network traffic classifier with convolutional and recurrent neural networks for internet of things
  publication-title: IEEE Access
– volume: 94
  year: 2020
  ident: b35
  article-title: Boosting algorithms for network intrusion detection: A comparative evaluation of real adaboost, gentle adaboost and modest adaboost
  publication-title: Eng. Appl. Artif. Intell.
– reference: Tijmen Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1064–1071.
– volume: 180
  year: 2020
  ident: b5
  article-title: Clustering objectives in wireless sensor networks: A survey and research direction analysis
  publication-title: Comput. Netw.
– start-page: 1291
  year: 2016
  end-page: 1300
  ident: b154
  article-title: Automated IT system failure prediction: A deep learning approach
  publication-title: 2016 IEEE International Conference on Big Data (Big Data)
– reference: Justine Sherry, Chang Lan, Raluca Ada Popa, Sylvia Ratnasamy, Blindbox: Deep packet inspection over encrypted traffic, in: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, 2015, pp. 213–226.
– year: 2020
  ident: b40
  article-title: Apache spark
– year: 1989
  ident: b58
  article-title: Generalization and network design strategies. Connectionism in perspective
– year: 2020
  ident: b14
  article-title: A survey and future directions on clustering: From WSNs to IoT and modern networking paradigms
  publication-title: IEEE Trans. Netw. Serv. Manag.
– start-page: 165
  year: 2014
  end-page: 170
  ident: b37
  article-title: Large-scale network traffic monitoring with dbstream, a system for rolling big data analysis
  publication-title: 2014 IEEE International Conference on Big Data (Big Data)
– volume: 18
  start-page: 3030
  year: 2016
  end-page: 3051
  ident: b147
  article-title: Recent advances in fault localization in computer networks
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2020
  ident: b189
  article-title: Differentially private federated learning for resource-constrained internet of things
– volume: 2018
  year: 2018
  ident: b135
  article-title: Network traffic prediction based on deep belief network and spatiotemporal compressive sensing in wireless mesh backbone networks
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 15
  start-page: 336
  year: 2012
  end-page: 361
  ident: b157
  article-title: A survey of self organisation in future cellular networks
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 32
  start-page: 40
  year: 2018
  end-page: 46
  ident: b50
  article-title: Urban traffic prediction from mobility data using deep learning
  publication-title: IEEE Netw.
– start-page: 448
  year: 2009
  end-page: 455
  ident: b73
  article-title: Deep boltzmann machines
  publication-title: Artificial Intelligence and Statistics
– reference: Haytham Assem, Declan O’Sullivan, Discovering new socio-demographic regional patterns in cities, in: Proceedings of the 9th ACM SIGSPATIAL Workshop on Location-Based Social Networks, 2016, pp. 1–9.
– year: 2015
  ident: b182
  article-title: Keras
– volume: 14
  start-page: 404
  year: 2016
  end-page: 410
  ident: b84
  article-title: The development and evaluation of a dataset for testing of IDS for wireless networks
  publication-title: IEEE Latin Amer. Trans.
– year: 1983
  ident: b70
  article-title: Massively parallel architectures for al: NETL, thistle, and Boltzmann machines
  publication-title: National Conference on Artificial Intelligence, AAAI
– volume: 16
  start-page: 800
  year: 2019
  end-page: 813
  ident: b1
  article-title: A survey on big data for network traffic monitoring and analysis
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 5
  start-page: 2032
  year: 2012
  end-page: 2033
  ident: b10
  article-title: Challenges and opportunities with big data
  publication-title: Proc. VLDB Endow.
– reference: Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J DeWitt, Samuel Madden, Michael Stonebraker, A comparison of approaches to large-scale data analysis, in: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, 2009, pp. 165–178.
– volume: 40
  start-page: 600
  year: 2018
  end-page: 610
  ident: b24
  article-title: Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data
  publication-title: Sustain. Cities Soc.
– volume: 81
  start-page: 123
  year: 2019
  end-page: 147
  ident: b28
  article-title: Survey of machine learning techniques for malware analysis
  publication-title: Comput. Secur.
– volume: 244
  start-page: 514
  year: 2014
  end-page: 525
  ident: b119
  article-title: QARIMA: A new approach to prediction in queue theory
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 28
  year: 2016
  end-page: 37
  ident: b120
  article-title: Computer network traffic prediction: a comparison between traditional and deep learning neural networks
  publication-title: Int. J. Big Data Intell.
– reference: Hongyi Zeng, Peyman Kazemian, George Varghese, Nick McKeown, Automatic test packet generation, in: Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, 2012, pp. 241–252.
– volume: 36
  start-page: 358
  year: 2019
  end-page: 367
  ident: b53
  article-title: Transforming the communication between citizens and government through AI-guided chatbots
  publication-title: Gov. Inf. Q.
– start-page: 42
  year: 2016
  end-page: 47
  ident: b88
  article-title: A two-tier network based intrusion detection system architecture using machine learning approach
  publication-title: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)
– start-page: 806
  year: 2017
  end-page: 811
  ident: b150
  article-title: Deep learning based link failure mitigation
  publication-title: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)
– start-page: 4
  year: 2006
  end-page: 7
  ident: b3
  article-title: A summary of network traffic monitoring and analysis techniques
  publication-title: Comput. Syst. Anal.
– volume: 24
  start-page: 1999
  year: 2020
  end-page: 2012
  ident: b49
  article-title: Deep packet: A novel approach for encrypted traffic classification using deep learning
  publication-title: Soft Comput.
– reference: Jos van Roosmalen, Harald Vranken, Marko van Eekelen, Applying deep learning on packet flows for botnet detection, in: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp. 1629–1636.
– start-page: 1
  year: 2009
  end-page: 6
  ident: b164
  article-title: A detailed analysis of the KDD cup 99 data set
  publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications
– start-page: 5748
  year: 2018
  end-page: 5756
  ident: b54
  article-title: The impact of artificial intelligence and virtual personal assistants on marketing
  publication-title: Encyclopedia of Information Science and Technology, Fourth Edition
– volume: 12
  start-page: 3039
  year: 2017
  end-page: 3049
  ident: b33
  article-title: I know what you saw last minute–encrypted http adaptive video streaming title classification
  publication-title: IEEE Trans. Inform. Forensics Secur.
– start-page: 61
  year: 2016
  ident: b174
  article-title: DL4MD: A deep learning framework for intelligent malware detection
  publication-title: Proceedings of the International Conference on Data Mining (DMIN)
– volume: 6
  start-page: 48231
  year: 2018
  end-page: 48246
  ident: b163
  article-title: Enhanced network anomaly detection based on deep neural networks
  publication-title: IEEE Access
– start-page: 893
  year: 2018
  end-page: 898
  ident: b165
  article-title: An empirical evaluation of deep learning for network anomaly detection
  publication-title: 2018 International Conference on Computing, Networking and Communications (ICNC)
– year: 2017
  ident: b45
  article-title: Big-data analytics for cloud, IoT and cognitive computing
– start-page: 558
  year: 1997
  end-page: 567
  ident: b38
  article-title: Web mining: Information and pattern discovery on the world wide web
  publication-title: Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence
– start-page: 222
  year: 2019
  end-page: 226
  ident: b85
  article-title: Network traffic anomaly detection based on apache spark
  publication-title: 2019 International Conference on Advanced Information Technologies (ICAIT)
– start-page: 16
  year: 2002
  end-page: 27
  ident: b7
  article-title: The architecture of NG-MON: A passive network monitoring system for high-speed IP networks
  publication-title: International Workshop on Distributed Systems: Operations and Management
– volume: 6
  start-page: 6556
  year: 2019
  end-page: 6566
  ident: b143
  article-title: Machine learning-based link fault identification and localization in complex networks
  publication-title: IEEE Internet Things J.
– year: 2015
  ident: b121
  article-title: A review of network traffic analysis and prediction techniques
– volume: 58
  start-page: 40
  year: 2020
  end-page: 46
  ident: b144
  article-title: Machine fault detection for intelligent self-driving networks
  publication-title: IEEE Commun. Mag.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: b78
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– year: 2019
  ident: b61
  article-title: Relaxed weight sharing: Effectively modeling time-varying relationships in clinical time-series
– volume: 13
  start-page: 42
  year: 2006
  end-page: 49
  ident: b32
  article-title: Traffic monitoring and analysis for the optimization of a 3g network
  publication-title: IEEE Wirel. Commun.
– volume: 37
  start-page: 1205
  year: 2019
  end-page: 1221
  ident: b188
  article-title: Adaptive federated learning in resource constrained edge computing systems
  publication-title: IEEE J. Sel. Areas Commun.
– start-page: 168
  year: 2008
  end-page: 175
  ident: b19
  article-title: Dicap: Distributed packet capturing architecture for high-speed network links
  publication-title: 2008 33rd IEEE Conference on Local Computer Networks (LCN)
– volume: 2
  start-page: 514
  year: 2014
  end-page: 525
  ident: b47
  article-title: Big data deep learning: challenges and perspectives
  publication-title: IEEE Access
– volume: 16
  start-page: 924
  year: 2019
  end-page: 935
  ident: b166
  article-title: A hybrid deep learning-based model for anomaly detection in cloud datacenter networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 15
  start-page: 996
  year: 2013
  end-page: 1019
  ident: b156
  article-title: Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 910
  year: 2018
  end-page: 913
  ident: b97
  article-title: Flow-based malware detection using convolutional neural network
  publication-title: 2018 International Conference on Information Networking (ICOIN)
– volume: 65
  start-page: 84
  year: 2014
  end-page: 98
  ident: b20
  article-title: Network monitoring: Present and future
  publication-title: Comput. Netw.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b74
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– volume: 29
  start-page: 739
  year: 2013
  end-page: 750
  ident: b41
  article-title: G-hadoop: Mapreduce across distributed data centers for data-intensive computing
  publication-title: Future Gener. Comput. Syst.
– volume: 8
  start-page: 118
  year: 2019
  end-page: 126
  ident: b107
  article-title: Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks
  publication-title: IEEE Access
– volume: 28
  start-page: 32
  year: 2014
  end-page: 39
  ident: b6
  article-title: Monitoring and analyzing big traffic data of a large-scale cellular network with hadoop
  publication-title: IEEE Netw.
– year: 2020
  ident: b39
  article-title: Apache hadoop
– year: 2016
  ident: b56
  article-title: Deep Learning
– volume: 20
  start-page: 2923
  year: 2018
  end-page: 2960
  ident: b77
  article-title: Deep learning for IoT big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 116
  start-page: 9
  year: 2018
  end-page: 23
  ident: b18
  article-title: A survey on network data collection
  publication-title: J. Netw. Comput. Appl.
– volume: 19
  start-page: 2284
  year: 2017
  end-page: 2321
  ident: b141
  article-title: A survey on fault management in software-defined networks
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 37
  start-page: 2348
  year: 2018
  end-page: 2359
  ident: b187
  article-title: Deepthings: Distributed adaptive deep learning inference on resource-constrained IoT edge clusters
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– volume: 9
  start-page: 796
  year: 2016
  end-page: 805
  ident: b110
  article-title: Big data driven mobile traffic understanding and forecasting: A time series approach
  publication-title: IEEE Trans. Serv. Comput.
– volume: 33
  start-page: 36
  year: 2019
  end-page: 41
  ident: b169
  article-title: Deep learning for secure mobile edge computing in cyber-physical transportation systems
  publication-title: IEEE Netw.
– year: 2014
  ident: b68
  article-title: Unifying visual-semantic embeddings with multimodal neural language models
– start-page: 1
  year: 2017
  end-page: 6
  ident: b168
  article-title: IEEE 802.11 network anomaly detection and attack classification: A deep learning approach
  publication-title: 2017 IEEE Wireless Communications and Networking Conference (WCNC)
– start-page: 1
  year: 2018
  end-page: 6
  ident: b170
  article-title: Cyberattack detection in mobile cloud computing: A deep learning approach
  publication-title: 2018 IEEE Wireless Communications and Networking Conference (WCNC)
– volume: 4
  start-page: 88
  year: 2018
  end-page: 95
  ident: b175
  article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning
  publication-title: IEEE Trans. Sustain. Comput.
– volume: 88
  year: 2020
  ident: b92
  article-title: A dynamic MLP-based ddos attack detection method using feature selection and feedback
  publication-title: Comput. Secur.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b42
  article-title: Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach
  publication-title: IEEE INFOCOM 2017-IEEE Conference on Computer Communications
– volume: 6
  start-page: 1792
  year: 2017
  end-page: 1806
  ident: b96
  article-title: HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
– start-page: 1
  year: 2018
  end-page: 6
  ident: b99
  article-title: A novel QUIC traffic classifier based on convolutional neural networks
  publication-title: 2018 IEEE Global Communications Conference (GLOBECOM)
– volume: 5
  start-page: 3091
  year: 2018
  end-page: 3101
  ident: b128
  article-title: Mobile demand forecasting via deep graph-sequence spatiotemporal modeling in cellular networks
  publication-title: IEEE Internet Things J.
– start-page: 61
  year: 2014
  end-page: 71
  ident: b130
  article-title: Multilayer perceptron and stacked autoencoder for internet traffic prediction
  publication-title: IFIP International Conference on Network and Parallel Computing
– volume: 107
  year: 2020
  ident: b136
  article-title: A deep learning method based on an attention mechanism for wireless network traffic prediction
  publication-title: Ad Hoc Netw.
– reference: T. Benson, A. Akella, D. Maltz, Unraveling the complexity of network management, in: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, ser. NSDI’09, 2009.
– year: 1985
  ident: b60
  article-title: Learning internal representations by error propagation
– reference: Ly Vu, Cong Thanh Bui, Quang Uy Nguyen, A deep learning based method for handling imbalanced problem in network traffic classification, in: Proceedings of the Eighth International Symposium on Information and Communication Technology, 2017, pp. 333–339.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: b66
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2016
  ident: b79
  article-title: Federated learning: Strategies for improving communication efficiency
– start-page: 441
  year: 2018
  end-page: 447
  ident: b145
  article-title: Cell coverage degradation detection using deep learning techniques
  publication-title: 2018 International Conference on Information and Communication Technology Convergence (ICTC)
– volume: 10
  start-page: 122
  year: 2019
  ident: b155
  article-title: A survey of deep learning methods for cyber security
  publication-title: Information
– volume: 28
  start-page: 27
  year: 2014
  end-page: 33
  ident: b109
  article-title: Challenges in 5G: how to empower SON with big data for enabling 5G
  publication-title: IEEE Netw.
– volume: 1
  start-page: 291
  year: 1990
  ident: b57
  article-title: The multilayer perceptron as an approximation to a Bayes optimal discriminant function
  publication-title: IEEE Trans. Neural Netw.
– volume: 32
  start-page: 108
  year: 2018
  end-page: 115
  ident: b126
  article-title: Deeptp: An end-to-end neural network for mobile cellular traffic prediction
  publication-title: IEEE Network
– volume: 6
  start-page: 44
  year: 2019
  ident: b23
  article-title: Uncertainty in big data analytics: survey, opportunities, and challenges
  publication-title: J. Big Data
– start-page: 1
  year: 2018
  end-page: 6
  ident: b162
  article-title: Virtual MAC spoofing detection through deep learning
  publication-title: 2018 IEEE International Conference on Communications (ICC)
– volume: 20
  start-page: 1682
  year: 2018
  end-page: 1709
  ident: b153
  article-title: Self-healing in emerging cellular networks: review, challenges, and research directions
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1715
  year: 2018
  end-page: 1722
  ident: b91
  article-title: Traffic convergence detection in IoT LLNs: A multilayer perceptron based mechanism
  publication-title: 2018 IEEE Symposium Series on Computational Intelligence (SSCI)
– start-page: 1
  year: 2017
  end-page: 6
  ident: b113
  article-title: A study of deep learning networks on mobile traffic forecasting
  publication-title: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
– volume: 41
  start-page: 134
  year: 2011
  end-page: 145
  ident: b17
  article-title: Broadband internet performance: a view from the gateway
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– year: 2017
  ident: b29
  article-title: The dark side(-channel) of mobile devices: A survey on network traffic analysis
– volume: 19
  start-page: 2432
  year: 2017
  end-page: 2455
  ident: b30
  article-title: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 206
  year: 2018
  end-page: 212
  ident: b146
  article-title: Deep learning based detection of sleeping cells in next generation cellular networks
  publication-title: 2018 IEEE Global Communications Conference (GLOBECOM)
– start-page: 222
  year: 2018
  end-page: 237
  ident: b114
  article-title: St-dennetfus: A new deep learning approach for network demand prediction
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– reference: Terran Lane, Carla E. Brodley, An application of machine learning to anomaly detection, in: Proceedings of the 20th National Information Systems Security Conference, Vol. 377, Baltimore, USA, 1997, pp. 366–380.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b179
  article-title: An analysis of recurrent neural networks for botnet detection behavior
  publication-title: 2016 IEEE Biennial Congress of Argentina (ARGENCON)
– volume: 15
  start-page: 1136
  year: 2012
  end-page: 1159
  ident: b184
  article-title: A survey on machine-learning techniques in cognitive radios
  publication-title: IEEE Commu. Surv. Tutor.
– volume: 6
  start-page: 5276
  year: 2017
  end-page: 5289
  ident: b134
  article-title: Interactive temporal recurrent convolution network for traffic prediction in data centers
  publication-title: IEEE Access
– reference: Mahmoud Abbasi, Amin Shahraki, Hamid R Barzegar, Claus Pahl, Synchronization Techniques in “Device to Device-and Vehicle to Vehicle-Enabled” Cellular Networks: A survey, Comput. Electr. Eng., 90 106955.
– start-page: 1
  year: 2018
  end-page: 5
  ident: b124
  article-title: Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN
  publication-title: 2018 Eleventh International Conference on Contemporary Computing (IC3)
– volume: 70
  start-page: 263
  year: 2017
  end-page: 286
  ident: b11
  article-title: Critical analysis of big data challenges and analytical methods
  publication-title: J. Bus. Res.
– year: 2019
  ident: b180
  article-title: A survey on data collection for machine learning: a big data-ai integration perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  start-page: 189
  year: 2019
  ident: b52
  article-title: Applications of artificial intelligence in transport: An overview
  publication-title: Sustainability
– year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b95
– volume: 10
  start-page: 122
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b155
  article-title: A survey of deep learning methods for cyber security
  publication-title: Information
  doi: 10.3390/info10040122
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.comcom.2021.01.021_b72
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 893
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b165
  article-title: An empirical evaluation of deep learning for network anomaly detection
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.comcom.2021.01.021_b74
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– start-page: 1
  year: 2009
  ident: 10.1016/j.comcom.2021.01.021_b164
  article-title: A detailed analysis of the KDD cup 99 data set
– start-page: 16
  year: 2002
  ident: 10.1016/j.comcom.2021.01.021_b7
  article-title: The architecture of NG-MON: A passive network monitoring system for high-speed IP networks
– start-page: 806
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b150
  article-title: Deep learning based link failure mitigation
– start-page: 4
  year: 2006
  ident: 10.1016/j.comcom.2021.01.021_b3
  article-title: A summary of network traffic monitoring and analysis techniques
  publication-title: Comput. Syst. Anal.
– volume: 4
  start-page: 88
  issue: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b175
  article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning
  publication-title: IEEE Trans. Sustain. Comput.
  doi: 10.1109/TSUSC.2018.2809665
– volume: 5
  start-page: 2032
  issue: 12
  year: 2012
  ident: 10.1016/j.comcom.2021.01.021_b10
  article-title: Challenges and opportunities with big data
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2367502.2367572
– start-page: 173
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b26
  article-title: A survey on deep learning in big data
– year: 2002
  ident: 10.1016/j.comcom.2021.01.021_b55
– volume: 16
  start-page: 924
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b166
  article-title: A hybrid deep learning-based model for anomaly detection in cloud datacenter networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2019.2927886
– volume: 244
  start-page: 514
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b119
  article-title: QARIMA: A new approach to prediction in queue theory
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.06.108
– volume: 31
  issue: 12
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b12
  article-title: A comparative node evaluation model for highly heterogeneous massive-scale internet of things-mist networks
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 12
  start-page: 3039
  issue: 12
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b33
  article-title: I know what you saw last minute–encrypted http adaptive video streaming title classification
  publication-title: IEEE Trans. Inform. Forensics Secur.
  doi: 10.1109/TIFS.2017.2730819
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.comcom.2021.01.021_b63
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.comcom.2021.01.021_b105
  doi: 10.1145/3155133.3155175
– year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b29
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b51
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 1
  start-page: 291
  issue: 4
  year: 1990
  ident: 10.1016/j.comcom.2021.01.021_b57
  article-title: The multilayer perceptron as an approximation to a Bayes optimal discriminant function
  publication-title: IEEE Trans. Neural Netw.
– start-page: 1457
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b152
  article-title: Deep Q-learning for self-organizing networks fault management and radio performance improvement
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b14
  article-title: A survey and future directions on clustering: From WSNs to IoT and modern networking paradigms
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2020.3035315
– start-page: 168
  year: 2008
  ident: 10.1016/j.comcom.2021.01.021_b19
  article-title: Dicap: Distributed packet capturing architecture for high-speed network links
– start-page: 1291
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b154
  article-title: Automated IT system failure prediction: A deep learning approach
– start-page: 1271
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b94
  article-title: Seq2img: A sequence-to-image based approach towards IP traffic classification using convolutional neural networks
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b168
  article-title: IEEE 802.11 network anomaly detection and attack classification: A deep learning approach
– start-page: 222
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b114
  article-title: St-dennetfus: A new deep learning approach for network demand prediction
– ident: 10.1016/j.comcom.2021.01.021_b48
  doi: 10.1145/2940116.2940117
– year: 2012
  ident: 10.1016/j.comcom.2021.01.021_b111
– start-page: 1715
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b91
  article-title: Traffic convergence detection in IoT LLNs: A multilayer perceptron based mechanism
– volume: 3
  start-page: 1379
  year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b183
  article-title: Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2467174
– volume: 9
  start-page: 796
  issue: 5
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b110
  article-title: Big data driven mobile traffic understanding and forecasting: A time series approach
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2599878
– volume: 18
  start-page: 2190
  issue: 9
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b137
  article-title: Spatio-temporal analysis and prediction of cellular traffic in metropolis
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2870135
– year: 1989
  ident: 10.1016/j.comcom.2021.01.021_b58
– volume: 13
  start-page: 524
  issue: 4
  year: 2011
  ident: 10.1016/j.comcom.2021.01.021_b112
  article-title: Green cellular networks: A survey, some research issues and challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2011.092311.00031
– volume: 15
  start-page: 996
  issue: 3
  year: 2013
  ident: 10.1016/j.comcom.2021.01.021_b156
  article-title: Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.052213.00000
– volume: 33
  start-page: 36
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b169
  article-title: Deep learning for secure mobile edge computing in cyber-physical transportation systems
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1800458
– start-page: 95
  year: 2011
  ident: 10.1016/j.comcom.2021.01.021_b122
  article-title: Evaluation of network traffic prediction based on neural networks with multi-task learning and multiresolution decomposition
– volume: 29
  start-page: 739
  issue: 3
  year: 2013
  ident: 10.1016/j.comcom.2021.01.021_b41
  article-title: G-hadoop: Mapreduce across distributed data centers for data-intensive computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.09.001
– volume: 20
  start-page: 1682
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b153
  article-title: Self-healing in emerging cellular networks: review, challenges, and research directions
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2825786
– start-page: 165
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b37
  article-title: Large-scale network traffic monitoring with dbstream, a system for rolling big data analysis
– ident: 10.1016/j.comcom.2021.01.021_b34
  doi: 10.1145/1559845.1559865
– ident: 10.1016/j.comcom.2021.01.021_b123
  doi: 10.1145/3021304.3021305
– year: 2013
  ident: 10.1016/j.comcom.2021.01.021_b67
– year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b181
– volume: 16
  start-page: 800
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b1
  article-title: A survey on big data for network traffic monitoring and analysis
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2019.2933358
– start-page: 712
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b100
  article-title: Malware traffic classification using convolutional neural network for representation learning
– volume: 28
  start-page: 27
  issue: 6
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b109
  article-title: Challenges in 5G: how to empower SON with big data for enabling 5G
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2014.6963801
– ident: 10.1016/j.comcom.2021.01.021_b158
– start-page: 203
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b15
  article-title: Challenges and issues on collecting and analyzing large volumes of network data measurements
– volume: 2018
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b135
  article-title: Network traffic prediction based on deep belief network and spatiotemporal compressive sensing in wireless mesh backbone networks
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/1260860
– volume: 65
  start-page: 84
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b20
  article-title: Network monitoring: Present and future
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2014.03.007
– volume: 28
  start-page: 32
  issue: 4
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b6
  article-title: Monitoring and analyzing big traffic data of a large-scale cellular network with hadoop
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2014.6863129
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b89
  article-title: A multi-layer perceptron approach for flow-based anomaly detection
– volume: 17
  start-page: 12
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b178
  article-title: N-baiot—network-based detection of iot botnet attacks using deep autoencoders
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2018.03367731
– start-page: 1
  year: 2013
  ident: 10.1016/j.comcom.2021.01.021_b86
  article-title: Intrusion detection using neuarl networks trained by differential evaluation algorithm
– volume: 32
  start-page: 22
  issue: 6
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b103
  article-title: An improved stacked auto-encoder for network traffic flow classification
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800078
– volume: 2
  start-page: 514
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b47
  article-title: Big data deep learning: challenges and perspectives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– volume: 20
  start-page: 2923
  issue: 4
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b77
  article-title: Deep learning for IoT big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2844341
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b4
  article-title: Last significant trend change detection method for offline poisson distribution datasets
– volume: 4
  start-page: 6171
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b46
  article-title: Mobile cloud computing model and big data analysis for healthcare applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2613278
– volume: 7
  start-page: 13546
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b161
  article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893871
– volume: 9
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b9
  article-title: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities
  publication-title: J. Internet Serv. Appl.
  doi: 10.1186/s13174-018-0087-2
– year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b61
– volume: 19
  start-page: 1457
  issue: 3
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b31
  article-title: A survey on network methodologies for real-time analytics of massive IoT data and open research issues
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2694469
– start-page: 448
  year: 2009
  ident: 10.1016/j.comcom.2021.01.021_b73
  article-title: Deep boltzmann machines
– year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b56
– volume: 40
  start-page: 600
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b24
  article-title: Exploiting IoT and big data analytics: Defining smart digital city using real-time urban data
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.12.022
– volume: 13
  start-page: 42
  issue: 6
  year: 2006
  ident: 10.1016/j.comcom.2021.01.021_b32
  article-title: Traffic monitoring and analysis for the optimization of a 3g network
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2006.275197
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b124
  article-title: Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN
– start-page: 91
  year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b69
  article-title: Advances in neural information processing systems
– start-page: 33
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b149
  article-title: Fault detection and localization in distributed systems using recurrent convolutional neural networks
– volume: 7
  start-page: 124514
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b139
  article-title: Cell fault management using machine learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938410
– start-page: 910
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b97
  article-title: Flow-based malware detection using convolutional neural network
– year: 2009
  ident: 10.1016/j.comcom.2021.01.021_b2
  article-title: A survey of network traffic monitoring and analysis tools
– volume: 133
  start-page: 151
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b173
  article-title: A multi-level deep learning system for malware detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.04.064
– volume: 24
  start-page: 1999
  issue: 3
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b49
  article-title: Deep packet: A novel approach for encrypted traffic classification using deep learning
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04030-2
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b171
  article-title: Collaborative intrusion detection for VANETs: A deep learning-based distributed SDN approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3027390
– year: 2010
  ident: 10.1016/j.comcom.2021.01.021_b16
  article-title: Rationale, design, and implementation of the network neutrality bot
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b78
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3298981
– volume: 9
  start-page: 30
  issue: 12
  year: 2011
  ident: 10.1016/j.comcom.2021.01.021_b21
  article-title: Advances and challenges in log analysis: Logs contain a wealth of information for help in managing systems.
  publication-title: Queue
  doi: 10.1145/2076796.2082137
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b40
– start-page: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b179
  article-title: An analysis of recurrent neural networks for botnet detection behavior
– volume: 88
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b92
  article-title: A dynamic MLP-based ddos attack detection method using feature selection and feedback
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2019.101645
– volume: 15
  start-page: 336
  issue: 1
  year: 2012
  ident: 10.1016/j.comcom.2021.01.021_b157
  article-title: A survey of self organisation in future cellular networks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.021312.00116
– volume: 19
  start-page: 2432
  issue: 4
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b30
  article-title: State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2707140
– volume: 14
  start-page: 404
  issue: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b84
  article-title: The development and evaluation of a dataset for testing of IDS for wireless networks
  publication-title: IEEE Latin Amer. Trans.
  doi: 10.1109/TLA.2016.7430108
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b90
  article-title: Multilayer perceptron neural network for detection of encrypted vpn network traffic
– start-page: 222
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b85
  article-title: Network traffic anomaly detection based on apache spark
– volume: 6
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b44
  article-title: Applications of big data to smart cities
  publication-title: J. Internet Serv. Appl.
  doi: 10.1186/s13174-015-0041-5
– volume: 41
  start-page: 134
  issue: 4
  year: 2011
  ident: 10.1016/j.comcom.2021.01.021_b17
  article-title: Broadband internet performance: a view from the gateway
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/2043164.2018452
– volume: 30
  start-page: 22
  issue: 3
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b76
  article-title: Mobile big data analytics using deep learning and apache spark
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2016.7474340
– start-page: 558
  year: 1997
  ident: 10.1016/j.comcom.2021.01.021_b38
  article-title: Web mining: Information and pattern discovery on the world wide web
– volume: 11
  start-page: 189
  issue: 1
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b52
  article-title: Applications of artificial intelligence in transport: An overview
  publication-title: Sustainability
  doi: 10.3390/su11010189
– start-page: 43
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b93
  article-title: End-to-end encrypted traffic classification with one-dimensional convolution neural networks
– start-page: 280
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b131
  article-title: Deepcog: Cognitive network management in sliced 5g networks with deep learning
– volume: 16
  start-page: 1
  issue: 5s
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b185
  article-title: Machine intelligence on resource-constrained IoT devices: The case of thread granularity optimization for CNN inference
  publication-title: ACM Trans. Embedded Comput. Syst. (TECS)
  doi: 10.1145/3126555
– volume: 6
  start-page: 48231
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b163
  article-title: Enhanced network anomaly detection based on deep neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863036
– volume: 37
  start-page: 1205
  issue: 6
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b188
  article-title: Adaptive federated learning in resource constrained edge computing systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2019.2904348
– ident: 10.1016/j.comcom.2021.01.021_b43
  doi: 10.1145/2785956.2787502
– volume: 26
  start-page: 35
  issue: 1
  year: 2012
  ident: 10.1016/j.comcom.2021.01.021_b80
  article-title: Issues and future directions in traffic classification
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2012.6135854
– start-page: 85
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b102
  article-title: Towards unknown traffic identification via embeddings and deep autoencoders
– volume: 15
  start-page: 1136
  issue: 3
  year: 2012
  ident: 10.1016/j.comcom.2021.01.021_b184
  article-title: A survey on machine-learning techniques in cognitive radios
  publication-title: IEEE Commu. Surv. Tutor.
  doi: 10.1109/SURV.2012.100412.00017
– ident: 10.1016/j.comcom.2021.01.021_b138
  doi: 10.1145/2413176.2413205
– volume: 88
  start-page: 3992
  issue: 10
  year: 2005
  ident: 10.1016/j.comcom.2021.01.021_b118
  article-title: Wireless traffic modeling and prediction using seasonal ARIMA models
  publication-title: IEICE Trans. Commun.
  doi: 10.1093/ietcom/e88-b.10.3992
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b113
  article-title: A study of deep learning networks on mobile traffic forecasting
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b186
– start-page: 7
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b151
  article-title: On-line error detection and mitigation for time-series data of cyber-physical systems using deep learning based methods
– volume: 36
  start-page: 358
  issue: 2
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b53
  article-title: Transforming the communication between citizens and government through AI-guided chatbots
  publication-title: Gov. Inf. Q.
  doi: 10.1016/j.giq.2018.10.001
– volume: 19
  start-page: 2284
  issue: 4
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b141
  article-title: A survey on fault management in software-defined networks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2719862
– start-page: 1764
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b64
  article-title: Towards end-to-end speech recognition with recurrent neural networks
– year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b8
  article-title: Passive flow monitoring of hybrid network connections regarding quality of service parameters for the industrial automation
– start-page: 1244
  year: 1997
  ident: 10.1016/j.comcom.2021.01.021_b142
  article-title: Automated network fault management
– ident: 10.1016/j.comcom.2021.01.021_b36
– start-page: 5748
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b54
  article-title: The impact of artificial intelligence and virtual personal assistants on marketing
– start-page: 3104
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b66
  article-title: Sequence to sequence learning with neural networks
– start-page: 94
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b87
  article-title: Combining best features selection using three classifiers in intrusion detection system
– ident: 10.1016/j.comcom.2021.01.021_b129
  doi: 10.1145/3209582.3209606
– ident: 10.1016/j.comcom.2021.01.021_b176
  doi: 10.1145/3167132.3167306
– ident: 10.1016/j.comcom.2021.01.021_b172
  doi: 10.1016/j.compeleceng.2020.106955
– year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b68
– year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b79
– volume: 6
  start-page: 55380
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b82
  article-title: Datanet: Deep learning based encrypted network traffic classification in sdn home gateway
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872430
– volume: 57
  start-page: 76
  issue: 5
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b27
  article-title: Deep learning for encrypted traffic classification: An overview
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1800819
– volume: 107
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b136
  article-title: A deep learning method based on an attention mechanism for wireless network traffic prediction
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2020.102258
– volume: 5
  start-page: 18042
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b98
  article-title: Network traffic classifier with convolutional and recurrent neural networks for internet of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2747560
– volume: 58
  start-page: 40
  issue: 1
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b144
  article-title: Machine fault detection for intelligent self-driving networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.001.1900283
– start-page: 206
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b146
  article-title: Deep learning based detection of sleeping cells in next generation cellular networks
– start-page: 545
  year: 2009
  ident: 10.1016/j.comcom.2021.01.021_b65
  article-title: Offline handwriting recognition with multidimensional recurrent neural networks
– year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b159
– year: 1983
  ident: 10.1016/j.comcom.2021.01.021_b70
  article-title: Massively parallel architectures for al: NETL, thistle, and Boltzmann machines
– start-page: 61
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b174
  article-title: DL4MD: A deep learning framework for intelligent malware detection
– volume: 6
  start-page: 5276
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b134
  article-title: Interactive temporal recurrent convolution network for traffic prediction in data centers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2787696
– volume: 3
  start-page: 28
  issue: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b120
  article-title: Computer network traffic prediction: a comparison between traditional and deep learning neural networks
  publication-title: Int. J. Big Data Intell.
  doi: 10.1504/IJBDI.2016.073903
– year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b121
– volume: 5
  start-page: 3091
  issue: 4
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b128
  article-title: Mobile demand forecasting via deep graph-sequence spatiotemporal modeling in cellular networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2832071
– volume: 22
  start-page: 1656
  issue: 8
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b133
  article-title: Citywide cellular traffic prediction based on densely connected convolutional neural networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2841832
– volume: 180
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b5
  article-title: Clustering objectives in wireless sensor networks: A survey and research direction analysis
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107376
– volume: 73
  start-page: 1192
  issue: 3
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b160
  article-title: Virtualization layer security challenges and intrusion detection/prevention systems in cloud computing: a comprehensive review
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1805-9
– volume: 32
  start-page: 40
  issue: 4
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b50
  article-title: Urban traffic prediction from mobility data using deep learning
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700411
– year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b116
– start-page: 441
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b145
  article-title: Cell coverage degradation detection using deep learning techniques
– volume: 116
  start-page: 9
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b18
  article-title: A survey on network data collection
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.05.004
– volume: 31
  start-page: 8021
  issue: 11
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b177
  article-title: Deep learning to detect botnet via network flow summaries
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3595-x
– volume: 70
  start-page: 263
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b11
  article-title: Critical analysis of big data challenges and analytical methods
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2016.08.001
– ident: 10.1016/j.comcom.2021.01.021_b83
  doi: 10.1145/3314545.3316278
– year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b45
– start-page: 794
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b132
  article-title: AZTEC: Anticipatory capacity allocation for zero-touch network slicing
– start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b42
  article-title: Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach
– volume: 6
  start-page: 1792
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b96
  article-title: HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780250
– ident: 10.1016/j.comcom.2021.01.021_b140
– volume: 52
  start-page: 234
  issue: 6
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b108
  article-title: The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6829969
– volume: 6
  start-page: 6556
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b143
  article-title: Machine learning-based link fault identification and localization in complex networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2908019
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b170
  article-title: Cyberattack detection in mobile cloud computing: A deep learning approach
– volume: 81
  start-page: 123
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b28
  article-title: Survey of machine learning techniques for malware analysis
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.001
– start-page: 61
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b130
  article-title: Multilayer perceptron and stacked autoencoder for internet traffic prediction
– year: 2012
  ident: 10.1016/j.comcom.2021.01.021_b75
– start-page: 42
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b88
  article-title: A two-tier network based intrusion detection system architecture using machine learning approach
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b39
– volume: 94
  year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b35
  article-title: Boosting algorithms for network intrusion detection: A comparative evaluation of real adaboost, gentle adaboost and modest adaboost
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103770
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b189
– volume: 56
  start-page: 169
  issue: 2
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b104
  article-title: Deep learning: The frontier for distributed attack detection in fog-to-things computing
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1700332
– year: 2020
  ident: 10.1016/j.comcom.2021.01.021_b59
– volume: 8
  start-page: 118
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b107
  article-title: Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962106
– start-page: 246
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b125
  article-title: Network traffic prediction based on diffusion convolutional recurrent neural networks
– ident: 10.1016/j.comcom.2021.01.021_b71
  doi: 10.1145/1390156.1390290
– volume: 16
  start-page: 445
  issue: 2
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b81
  article-title: Mobile encrypted traffic classification using deep learning: Experimental evaluation, lessons learned, and challenges
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2019.2899085
– year: 1985
  ident: 10.1016/j.comcom.2021.01.021_b60
– year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b101
– start-page: 339
  year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b106
  article-title: Intrusion detection using deep belief networks
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b25
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b13
– start-page: 104
  year: 2014
  ident: 10.1016/j.comcom.2021.01.021_b22
  article-title: Defining architecture components of the big data ecosystem
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b99
  article-title: A novel QUIC traffic classifier based on convolutional neural networks
– volume: 32
  start-page: 108
  issue: 6
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b126
  article-title: Deeptp: An end-to-end neural network for mobile cellular traffic prediction
  publication-title: IEEE Network
  doi: 10.1109/MNET.2018.1800127
– volume: 37
  start-page: 2348
  issue: 11
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b187
  article-title: Deepthings: Distributed adaptive deep learning inference on resource-constrained IoT edge clusters
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2018.2858384
– ident: 10.1016/j.comcom.2021.01.021_b127
  doi: 10.1145/3291533.3291540
– start-page: 141
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b148
  article-title: HYPER-VINES: A hybrid learning fault and performance issues eradicator for virtual network services over multi-cloud systems
– year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b180
  article-title: A survey on data collection for machine learning: a big data-ai integration perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2946162
– start-page: 3854
  year: 2017
  ident: 10.1016/j.comcom.2021.01.021_b167
  article-title: Autoencoder-based feature learning for cyber security applications
– volume: 6
  start-page: 44
  issue: 1
  year: 2019
  ident: 10.1016/j.comcom.2021.01.021_b23
  article-title: Uncertainty in big data analytics: survey, opportunities, and challenges
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0206-3
– start-page: 1
  year: 2007
  ident: 10.1016/j.comcom.2021.01.021_b117
  article-title: Traffic prediction for mobile network using holt-winter’s exponential smoothing
– volume: 18
  start-page: 3030
  issue: 4
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b147
  article-title: Recent advances in fault localization in computer networks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2016.2570599
– start-page: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.01.021_b162
  article-title: Virtual MAC spoofing detection through deep learning
– start-page: 1
  year: 2008
  ident: 10.1016/j.comcom.2021.01.021_b115
  article-title: Arima model for network traffic prediction and anomaly detection
– start-page: 4125
  year: 2016
  ident: 10.1016/j.comcom.2021.01.021_b62
  article-title: Memory-efficient backpropagation through time
– year: 2015
  ident: 10.1016/j.comcom.2021.01.021_b182
SSID ssj0004773
Score 2.686537
SecondaryResourceType review_article
Snippet Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data....
SourceID cristin
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Deep learning
Edge Intelligence
IoT
Machine learning
Network management
Network Traffic Monitoring and Analysis
NTMA
QoS
Survey
Title Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey
URI https://dx.doi.org/10.1016/j.comcom.2021.01.021
http://hdl.handle.net/10852/89030
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5096IH8Ynrixw86KFuH0nTeis-WFfsxV3YW2jSiShSF1kFL_52kzbVFURB6KUlU8pkMg_6zTcAh4GMeKj91MPCTzzKMPZkodGTpSqk8m1NUaMt8ngwpsMJmyzAWdsLY2GVzvc3Pr321u5J32mzP72_79ewpCi2jZp-XQksQjc00T7pQDe7uh7kX-2RvPnRbJGMVqDtoKthXub1FjYSmljX8HfaUUKqPmDVz7FqLv5crsKKSxxJ1nzbGixgtQ7Lc3SCGzA8R5wSx5h6R0w6SvIG5U1MSLJcEaQ5wnY5KaqStJQk5Cgf3WTHpyQjty_Pr_i2CePLi9HZwHOzEjxlXMTMC2KknFH0WRFJkwLwUuooKBLJUozTgqMpXQLFVYJayZjrMkgxoZLLlGlaMoy2oFM9VbgNRBt1-VJxrRGpMntWhmGiNFJfWwAN7cG204-ojJlailEWiiQ17qIHUaswoRzHuB118ShaMNmDaBQurMKFb64w6IH3KTVtODb-WM_bvRDfbEWYMPCr5M6_JXdhyd5Z9FnA9qAze37BfZOOzOQBLJ68BwfO6D4A4Bvdsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aAexCeuzxw86KFsH0nTeltWl10fvbgLewtNOhFF6iKr4L83aVMfIApCT22mlMlkHvSbbwCOAxnxUPuph7mfeJRh7MlcoycLlUvl25qiQltk8XBCL6ds2oJ-0wtjYZXO99c-vfLW7k7XabM7u7_vVrCkKLaNmn5VCSzAIrVDrduw2BtdDbPP9khe_2i2SEYr0HTQVTAv83oLGwlNrKv5O-0oIVUdsPLnWPUl_gzWYNUljqRXf9s6tLDcgJUvdIKbcHmOOCOOMfWOmHSUZDXKm5iQZLkiSH2E7XKSlwVpKEnISTa-6Z2ekR65fXl-xbctmAwuxv2h52YleMq4iLkXxEg5o-izPJImBeCF1FGQJ5KlGKc5R1O6BIqrBLWSMddFkGJCJZcp07RgGG1Du3wqcQeINurypeJaI1Jl9qwIw0RppL62ABragR2nH1EaM7UUoywUSWrcRQeiRmFCOY5xO-riUTRgsgdRK1xYhQvfXGHQAe9DalZzbPyxnjd7Ib7ZijBh4FfJ3X9LHsHScHxzLa5H2dUeLNsnFokWsH1oz59f8MCkJnN56EzvHRx335g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Network+Traffic+Monitoring+and+Analysis+%28NTMA%29%3A+A+Survey&rft.jtitle=Computer+communications&rft.au=Abbasi%2C+Mahmoud&rft.au=Shahraki%2C+Amin&rft.au=Taherkordi%2C+Amirhosein&rft.date=2021-03-15&rft.issn=0140-3664&rft.eissn=1873-703X&rft_id=info:doi/10.1016%2Fj.comcom.2021.01.021&rft.externalDBID=n%2Fa&rft.externalDocID=10852_89030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon