Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques
The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students but also a waste of public funds. Thus, it is imperative to understand which students are at risk of dropping out and what are the factors tha...
Saved in:
Published in | Journal of physics. Conference series Vol. 1496; no. 1; pp. 12005 - 12017 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 1742-6596 |
DOI | 10.1088/1742-6596/1496/1/012005 |
Cover
Abstract | The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students but also a waste of public funds. Thus, it is imperative to understand which students are at risk of dropping out and what are the factors that contribute to higher dropout rates. This can be done using educational data mining. In this paper, we described the uses of data mining techniques to predict student dropout of Computer Science undergraduate students after 3 years of enrolment in Universiti Teknologi MARA. The experimental results showed an achievable reliable classification accuracy from the selected algorithm in predicting dropouts. Decision tree, logistic regression, random forest, K-nearest neighbour and neural network algorithm were compared to propose the best model. The results showed that some of the machines learning algorithms are able to establish effective predictive models from student retention data. The Logistic Regression model was found to be the best learners to predict the dropout students with identified potential subject causes. In addition, we also presented some findings related to data exploration. |
---|---|
AbstractList | The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students but also a waste of public funds. Thus, it is imperative to understand which students are at risk of dropping out and what are the factors that contribute to higher dropout rates. This can be done using educational data mining. In this paper, we described the uses of data mining techniques to predict student dropout of Computer Science undergraduate students after 3 years of enrolment in Universiti Teknologi MARA. The experimental results showed an achievable reliable classification accuracy from the selected algorithm in predicting dropouts. Decision tree, logistic regression, random forest, K-nearest neighbour and neural network algorithm were compared to propose the best model. The results showed that some of the machines learning algorithms are able to establish effective predictive models from student retention data. The Logistic Regression model was found to be the best learners to predict the dropout students with identified potential subject causes. In addition, we also presented some findings related to data exploration. |
Author | Mohd Sobri, N Norshahidi, N D Wan Husin, W Z Wan Yaacob, W F Nasir, S A Md |
Author_xml | – sequence: 1 givenname: W F surname: Wan Yaacob fullname: Wan Yaacob, W F email: wnfairos@uitm.edu.my organization: Business Datalytics Research Group, Universiti Teknologi MARA Cawangan Kelantan , Malaysia – sequence: 2 givenname: N surname: Mohd Sobri fullname: Mohd Sobri, N organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia – sequence: 3 givenname: S A Md surname: Nasir fullname: Nasir, S A Md organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia – sequence: 4 givenname: W F surname: Wan Yaacob fullname: Wan Yaacob, W F organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia – sequence: 5 givenname: N D surname: Norshahidi fullname: Norshahidi, N D organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia – sequence: 6 givenname: W Z surname: Wan Husin fullname: Wan Husin, W Z organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia |
BookMark | eNqNkEFLwzAcxYNMcE4_gwVvQl3SJm168CCbusl0g23nkCXpljHTmqbIvr0NlYkiuBySP-T9kvfeOeiYwigArhC8RZDSPkpxFCYkS_oI-60PUQQhOQHdw03nMFN6Bs6ragth3Ky0C15nVkktnDbrYO5qqYwLhrYow2ntAm2CkV5vlA3GpnLa1U4XJlhWXjzkjgcv2vh5ocTG6PdaVRfgNOe7Sl1-nT2wfHxYDEbhZPo0HtxPQhGnCQllRmIqE6oiSDIpIKSK8hxHCsEoilcJFlhkmBAqc4SkWmFBcUrlCilEuczjuAdo-25tSr7_4LsdK61-43bPEGS-F-YTM5-e-V4YYm0vDXrdoqUtvGXHtkVtTeOWRSTJGnsUwUZ116qELarKqpwJ7bjP7yzXuyN-SX_xx_uLW1IX5be1_6mbP6jn2WD-U8jKpr5PXnyjgA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3188767 crossref_primary_10_4108_eetsis_3586 crossref_primary_10_1155_2022_9299115 crossref_primary_10_1038_s41598_024_81181_9 crossref_primary_10_3390_app13106275 crossref_primary_10_1155_2022_3805235 crossref_primary_10_3390_math12121776 crossref_primary_10_3390_su12218986 crossref_primary_10_3390_bs13070549 crossref_primary_10_1038_s41598_022_05258_z crossref_primary_10_1155_2023_7704142 crossref_primary_10_1108_JARHE_02_2021_0073 crossref_primary_10_1007_s13218_023_00800_1 crossref_primary_10_1109_ACCESS_2025_3550817 crossref_primary_10_5753_rbie_2024_3466 crossref_primary_10_3390_data10030027 |
Cites_doi | 10.1002/ir.185 10.5121/ijdkp.2015.5102 10.1080/030987700750022244 10.2478/eurodl-2014-0008 10.3991/ijet.v10i1.4189 10.14689/ejer.2014.54.12 10.3102/00346543045001089 10.3390/su10040954 10.1002/9781118548387 10.1002/ir.35 10.1016/j.eswa.2006.04.005 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
DOI | 10.1088/1742-6596/1496/1/012005 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques |
EISSN | 1742-6596 |
ExternalDocumentID | 10.1088/1742-6596/1496/1/012005 10_1088_1742_6596_1496_1_012005 JPCS_1496_1_012005 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 02O 1WK AALHV AAYXX ACARI AEINN AERVB AGQPQ AHSEE ARNYC BBWZM C1A CITATION EJD FEDTE H13 HVGLF JCGBZ M48 OVT PHGZM PHGZT PQGLB PUEGO Q02 S3P 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
ID | FETCH-LOGICAL-c3765-d9538d68e2059dc008e8af42e10223b64c4c94558df11deb4c8478db1e18adf33 |
IEDL.DBID | UNPAY |
ISSN | 1742-6588 1742-6596 |
IngestDate | Sun Sep 07 11:27:55 EDT 2025 Fri Jul 25 04:58:04 EDT 2025 Wed Oct 01 03:55:41 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Thu Jan 07 15:20:50 EST 2021 Wed Aug 21 03:34:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3765-d9538d68e2059dc008e8af42e10223b64c4c94558df11deb4c8478db1e18adf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1742-6596/1496/1/012005 |
PQID | 2569765810 |
PQPubID | 4998668 |
PageCount | 13 |
ParticipantIDs | iop_journals_10_1088_1742_6596_1496_1_012005 proquest_journals_2569765810 unpaywall_primary_10_1088_1742_6596_1496_1_012005 crossref_citationtrail_10_1088_1742_6596_1496_1_012005 crossref_primary_10_1088_1742_6596_1496_1_012005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 20200301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 11 22 Casanova J. R. (1) 2018 13 24 14 16 Devasia T. (8) 19 Chapman P. (23) 2000; 71 Wirth R. (3) 2000 Al-Radaideh Q. A. (17) Kovacic Z. (7) 2010 2 4 5 Durso S. D. O. (12) 2018 6 Mustafa M. N. (15) Dekker G. W. (18) 2009 9 20 10 21 |
References_xml | – ident: 22 doi: 10.1002/ir.185 – ident: 16 doi: 10.5121/ijdkp.2015.5102 – ident: 5 – start-page: 34 year: 2018 ident: 12 publication-title: Educação em Revista – ident: 4 – ident: 11 doi: 10.1080/030987700750022244 – year: 2009 ident: 18 publication-title: International Working Group on Educational Data Mining – year: 2018 ident: 1 publication-title: Psicothema – ident: 10 doi: 10.2478/eurodl-2014-0008 – volume: 71 start-page: 18 year: 2000 ident: 23 publication-title: Seidman, A.: Retention revisited: R = E, Id+ E & In, Iv. Coll. Univ. – start-page: 91 ident: 8 publication-title: In 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE) – start-page: 29 year: 2000 ident: 3 publication-title: Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining – start-page: 113 ident: 15 publication-title: In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) – ident: 14 doi: 10.3991/ijet.v10i1.4189 – ident: 9 doi: 10.14689/ejer.2014.54.12 – ident: 17 publication-title: International Arab Conference on Information Technology (ACIT’2006) – ident: 2 doi: 10.3102/00346543045001089 – ident: 13 doi: 10.3390/su10040954 – ident: 24 doi: 10.1002/9781118548387 – ident: 19 doi: 10.1002/ir.35 – ident: 6 – year: 2010 ident: 7 publication-title: Early prediction of student success: Mining students’ enrolment data – ident: 20 doi: 10.1016/j.eswa.2006.04.005 – ident: 21 |
SSID | ssj0033337 |
Score | 2.3592546 |
Snippet | The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students... |
SourceID | unpaywall proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12005 |
SubjectTerms | Algorithms Data mining Decision trees Higher education institutions Machine learning Neural networks Physics Prediction models Regression models Student retention Students Undergraduate study |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eEH3xLs4bAX2029KkNX0UL4yBOtgGewttLiCOrmwdor_ek6bVTZAp9qH04ZySnCQnX5LvnCB0oUyS8AiWJYpcUY8ZrT1Ope8BGCWRCn2Y1Ipsn49hq8_ag2AwGwszykrXX4dPlyjYmbAkxPEGYGjfC4MobAC6h1fDxn_aNKarlMPywgbxPXUqb0zhuXJBkVaJ84rj9fOP5maoZSjFHPhcn6ZZ_PYaD4cz89D9FpJVDRz95KU-zZO6fP-W3PF_VdxGmyVMxddOYwct6XQXrRV0UTnZQ4-dsT3gsZRp3HXZMfHteJR5T9McP6fYsUdwxUSAtscFNwHfxnmMH4pLKXCvSh872Uf9-7veTcsrb2bwJDikwFMR-EkVcu0DOlMScITmsWG-tutHmoRMMhmxIODKEKJ0wiRMglwlRBMeK0PpAVpJR6k-RFgrIwmAUMPsdhTABw1qVDHTDPwkpn4NhVVrCFmmLbe3ZwxFcXzOubDGEtZYwhpLEOGMVUPNT8XMZe5YrHIJLSLKUTxZLH4-J97u3HTnJUSmTA2dVL3nSxSAJuDAgJNmDZHPHvXbch79rZzHaMO3uwQFc-4EreTjqT4FKJUnZ8VY-QB6LAeY priority: 102 providerName: IOP Publishing – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62InoRn1itEtCjoU02u82eRFprKVgLreAt7OYBQtmufSD-eyf76OOi7mEPy2RZZrLzzSRfZhC60zaORQhpiaYtj3BrDBGeYgSCURrqgAGoZdU-B0Hvjfff_fdiwW1e0CpLn5g5aj1Vbo28AdAMyOkL2nxIP4nrGuV2V4sWGhW0SxnMJHdSvPtcemIPrlZ-IJIRGCpKfhckfcWzMGhAigC3hjtE6nrYbaBT5WOabgWe-8skjb6_oslkA4O6R-iwCB7xY27tY7RjkhO0l5E41fwUDYYzt-3iiMx4lNesxJ3ZNCWvywX-SHDO6cAlPwAsgjPGAO5Eiwi_ZK0i8Lgs6jo_Q2_dp3G7R4p-CUSBm_CJDsF76UAYBjGTVoDuRkSWM-OyOi8OuOIq5L4vtKVUm5grgCahY2qoiLT1vHNUTaaJuUDYaKsohIaWu0UiAHUDwzzNbdNnceSxGgpKPUlVFBN3PS0mMtvUFkI6BUunYOkULKnMFVxDzdXANK-n8feQezCELP6t-d_it1vi_WF7tC0hU21rqF7adS26nmM1RFe2_u93Xv7-yit0wFyunvHX6qi6mC3NNQQ0i_gmm7U_Bu_nUw priority: 102 providerName: ProQuest |
Title | Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1496/1/012005 https://www.proquest.com/docview/2569765810 https://doi.org/10.1088/1742-6596/1496/1/012005 |
UnpaywallVersion | publishedVersion |
Volume | 1496 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: IOP dateStart: 20040601 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4cm5Jekj4S6jQxC-2xir3SSlkd83KTQG3RxDQ9LdI-wMTIwpYJ7a_vrB5uVChuc9nTjFjNPubbnW9nAD4qkyQ8xGOJoieew4zWDvek6yAYpaEKXHRqRbbPUXA1YTf3_n0L-vVbmEb8Hg9nCJhdJ_DDoI9QHpu-fexpc5Z2AhtRakNnMopOv5fPHq1kUWlyrVUzuv7-pYY_2prOswbU3F6lWfzjMZ7Nnnid4S5EdX9LssnD8SpPjuXPP1I5_scPvYKdCoGS03LKvIaWTt_Ai4IJKpdvYRQtbOzGsqHJbZn4klws5pkzXuVkmpKSGEJqkgEOKyloB-QizmPypag3Qe7qzLDLPZgML-_Or5yq6IIjca_xHRXiFqgCrl0EXkoiRNA8NszV9mjoJQGTTIbM97kylCqdMIn-jauEaspjZTxvH9rpPNXvgGhlJEV8aZi9aUJkoFHNU8wMfDeJPbcLQW16IauM5LYwxkwUkXHOhTWWsMYS1liCitJYXRisFbMyKcdmlU84tqJaoMvN4h8a4jfR-W1TQmTKdOGwniq_RRFDIsTzOR10ga6nz7_28-AZOu_hpWtvAQpm3CG088VKHyFUypMebPHh5x50zi5H0deedVs-ttfjCNux961XLZ9f_LAAmQ |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LatwwcEhTSnop6YtuHq2g7a1iV7LsyIdSSrbbzWsbyAZyU209ILB4nX0Q8lP9xo5kK8leml5y8UGMjJj3jEYzAJ-MK0uZY1hi2F5ChbOWykRzis4oy03G0aiFbp-jbHguDi_SizX4E9_C-LLKqBODojZT7XPkXTTNaDlTyXrf6ivqp0b529U4QqNhiyN7c40h2_zrQR_p-5nzwY_x_pC2UwWoRmFKqclRxk0mLUfPwmi0gVYWTnDrY5-kzIQWOhdpKo1jzNhSaFTg0pTMMlkY5xOgqPKfiiRJfK9-OfgZNT-uhB6d6ORzikeVsZ4Mg8x2Lc-6GJLgp-sfrfqZefes4ZPLab3i6G4sq7q4uS4mk3s2b7AJL1pnlXxvuOslrNnqFTwLRaN6_hpGpzN_zeMLp8lZ0yOT9GfTmv5aLshlRZoaEhLrEZADSKhQIP1iUZCTMJqCjGMT2fkbOH8UTL6F9Wpa2XdArHGaoSvqhE9KoRNhcVtihOulvCwS3oEs4knptnm5n6ExUeESXUrlEaw8gpVHsGKqQXAHercb66Z_x8NbviAhVCvL84fBP66AH57un61CqNq4DuxEut6B3vF0B9gtrf_3nFv__uUH2BiOT47V8cHoaBuec58nCLVzO7C-mC3tLjpTi_J94GACvx9bZP4Cjmcjng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tQ8BextcQZQMswSNp69hOncdpXbUN6Cptk_ZmJf5AiCqN2lTT9tdzjpNuRUIDkYcoD3eRfbbPP9s_3wF8Mi7PZYrLEkMHLOLO2kgyHUcIRmlqkhgntTra5zg5vuSnV-JqA0aruzCzsnH9XfwMgYKDCRtCnOwhho6jRKRJD9E9vnr-_mdf9ErjNuGRYGLgUzicnE1aj8zwGYSLkV5Rypbn9eefrc1Sm1iSNQD6dFmU2c11Np3em4tGz-B7W4tAQfnZXVZ5V9_-FuDx_6v5HHYauEoOgtYL2LDFS3hc00b14hWMJ3N_0OOp0-Q8RMkkw_msjM6WFflRkMAiIS0jAfsAqTkKZJhVGflWJ6cgF20Y2cUuXI6OLg6PoyZDQ6TRMYnIpOgvTSJtjCjNaMQTVmaOx9avI1mecM11yoWQxlFqbM41TobS5NRSmRnH2GvYKmaFfQPEGqcpglHH_bYUwgiLasxw1xdxnrG4A0nbIko34ct9Fo2pqo_RpVTeYMobTHmDKaqCwTrQXymWIYLHwyqfsVVUM5oXD4t_XBM_nRyer0sobLQO7Lc96E4UASfiQSFpvwN01av-tpxv_62cH-DJZDhSX0_GX_ZgO_YbBzWZbh-2qvnSvkN0VeXv66HzC--0DQI |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60InrxLVarLOjR2G6yiZujVEUEa0ELelqSfYBY0tCmiP56Z_OoRhAfl5xmls3sY77d-XYG4EiZOOYhHksUPfUcZrR2uCddB8EoDVXgolPLs332gqsBu37wH-agXb2FqcXv8XCGgNl1Aj8M2gjl8dO2jz1tztKFwEaUGrAw6PXPHotnj1YyrzQ506oYXd-3VPNH80-jtAY1l6ZJGr2-RMPhJ69zuQr9qr8F2eT5ZJrFJ_LtSyrHP_zQGqyUCJScFVNmHeZ0sgGLORNUTjah1x_b2I1lQ5O7IvElOR-PUud2mpGnhBTEEFKRDHBYSU47IOdRFpGbvN4Eua8yw062YHB5cd-9csqiC47EvcZ3VIhboAq4dhF4KYkQQfPIMFfbo6EXB0wyGTLf58pQqnTMJPo3rmKqKY-U8bxtaCSjRO8A0cpIivjSMHvThMhAo5qnmOn4bhx5bhOCyvRClhnJbWGMocgj45wLayxhjSWssQQVhbGa0JkppkVSjp9VjnFsRblAJz-LH9bEr_vdu7qESJVpQquaKh-iiCER4vmcdppAZ9Pnt_3c_YfOHiy79hYgZ8a1oJGNp3ofoVIWH5TL4x1Ndvsh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Student+Drop-Out+in+Higher+Institution+Using+Data+Mining+Techniques&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Wan+Yaacob%2C+W+F&rft.au=N+Mohd+Sobri&rft.au=Md+Nasir%2C+S+A&rft.au=Norshahidi%2C+N+D&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1496&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1496%2F1%2F012005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |