Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques

The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students but also a waste of public funds. Thus, it is imperative to understand which students are at risk of dropping out and what are the factors tha...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1496; no. 1; pp. 12005 - 12017
Main Authors Wan Yaacob, W F, Mohd Sobri, N, Nasir, S A Md, Norshahidi, N D, Wan Husin, W Z
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2020
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
1742-6596
DOI10.1088/1742-6596/1496/1/012005

Cover

Abstract The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students but also a waste of public funds. Thus, it is imperative to understand which students are at risk of dropping out and what are the factors that contribute to higher dropout rates. This can be done using educational data mining. In this paper, we described the uses of data mining techniques to predict student dropout of Computer Science undergraduate students after 3 years of enrolment in Universiti Teknologi MARA. The experimental results showed an achievable reliable classification accuracy from the selected algorithm in predicting dropouts. Decision tree, logistic regression, random forest, K-nearest neighbour and neural network algorithm were compared to propose the best model. The results showed that some of the machines learning algorithms are able to establish effective predictive models from student retention data. The Logistic Regression model was found to be the best learners to predict the dropout students with identified potential subject causes. In addition, we also presented some findings related to data exploration.
AbstractList The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students but also a waste of public funds. Thus, it is imperative to understand which students are at risk of dropping out and what are the factors that contribute to higher dropout rates. This can be done using educational data mining. In this paper, we described the uses of data mining techniques to predict student dropout of Computer Science undergraduate students after 3 years of enrolment in Universiti Teknologi MARA. The experimental results showed an achievable reliable classification accuracy from the selected algorithm in predicting dropouts. Decision tree, logistic regression, random forest, K-nearest neighbour and neural network algorithm were compared to propose the best model. The results showed that some of the machines learning algorithms are able to establish effective predictive models from student retention data. The Logistic Regression model was found to be the best learners to predict the dropout students with identified potential subject causes. In addition, we also presented some findings related to data exploration.
Author Mohd Sobri, N
Norshahidi, N D
Wan Husin, W Z
Wan Yaacob, W F
Nasir, S A Md
Author_xml – sequence: 1
  givenname: W F
  surname: Wan Yaacob
  fullname: Wan Yaacob, W F
  email: wnfairos@uitm.edu.my
  organization: Business Datalytics Research Group, Universiti Teknologi MARA Cawangan Kelantan , Malaysia
– sequence: 2
  givenname: N
  surname: Mohd Sobri
  fullname: Mohd Sobri, N
  organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia
– sequence: 3
  givenname: S A Md
  surname: Nasir
  fullname: Nasir, S A Md
  organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia
– sequence: 4
  givenname: W F
  surname: Wan Yaacob
  fullname: Wan Yaacob, W F
  organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia
– sequence: 5
  givenname: N D
  surname: Norshahidi
  fullname: Norshahidi, N D
  organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia
– sequence: 6
  givenname: W Z
  surname: Wan Husin
  fullname: Wan Husin, W Z
  organization: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan , Malaysia
BookMark eNqNkEFLwzAcxYNMcE4_gwVvQl3SJm168CCbusl0g23nkCXpljHTmqbIvr0NlYkiuBySP-T9kvfeOeiYwigArhC8RZDSPkpxFCYkS_oI-60PUQQhOQHdw03nMFN6Bs6ragth3Ky0C15nVkktnDbrYO5qqYwLhrYow2ntAm2CkV5vlA3GpnLa1U4XJlhWXjzkjgcv2vh5ocTG6PdaVRfgNOe7Sl1-nT2wfHxYDEbhZPo0HtxPQhGnCQllRmIqE6oiSDIpIKSK8hxHCsEoilcJFlhkmBAqc4SkWmFBcUrlCilEuczjuAdo-25tSr7_4LsdK61-43bPEGS-F-YTM5-e-V4YYm0vDXrdoqUtvGXHtkVtTeOWRSTJGnsUwUZ116qELarKqpwJ7bjP7yzXuyN-SX_xx_uLW1IX5be1_6mbP6jn2WD-U8jKpr5PXnyjgA
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3188767
crossref_primary_10_4108_eetsis_3586
crossref_primary_10_1155_2022_9299115
crossref_primary_10_1038_s41598_024_81181_9
crossref_primary_10_3390_app13106275
crossref_primary_10_1155_2022_3805235
crossref_primary_10_3390_math12121776
crossref_primary_10_3390_su12218986
crossref_primary_10_3390_bs13070549
crossref_primary_10_1038_s41598_022_05258_z
crossref_primary_10_1155_2023_7704142
crossref_primary_10_1108_JARHE_02_2021_0073
crossref_primary_10_1007_s13218_023_00800_1
crossref_primary_10_1109_ACCESS_2025_3550817
crossref_primary_10_5753_rbie_2024_3466
crossref_primary_10_3390_data10030027
Cites_doi 10.1002/ir.185
10.5121/ijdkp.2015.5102
10.1080/030987700750022244
10.2478/eurodl-2014-0008
10.3991/ijet.v10i1.4189
10.14689/ejer.2014.54.12
10.3102/00346543045001089
10.3390/su10040954
10.1002/9781118548387
10.1002/ir.35
10.1016/j.eswa.2006.04.005
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1088/1742-6596/1496/1/012005
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques
EISSN 1742-6596
ExternalDocumentID 10.1088/1742-6596/1496/1/012005
10_1088_1742_6596_1496_1_012005
JPCS_1496_1_012005
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
02O
1WK
AALHV
AAYXX
ACARI
AEINN
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
CITATION
EJD
FEDTE
H13
HVGLF
JCGBZ
M48
OVT
PHGZM
PHGZT
PQGLB
PUEGO
Q02
S3P
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c3765-d9538d68e2059dc008e8af42e10223b64c4c94558df11deb4c8478db1e18adf33
IEDL.DBID UNPAY
ISSN 1742-6588
1742-6596
IngestDate Sun Sep 07 11:27:55 EDT 2025
Fri Jul 25 04:58:04 EDT 2025
Wed Oct 01 03:55:41 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Thu Jan 07 15:20:50 EST 2021
Wed Aug 21 03:34:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3765-d9538d68e2059dc008e8af42e10223b64c4c94558df11deb4c8478db1e18adf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1742-6596/1496/1/012005
PQID 2569765810
PQPubID 4998668
PageCount 13
ParticipantIDs iop_journals_10_1088_1742_6596_1496_1_012005
proquest_journals_2569765810
unpaywall_primary_10_1088_1742_6596_1496_1_012005
crossref_citationtrail_10_1088_1742_6596_1496_1_012005
crossref_primary_10_1088_1742_6596_1496_1_012005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 20200301
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
22
Casanova J. R. (1) 2018
13
24
14
16
Devasia T. (8)
19
Chapman P. (23) 2000; 71
Wirth R. (3) 2000
Al-Radaideh Q. A. (17)
Kovacic Z. (7) 2010
2
4
5
Durso S. D. O. (12) 2018
6
Mustafa M. N. (15)
Dekker G. W. (18) 2009
9
20
10
21
References_xml – ident: 22
  doi: 10.1002/ir.185
– ident: 16
  doi: 10.5121/ijdkp.2015.5102
– ident: 5
– start-page: 34
  year: 2018
  ident: 12
  publication-title: Educação em Revista
– ident: 4
– ident: 11
  doi: 10.1080/030987700750022244
– year: 2009
  ident: 18
  publication-title: International Working Group on Educational Data Mining
– year: 2018
  ident: 1
  publication-title: Psicothema
– ident: 10
  doi: 10.2478/eurodl-2014-0008
– volume: 71
  start-page: 18
  year: 2000
  ident: 23
  publication-title: Seidman, A.: Retention revisited: R = E, Id+ E & In, Iv. Coll. Univ.
– start-page: 91
  ident: 8
  publication-title: In 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)
– start-page: 29
  year: 2000
  ident: 3
  publication-title: Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining
– start-page: 113
  ident: 15
  publication-title: In 2012 International Conference on Informatics, Electronics & Vision (ICIEV)
– ident: 14
  doi: 10.3991/ijet.v10i1.4189
– ident: 9
  doi: 10.14689/ejer.2014.54.12
– ident: 17
  publication-title: International Arab Conference on Information Technology (ACIT’2006)
– ident: 2
  doi: 10.3102/00346543045001089
– ident: 13
  doi: 10.3390/su10040954
– ident: 24
  doi: 10.1002/9781118548387
– ident: 19
  doi: 10.1002/ir.35
– ident: 6
– year: 2010
  ident: 7
  publication-title: Early prediction of student success: Mining students’ enrolment data
– ident: 20
  doi: 10.1016/j.eswa.2006.04.005
– ident: 21
SSID ssj0033337
Score 2.3592546
Snippet The increasing number of students dropping out is a major concern of higher educational institutions as it gives a great impact not only cost to the students...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12005
SubjectTerms Algorithms
Data mining
Decision trees
Higher education institutions
Machine learning
Neural networks
Physics
Prediction models
Regression models
Student retention
Students
Undergraduate study
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eEH3xLs4bAX2029KkNX0UL4yBOtgGewttLiCOrmwdor_ek6bVTZAp9qH04ZySnCQnX5LvnCB0oUyS8AiWJYpcUY8ZrT1Ope8BGCWRCn2Y1Ipsn49hq8_ag2AwGwszykrXX4dPlyjYmbAkxPEGYGjfC4MobAC6h1fDxn_aNKarlMPywgbxPXUqb0zhuXJBkVaJ84rj9fOP5maoZSjFHPhcn6ZZ_PYaD4cz89D9FpJVDRz95KU-zZO6fP-W3PF_VdxGmyVMxddOYwct6XQXrRV0UTnZQ4-dsT3gsZRp3HXZMfHteJR5T9McP6fYsUdwxUSAtscFNwHfxnmMH4pLKXCvSh872Uf9-7veTcsrb2bwJDikwFMR-EkVcu0DOlMScITmsWG-tutHmoRMMhmxIODKEKJ0wiRMglwlRBMeK0PpAVpJR6k-RFgrIwmAUMPsdhTABw1qVDHTDPwkpn4NhVVrCFmmLbe3ZwxFcXzOubDGEtZYwhpLEOGMVUPNT8XMZe5YrHIJLSLKUTxZLH4-J97u3HTnJUSmTA2dVL3nSxSAJuDAgJNmDZHPHvXbch79rZzHaMO3uwQFc-4EreTjqT4FKJUnZ8VY-QB6LAeY
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62InoRn1itEtCjoU02u82eRFprKVgLreAt7OYBQtmufSD-eyf76OOi7mEPy2RZZrLzzSRfZhC60zaORQhpiaYtj3BrDBGeYgSCURrqgAGoZdU-B0Hvjfff_fdiwW1e0CpLn5g5aj1Vbo28AdAMyOkL2nxIP4nrGuV2V4sWGhW0SxnMJHdSvPtcemIPrlZ-IJIRGCpKfhckfcWzMGhAigC3hjtE6nrYbaBT5WOabgWe-8skjb6_oslkA4O6R-iwCB7xY27tY7RjkhO0l5E41fwUDYYzt-3iiMx4lNesxJ3ZNCWvywX-SHDO6cAlPwAsgjPGAO5Eiwi_ZK0i8Lgs6jo_Q2_dp3G7R4p-CUSBm_CJDsF76UAYBjGTVoDuRkSWM-OyOi8OuOIq5L4vtKVUm5grgCahY2qoiLT1vHNUTaaJuUDYaKsohIaWu0UiAHUDwzzNbdNnceSxGgpKPUlVFBN3PS0mMtvUFkI6BUunYOkULKnMFVxDzdXANK-n8feQezCELP6t-d_it1vi_WF7tC0hU21rqF7adS26nmM1RFe2_u93Xv7-yit0wFyunvHX6qi6mC3NNQQ0i_gmm7U_Bu_nUw
  priority: 102
  providerName: ProQuest
Title Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques
URI https://iopscience.iop.org/article/10.1088/1742-6596/1496/1/012005
https://www.proquest.com/docview/2569765810
https://doi.org/10.1088/1742-6596/1496/1/012005
UnpaywallVersion publishedVersion
Volume 1496
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: IOP
  dateStart: 20040601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4cm5Jekj4S6jQxC-2xir3SSlkd83KTQG3RxDQ9LdI-wMTIwpYJ7a_vrB5uVChuc9nTjFjNPubbnW9nAD4qkyQ8xGOJoieew4zWDvek6yAYpaEKXHRqRbbPUXA1YTf3_n0L-vVbmEb8Hg9nCJhdJ_DDoI9QHpu-fexpc5Z2AhtRakNnMopOv5fPHq1kUWlyrVUzuv7-pYY_2prOswbU3F6lWfzjMZ7Nnnid4S5EdX9LssnD8SpPjuXPP1I5_scPvYKdCoGS03LKvIaWTt_Ai4IJKpdvYRQtbOzGsqHJbZn4klws5pkzXuVkmpKSGEJqkgEOKyloB-QizmPypag3Qe7qzLDLPZgML-_Or5yq6IIjca_xHRXiFqgCrl0EXkoiRNA8NszV9mjoJQGTTIbM97kylCqdMIn-jauEaspjZTxvH9rpPNXvgGhlJEV8aZi9aUJkoFHNU8wMfDeJPbcLQW16IauM5LYwxkwUkXHOhTWWsMYS1liCitJYXRisFbMyKcdmlU84tqJaoMvN4h8a4jfR-W1TQmTKdOGwniq_RRFDIsTzOR10ga6nz7_28-AZOu_hpWtvAQpm3CG088VKHyFUypMebPHh5x50zi5H0deedVs-ttfjCNux961XLZ9f_LAAmQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LatwwcEhTSnop6YtuHq2g7a1iV7LsyIdSSrbbzWsbyAZyU209ILB4nX0Q8lP9xo5kK8leml5y8UGMjJj3jEYzAJ-MK0uZY1hi2F5ChbOWykRzis4oy03G0aiFbp-jbHguDi_SizX4E9_C-LLKqBODojZT7XPkXTTNaDlTyXrf6ivqp0b529U4QqNhiyN7c40h2_zrQR_p-5nzwY_x_pC2UwWoRmFKqclRxk0mLUfPwmi0gVYWTnDrY5-kzIQWOhdpKo1jzNhSaFTg0pTMMlkY5xOgqPKfiiRJfK9-OfgZNT-uhB6d6ORzikeVsZ4Mg8x2Lc-6GJLgp-sfrfqZefes4ZPLab3i6G4sq7q4uS4mk3s2b7AJL1pnlXxvuOslrNnqFTwLRaN6_hpGpzN_zeMLp8lZ0yOT9GfTmv5aLshlRZoaEhLrEZADSKhQIP1iUZCTMJqCjGMT2fkbOH8UTL6F9Wpa2XdArHGaoSvqhE9KoRNhcVtihOulvCwS3oEs4knptnm5n6ExUeESXUrlEaw8gpVHsGKqQXAHercb66Z_x8NbviAhVCvL84fBP66AH57un61CqNq4DuxEut6B3vF0B9gtrf_3nFv__uUH2BiOT47V8cHoaBuec58nCLVzO7C-mC3tLjpTi_J94GACvx9bZP4Cjmcjng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tQ8BextcQZQMswSNp69hOncdpXbUN6Cptk_ZmJf5AiCqN2lTT9tdzjpNuRUIDkYcoD3eRfbbPP9s_3wF8Mi7PZYrLEkMHLOLO2kgyHUcIRmlqkhgntTra5zg5vuSnV-JqA0aruzCzsnH9XfwMgYKDCRtCnOwhho6jRKRJD9E9vnr-_mdf9ErjNuGRYGLgUzicnE1aj8zwGYSLkV5Rypbn9eefrc1Sm1iSNQD6dFmU2c11Np3em4tGz-B7W4tAQfnZXVZ5V9_-FuDx_6v5HHYauEoOgtYL2LDFS3hc00b14hWMJ3N_0OOp0-Q8RMkkw_msjM6WFflRkMAiIS0jAfsAqTkKZJhVGflWJ6cgF20Y2cUuXI6OLg6PoyZDQ6TRMYnIpOgvTSJtjCjNaMQTVmaOx9avI1mecM11yoWQxlFqbM41TobS5NRSmRnH2GvYKmaFfQPEGqcpglHH_bYUwgiLasxw1xdxnrG4A0nbIko34ct9Fo2pqo_RpVTeYMobTHmDKaqCwTrQXymWIYLHwyqfsVVUM5oXD4t_XBM_nRyer0sobLQO7Lc96E4UASfiQSFpvwN01av-tpxv_62cH-DJZDhSX0_GX_ZgO_YbBzWZbh-2qvnSvkN0VeXv66HzC--0DQI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60InrxLVarLOjR2G6yiZujVEUEa0ELelqSfYBY0tCmiP56Z_OoRhAfl5xmls3sY77d-XYG4EiZOOYhHksUPfUcZrR2uCddB8EoDVXgolPLs332gqsBu37wH-agXb2FqcXv8XCGgNl1Aj8M2gjl8dO2jz1tztKFwEaUGrAw6PXPHotnj1YyrzQ506oYXd-3VPNH80-jtAY1l6ZJGr2-RMPhJ69zuQr9qr8F2eT5ZJrFJ_LtSyrHP_zQGqyUCJScFVNmHeZ0sgGLORNUTjah1x_b2I1lQ5O7IvElOR-PUud2mpGnhBTEEFKRDHBYSU47IOdRFpGbvN4Eua8yw062YHB5cd-9csqiC47EvcZ3VIhboAq4dhF4KYkQQfPIMFfbo6EXB0wyGTLf58pQqnTMJPo3rmKqKY-U8bxtaCSjRO8A0cpIivjSMHvThMhAo5qnmOn4bhx5bhOCyvRClhnJbWGMocgj45wLayxhjSWssQQVhbGa0JkppkVSjp9VjnFsRblAJz-LH9bEr_vdu7qESJVpQquaKh-iiCER4vmcdppAZ9Pnt_3c_YfOHiy79hYgZ8a1oJGNp3ofoVIWH5TL4x1Ndvsh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Student+Drop-Out+in+Higher+Institution+Using+Data+Mining+Techniques&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Wan+Yaacob%2C+W+F&rft.au=N+Mohd+Sobri&rft.au=Md+Nasir%2C+S+A&rft.au=Norshahidi%2C+N+D&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1496&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1496%2F1%2F012005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon