Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in synaptic neuroscience Vol. 2; p. 34
Main Authors Müller-Dahlhaus, Florian, Ziemann, Ulf, Classen, Joseph
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 2010
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1663-3563
1663-3563
DOI10.3389/fnsyn.2010.00034

Cover

Abstract Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory.
AbstractList Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory.
Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.
Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory.Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory.
Author Müller-Dahlhaus
AuthorAffiliation 1 Department of Neurology, Johann Wolfgang Goethe University Frankfurt/Main, Germany
2 Department of Neurology, University of Leipzig Leipzig, Germany
AuthorAffiliation_xml – name: 2 Department of Neurology, University of Leipzig Leipzig, Germany
– name: 1 Department of Neurology, Johann Wolfgang Goethe University Frankfurt/Main, Germany
Author_xml – sequence: 1
  givenname: Florian
  surname: Müller-Dahlhaus
  fullname: Müller-Dahlhaus, Florian
  organization: Department of Neurology, Johann Wolfgang Goethe University Frankfurt/Main, Germany
– sequence: 2
  givenname: Ulf
  surname: Ziemann
  fullname: Ziemann, Ulf
– sequence: 3
  givenname: Joseph
  surname: Classen
  fullname: Classen, Joseph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21423520$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1vFCEYxompsbX27snMzdNUhq8BDyam8aNJEz3oVQLMyy51BkaYbbr_vexu27QmnuCF3_s8fDwv0VFMERB63eFzSqV652PZxnOCa40xpuwZOumEoC3lgh49mh-js1KuK4IZJhV8gY5JxwjlBJ-gX99HU5bgwrJtMhSY7Bjiqilz-A3tEqZdMcAMcYC4NNXQzJVu5oeu982yhgZuQgUcNCE2681kYuNSXuD2FXruzVjg7G48RT8_f_px8bW9-vbl8uLjVetoL1hrBZVWOVBeqk56gYGS3nNsCZWYSi64sEr0g1FYVQgG2ztm2CC5GywBT0_R5UF3SOZazzlMJm91MkHvF1JeaZPrgUfQTDrVeYu9FIRJ7K1RTHFuFPG4H2RftT4ctOaNnWBw9eLZjE9En-7EsNardKMp5kooXgXe3gnk9GcDZdFTKA7G0URIm6Ill0R2tCeVfPPY6sHj_n8qIA6Ay6mUDF7XNzdLSDvnMOoO610W9D4LepcFvc9CbcT_NN5r_7flL-QMub0
CitedBy_id crossref_primary_10_3389_fnhum_2014_00378
crossref_primary_10_1007_s10072_016_2693_8
crossref_primary_10_2147_NDT_S414782
crossref_primary_10_1155_2016_6797928
crossref_primary_10_3389_fnhum_2020_576171
crossref_primary_10_1186_s12938_020_00824_w
crossref_primary_10_1007_s00221_019_05559_2
crossref_primary_10_3389_fncel_2021_668980
crossref_primary_10_3389_fnhum_2019_00049
crossref_primary_10_1016_j_bandl_2024_105381
crossref_primary_10_1523_JNEUROSCI_1595_13_2014
crossref_primary_10_1007_s00221_020_05943_3
crossref_primary_10_1523_JNEUROSCI_3158_13_2013
crossref_primary_10_1088_1741_2552_acfa22
crossref_primary_10_3389_fnins_2019_00792
crossref_primary_10_1162_neco_a_01601
crossref_primary_10_1016_j_brs_2016_11_010
crossref_primary_10_3389_fncel_2019_00469
crossref_primary_10_1093_cercor_bhw212
crossref_primary_10_1007_s00221_022_06375_x
crossref_primary_10_3389_fpsyg_2018_02249
crossref_primary_10_1109_ACCESS_2016_2568739
crossref_primary_10_1155_2020_8824530
crossref_primary_10_3389_fneur_2018_01146
crossref_primary_10_1152_jn_00411_2019
ContentType Journal Article
Copyright Copyright © 2010 Müller-Dahlhaus, Ziemann and Classen. 2010
Copyright_xml – notice: Copyright © 2010 Müller-Dahlhaus, Ziemann and Classen. 2010
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fnsyn.2010.00034
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-3563
ExternalDocumentID oai_doaj_org_article_48c91fb0f862480fba94955a92f07d87
PMC3059695
21423520
10_3389_fnsyn_2010_00034
Genre Journal Article
GroupedDBID ---
53G
5VS
9T4
AAFWJ
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
P6G
PGMZT
RIG
RNS
RPM
TR2
NPM
7X8
5PM
ID FETCH-LOGICAL-c3764-b638b9ce9f8918f60e327f50b2380385656b967da909e9fedb7c4a4d85cdb2ef3
IEDL.DBID M48
ISSN 1663-3563
IngestDate Wed Aug 27 01:20:34 EDT 2025
Thu Aug 21 18:24:20 EDT 2025
Fri Sep 05 09:44:10 EDT 2025
Thu Apr 03 07:03:39 EDT 2025
Tue Jul 01 04:35:32 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cortex
long-term depression
paired associative stimulation
transcranial magnetic stimulation
human
spike-timing dependent plasticity
translational neuroscience
long-term potentiation
Language English
License This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3764-b638b9ce9f8918f60e327f50b2380385656b967da909e9fedb7c4a4d85cdb2ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Per Jesper Sjöström, University College London, UK
Reviewed by: Huibert D. Mansvelder, VU University, Netherlands; Patricio T. Huerta, Weill Medical College of Cornell University, USA; Robert Chen, Toronto Western Hospital, Canada
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnsyn.2010.00034
PMID 21423520
PQID 858281372
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_48c91fb0f862480fba94955a92f07d87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059695
proquest_miscellaneous_858281372
pubmed_primary_21423520
crossref_citationtrail_10_3389_fnsyn_2010_00034
crossref_primary_10_3389_fnsyn_2010_00034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-00-00
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in synaptic neuroscience
PublicationTitleAlternate Front Synaptic Neurosci
PublicationYear 2010
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 19858227 - J Physiol. 2009 Dec 15;587(Pt 24):5831-42
18178522 - Clin Neurophysiol. 2008 Mar;119(3):675-82
11017175 - Nat Neurosci. 2000 Oct;3(10):1018-26
18791179 - Cereb Cortex. 2009 Apr;19(4):907-15
18320180 - Exp Brain Res. 2008 May;187(3):467-75
15845584 - J Physiol. 2005 Jun 15;565(Pt 3):1039-52
16240372 - Ann Neurol. 2006 Jan;59(1):60-71
2860322 - Lancet. 1985 May 11;1(8437):1106-7
14724259 - J Neurophysiol. 2004 Jul;92(1):66-72
16476674 - Brain. 2006 Apr;129(Pt 4):1059-69
7054394 - J Neurosci. 1982 Jan;2(1):32-48
8410704 - J Physiol. 1993 Jul;466:521-34
3543727 - Neurosurgery. 1987 Jan;20(1):74-93
18845611 - J Physiol. 2008 Dec 1;586(Pt 23):5717-25
17553015 - Eur J Neurosci. 2007 Jun;25(11):3461-8
18995822 - Neuron. 2008 Nov 6;60(3):477-82
11012042 - J Clin Neurophysiol. 2000 Jul;17(4):397-405
17287502 - J Neurosci. 2007 Feb 7;27(6):1271-84
19151081 - Brain. 2009 Mar;132(Pt 3):749-55
17561848 - Eur J Neurosci. 2007 May;25(9):2862-74
14744565 - Clin Neurophysiol. 2004 Feb;115(2):255-66
18303976 - J Cogn Neurosci. 2008 Aug;20(8):1517-28
19117337 - Mov Disord. 2009 Apr 15;24(5):710-5
16825301 - J Physiol. 2006 Sep 1;575(Pt 2):657-70
15872016 - Brain. 2005 Aug;128(Pt 8):1943-50
19176639 - Cereb Cortex. 2009 Oct;19(10):2326-30
8658594 - Trends Neurosci. 1996 Apr;19(4):126-30
19687124 - J Physiol. 2009 Oct 1;587(Pt 19):4629-44
14973238 - J Neurosci. 2004 Feb 18;24(7):1666-72
19584748 - J Clin Neurophysiol. 2009 Aug;26(4):272-9
8985014 - Science. 1997 Jan 10;275(5297):213-5
17591596 - Cereb Cortex. 2008 Mar;18(3):648-51
17494706 - J Neurosci. 2007 May 9;27(19):5200-6
20471348 - Neuron. 2010 May 13;66(3):337-51
17855721 - Cereb Cortex. 2008 May;18(5):990-6
20363038 - Trends Neurosci. 2010 Jul;33(7):307-16
18701691 - J Neurosci. 2008 Aug 13;28(33):8285-93
19384889 - Hum Brain Mapp. 2009 Nov;30(11):3645-56
12612033 - J Neurophysiol. 2003 May;89(5):2339-45
14730307 - Nat Neurosci. 2004 Feb;7(2):126-35
20478978 - J Physiol. 2010 Jul 1;588(Pt 13):2291-304
14506068 - Brain. 2003 Dec;126(Pt 12):2586-96
19888284 - Nat Rev Neurosci. 2009 Dec;10(12):861-72
2289456 - Electroencephalogr Clin Neurophysiol Suppl. 1990;41:84-101
16680163 - Nat Neurosci. 2006 Jun;9(6):735-7
18275283 - Annu Rev Neurosci. 2008;31:25-46
19435676 - Clin Neurophysiol. 2009 Jun;120(6):1204-12
17351767 - Exp Brain Res. 2007 Jun;180(1):181-6
19910248 - Clin Neurophysiol. 2010 Jan;121(1):90-3
8985013 - Science. 1997 Jan 10;275(5297):209-13
6324350 - Science. 1984 May 11;224(4649):627-30
18160652 - J Neurosci. 2007 Dec 26;27(52):14442-7
12575953 - Neuron. 2003 Feb 6;37(3):463-72
20633393 - Brain Stimul. 2008 Oct;1(4):345-62
9738497 - Nature. 1998 Sep 3;395(6697):37-44
19726723 - J Neurophysiol. 2009 Dec;102(6):3180-90
21423498 - Front Synaptic Neurosci. 2010 Jul 02;2:12
16921180 - Brain. 2006 Oct;129(Pt 10):2709-21
16723411 - J Neurophysiol. 2006 Sep;96(3):1337-46
17901333 - Science. 2007 Sep 28;317(5846):1918-21
1929211 - Ann Neurol. 1991 Apr;29(4):418-27
12205201 - J Physiol. 2002 Sep 1;543(Pt 2):699-708
14741106 - Neuron. 2004 Jan 22;41(2):257-68
17978047 - J Neurosci. 2007 Oct 31;27(44):12058-66
4011039 - Neurosci Lett. 1985 Apr 19;55(3):361-6
16353175 - Mov Disord. 2006 May;21(5):639-45
8797526 - Ann Neurol. 1996 Sep;40(3):367-78
12391303 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14512-7
8120818 - J Physiol. 1993 Nov;471:501-19
9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72
10939330 - Neuron. 2000 Jul;27(1):45-56
16679502 - Neurorehabil Neural Repair. 2006 Jun;20(2):243-51
17329210 - Neuron. 2007 Mar 1;53(5):703-17
19403826 - J Neurosci. 2009 Apr 29;29(17):5597-604
19319509 - Exp Brain Res. 2009 Apr;194(4):661-4
9495341 - Nature. 1998 Feb 26;391(6670):892-6
9212260 - J Neurophysiol. 1997 Jun;77(6):3107-14
17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12
10686179 - Brain. 2000 Mar;123 Pt 3:572-84
15930370 - Cereb Cortex. 2006 Mar;16(3):376-85
1782527 - Brain. 1991 Dec;114 ( Pt 6):2465-503
4626361 - Exp Brain Res. 1972;14(3):257-73
References_xml – reference: 18995822 - Neuron. 2008 Nov 6;60(3):477-82
– reference: 1929211 - Ann Neurol. 1991 Apr;29(4):418-27
– reference: 8410704 - J Physiol. 1993 Jul;466:521-34
– reference: 11017175 - Nat Neurosci. 2000 Oct;3(10):1018-26
– reference: 2860322 - Lancet. 1985 May 11;1(8437):1106-7
– reference: 19910248 - Clin Neurophysiol. 2010 Jan;121(1):90-3
– reference: 4011039 - Neurosci Lett. 1985 Apr 19;55(3):361-6
– reference: 19384889 - Hum Brain Mapp. 2009 Nov;30(11):3645-56
– reference: 2289456 - Electroencephalogr Clin Neurophysiol Suppl. 1990;41:84-101
– reference: 6324350 - Science. 1984 May 11;224(4649):627-30
– reference: 17553015 - Eur J Neurosci. 2007 Jun;25(11):3461-8
– reference: 16353175 - Mov Disord. 2006 May;21(5):639-45
– reference: 14730307 - Nat Neurosci. 2004 Feb;7(2):126-35
– reference: 16723411 - J Neurophysiol. 2006 Sep;96(3):1337-46
– reference: 17978047 - J Neurosci. 2007 Oct 31;27(44):12058-66
– reference: 19888284 - Nat Rev Neurosci. 2009 Dec;10(12):861-72
– reference: 18275283 - Annu Rev Neurosci. 2008;31:25-46
– reference: 20478978 - J Physiol. 2010 Jul 1;588(Pt 13):2291-304
– reference: 9738497 - Nature. 1998 Sep 3;395(6697):37-44
– reference: 17287502 - J Neurosci. 2007 Feb 7;27(6):1271-84
– reference: 16825301 - J Physiol. 2006 Sep 1;575(Pt 2):657-70
– reference: 17855721 - Cereb Cortex. 2008 May;18(5):990-6
– reference: 16476674 - Brain. 2006 Apr;129(Pt 4):1059-69
– reference: 17561848 - Eur J Neurosci. 2007 May;25(9):2862-74
– reference: 11012042 - J Clin Neurophysiol. 2000 Jul;17(4):397-405
– reference: 21423498 - Front Synaptic Neurosci. 2010 Jul 02;2:12
– reference: 19726723 - J Neurophysiol. 2009 Dec;102(6):3180-90
– reference: 19858227 - J Physiol. 2009 Dec 15;587(Pt 24):5831-42
– reference: 16240372 - Ann Neurol. 2006 Jan;59(1):60-71
– reference: 8120818 - J Physiol. 1993 Nov;471:501-19
– reference: 9212260 - J Neurophysiol. 1997 Jun;77(6):3107-14
– reference: 4626361 - Exp Brain Res. 1972;14(3):257-73
– reference: 14506068 - Brain. 2003 Dec;126(Pt 12):2586-96
– reference: 18160652 - J Neurosci. 2007 Dec 26;27(52):14442-7
– reference: 15930370 - Cereb Cortex. 2006 Mar;16(3):376-85
– reference: 19403826 - J Neurosci. 2009 Apr 29;29(17):5597-604
– reference: 17494706 - J Neurosci. 2007 May 9;27(19):5200-6
– reference: 16679502 - Neurorehabil Neural Repair. 2006 Jun;20(2):243-51
– reference: 8985014 - Science. 1997 Jan 10;275(5297):213-5
– reference: 8985013 - Science. 1997 Jan 10;275(5297):209-13
– reference: 18791179 - Cereb Cortex. 2009 Apr;19(4):907-15
– reference: 12205201 - J Physiol. 2002 Sep 1;543(Pt 2):699-708
– reference: 15872016 - Brain. 2005 Aug;128(Pt 8):1943-50
– reference: 1782527 - Brain. 1991 Dec;114 ( Pt 6):2465-503
– reference: 19584748 - J Clin Neurophysiol. 2009 Aug;26(4):272-9
– reference: 16921180 - Brain. 2006 Oct;129(Pt 10):2709-21
– reference: 7054394 - J Neurosci. 1982 Jan;2(1):32-48
– reference: 14724259 - J Neurophysiol. 2004 Jul;92(1):66-72
– reference: 10939330 - Neuron. 2000 Jul;27(1):45-56
– reference: 18701691 - J Neurosci. 2008 Aug 13;28(33):8285-93
– reference: 8797526 - Ann Neurol. 1996 Sep;40(3):367-78
– reference: 18178522 - Clin Neurophysiol. 2008 Mar;119(3):675-82
– reference: 20471348 - Neuron. 2010 May 13;66(3):337-51
– reference: 19176639 - Cereb Cortex. 2009 Oct;19(10):2326-30
– reference: 18303976 - J Cogn Neurosci. 2008 Aug;20(8):1517-28
– reference: 14741106 - Neuron. 2004 Jan 22;41(2):257-68
– reference: 17329210 - Neuron. 2007 Mar 1;53(5):703-17
– reference: 12575953 - Neuron. 2003 Feb 6;37(3):463-72
– reference: 8658594 - Trends Neurosci. 1996 Apr;19(4):126-30
– reference: 17901333 - Science. 2007 Sep 28;317(5846):1918-21
– reference: 17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12
– reference: 18845611 - J Physiol. 2008 Dec 1;586(Pt 23):5717-25
– reference: 14744565 - Clin Neurophysiol. 2004 Feb;115(2):255-66
– reference: 15845584 - J Physiol. 2005 Jun 15;565(Pt 3):1039-52
– reference: 17591596 - Cereb Cortex. 2008 Mar;18(3):648-51
– reference: 18320180 - Exp Brain Res. 2008 May;187(3):467-75
– reference: 19319509 - Exp Brain Res. 2009 Apr;194(4):661-4
– reference: 9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72
– reference: 12612033 - J Neurophysiol. 2003 May;89(5):2339-45
– reference: 19151081 - Brain. 2009 Mar;132(Pt 3):749-55
– reference: 20363038 - Trends Neurosci. 2010 Jul;33(7):307-16
– reference: 12391303 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14512-7
– reference: 20633393 - Brain Stimul. 2008 Oct;1(4):345-62
– reference: 19687124 - J Physiol. 2009 Oct 1;587(Pt 19):4629-44
– reference: 19117337 - Mov Disord. 2009 Apr 15;24(5):710-5
– reference: 3543727 - Neurosurgery. 1987 Jan;20(1):74-93
– reference: 10686179 - Brain. 2000 Mar;123 Pt 3:572-84
– reference: 19435676 - Clin Neurophysiol. 2009 Jun;120(6):1204-12
– reference: 16680163 - Nat Neurosci. 2006 Jun;9(6):735-7
– reference: 17351767 - Exp Brain Res. 2007 Jun;180(1):181-6
– reference: 14973238 - J Neurosci. 2004 Feb 18;24(7):1666-72
– reference: 9495341 - Nature. 1998 Feb 26;391(6670):892-6
SSID ssj0000402003
Score 2.2094703
SecondaryResourceType review_article
Snippet Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 34
SubjectTerms Cortex
human
Long-term depression
Long-Term Potentiation
Neuroscience
spike-timing dependent plasticity
Transcranial Magnetic Stimulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLHLx4KJs26bbxpqKIoHhwYU-GJE10UbuLW0H_vTNpd9kV0YvXNqFhMpl803l8hBwltkw87-o4AbQfi8Q6sIOGxcJ7nXqT8VyHLN_b7lVPXPez_gzVF-aENe2BG8F1RGFl4g3zWMlQMG-0BEyfaZl6lpdFqCNnks04U8EGo1vEeBOXBC9Mdnw1_qwmqVyMi7l7KLTr_wljfk-VnLl7LlfJSgsa6Wmz2DWy4Kp1snTThsU3yMMdYGBMj64_KZYTvRosMqfj0eDZxTXydj3SCdttTWGFGgyFpaPprBMKOJC6lmGUDioauPuoxVTcj03Su7y4P7-KW-KE2IK9ELGBQ2WkddIXMil8lzme5j5jBu5njAQChjOym5daMgmDXGlyK7Qoi8yWJnWeb5HFali5HUI107oEo4iujwDpaZgomIWn2jFueEQ6EzEq23YVR3KLFwXeBQpeBcErFLwKgo_I8XTGqOmo8cvYM9yZ6TjshR0egIaoVkPUXxoSETrZVwVnBwMiunLD97EqMGaY8DyNyHazzdMvYSc6wKYsIvmcAswtZf5NNXgK7bk5MhrJbPc_1r5Hlpt0Bfzns08W67d3dwAoqDaHQeG_AHZLBz0
  priority: 102
  providerName: Directory of Open Access Journals
Title Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/21423520
https://www.proquest.com/docview/858281372
https://pubmed.ncbi.nlm.nih.gov/PMC3059695
https://doaj.org/article/48c91fb0f862480fba94955a92f07d87
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIlW9IF4t4VH5wIVDqBM7mxgJIUCUCgnUQ1faUy3bscuKkl12U6n775lxkqWLFi45OHZieezxN57xfAAvM1dnQYxMmiHaT2XmPOpBy1MZgsmDLURpYpTvt9HpWH6ZFJM_16P7AVxuNe2IT2q8uHp982v1Dhf8W7I4cb89Ds1y1QxRWlzIHbgbvUUUyNeD_aiXyVTiovNVbm0YMwMjviiI_fvWNhWz-W-DoH9HUt7amk7uw70eU7L33SR4AHd88xD2vvZe80dwcYYQmaKn2xWj20Y_Ld1BZ8v59IdPW6L1umQDGW7LsLMG9Yhj83WrNwxhIvM9ASmbNixS-zFHkbo3j2F88un842na8yqkDtWJTC2uOaucV6FSWRVG3Iu8DAW3uH2ToxAhnlWjsjaKK6zka1s6aWRdFa62uQ_iAHabWeOfADPcmBp1JllGEgfSYEPJHZYaz4UVCRwPw6hdn3ScuC-uNBofJAMdZaBJBjrKIIFX6xbzLuHGf-p-IMms61Gq7FgwW1zqfuVpWTmVBcsDXYWpeLBGoVFYGJUHXtZVmQAb5KpxaZG_xDR-dr3UFbkUM1HmCRx2Yl7_aZgmCZQbE2CjK5tvmun3mL1bEOGRKp7-85vPYL8LUaBznuew2y6u_QtEPq09iicG-Pw8yY7i5P4NSLwEgA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+resembling+spike-timing+dependent+synaptic+plasticity%3A+the+evidence+in+human+cortex&rft.jtitle=Frontiers+in+synaptic+neuroscience&rft.au=M%C3%BCller-Dahlhaus%2C+Florian&rft.au=Ziemann%2C+Ulf&rft.au=Classen%2C+Joseph&rft.date=2010&rft.eissn=1663-3563&rft.volume=2&rft.spage=34&rft_id=info:doi/10.3389%2Ffnsyn.2010.00034&rft_id=info%3Apmid%2F21423520&rft.externalDocID=21423520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-3563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-3563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-3563&client=summon