Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex
Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such...
Saved in:
Published in | Frontiers in synaptic neuroscience Vol. 2; p. 34 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
2010
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1663-3563 1663-3563 |
DOI | 10.3389/fnsyn.2010.00034 |
Cover
Abstract | Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory. |
---|---|
AbstractList | Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory. Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory. Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory.Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behavior such as learning and memory. |
Author | Müller-Dahlhaus |
AuthorAffiliation | 1 Department of Neurology, Johann Wolfgang Goethe University Frankfurt/Main, Germany 2 Department of Neurology, University of Leipzig Leipzig, Germany |
AuthorAffiliation_xml | – name: 2 Department of Neurology, University of Leipzig Leipzig, Germany – name: 1 Department of Neurology, Johann Wolfgang Goethe University Frankfurt/Main, Germany |
Author_xml | – sequence: 1 givenname: Florian surname: Müller-Dahlhaus fullname: Müller-Dahlhaus, Florian organization: Department of Neurology, Johann Wolfgang Goethe University Frankfurt/Main, Germany – sequence: 2 givenname: Ulf surname: Ziemann fullname: Ziemann, Ulf – sequence: 3 givenname: Joseph surname: Classen fullname: Classen, Joseph |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21423520$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1vFCEYxompsbX27snMzdNUhq8BDyam8aNJEz3oVQLMyy51BkaYbbr_vexu27QmnuCF3_s8fDwv0VFMERB63eFzSqV652PZxnOCa40xpuwZOumEoC3lgh49mh-js1KuK4IZJhV8gY5JxwjlBJ-gX99HU5bgwrJtMhSY7Bjiqilz-A3tEqZdMcAMcYC4NNXQzJVu5oeu982yhgZuQgUcNCE2681kYuNSXuD2FXruzVjg7G48RT8_f_px8bW9-vbl8uLjVetoL1hrBZVWOVBeqk56gYGS3nNsCZWYSi64sEr0g1FYVQgG2ztm2CC5GywBT0_R5UF3SOZazzlMJm91MkHvF1JeaZPrgUfQTDrVeYu9FIRJ7K1RTHFuFPG4H2RftT4ctOaNnWBw9eLZjE9En-7EsNardKMp5kooXgXe3gnk9GcDZdFTKA7G0URIm6Ill0R2tCeVfPPY6sHj_n8qIA6Ay6mUDF7XNzdLSDvnMOoO610W9D4LepcFvc9CbcT_NN5r_7flL-QMub0 |
CitedBy_id | crossref_primary_10_3389_fnhum_2014_00378 crossref_primary_10_1007_s10072_016_2693_8 crossref_primary_10_2147_NDT_S414782 crossref_primary_10_1155_2016_6797928 crossref_primary_10_3389_fnhum_2020_576171 crossref_primary_10_1186_s12938_020_00824_w crossref_primary_10_1007_s00221_019_05559_2 crossref_primary_10_3389_fncel_2021_668980 crossref_primary_10_3389_fnhum_2019_00049 crossref_primary_10_1016_j_bandl_2024_105381 crossref_primary_10_1523_JNEUROSCI_1595_13_2014 crossref_primary_10_1007_s00221_020_05943_3 crossref_primary_10_1523_JNEUROSCI_3158_13_2013 crossref_primary_10_1088_1741_2552_acfa22 crossref_primary_10_3389_fnins_2019_00792 crossref_primary_10_1162_neco_a_01601 crossref_primary_10_1016_j_brs_2016_11_010 crossref_primary_10_3389_fncel_2019_00469 crossref_primary_10_1093_cercor_bhw212 crossref_primary_10_1007_s00221_022_06375_x crossref_primary_10_3389_fpsyg_2018_02249 crossref_primary_10_1109_ACCESS_2016_2568739 crossref_primary_10_1155_2020_8824530 crossref_primary_10_3389_fneur_2018_01146 crossref_primary_10_1152_jn_00411_2019 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Müller-Dahlhaus, Ziemann and Classen. 2010 |
Copyright_xml | – notice: Copyright © 2010 Müller-Dahlhaus, Ziemann and Classen. 2010 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fnsyn.2010.00034 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1663-3563 |
ExternalDocumentID | oai_doaj_org_article_48c91fb0f862480fba94955a92f07d87 PMC3059695 21423520 10_3389_fnsyn_2010_00034 |
Genre | Journal Article |
GroupedDBID | --- 53G 5VS 9T4 AAFWJ AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 P6G PGMZT RIG RNS RPM TR2 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3764-b638b9ce9f8918f60e327f50b2380385656b967da909e9fedb7c4a4d85cdb2ef3 |
IEDL.DBID | M48 |
ISSN | 1663-3563 |
IngestDate | Wed Aug 27 01:20:34 EDT 2025 Thu Aug 21 18:24:20 EDT 2025 Fri Sep 05 09:44:10 EDT 2025 Thu Apr 03 07:03:39 EDT 2025 Tue Jul 01 04:35:32 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | cortex long-term depression paired associative stimulation transcranial magnetic stimulation human spike-timing dependent plasticity translational neuroscience long-term potentiation |
Language | English |
License | This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3764-b638b9ce9f8918f60e327f50b2380385656b967da909e9fedb7c4a4d85cdb2ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Per Jesper Sjöström, University College London, UK Reviewed by: Huibert D. Mansvelder, VU University, Netherlands; Patricio T. Huerta, Weill Medical College of Cornell University, USA; Robert Chen, Toronto Western Hospital, Canada |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnsyn.2010.00034 |
PMID | 21423520 |
PQID | 858281372 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48c91fb0f862480fba94955a92f07d87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059695 proquest_miscellaneous_858281372 pubmed_primary_21423520 crossref_citationtrail_10_3389_fnsyn_2010_00034 crossref_primary_10_3389_fnsyn_2010_00034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-00-00 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in synaptic neuroscience |
PublicationTitleAlternate | Front Synaptic Neurosci |
PublicationYear | 2010 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | 19858227 - J Physiol. 2009 Dec 15;587(Pt 24):5831-42 18178522 - Clin Neurophysiol. 2008 Mar;119(3):675-82 11017175 - Nat Neurosci. 2000 Oct;3(10):1018-26 18791179 - Cereb Cortex. 2009 Apr;19(4):907-15 18320180 - Exp Brain Res. 2008 May;187(3):467-75 15845584 - J Physiol. 2005 Jun 15;565(Pt 3):1039-52 16240372 - Ann Neurol. 2006 Jan;59(1):60-71 2860322 - Lancet. 1985 May 11;1(8437):1106-7 14724259 - J Neurophysiol. 2004 Jul;92(1):66-72 16476674 - Brain. 2006 Apr;129(Pt 4):1059-69 7054394 - J Neurosci. 1982 Jan;2(1):32-48 8410704 - J Physiol. 1993 Jul;466:521-34 3543727 - Neurosurgery. 1987 Jan;20(1):74-93 18845611 - J Physiol. 2008 Dec 1;586(Pt 23):5717-25 17553015 - Eur J Neurosci. 2007 Jun;25(11):3461-8 18995822 - Neuron. 2008 Nov 6;60(3):477-82 11012042 - J Clin Neurophysiol. 2000 Jul;17(4):397-405 17287502 - J Neurosci. 2007 Feb 7;27(6):1271-84 19151081 - Brain. 2009 Mar;132(Pt 3):749-55 17561848 - Eur J Neurosci. 2007 May;25(9):2862-74 14744565 - Clin Neurophysiol. 2004 Feb;115(2):255-66 18303976 - J Cogn Neurosci. 2008 Aug;20(8):1517-28 19117337 - Mov Disord. 2009 Apr 15;24(5):710-5 16825301 - J Physiol. 2006 Sep 1;575(Pt 2):657-70 15872016 - Brain. 2005 Aug;128(Pt 8):1943-50 19176639 - Cereb Cortex. 2009 Oct;19(10):2326-30 8658594 - Trends Neurosci. 1996 Apr;19(4):126-30 19687124 - J Physiol. 2009 Oct 1;587(Pt 19):4629-44 14973238 - J Neurosci. 2004 Feb 18;24(7):1666-72 19584748 - J Clin Neurophysiol. 2009 Aug;26(4):272-9 8985014 - Science. 1997 Jan 10;275(5297):213-5 17591596 - Cereb Cortex. 2008 Mar;18(3):648-51 17494706 - J Neurosci. 2007 May 9;27(19):5200-6 20471348 - Neuron. 2010 May 13;66(3):337-51 17855721 - Cereb Cortex. 2008 May;18(5):990-6 20363038 - Trends Neurosci. 2010 Jul;33(7):307-16 18701691 - J Neurosci. 2008 Aug 13;28(33):8285-93 19384889 - Hum Brain Mapp. 2009 Nov;30(11):3645-56 12612033 - J Neurophysiol. 2003 May;89(5):2339-45 14730307 - Nat Neurosci. 2004 Feb;7(2):126-35 20478978 - J Physiol. 2010 Jul 1;588(Pt 13):2291-304 14506068 - Brain. 2003 Dec;126(Pt 12):2586-96 19888284 - Nat Rev Neurosci. 2009 Dec;10(12):861-72 2289456 - Electroencephalogr Clin Neurophysiol Suppl. 1990;41:84-101 16680163 - Nat Neurosci. 2006 Jun;9(6):735-7 18275283 - Annu Rev Neurosci. 2008;31:25-46 19435676 - Clin Neurophysiol. 2009 Jun;120(6):1204-12 17351767 - Exp Brain Res. 2007 Jun;180(1):181-6 19910248 - Clin Neurophysiol. 2010 Jan;121(1):90-3 8985013 - Science. 1997 Jan 10;275(5297):209-13 6324350 - Science. 1984 May 11;224(4649):627-30 18160652 - J Neurosci. 2007 Dec 26;27(52):14442-7 12575953 - Neuron. 2003 Feb 6;37(3):463-72 20633393 - Brain Stimul. 2008 Oct;1(4):345-62 9738497 - Nature. 1998 Sep 3;395(6697):37-44 19726723 - J Neurophysiol. 2009 Dec;102(6):3180-90 21423498 - Front Synaptic Neurosci. 2010 Jul 02;2:12 16921180 - Brain. 2006 Oct;129(Pt 10):2709-21 16723411 - J Neurophysiol. 2006 Sep;96(3):1337-46 17901333 - Science. 2007 Sep 28;317(5846):1918-21 1929211 - Ann Neurol. 1991 Apr;29(4):418-27 12205201 - J Physiol. 2002 Sep 1;543(Pt 2):699-708 14741106 - Neuron. 2004 Jan 22;41(2):257-68 17978047 - J Neurosci. 2007 Oct 31;27(44):12058-66 4011039 - Neurosci Lett. 1985 Apr 19;55(3):361-6 16353175 - Mov Disord. 2006 May;21(5):639-45 8797526 - Ann Neurol. 1996 Sep;40(3):367-78 12391303 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14512-7 8120818 - J Physiol. 1993 Nov;471:501-19 9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72 10939330 - Neuron. 2000 Jul;27(1):45-56 16679502 - Neurorehabil Neural Repair. 2006 Jun;20(2):243-51 17329210 - Neuron. 2007 Mar 1;53(5):703-17 19403826 - J Neurosci. 2009 Apr 29;29(17):5597-604 19319509 - Exp Brain Res. 2009 Apr;194(4):661-4 9495341 - Nature. 1998 Feb 26;391(6670):892-6 9212260 - J Neurophysiol. 1997 Jun;77(6):3107-14 17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12 10686179 - Brain. 2000 Mar;123 Pt 3:572-84 15930370 - Cereb Cortex. 2006 Mar;16(3):376-85 1782527 - Brain. 1991 Dec;114 ( Pt 6):2465-503 4626361 - Exp Brain Res. 1972;14(3):257-73 |
References_xml | – reference: 18995822 - Neuron. 2008 Nov 6;60(3):477-82 – reference: 1929211 - Ann Neurol. 1991 Apr;29(4):418-27 – reference: 8410704 - J Physiol. 1993 Jul;466:521-34 – reference: 11017175 - Nat Neurosci. 2000 Oct;3(10):1018-26 – reference: 2860322 - Lancet. 1985 May 11;1(8437):1106-7 – reference: 19910248 - Clin Neurophysiol. 2010 Jan;121(1):90-3 – reference: 4011039 - Neurosci Lett. 1985 Apr 19;55(3):361-6 – reference: 19384889 - Hum Brain Mapp. 2009 Nov;30(11):3645-56 – reference: 2289456 - Electroencephalogr Clin Neurophysiol Suppl. 1990;41:84-101 – reference: 6324350 - Science. 1984 May 11;224(4649):627-30 – reference: 17553015 - Eur J Neurosci. 2007 Jun;25(11):3461-8 – reference: 16353175 - Mov Disord. 2006 May;21(5):639-45 – reference: 14730307 - Nat Neurosci. 2004 Feb;7(2):126-35 – reference: 16723411 - J Neurophysiol. 2006 Sep;96(3):1337-46 – reference: 17978047 - J Neurosci. 2007 Oct 31;27(44):12058-66 – reference: 19888284 - Nat Rev Neurosci. 2009 Dec;10(12):861-72 – reference: 18275283 - Annu Rev Neurosci. 2008;31:25-46 – reference: 20478978 - J Physiol. 2010 Jul 1;588(Pt 13):2291-304 – reference: 9738497 - Nature. 1998 Sep 3;395(6697):37-44 – reference: 17287502 - J Neurosci. 2007 Feb 7;27(6):1271-84 – reference: 16825301 - J Physiol. 2006 Sep 1;575(Pt 2):657-70 – reference: 17855721 - Cereb Cortex. 2008 May;18(5):990-6 – reference: 16476674 - Brain. 2006 Apr;129(Pt 4):1059-69 – reference: 17561848 - Eur J Neurosci. 2007 May;25(9):2862-74 – reference: 11012042 - J Clin Neurophysiol. 2000 Jul;17(4):397-405 – reference: 21423498 - Front Synaptic Neurosci. 2010 Jul 02;2:12 – reference: 19726723 - J Neurophysiol. 2009 Dec;102(6):3180-90 – reference: 19858227 - J Physiol. 2009 Dec 15;587(Pt 24):5831-42 – reference: 16240372 - Ann Neurol. 2006 Jan;59(1):60-71 – reference: 8120818 - J Physiol. 1993 Nov;471:501-19 – reference: 9212260 - J Neurophysiol. 1997 Jun;77(6):3107-14 – reference: 4626361 - Exp Brain Res. 1972;14(3):257-73 – reference: 14506068 - Brain. 2003 Dec;126(Pt 12):2586-96 – reference: 18160652 - J Neurosci. 2007 Dec 26;27(52):14442-7 – reference: 15930370 - Cereb Cortex. 2006 Mar;16(3):376-85 – reference: 19403826 - J Neurosci. 2009 Apr 29;29(17):5597-604 – reference: 17494706 - J Neurosci. 2007 May 9;27(19):5200-6 – reference: 16679502 - Neurorehabil Neural Repair. 2006 Jun;20(2):243-51 – reference: 8985014 - Science. 1997 Jan 10;275(5297):213-5 – reference: 8985013 - Science. 1997 Jan 10;275(5297):209-13 – reference: 18791179 - Cereb Cortex. 2009 Apr;19(4):907-15 – reference: 12205201 - J Physiol. 2002 Sep 1;543(Pt 2):699-708 – reference: 15872016 - Brain. 2005 Aug;128(Pt 8):1943-50 – reference: 1782527 - Brain. 1991 Dec;114 ( Pt 6):2465-503 – reference: 19584748 - J Clin Neurophysiol. 2009 Aug;26(4):272-9 – reference: 16921180 - Brain. 2006 Oct;129(Pt 10):2709-21 – reference: 7054394 - J Neurosci. 1982 Jan;2(1):32-48 – reference: 14724259 - J Neurophysiol. 2004 Jul;92(1):66-72 – reference: 10939330 - Neuron. 2000 Jul;27(1):45-56 – reference: 18701691 - J Neurosci. 2008 Aug 13;28(33):8285-93 – reference: 8797526 - Ann Neurol. 1996 Sep;40(3):367-78 – reference: 18178522 - Clin Neurophysiol. 2008 Mar;119(3):675-82 – reference: 20471348 - Neuron. 2010 May 13;66(3):337-51 – reference: 19176639 - Cereb Cortex. 2009 Oct;19(10):2326-30 – reference: 18303976 - J Cogn Neurosci. 2008 Aug;20(8):1517-28 – reference: 14741106 - Neuron. 2004 Jan 22;41(2):257-68 – reference: 17329210 - Neuron. 2007 Mar 1;53(5):703-17 – reference: 12575953 - Neuron. 2003 Feb 6;37(3):463-72 – reference: 8658594 - Trends Neurosci. 1996 Apr;19(4):126-30 – reference: 17901333 - Science. 2007 Sep 28;317(5846):1918-21 – reference: 17409245 - J Neurosci. 2007 Apr 4;27(14):3807-12 – reference: 18845611 - J Physiol. 2008 Dec 1;586(Pt 23):5717-25 – reference: 14744565 - Clin Neurophysiol. 2004 Feb;115(2):255-66 – reference: 15845584 - J Physiol. 2005 Jun 15;565(Pt 3):1039-52 – reference: 17591596 - Cereb Cortex. 2008 Mar;18(3):648-51 – reference: 18320180 - Exp Brain Res. 2008 May;187(3):467-75 – reference: 19319509 - Exp Brain Res. 2009 Apr;194(4):661-4 – reference: 9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72 – reference: 12612033 - J Neurophysiol. 2003 May;89(5):2339-45 – reference: 19151081 - Brain. 2009 Mar;132(Pt 3):749-55 – reference: 20363038 - Trends Neurosci. 2010 Jul;33(7):307-16 – reference: 12391303 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14512-7 – reference: 20633393 - Brain Stimul. 2008 Oct;1(4):345-62 – reference: 19687124 - J Physiol. 2009 Oct 1;587(Pt 19):4629-44 – reference: 19117337 - Mov Disord. 2009 Apr 15;24(5):710-5 – reference: 3543727 - Neurosurgery. 1987 Jan;20(1):74-93 – reference: 10686179 - Brain. 2000 Mar;123 Pt 3:572-84 – reference: 19435676 - Clin Neurophysiol. 2009 Jun;120(6):1204-12 – reference: 16680163 - Nat Neurosci. 2006 Jun;9(6):735-7 – reference: 17351767 - Exp Brain Res. 2007 Jun;180(1):181-6 – reference: 14973238 - J Neurosci. 2004 Feb 18;24(7):1666-72 – reference: 9495341 - Nature. 1998 Feb 26;391(6670):892-6 |
SSID | ssj0000402003 |
Score | 2.2094703 |
SecondaryResourceType | review_article |
Snippet | Spike-timing dependent plasticity (STDP) has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 34 |
SubjectTerms | Cortex human Long-term depression Long-Term Potentiation Neuroscience spike-timing dependent plasticity Transcranial Magnetic Stimulation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLHLx4KJs26bbxpqKIoHhwYU-GJE10UbuLW0H_vTNpd9kV0YvXNqFhMpl803l8hBwltkw87-o4AbQfi8Q6sIOGxcJ7nXqT8VyHLN_b7lVPXPez_gzVF-aENe2BG8F1RGFl4g3zWMlQMG-0BEyfaZl6lpdFqCNnks04U8EGo1vEeBOXBC9Mdnw1_qwmqVyMi7l7KLTr_wljfk-VnLl7LlfJSgsa6Wmz2DWy4Kp1snTThsU3yMMdYGBMj64_KZYTvRosMqfj0eDZxTXydj3SCdttTWGFGgyFpaPprBMKOJC6lmGUDioauPuoxVTcj03Su7y4P7-KW-KE2IK9ELGBQ2WkddIXMil8lzme5j5jBu5njAQChjOym5daMgmDXGlyK7Qoi8yWJnWeb5HFali5HUI107oEo4iujwDpaZgomIWn2jFueEQ6EzEq23YVR3KLFwXeBQpeBcErFLwKgo_I8XTGqOmo8cvYM9yZ6TjshR0egIaoVkPUXxoSETrZVwVnBwMiunLD97EqMGaY8DyNyHazzdMvYSc6wKYsIvmcAswtZf5NNXgK7bk5MhrJbPc_1r5Hlpt0Bfzns08W67d3dwAoqDaHQeG_AHZLBz0 priority: 102 providerName: Directory of Open Access Journals |
Title | Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21423520 https://www.proquest.com/docview/858281372 https://pubmed.ncbi.nlm.nih.gov/PMC3059695 https://doaj.org/article/48c91fb0f862480fba94955a92f07d87 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIlW9IF4t4VH5wIVDqBM7mxgJIUCUCgnUQ1faUy3bscuKkl12U6n775lxkqWLFi45OHZieezxN57xfAAvM1dnQYxMmiHaT2XmPOpBy1MZgsmDLURpYpTvt9HpWH6ZFJM_16P7AVxuNe2IT2q8uHp982v1Dhf8W7I4cb89Ds1y1QxRWlzIHbgbvUUUyNeD_aiXyVTiovNVbm0YMwMjviiI_fvWNhWz-W-DoH9HUt7amk7uw70eU7L33SR4AHd88xD2vvZe80dwcYYQmaKn2xWj20Y_Ld1BZ8v59IdPW6L1umQDGW7LsLMG9Yhj83WrNwxhIvM9ASmbNixS-zFHkbo3j2F88un842na8yqkDtWJTC2uOaucV6FSWRVG3Iu8DAW3uH2ToxAhnlWjsjaKK6zka1s6aWRdFa62uQ_iAHabWeOfADPcmBp1JllGEgfSYEPJHZYaz4UVCRwPw6hdn3ScuC-uNBofJAMdZaBJBjrKIIFX6xbzLuHGf-p-IMms61Gq7FgwW1zqfuVpWTmVBcsDXYWpeLBGoVFYGJUHXtZVmQAb5KpxaZG_xDR-dr3UFbkUM1HmCRx2Yl7_aZgmCZQbE2CjK5tvmun3mL1bEOGRKp7-85vPYL8LUaBznuew2y6u_QtEPq09iicG-Pw8yY7i5P4NSLwEgA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+resembling+spike-timing+dependent+synaptic+plasticity%3A+the+evidence+in+human+cortex&rft.jtitle=Frontiers+in+synaptic+neuroscience&rft.au=M%C3%BCller-Dahlhaus%2C+Florian&rft.au=Ziemann%2C+Ulf&rft.au=Classen%2C+Joseph&rft.date=2010&rft.eissn=1663-3563&rft.volume=2&rft.spage=34&rft_id=info:doi/10.3389%2Ffnsyn.2010.00034&rft_id=info%3Apmid%2F21423520&rft.externalDocID=21423520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-3563&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-3563&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-3563&client=summon |