ML modulation classification in presence of unreliable observations

Joint detection and maximum-likelihood (ML) classification of linear modulations based on observations collected over an unknown flat-fading additive Gaussian noise channel is considered. It is assumed that some of the observations are subject to data failures, in which case the receiver acquires on...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 52; no. 18; pp. 1569 - 1571
Main Author Dulek, B
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 02.09.2016
Subjects
Online AccessGet full text
ISSN0013-5194
1350-911X
1350-911X
DOI10.1049/el.2016.1611

Cover

Abstract Joint detection and maximum-likelihood (ML) classification of linear modulations based on observations collected over an unknown flat-fading additive Gaussian noise channel is considered. It is assumed that some of the observations are subject to data failures, in which case the receiver acquires only noise. Expectation–maximisation algorithm is employed to compute the ML estimates of the unknown channel parameters, which are then substituted into the corresponding likelihood expressions to perform hypothesis testing. Numerical simulations indicate that a suboptimal classifier, which is ignorant to data failures, exhibits extremely poor performance in the presence of high failure rates. On the other hand, the proposed classifier demonstrates comparable performance with that of the clairvoyant classifier which is assumed to have a priori knowledge of the channel parameters and data failures.
AbstractList Joint detection and maximum‐likelihood (ML) classification of linear modulations based on observations collected over an unknown flat‐fading additive Gaussian noise channel is considered. It is assumed that some of the observations are subject to data failures, in which case the receiver acquires only noise. Expectation–maximisation algorithm is employed to compute the ML estimates of the unknown channel parameters, which are then substituted into the corresponding likelihood expressions to perform hypothesis testing. Numerical simulations indicate that a suboptimal classifier, which is ignorant to data failures, exhibits extremely poor performance in the presence of high failure rates. On the other hand, the proposed classifier demonstrates comparable performance with that of the clairvoyant classifier which is assumed to have a priori knowledge of the channel parameters and data failures.
Author Dulek, B
Author_xml – sequence: 1
  givenname: B
  orcidid: 0000-0003-2126-7356
  surname: Dulek
  fullname: Dulek, B
  email: berkan@ee.hacettepe.edu.tr
  organization: Department of Electrical and Electronics Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara, Turkey
BookMark eNp9kE1LxDAQhoMouK7e_AE9ePBg10yTxvSoy_oBFS8K3kKaTiCSbdekVfbf27WCIq6nYYZnZnifA7LbtA0Scgx0BpQX5-hnGQUxAwGwQybAcpoWAM-7ZEIpsDSHgu-ToxhdRYEDF5TDhMzvy2TZ1r3XnWubxHg9ANaZsXVNsgoYsTGYtDbpm4De6coPXRUxvH1S8ZDsWe0jHn3VKXm6XjzOb9Py4eZuflmmhl0InjIrTS0wN7qq6wIk6oyKilk-zDTUiBRkrlldZFjRjFFBpWQ6txWtLWgp2JScjndXoX3tMXZq6aJB73WDbR8VSJ5LkALYgJ6NqAltjAGtWgW31GGtgKqNLoVebXSpja4Bz37hxnWf4bqgnd-2lI9L787j-t8HalGW2dX1YFzw7xgOO_XS9qEZpG17cfIHuih_XF7Vln0AkiaYmw
CitedBy_id crossref_primary_10_1177_1550147718803306
crossref_primary_10_1177_1550147719895459
crossref_primary_10_1049_iet_com_2015_1222
Cites_doi 10.1109/TIT.2014.2335733
10.1214/aos/1176346060
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TWC.2014.2359019
10.1109/LCOMM.2013.081913.131351
10.1109/LSP.2013.2260329
10.1007/978-1-4020-5542-3
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1049/el.2016.1611
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList CrossRef

Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 1571
ExternalDocumentID 10_1049_el_2016_1611
ELL2BF04164
Genre rapidPublication
GrantInformation_xml – fundername: The Scientific and Technological Research Council of Turkey (TUBITAK)
  grantid: Project no: 215E118
– fundername: The Scientific and Technological Research Council of Turkey (TUBITAK)
  funderid: Project no: 215E118
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c3764-3f8cd6e5cabdd918ea206b3f46e5a1dee0185a3d92eb023060883a5fb0df1a863
IEDL.DBID 24P
ISSN 0013-5194
1350-911X
IngestDate Thu Sep 04 19:08:55 EDT 2025
Wed Oct 29 21:16:56 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 16:59:09 EST 2025
Thu May 09 19:57:51 EDT 2019
Tue Jan 05 21:44:38 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords unreliable observations
modulation
maximum likelihood estimation
ML modulation classification
channel parameters
fading channels
Gaussian noise
data failures
flat fading additive Gaussian noise channel
linear modulations
expectation-maximisation algorithm
suboptimal classifier
maximum likelihood classification
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3764-3f8cd6e5cabdd918ea206b3f46e5a1dee0185a3d92eb023060883a5fb0df1a863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2126-7356
PQID 1845818613
PQPubID 23500
PageCount 3
ParticipantIDs wiley_primary_10_1049_el_2016_1611_ELL2BF04164
crossref_primary_10_1049_el_2016_1611
iet_journals_10_1049_el_2016_1611
proquest_miscellaneous_1845818613
crossref_citationtrail_10_1049_el_2016_1611
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2016-09-02
PublicationDateYYYYMMDD 2016-09-02
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-02
  day: 02
PublicationDecade 2010
PublicationTitle Electronics letters
PublicationYear 2016
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Weinberger, N.; Merhav, N. (C4) 2014; 60
Wu, C.F.J. (C8) 1983; 11
Pereira, S.S.; Lopez-Valcarce, R.; Pages-Zamora, A. (C6) 2013; 20
Dempster, A.P.; Laird, N.M.; Rubin, D.B. (C7) 1977; 39
Ozdemir, O.; Li, R.; Varshney, P.K. (C5) 2013; 17
Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. (C1) 2007; 1
Dulek, B.; Ozdemir, O.; Varshney, P.K.; Su, W. (C2) 2015; 14
2007
2015; 14
2013; 17
2007; 1
1977; 39
2014; 60
2013; 20
1983; 11
e_1_2_5_9_1
e_1_2_5_8_1
e_1_2_5_7_1
e_1_2_5_6_1
e_1_2_5_5_1
e_1_2_5_4_1
e_1_2_5_3_1
Dobre O.A. (e_1_2_5_2_1) 2007; 1
References_xml – volume: 17
  start-page: 1889
  year: 2013
  end-page: 1892
  ident: C5
  article-title: Hybrid maximum likelihood modulation classification using multiple radios
  publication-title: Commun. Lett.
– volume: 1
  start-page: 137
  year: 2007
  end-page: 156
  ident: C1
  article-title: Survey of automatic modulation classification techniques: classical approaches and new trends
  publication-title: Commun.
– volume: 14
  start-page: 724
  year: 2015
  end-page: 737
  ident: C2
  article-title: Distributed maximum likelihood classification of linear modulations over nonidentical flat block-fading Gaussian channels
  publication-title: Trans. Wirel. Commun.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: C7
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B
– volume: 60
  start-page: 5077
  year: 2014
  end-page: 5094
  ident: C4
  article-title: Codeword or noise? Exact random coding exponents for joint detection and decoding
  publication-title: Trans. Inf. Theory
– volume: 20
  start-page: 595
  year: 2013
  end-page: 598
  ident: C6
  article-title: A diffusion-based EM algorithm for distributed estimation in unreliable sensor networks
  publication-title: Signal Process. Lett.
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  ident: C8
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– volume: 17
  start-page: 1889
  year: 2013
  end-page: 1892
  article-title: Hybrid maximum likelihood modulation classification using multiple radios
  publication-title: Commun. Lett.
– volume: 60
  start-page: 5077
  year: 2014
  end-page: 5094
  article-title: Codeword or noise? Exact random coding exponents for joint detection and decoding
  publication-title: Trans. Inf. Theory
– volume: 20
  start-page: 595
  year: 2013
  end-page: 598
  article-title: A diffusion‐based EM algorithm for distributed estimation in unreliable sensor networks
  publication-title: Signal Process. Lett.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B
– volume: 1
  start-page: 137
  year: 2007
  end-page: 156
  article-title: Survey of automatic modulation classification techniques: classical approaches and new trends
  publication-title: Commun.
– year: 2007
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– volume: 14
  start-page: 724
  year: 2015
  end-page: 737
  article-title: Distributed maximum likelihood classification of linear modulations over nonidentical flat block‐fading Gaussian channels
  publication-title: Trans. Wirel. Commun.
– ident: e_1_2_5_5_1
  doi: 10.1109/TIT.2014.2335733
– ident: e_1_2_5_9_1
  doi: 10.1214/aos/1176346060
– ident: e_1_2_5_8_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_5_3_1
  doi: 10.1109/TWC.2014.2359019
– ident: e_1_2_5_6_1
  doi: 10.1109/LCOMM.2013.081913.131351
– ident: e_1_2_5_7_1
  doi: 10.1109/LSP.2013.2260329
– volume: 1
  start-page: 137
  year: 2007
  ident: e_1_2_5_2_1
  article-title: Survey of automatic modulation classification techniques: classical approaches and new trends
  publication-title: Commun.
– ident: e_1_2_5_4_1
  doi: 10.1007/978-1-4020-5542-3
SSID ssib014146041
ssj0012997
Score 2.2004404
Snippet Joint detection and maximum-likelihood (ML) classification of linear modulations based on observations collected over an unknown flat-fading additive Gaussian...
Joint detection and maximum‐likelihood (ML) classification of linear modulations based on observations collected over an unknown flat‐fading additive Gaussian...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1569
SubjectTerms channel parameters
Channels
Classification
Classifiers
data failures
expectation‐maximisation algorithm
fading channels
Failure
flat fading additive Gaussian noise channel
Gaussian noise
linear modulations
Mathematical models
maximum likelihood classification
maximum likelihood estimation
ML modulation classification
Modulation
Noise
Parameters
suboptimal classifier
unreliable observations
Wireless communications
SummonAdditionalLinks – databaseName: IET Digital Library (Open Access)
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gXPRgfEZUTEn0ZAp0X22PihA0xZMk3Jp91ZBgSxT-v7N9IJhgvJV2stnMDPPYnZkPoVvFAqx9SdwwYNil2hYBcI1dT0tOpcekr2y_8_iVjyb0ZcqmNVSBcerZu8XKcKsTN3taborOA1u6DXa4W_K4ACSB-LZr7A2CxzsQu0Aa1MCQmOM6ajw_RWV2BarlUbAIPbqu_gAvF_oVuAEEMbSsif-93pa32oOtbAWim-Fs7o-GR-iwDCSdh0Lyx6hm0hN0sDFe8BT1x5HzkekSoMtRNlC2lUHFz1nqLPLeI2WcLHFWoEfzmW2kcjK5Pqr9OkOT4eCtP3JL0ARXga2gLkkCpblhSkitQy8wAve4JAmFd8LTxvTAQwuiQ2xknn-AmSGCJbKnE08EnJyjepql5gI5hFPla2oEEQllNAmVNMLChmNJAqOSJrqvmBOrcqK4BbaYx_nNNg1jM48tK2PLyia6W1MvikkaO-jawOe4EvMOmtYWzSD6-RYvNOysXUkphr-LvQMRqclWsFpAmR3i55Em6uTi-3MzsHKEH4egOZxe_mNjV2jfPudFaPga1ZefK9OCqGUpb0qN_AadQ-OB
  priority: 102
  providerName: Institution of Engineering and Technology
Title ML modulation classification in presence of unreliable observations
URI http://digital-library.theiet.org/content/journals/10.1049/el.2016.1611
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2016.1611
https://www.proquest.com/docview/1845818613
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: IDLOA
  dateStart: 20130103
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPRgfEZUSEn0ZKrtPkp7RISgAfUgCbdmX01IsCUC_9-ZtiAcMPHY7exmszsz--3Oi5BbLUJqWoq5USioyw06AQSGur5RAVe-UC2N8c7Dt6A_4q9jMS4f3DAWpsgPsX5wQ8nI9TUKuFRFFRIAtbiJaDjwgweALHD7qfoAZZDDKf9YWxFA1ebFVZjwUKjHpeM79H_c7L11JO1P7GILbW5i1vzQ6R2ToxItOu1ie0_Ink1PyeFGDsEz0hkOnK_MlFW4HI1oGN1_is9J6szyACNtnSxxlsAs0wlGSzmZWr_Hzs_JqNf97PTdsjKCq0EhcJcloTaBFVoqYyI_tJJ6gWIJhzbpG2s9OIYlMxG1Kr9kgC5hUiTKM4kvw4BdkEqapfaSOCzgumW4lUwmXPAk0spKrA1OFQutTmrkfrU4sS7ThmP1immcm695FNtpjEsZ41LWyN2aelaky9hB14R1jkt5me-gqW_RdAe__-KZgZk1V7sUg0ygoUOmNlvCaCEXmKnPZzVS8NCfk4GRB_Sp5wE25Vf_7XBNDrA9dzujN6Sy-F7aOuCUhWrkzNgg1ZfnwXv7B2_Z37s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58HNSD-MSq1Qh6kmiyryZHLZaqafHQQm_LvgKFmhTb_n93khjbQwWPSWaXMLsz-83OC6FbzSJsWor4ccSwTw0EAXCD_dAoTlXIVEtDvnOvz7tD-jZio6rPKeTClPUh6gs3kIxCX4OAw4V0aXBSKJJpwXMQ8geHWZz5s015yMH6wvSjdiM4XVt0VyEsAKkeVZHvbvzj8uiVM2lzbOcrcHMZtBanTucA7Vdw0Xsq1_cQbdjsCO0tFRE8Ru1e4n3mpmrD5WmAwxD_Uz6OM29aZBhp6-Wpt3C7ZTKGdCkvV_WF7OwEDTsvg3bXr1oj-NppBOqTNNKGW6alMiYOIytxwBVJqXsnQ2Nt4M5hSUyMrSqsDKdMiGSpCkwayoiTU7SV5Zk9Qx7hVLcMtZLIlDKaxlpZCc3BsSKR1WkD3f8wR-iqbji0r5iIwn9NY2EnAlgpgJUNdFdTT8t6GWvobhyfRSUwszU0zRWal-T3m5ga92c3P6sknFCAp0NmNl-42SLKoFRfSBqo3ER__oybOcHPncCBU3r-3wHXaKc76CUiee2_X6BdoCli0PAl2pp_LWzTgZa5uio25jeGSuGb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZSsNAcPEA0QfxxHpG0CeJJtndNHn0Kh5VfFDo27LHLBRqUrT9f2eSWNsHBR-TzCxhdq7duRg7sTJLXNvwMM9kEgpHSQCpS8LYmVSYWJq2pXrnp-f07k089GSvmXNKtTB1f4jJhRtJRqWvScBh6Hx94BTUJBMochCn5-iz4PFnUUg0htTaWbxMwgioa6vpKlxGJNW9JvMd8S-msWds0nwfRjPu5rTTWlmdzhpbbdzF4LLe33U2B8UGW5lqIrjJrp-6wXvpmjFcgSV3mPJ_6sd-EQyrCiMLQemDMXLLoE_lUkFpJheyn1vsrXP7en0XNqMRQosaQYTcZ9alIK02zuVxBjqJUsO9wHc6dgAR2mHNXZ6AqU4ZqEy4lt5Ezsc6S_k2WyjKAnZYwFNh206A5toLKXxuDWgaDp4YnoH1LXb2TRxlm77hNL5ioKr4tcgVDBSRUhEpW-x0Aj2s-2X8AneMdFaNwHz-AnMwA3Pb_fmmkBdwje9dUigUFOnQBZRjXC0Tklr1xbzFaib682dw5W5y1YnQORW7_0U4YksvNx3VvX9-3GPLBFKloCX7bGH0MYYD9FlG5rDiyy9lfuEq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ML+modulation+classification+in+presence+of+unreliable+observations&rft.jtitle=Electronics+letters&rft.au=Dulek%2C+B&rft.date=2016-09-02&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=52&rft.issue=18&rft.spage=1569&rft.epage=1571&rft_id=info:doi/10.1049%2Fel.2016.1611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon