ML modulation classification in presence of unreliable observations
Joint detection and maximum-likelihood (ML) classification of linear modulations based on observations collected over an unknown flat-fading additive Gaussian noise channel is considered. It is assumed that some of the observations are subject to data failures, in which case the receiver acquires on...
        Saved in:
      
    
          | Published in | Electronics letters Vol. 52; no. 18; pp. 1569 - 1571 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
            The Institution of Engineering and Technology
    
        02.09.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0013-5194 1350-911X 1350-911X  | 
| DOI | 10.1049/el.2016.1611 | 
Cover
| Abstract | Joint detection and maximum-likelihood (ML) classification of linear modulations based on observations collected over an unknown flat-fading additive Gaussian noise channel is considered. It is assumed that some of the observations are subject to data failures, in which case the receiver acquires only noise. Expectation–maximisation algorithm is employed to compute the ML estimates of the unknown channel parameters, which are then substituted into the corresponding likelihood expressions to perform hypothesis testing. Numerical simulations indicate that a suboptimal classifier, which is ignorant to data failures, exhibits extremely poor performance in the presence of high failure rates. On the other hand, the proposed classifier demonstrates comparable performance with that of the clairvoyant classifier which is assumed to have a priori knowledge of the channel parameters and data failures. | 
    
|---|---|
| AbstractList | Joint detection and maximum‐likelihood (ML) classification of linear modulations based on observations collected over an unknown flat‐fading additive Gaussian noise channel is considered. It is assumed that some of the observations are subject to data failures, in which case the receiver acquires only noise. Expectation–maximisation algorithm is employed to compute the ML estimates of the unknown channel parameters, which are then substituted into the corresponding likelihood expressions to perform hypothesis testing. Numerical simulations indicate that a suboptimal classifier, which is ignorant to data failures, exhibits extremely poor performance in the presence of high failure rates. On the other hand, the proposed classifier demonstrates comparable performance with that of the clairvoyant classifier which is assumed to have a priori knowledge of the channel parameters and data failures. | 
    
| Author | Dulek, B | 
    
| Author_xml | – sequence: 1 givenname: B orcidid: 0000-0003-2126-7356 surname: Dulek fullname: Dulek, B email: berkan@ee.hacettepe.edu.tr organization: Department of Electrical and Electronics Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara, Turkey  | 
    
| BookMark | eNp9kE1LxDAQhoMouK7e_AE9ePBg10yTxvSoy_oBFS8K3kKaTiCSbdekVfbf27WCIq6nYYZnZnifA7LbtA0Scgx0BpQX5-hnGQUxAwGwQybAcpoWAM-7ZEIpsDSHgu-ToxhdRYEDF5TDhMzvy2TZ1r3XnWubxHg9ANaZsXVNsgoYsTGYtDbpm4De6coPXRUxvH1S8ZDsWe0jHn3VKXm6XjzOb9Py4eZuflmmhl0InjIrTS0wN7qq6wIk6oyKilk-zDTUiBRkrlldZFjRjFFBpWQ6txWtLWgp2JScjndXoX3tMXZq6aJB73WDbR8VSJ5LkALYgJ6NqAltjAGtWgW31GGtgKqNLoVebXSpja4Bz37hxnWf4bqgnd-2lI9L787j-t8HalGW2dX1YFzw7xgOO_XS9qEZpG17cfIHuih_XF7Vln0AkiaYmw | 
    
| CitedBy_id | crossref_primary_10_1177_1550147718803306 crossref_primary_10_1177_1550147719895459 crossref_primary_10_1049_iet_com_2015_1222  | 
    
| Cites_doi | 10.1109/TIT.2014.2335733 10.1214/aos/1176346060 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TWC.2014.2359019 10.1109/LCOMM.2013.081913.131351 10.1109/LSP.2013.2260329 10.1007/978-1-4020-5542-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology  | 
    
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology  | 
    
| DBID | AAYXX CITATION 7SP 8FD F28 FR3 L7M  | 
    
| DOI | 10.1049/el.2016.1611 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | CrossRef Engineering Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1350-911X | 
    
| EndPage | 1571 | 
    
| ExternalDocumentID | 10_1049_el_2016_1611 ELL2BF04164  | 
    
| Genre | rapidPublication | 
    
| GrantInformation_xml | – fundername: The Scientific and Technological Research Council of Turkey (TUBITAK) grantid: Project no: 215E118 – fundername: The Scientific and Technological Research Council of Turkey (TUBITAK) funderid: Project no: 215E118  | 
    
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN 7SP 8FD F28 FR3 L7M  | 
    
| ID | FETCH-LOGICAL-c3764-3f8cd6e5cabdd918ea206b3f46e5a1dee0185a3d92eb023060883a5fb0df1a863 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 0013-5194 1350-911X  | 
    
| IngestDate | Thu Sep 04 19:08:55 EDT 2025 Wed Oct 29 21:16:56 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 16:59:09 EST 2025 Thu May 09 19:57:51 EDT 2019 Tue Jan 05 21:44:38 EST 2021  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Keywords | unreliable observations modulation maximum likelihood estimation ML modulation classification channel parameters fading channels Gaussian noise data failures flat fading additive Gaussian noise channel linear modulations expectation-maximisation algorithm suboptimal classifier maximum likelihood classification  | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3764-3f8cd6e5cabdd918ea206b3f46e5a1dee0185a3d92eb023060883a5fb0df1a863 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-2126-7356 | 
    
| PQID | 1845818613 | 
    
| PQPubID | 23500 | 
    
| PageCount | 3 | 
    
| ParticipantIDs | wiley_primary_10_1049_el_2016_1611_ELL2BF04164 crossref_primary_10_1049_el_2016_1611 iet_journals_10_1049_el_2016_1611 proquest_miscellaneous_1845818613 crossref_citationtrail_10_1049_el_2016_1611  | 
    
| ProviderPackageCode | RUI | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-09-02 | 
    
| PublicationDateYYYYMMDD | 2016-09-02 | 
    
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-02 day: 02  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Electronics letters | 
    
| PublicationYear | 2016 | 
    
| Publisher | The Institution of Engineering and Technology | 
    
| Publisher_xml | – name: The Institution of Engineering and Technology | 
    
| References | Weinberger, N.; Merhav, N. (C4) 2014; 60 Wu, C.F.J. (C8) 1983; 11 Pereira, S.S.; Lopez-Valcarce, R.; Pages-Zamora, A. (C6) 2013; 20 Dempster, A.P.; Laird, N.M.; Rubin, D.B. (C7) 1977; 39 Ozdemir, O.; Li, R.; Varshney, P.K. (C5) 2013; 17 Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. (C1) 2007; 1 Dulek, B.; Ozdemir, O.; Varshney, P.K.; Su, W. (C2) 2015; 14 2007 2015; 14 2013; 17 2007; 1 1977; 39 2014; 60 2013; 20 1983; 11 e_1_2_5_9_1 e_1_2_5_8_1 e_1_2_5_7_1 e_1_2_5_6_1 e_1_2_5_5_1 e_1_2_5_4_1 e_1_2_5_3_1 Dobre O.A. (e_1_2_5_2_1) 2007; 1  | 
    
| References_xml | – volume: 17 start-page: 1889 year: 2013 end-page: 1892 ident: C5 article-title: Hybrid maximum likelihood modulation classification using multiple radios publication-title: Commun. Lett. – volume: 1 start-page: 137 year: 2007 end-page: 156 ident: C1 article-title: Survey of automatic modulation classification techniques: classical approaches and new trends publication-title: Commun. – volume: 14 start-page: 724 year: 2015 end-page: 737 ident: C2 article-title: Distributed maximum likelihood classification of linear modulations over nonidentical flat block-fading Gaussian channels publication-title: Trans. Wirel. Commun. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: C7 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B – volume: 60 start-page: 5077 year: 2014 end-page: 5094 ident: C4 article-title: Codeword or noise? Exact random coding exponents for joint detection and decoding publication-title: Trans. Inf. Theory – volume: 20 start-page: 595 year: 2013 end-page: 598 ident: C6 article-title: A diffusion-based EM algorithm for distributed estimation in unreliable sensor networks publication-title: Signal Process. Lett. – volume: 11 start-page: 95 year: 1983 end-page: 103 ident: C8 article-title: On the convergence properties of the EM algorithm publication-title: Ann. Stat. – volume: 17 start-page: 1889 year: 2013 end-page: 1892 article-title: Hybrid maximum likelihood modulation classification using multiple radios publication-title: Commun. Lett. – volume: 60 start-page: 5077 year: 2014 end-page: 5094 article-title: Codeword or noise? Exact random coding exponents for joint detection and decoding publication-title: Trans. Inf. Theory – volume: 20 start-page: 595 year: 2013 end-page: 598 article-title: A diffusion‐based EM algorithm for distributed estimation in unreliable sensor networks publication-title: Signal Process. Lett. – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B – volume: 1 start-page: 137 year: 2007 end-page: 156 article-title: Survey of automatic modulation classification techniques: classical approaches and new trends publication-title: Commun. – year: 2007 – volume: 11 start-page: 95 year: 1983 end-page: 103 article-title: On the convergence properties of the EM algorithm publication-title: Ann. Stat. – volume: 14 start-page: 724 year: 2015 end-page: 737 article-title: Distributed maximum likelihood classification of linear modulations over nonidentical flat block‐fading Gaussian channels publication-title: Trans. Wirel. Commun. – ident: e_1_2_5_5_1 doi: 10.1109/TIT.2014.2335733 – ident: e_1_2_5_9_1 doi: 10.1214/aos/1176346060 – ident: e_1_2_5_8_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_5_3_1 doi: 10.1109/TWC.2014.2359019 – ident: e_1_2_5_6_1 doi: 10.1109/LCOMM.2013.081913.131351 – ident: e_1_2_5_7_1 doi: 10.1109/LSP.2013.2260329 – volume: 1 start-page: 137 year: 2007 ident: e_1_2_5_2_1 article-title: Survey of automatic modulation classification techniques: classical approaches and new trends publication-title: Commun. – ident: e_1_2_5_4_1 doi: 10.1007/978-1-4020-5542-3  | 
    
| SSID | ssib014146041 ssj0012997  | 
    
| Score | 2.2004404 | 
    
| Snippet | Joint detection and maximum-likelihood (ML) classification of linear modulations based on observations collected over an unknown flat-fading additive Gaussian... Joint detection and maximum‐likelihood (ML) classification of linear modulations based on observations collected over an unknown flat‐fading additive Gaussian...  | 
    
| SourceID | proquest crossref wiley iet  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1569 | 
    
| SubjectTerms | channel parameters Channels Classification Classifiers data failures expectation‐maximisation algorithm fading channels Failure flat fading additive Gaussian noise channel Gaussian noise linear modulations Mathematical models maximum likelihood classification maximum likelihood estimation ML modulation classification Modulation Noise Parameters suboptimal classifier unreliable observations Wireless communications  | 
    
| SummonAdditionalLinks | – databaseName: IET Digital Library (Open Access) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gXPRgfEZUTEn0ZAp0X22PihA0xZMk3Jp91ZBgSxT-v7N9IJhgvJV2stnMDPPYnZkPoVvFAqx9SdwwYNil2hYBcI1dT0tOpcekr2y_8_iVjyb0ZcqmNVSBcerZu8XKcKsTN3taborOA1u6DXa4W_K4ACSB-LZr7A2CxzsQu0Aa1MCQmOM6ajw_RWV2BarlUbAIPbqu_gAvF_oVuAEEMbSsif-93pa32oOtbAWim-Fs7o-GR-iwDCSdh0Lyx6hm0hN0sDFe8BT1x5HzkekSoMtRNlC2lUHFz1nqLPLeI2WcLHFWoEfzmW2kcjK5Pqr9OkOT4eCtP3JL0ARXga2gLkkCpblhSkitQy8wAve4JAmFd8LTxvTAQwuiQ2xknn-AmSGCJbKnE08EnJyjepql5gI5hFPla2oEEQllNAmVNMLChmNJAqOSJrqvmBOrcqK4BbaYx_nNNg1jM48tK2PLyia6W1MvikkaO-jawOe4EvMOmtYWzSD6-RYvNOysXUkphr-LvQMRqclWsFpAmR3i55Em6uTi-3MzsHKEH4egOZxe_mNjV2jfPudFaPga1ZefK9OCqGUpb0qN_AadQ-OB priority: 102 providerName: Institution of Engineering and Technology  | 
    
| Title | ML modulation classification in presence of unreliable observations | 
    
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2016.1611 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2016.1611 https://www.proquest.com/docview/1845818613  | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: IDLOA dateStart: 20130103 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPRgfEZUSEn0ZKrtPkp7RISgAfUgCbdmX01IsCUC_9-ZtiAcMPHY7exmszsz--3Oi5BbLUJqWoq5USioyw06AQSGur5RAVe-UC2N8c7Dt6A_4q9jMS4f3DAWpsgPsX5wQ8nI9TUKuFRFFRIAtbiJaDjwgweALHD7qfoAZZDDKf9YWxFA1ebFVZjwUKjHpeM79H_c7L11JO1P7GILbW5i1vzQ6R2ToxItOu1ie0_Ink1PyeFGDsEz0hkOnK_MlFW4HI1oGN1_is9J6szyACNtnSxxlsAs0wlGSzmZWr_Hzs_JqNf97PTdsjKCq0EhcJcloTaBFVoqYyI_tJJ6gWIJhzbpG2s9OIYlMxG1Kr9kgC5hUiTKM4kvw4BdkEqapfaSOCzgumW4lUwmXPAk0spKrA1OFQutTmrkfrU4sS7ThmP1immcm695FNtpjEsZ41LWyN2aelaky9hB14R1jkt5me-gqW_RdAe__-KZgZk1V7sUg0ygoUOmNlvCaCEXmKnPZzVS8NCfk4GRB_Sp5wE25Vf_7XBNDrA9dzujN6Sy-F7aOuCUhWrkzNgg1ZfnwXv7B2_Z37s | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58HNSD-MSq1Qh6kmiyryZHLZaqafHQQm_LvgKFmhTb_n93khjbQwWPSWaXMLsz-83OC6FbzSJsWor4ccSwTw0EAXCD_dAoTlXIVEtDvnOvz7tD-jZio6rPKeTClPUh6gs3kIxCX4OAw4V0aXBSKJJpwXMQ8geHWZz5s015yMH6wvSjdiM4XVt0VyEsAKkeVZHvbvzj8uiVM2lzbOcrcHMZtBanTucA7Vdw0Xsq1_cQbdjsCO0tFRE8Ru1e4n3mpmrD5WmAwxD_Uz6OM29aZBhp6-Wpt3C7ZTKGdCkvV_WF7OwEDTsvg3bXr1oj-NppBOqTNNKGW6alMiYOIytxwBVJqXsnQ2Nt4M5hSUyMrSqsDKdMiGSpCkwayoiTU7SV5Zk9Qx7hVLcMtZLIlDKaxlpZCc3BsSKR1WkD3f8wR-iqbji0r5iIwn9NY2EnAlgpgJUNdFdTT8t6GWvobhyfRSUwszU0zRWal-T3m5ga92c3P6sknFCAp0NmNl-42SLKoFRfSBqo3ER__oybOcHPncCBU3r-3wHXaKc76CUiee2_X6BdoCli0PAl2pp_LWzTgZa5uio25jeGSuGb | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZSsNAcPEA0QfxxHpG0CeJJtndNHn0Kh5VfFDo27LHLBRqUrT9f2eSWNsHBR-TzCxhdq7duRg7sTJLXNvwMM9kEgpHSQCpS8LYmVSYWJq2pXrnp-f07k089GSvmXNKtTB1f4jJhRtJRqWvScBh6Hx94BTUJBMochCn5-iz4PFnUUg0htTaWbxMwgioa6vpKlxGJNW9JvMd8S-msWds0nwfRjPu5rTTWlmdzhpbbdzF4LLe33U2B8UGW5lqIrjJrp-6wXvpmjFcgSV3mPJ_6sd-EQyrCiMLQemDMXLLoE_lUkFpJheyn1vsrXP7en0XNqMRQosaQYTcZ9alIK02zuVxBjqJUsO9wHc6dgAR2mHNXZ6AqU4ZqEy4lt5Ezsc6S_k2WyjKAnZYwFNh206A5toLKXxuDWgaDp4YnoH1LXb2TRxlm77hNL5ioKr4tcgVDBSRUhEpW-x0Aj2s-2X8AneMdFaNwHz-AnMwA3Pb_fmmkBdwje9dUigUFOnQBZRjXC0Tklr1xbzFaib682dw5W5y1YnQORW7_0U4YksvNx3VvX9-3GPLBFKloCX7bGH0MYYD9FlG5rDiyy9lfuEq | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ML+modulation+classification+in+presence+of+unreliable+observations&rft.jtitle=Electronics+letters&rft.au=Dulek%2C+B&rft.date=2016-09-02&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=52&rft.issue=18&rft.spage=1569&rft.epage=1571&rft_id=info:doi/10.1049%2Fel.2016.1611&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |