A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma
Objectives To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma. Methods Multiparametric brain MRI data and corresponding genomic information of 234 s...
Saved in:
Published in | European radiology Vol. 34; no. 1; pp. 391 - 399 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1432-1084 0938-7994 1432-1084 |
DOI | 10.1007/s00330-023-09944-y |
Cover
Abstract | Objectives
To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma.
Methods
Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.
Results
The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.
Conclusions
The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.
Clinical relevance statement
A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.
Key Points
• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis.
• An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status.
• The predictive performance based on ConvNeXt network was better than that of ResNet network. |
---|---|
AbstractList | To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.
Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.
The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.
The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.
A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.
• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network. Objectives To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma. Methods Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed. Results The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively. Conclusions The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. Clinical relevance statement A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning. Key Points • CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network. To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.OBJECTIVESTo develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.METHODSMultiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.RESULTSThe average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.CONCLUSIONSThe FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.CLINICAL RELEVANCE STATEMENTA novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.KEY POINTS• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network. ObjectivesTo develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma.MethodsMultiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.ResultsThe average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.ConclusionsThe FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.Clinical relevance statementA novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.Key Points• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis.• An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status.• The predictive performance based on ConvNeXt network was better than that of ResNet network. |
Author | Wen, Zhipeng Li, Yongmei Liu, Zhi Cui, Shaoguo Zhang, Liqiang Gao, Jueni Xu, Xinyi Cao, Xu Kan, Yubo Tang, Yi Wang, Rui |
Author_xml | – sequence: 1 givenname: Liqiang orcidid: 0000-0002-8414-9405 surname: Zhang fullname: Zhang, Liqiang organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui organization: School of Computer Science and Engineering, Chongqing Normal University – sequence: 3 givenname: Jueni surname: Gao fullname: Gao, Jueni organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University – sequence: 4 givenname: Yi surname: Tang fullname: Tang, Yi organization: Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University – sequence: 5 givenname: Xinyi surname: Xu fullname: Xu, Xinyi organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University – sequence: 6 givenname: Yubo surname: Kan fullname: Kan, Yubo organization: School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine – sequence: 7 givenname: Xu surname: Cao fullname: Cao, Xu organization: School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine – sequence: 8 givenname: Zhipeng surname: Wen fullname: Wen, Zhipeng organization: Department of Radiology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China – sequence: 9 givenname: Zhi surname: Liu fullname: Liu, Zhi email: liuzhi071120@163.com organization: Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine – sequence: 10 givenname: Shaoguo surname: Cui fullname: Cui, Shaoguo email: csg@cqnu.edu.cn organization: School of Computer Science and Engineering, Chongqing Normal University – sequence: 11 givenname: Yongmei surname: Li fullname: Li, Yongmei email: lymzhang70@163.com organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37553486$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEUha0KVCDtC3RRWeqGjYt_52eZhrZEQCtV7C1n5k5iOmOntqdo-iJ93RoCBbFg5Wv5fNf3nnOE9px3gNA7Rj8ySsuTSKkQlFAuCK1rKcn0Ch0yKThhtJJ7T-oDdBTjNaW0ZrJ8jQ5EqZSQVXGI_s6x87-hx5c_lmRlIrS4BdjiHkxw1q2xg3Tjw8-IGz-srMvvNzZtsEkJXLLe4QGajXE2DrjzAW8DtLZJt-Ti9Pwbn598whs_-D_T2o8x9-7hjorJpHy3Di9Pz8gwJuMSNjEF30zJD-YN2u9MH-Ht_TlDV18-Xy3OyMX3r8vF_II0eYdEurZrC2kEK2XeSPECOpnLkprWgCqoajoOpmQSqryuAqhVJWqjCsa5KZSYoeNd223wv0aISQ82NtD3xkGeV_OMcV4LXmTph2fSaz8Gl4fTvGZKippnv2fo_b1qXA3Q6m2wgwmTfnA8C_hO0AQfY4Duv4RRfRur3sWqc6z6LlY9Zah6BjU2G5iNTMHY_mVU7NCY_3FrCI9jv0D9A04Kt-o |
CitedBy_id | crossref_primary_10_1002_acn3_52128 crossref_primary_10_1016_j_mri_2024_05_012 crossref_primary_10_3174_ajnr_A8148 crossref_primary_10_3390_diagnostics15070797 crossref_primary_10_1158_1078_0432_CCR_24_0311 crossref_primary_10_1186_s40644_024_00769_6 crossref_primary_10_3390_cancers16101792 crossref_primary_10_1016_j_compbiomed_2025_109736 crossref_primary_10_3389_fonc_2024_1384105 crossref_primary_10_1007_s40477_024_00961_1 crossref_primary_10_1016_j_critrevonc_2025_104682 |
Cites_doi | 10.3390/diagnostics12051053 10.1093/neuonc/nos284 10.3174/ajnr.A7029 10.3390/jpm11090909 10.1109/CVPR.2016.90 10.1007/s10278-013-9622-7 10.3390/cancers14051349 10.1016/j.mri.2012.05.001 10.1097/PPO.0000000000000020 10.3389/fonc.2021.803975 10.1093/noajnl/vdab103 10.3390/jpm11111213 10.3390/jcm11123445 10.1016/j.ajpath.2015.02.023 10.1038/s41374-021-00692-5 10.1093/neuonc/now121 10.1097/PAI.0000000000000396 10.1097/NEN.0000000000000188 10.1007/s11060-020-03528-2 10.48550/arXiv.2010.11929 10.1093/neuonc/noz199 10.1093/neuonc/noab106 10.1097/PAP.0000000000000048 10.1093/noajnl/vdac060 10.1093/neuonc/noaa177 10.1109/CVPR52688.2022.01167 10.1007/s00330-019-06548-3 10.3164/jcbn.11-001FR 10.1093/neuonc/noy131 10.3174/ajnr.A5667 10.1093/neuonc/noz052 10.1016/j.cell.2015.12.028 10.1007/s00401-018-1849-4 10.1007/s00401-020-02127-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to European Society of Radiology. |
Copyright_xml | – notice: The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to European Society of Radiology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 |
DOI | 10.1007/s00330-023-09944-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 399 |
ExternalDocumentID | 37553486 10_1007_s00330_023_09944_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Chongqing Postgraduate Scientific Research Innovation Project grantid: CYS22558 – fundername: the Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau grantid: CSTC2021 jscx-gksb-N0008 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADHKG AGQPQ CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c375t-fdfd64a3174553526ef474570adae5605cf2ea714e84865ee95839a56122a653 |
IEDL.DBID | AGYKE |
ISSN | 1432-1084 0938-7994 |
IngestDate | Fri Sep 05 00:07:09 EDT 2025 Fri Jul 25 19:04:18 EDT 2025 Mon Jul 21 05:32:28 EDT 2025 Wed Oct 01 01:17:15 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Fri Feb 21 02:41:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Brain Magnetic resonance imaging Genomics Astrocytoma |
Language | English |
License | 2023. The Author(s), under exclusive licence to European Society of Radiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-fdfd64a3174553526ef474570adae5605cf2ea714e84865ee95839a56122a653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8414-9405 |
PMID | 37553486 |
PQID | 2915439214 |
PQPubID | 54162 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2848229326 proquest_journals_2915439214 pubmed_primary_37553486 crossref_primary_10_1007_s00330_023_09944_y crossref_citationtrail_10_1007_s00330_023_09944_y springer_journals_10_1007_s00330_023_09944_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. arXiv e-prints CeccarelliMBarthelFPMaltaTMMolecular profiling reveals biologically discrete subsets and pathways of progression in diffuse gliomaCell20161645505631:CAS:528:DC%2BC28Xhs12ls7o%3D10.1016/j.cell.2015.12.028268246614754110 ReisGFPekmezciMHansenHMCDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomasJ Neuropathol Exp Neurol2015744424521:CAS:528:DC%2BC2MXmslWisr8%3D10.1097/NEN.000000000000018825853694 LuVMO'ConnorKPShahAHThe prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literatureJ Neurooncol20201482212291:CAS:528:DC%2BB3cXovFKrtLo%3D10.1007/s11060-020-03528-232385699 Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4:vdac060 Di Bonaventura R, Montano N, Giordano M et al (2021) Reassessing the role of brain tumor biopsy in the era of advanced surgical, molecular, and imaging techniques-a single-center experience with long-term follow-up. J Pers Med 11:1213 AppinCLBratDJMolecular pathways in gliomagenesis and their relevance to neuropathologic diagnosisAdv Anat Pathol20152250581:CAS:528:DC%2BC2cXitVKmt7jM10.1097/PAP.000000000000004825461780 YoganandaCGBShahBRNalawadeSSMRI-based deep-learning method for determining glioma MGMT promoter methylation statusAJNR Am J Neuroradiol2021428458521:STN:280:DC%2BB3sjhvF2lsA%3D%3D10.3174/ajnr.A7029336641118115363 Di StefanoALEnciso-MoraVMarieYAssociation between glioma susceptibility loci and tumour pathology defines specific molecular etiologiesNeuro Oncol20131554254710.1093/neuonc/nos28423161787 LouisDNPerryAWesselingPThe 2021 WHO Classification of Tumors of the Central Nervous System: a summaryNeuro Oncol202123123112511:CAS:528:DC%2BB3MXisFSht73J10.1093/neuonc/noab106341850768328013 KimMJungSYParkJEDiffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade gliomaEur Radiol2020302142215110.1007/s00330-019-06548-331828414 BratDJAldapeKColmanHcIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomasActa Neuropathol202013960360810.1007/s00401-020-02127-9319969928443062 CarstamLCorellASmitsAWHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomasFront Oncol20211110.3389/fonc.2021.80397535083156 He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Verheul C, Ntafoulis I, Kers TV et al (2021) Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 3:vdab103 CrespoIVitalALGonzalez-TablasMMolecular and genomic alterations in glioblastoma multiformeAm J Pathol2015185182018331:CAS:528:DC%2BC2MXot1Wmtbg%3D10.1016/j.ajpath.2015.02.02325976245 ClarkKVendtBSmithKThe Cancer Imaging Archive (TCIA): maintaining and operating a public information repositoryJ Digit Imaging2013261045105710.1007/s10278-013-9622-7238846573824915 Vaswani A, Shazeer N, Parmar N et al (2017) Attention Is All You NeedarXiv FedorovABeichelRKalpathy-CramerJ3D Slicer as an image computing platform for the Quantitative Imaging NetworkMagn Reson Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397 ToyokuniSMysterious link between iron overload and CDKN2A/2BJ Clin Biochem Nutr20114846491:CAS:528:DC%2BC3MXltlektLY%3D10.3164/jcbn.11-001FR21297911 ChoiYSBaeSChangJHFully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomicsNeuro Oncol2021233043131:CAS:528:DC%2BB38Xht1WmsbrL10.1093/neuonc/noaa17732706862 ChangPGrinbandJWeinbergBDDeep-learning convolutional neural networks accurately classify genetic mutations in gliomasAJNR Am J Neuroradiol201839120112071:STN:280:DC%2BC1MfhvFKktw%3D%3D10.3174/ajnr.A5667297482066880932 WooSParkJLeeJYKweonISCBAM: convolutional block attention module2018ChamSpringer ZhangMPanYQiXIdentification of new biomarkers associated with IDH mutation and prognosis in astrocytic tumors using NanoString nCounter Analysis SystemAppl Immunohistochem Mol Morphol20182610110710.1097/PAI.000000000000039627258564 YanJZhangSSunQPredicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation studyLab Invest20221021541591:CAS:528:DC%2BB38XmsFCiu70%3D10.1038/s41374-021-00692-534782727 Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1-iv86 Bangalore YoganandaCGShahBRVejdani-JahromiMA novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomasNeuro Oncol20202240241110.1093/neuonc/noz19931637430 Hassanien MA, Singh VK, Puig D, Abdel-Nasser M (2022) Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences. Diagnostics (Basel) 12 ZhangBChangKRamkissoonSMultimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomasNeuro Oncol2017191091171:CAS:528:DC%2BC1cXitFSntr%2FE10.1093/neuonc/now12127353503 CiminoPJHollandECTargeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomasNeuro Oncol20192181982110.1093/neuonc/noz052309189616556841 Esmaeili M, Vettukattil R, Banitalebi H, Krogh NR, Geitung JT (2021) Explainable artificial intelligence for human-machine interaction in brain tumor localization. J Pers Med 11:1213 ShirahataMOnoTStichelDNovel, improved grading system(s) for IDH-mutant astrocytic gliomasActa Neuropathol20181361531661:CAS:528:DC%2BC1cXos1Sgsb4%3D10.1007/s00401-018-1849-429687258 Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 https://doi.org/10.48550/arXiv.2010.11929 AppinCLBratDJMolecular genetics of gliomasCancer J20142066721:CAS:528:DC%2BC2cXhtlShtLs%3D10.1097/PPO.000000000000002024445767 Chen S, Xu Y, Ye M et al (2022) Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics. J Clin Med 11:3445 Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR (2022) Advancements in oncology with artificial intelligence-a review article. Cancers (Basel) 14:1349 YS Choi (9944_CR9) 2021; 23 M Zhang (9944_CR4) 2018; 26 I Crespo (9944_CR22) 2015; 185 DJ Brat (9944_CR26) 2020; 139 K Clark (9944_CR17) 2013; 26 CG Bangalore Yogananda (9944_CR8) 2020; 22 9944_CR25 9944_CR28 CL Appin (9944_CR2) 2014; 20 S Toyokuni (9944_CR23) 2011; 48 M Ceccarelli (9944_CR11) 2016; 164 CGB Yogananda (9944_CR29) 2021; 42 CL Appin (9944_CR3) 2015; 22 9944_CR20 A Fedorov (9944_CR18) 2012; 30 9944_CR21 AL Di Stefano (9944_CR24) 2013; 15 PJ Cimino (9944_CR5) 2019; 21 M Kim (9944_CR7) 2020; 30 9944_CR1 9944_CR15 9944_CR36 9944_CR19 B Zhang (9944_CR6) 2017; 19 L Carstam (9944_CR27) 2021; 11 J Yan (9944_CR31) 2022; 102 9944_CR30 S Woo (9944_CR35) 2018 VM Lu (9944_CR14) 2020; 148 GF Reis (9944_CR10) 2015; 74 DN Louis (9944_CR13) 2021; 23 9944_CR33 9944_CR34 9944_CR32 M Shirahata (9944_CR12) 2018; 136 P Chang (9944_CR16) 2018; 39 |
References_xml | – reference: AppinCLBratDJMolecular genetics of gliomasCancer J20142066721:CAS:528:DC%2BC2cXhtlShtLs%3D10.1097/PPO.000000000000002024445767 – reference: ChoiYSBaeSChangJHFully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomicsNeuro Oncol2021233043131:CAS:528:DC%2BB38Xht1WmsbrL10.1093/neuonc/noaa17732706862 – reference: WooSParkJLeeJYKweonISCBAM: convolutional block attention module2018ChamSpringer – reference: FedorovABeichelRKalpathy-CramerJ3D Slicer as an image computing platform for the Quantitative Imaging NetworkMagn Reson Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397 – reference: CrespoIVitalALGonzalez-TablasMMolecular and genomic alterations in glioblastoma multiformeAm J Pathol2015185182018331:CAS:528:DC%2BC2MXot1Wmtbg%3D10.1016/j.ajpath.2015.02.02325976245 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), – reference: CarstamLCorellASmitsAWHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomasFront Oncol20211110.3389/fonc.2021.80397535083156 – reference: CiminoPJHollandECTargeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomasNeuro Oncol20192181982110.1093/neuonc/noz052309189616556841 – reference: Bangalore YoganandaCGShahBRVejdani-JahromiMA novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomasNeuro Oncol20202240241110.1093/neuonc/noz19931637430 – reference: Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4:vdac060 – reference: Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 https://doi.org/10.48550/arXiv.2010.11929 – reference: CeccarelliMBarthelFPMaltaTMMolecular profiling reveals biologically discrete subsets and pathways of progression in diffuse gliomaCell20161645505631:CAS:528:DC%2BC28Xhs12ls7o%3D10.1016/j.cell.2015.12.028268246614754110 – reference: Chen S, Xu Y, Ye M et al (2022) Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics. J Clin Med 11:3445 – reference: ReisGFPekmezciMHansenHMCDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomasJ Neuropathol Exp Neurol2015744424521:CAS:528:DC%2BC2MXmslWisr8%3D10.1097/NEN.000000000000018825853694 – reference: LouisDNPerryAWesselingPThe 2021 WHO Classification of Tumors of the Central Nervous System: a summaryNeuro Oncol202123123112511:CAS:528:DC%2BB3MXisFSht73J10.1093/neuonc/noab106341850768328013 – reference: Hassanien MA, Singh VK, Puig D, Abdel-Nasser M (2022) Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences. Diagnostics (Basel) 12 – reference: Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1-iv86 – reference: ZhangMPanYQiXIdentification of new biomarkers associated with IDH mutation and prognosis in astrocytic tumors using NanoString nCounter Analysis SystemAppl Immunohistochem Mol Morphol20182610110710.1097/PAI.000000000000039627258564 – reference: YoganandaCGBShahBRNalawadeSSMRI-based deep-learning method for determining glioma MGMT promoter methylation statusAJNR Am J Neuroradiol2021428458521:STN:280:DC%2BB3sjhvF2lsA%3D%3D10.3174/ajnr.A7029336641118115363 – reference: Verheul C, Ntafoulis I, Kers TV et al (2021) Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 3:vdab103 – reference: LuVMO'ConnorKPShahAHThe prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literatureJ Neurooncol20201482212291:CAS:528:DC%2BB3cXovFKrtLo%3D10.1007/s11060-020-03528-232385699 – reference: Di Bonaventura R, Montano N, Giordano M et al (2021) Reassessing the role of brain tumor biopsy in the era of advanced surgical, molecular, and imaging techniques-a single-center experience with long-term follow-up. J Pers Med 11:1213 – reference: ChangPGrinbandJWeinbergBDDeep-learning convolutional neural networks accurately classify genetic mutations in gliomasAJNR Am J Neuroradiol201839120112071:STN:280:DC%2BC1MfhvFKktw%3D%3D10.3174/ajnr.A5667297482066880932 – reference: Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR (2022) Advancements in oncology with artificial intelligence-a review article. Cancers (Basel) 14:1349 – reference: AppinCLBratDJMolecular pathways in gliomagenesis and their relevance to neuropathologic diagnosisAdv Anat Pathol20152250581:CAS:528:DC%2BC2cXitVKmt7jM10.1097/PAP.000000000000004825461780 – reference: Esmaeili M, Vettukattil R, Banitalebi H, Krogh NR, Geitung JT (2021) Explainable artificial intelligence for human-machine interaction in brain tumor localization. J Pers Med 11:1213 – reference: KimMJungSYParkJEDiffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade gliomaEur Radiol2020302142215110.1007/s00330-019-06548-331828414 – reference: BratDJAldapeKColmanHcIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomasActa Neuropathol202013960360810.1007/s00401-020-02127-9319969928443062 – reference: ClarkKVendtBSmithKThe Cancer Imaging Archive (TCIA): maintaining and operating a public information repositoryJ Digit Imaging2013261045105710.1007/s10278-013-9622-7238846573824915 – reference: ShirahataMOnoTStichelDNovel, improved grading system(s) for IDH-mutant astrocytic gliomasActa Neuropathol20181361531661:CAS:528:DC%2BC1cXos1Sgsb4%3D10.1007/s00401-018-1849-429687258 – reference: YanJZhangSSunQPredicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation studyLab Invest20221021541591:CAS:528:DC%2BB38XmsFCiu70%3D10.1038/s41374-021-00692-534782727 – reference: Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. arXiv e-prints – reference: ToyokuniSMysterious link between iron overload and CDKN2A/2BJ Clin Biochem Nutr20114846491:CAS:528:DC%2BC3MXltlektLY%3D10.3164/jcbn.11-001FR21297911 – reference: Di StefanoALEnciso-MoraVMarieYAssociation between glioma susceptibility loci and tumour pathology defines specific molecular etiologiesNeuro Oncol20131554254710.1093/neuonc/nos28423161787 – reference: ZhangBChangKRamkissoonSMultimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomasNeuro Oncol2017191091171:CAS:528:DC%2BC1cXitFSntr%2FE10.1093/neuonc/now12127353503 – reference: Vaswani A, Shazeer N, Parmar N et al (2017) Attention Is All You NeedarXiv, – ident: 9944_CR34 doi: 10.3390/diagnostics12051053 – volume: 15 start-page: 542 year: 2013 ident: 9944_CR24 publication-title: Neuro Oncol doi: 10.1093/neuonc/nos284 – volume: 42 start-page: 845 year: 2021 ident: 9944_CR29 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A7029 – ident: 9944_CR15 doi: 10.3390/jpm11090909 – ident: 9944_CR19 doi: 10.1109/CVPR.2016.90 – volume: 26 start-page: 1045 year: 2013 ident: 9944_CR17 publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – ident: 9944_CR32 doi: 10.3390/cancers14051349 – volume: 30 start-page: 1323 year: 2012 ident: 9944_CR18 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 20 start-page: 66 year: 2014 ident: 9944_CR2 publication-title: Cancer J doi: 10.1097/PPO.0000000000000020 – volume: 11 year: 2021 ident: 9944_CR27 publication-title: Front Oncol doi: 10.3389/fonc.2021.803975 – ident: 9944_CR25 doi: 10.1093/noajnl/vdab103 – ident: 9944_CR28 doi: 10.3390/jpm11111213 – ident: 9944_CR30 doi: 10.3390/jcm11123445 – volume: 185 start-page: 1820 year: 2015 ident: 9944_CR22 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2015.02.023 – volume: 102 start-page: 154 year: 2022 ident: 9944_CR31 publication-title: Lab Invest doi: 10.1038/s41374-021-00692-5 – volume: 19 start-page: 109 year: 2017 ident: 9944_CR6 publication-title: Neuro Oncol doi: 10.1093/neuonc/now121 – volume-title: CBAM: convolutional block attention module year: 2018 ident: 9944_CR35 – volume: 26 start-page: 101 year: 2018 ident: 9944_CR4 publication-title: Appl Immunohistochem Mol Morphol doi: 10.1097/PAI.0000000000000396 – volume: 74 start-page: 442 year: 2015 ident: 9944_CR10 publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0000000000000188 – volume: 148 start-page: 221 year: 2020 ident: 9944_CR14 publication-title: J Neurooncol doi: 10.1007/s11060-020-03528-2 – ident: 9944_CR36 doi: 10.48550/arXiv.2010.11929 – volume: 22 start-page: 402 year: 2020 ident: 9944_CR8 publication-title: Neuro Oncol doi: 10.1093/neuonc/noz199 – ident: 9944_CR20 – volume: 23 start-page: 1231 year: 2021 ident: 9944_CR13 publication-title: Neuro Oncol doi: 10.1093/neuonc/noab106 – volume: 22 start-page: 50 year: 2015 ident: 9944_CR3 publication-title: Adv Anat Pathol doi: 10.1097/PAP.0000000000000048 – ident: 9944_CR21 doi: 10.1093/noajnl/vdac060 – volume: 23 start-page: 304 year: 2021 ident: 9944_CR9 publication-title: Neuro Oncol doi: 10.1093/neuonc/noaa177 – ident: 9944_CR33 doi: 10.1109/CVPR52688.2022.01167 – volume: 30 start-page: 2142 year: 2020 ident: 9944_CR7 publication-title: Eur Radiol doi: 10.1007/s00330-019-06548-3 – volume: 48 start-page: 46 year: 2011 ident: 9944_CR23 publication-title: J Clin Biochem Nutr doi: 10.3164/jcbn.11-001FR – ident: 9944_CR1 doi: 10.1093/neuonc/noy131 – volume: 39 start-page: 1201 year: 2018 ident: 9944_CR16 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5667 – volume: 21 start-page: 819 year: 2019 ident: 9944_CR5 publication-title: Neuro Oncol doi: 10.1093/neuonc/noz052 – volume: 164 start-page: 550 year: 2016 ident: 9944_CR11 publication-title: Cell doi: 10.1016/j.cell.2015.12.028 – volume: 136 start-page: 153 year: 2018 ident: 9944_CR12 publication-title: Acta Neuropathol doi: 10.1007/s00401-018-1849-4 – volume: 139 start-page: 603 year: 2020 ident: 9944_CR26 publication-title: Acta Neuropathol doi: 10.1007/s00401-020-02127-9 |
SSID | ssj0009147 |
Score | 2.5161407 |
Snippet | Objectives
To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion... To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in... ObjectivesTo develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 391 |
SubjectTerms | Astrocytoma Astrocytoma - diagnostic imaging Astrocytoma - genetics Brain Neoplasms - diagnostic imaging Brain Neoplasms - genetics Cancer Cyclin-dependent kinase Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-dependent kinases Deep Learning Diagnostic Radiology Gene deletion Glioma Glioma - genetics Homozygote Humans Image contrast Image enhancement Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Isocitrate dehydrogenase Isocitrate Dehydrogenase - genetics Kinases Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medicine Medicine & Public Health Mutants Mutation Networks Neuroimaging Neuroradiology Nucleotide sequence Performance prediction Radiology Sequence Deletion Ultrasound |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLojwDLTISN7Cah53EJ7R9LFvQ9oCK1FvkxJNSqUmWJou0_BH-LjOOd1eoordEjh3bM_Z8fsx8jL3Pkgy0yrVIs0gLnP1CUdYQCrCgSh1apZ372PwsnX2XXy7Uhd9w6_21yvWc6CZq21W0R34QazT2aMwj-WnxUxBrFJ2uegqN--xBFKMmkaf49PM26G7kCMZw0Z6LTGvpnWac6xyRmIUCLZZAjCSlWP1rmG6hzVsnpc4ATZ-wxx458sko6l12D9qn7OHcn40_Y38mvO1-wTWffzsVZJwstwAL7nkhLnk73vjuOTYY18OYTpuwnAJsuiuPvAFyA77qG45Ili9uqGi6Fc2Pjr-exZODQ_6ja7rfq8tu2XMi0HG5yCUJ369afno8E82SaIm56Qe0jKuha8xzdj49OT-aCU-7IKokU4OobW1TaRBYSOXC50Mt8TELjTWAAElVdQwmiyTkMk8VkKwTbYhmMzapSl6wnbZr4RXjiTIxpFWU1RZklpe6SsO8zGWdIgrEpWfAonWXF5UPSU7MGNfFJpiyE1OBYiqcmIpVwD5s8izGgBx3fr23lmThB2dfbFUpYO82yTis6KzEtICdWKDVplD4CG4D9nLUgM3vsJdUgk0P2Me1SmwL_39dXt9dlzfsUYyAadze2WM7w80S9hHwDOVbp9V_Aa9w-t8 priority: 102 providerName: ProQuest |
Title | A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma |
URI | https://link.springer.com/article/10.1007/s00330-023-09944-y https://www.ncbi.nlm.nih.gov/pubmed/37553486 https://www.proquest.com/docview/2915439214 https://www.proquest.com/docview/2848229326 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb5wwEB41G6nqS--DNo1cqW-tUw4bwyNJdrNptKsqykrbJ2TApFEDrAJbafNH-nc7BkPUpq2UFy7bGIYx89lzAbwXnlAhD0LqCyek-PezaZIrm6pM8SS0Mx627mOzuT9dsM9LvjROYXVv7d6rJNs_9eDsptOO2RRlDEVUwxjdbME21xOUEWxHR19PxjfBdh0mjIPM31v-LoRuIctbWtFW2EwewaJ_zM7G5Pveukn20us_Ijje9T0ew0ODPknUscsTuKfKp3B_ZvTrz-BnRMrqh7oks9NjqgVcRjKlVsTkljgnZWc1XhPsC-fUWK4XcokO0tmaTZJCaVfii7ogiIbJ6krfWltWk4PDk7kbfdon36qiut6cV-ua6CQ8bSvt1oTnFyU5PpzSYq1TGxNZNyhdN01VyOdwNhmfHUypSd1AU0_whuZZnvlMIjhhvA3Br3KGh8KWmVQIsniau0oKh6mABT5Xml-8UOpUna70ufcCRmVVqldAPC5d5aeOyDPFRJCEqW8HScByH5EkTl8tcPpPGacmrLnOrnEZDwGZW4LHSPC4JXi8seDD0GbVBfX4b-2dnkNiM8Dr2A0ReyK2dJgF74ZiHJpa3yJLhUSMUfLrcPoIkC142XHW0B1SiXv46hZ87Lnk5ub_fpbXd6v-Bh64CMK6JaMdGDVXa_UWQVST7MKWWArcBpOjXTN-cL8_nn85xasLN_oFWuwX_Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIuiDeGAosEJ1jVj12v94BQaKgS0uSAgpSbtbbXpVJth9oBmT_Cr-A_MrO2E6GK3nqz5ffOeL5vHzMfIa9lII0SkWKh9BSD6OeyJDcuM5kRiXIzoWz62HwRTr7yzyux2iN_hlwYXFY5xEQbqLMqxTHyQ18B2AOYe_zD-jtD1SicXR0kNDq3mJn2J3TZ6vfTMdj3je8ff1oeTVivKsDSQIqG5VmehVwDbnJhq8ObnMOmdHWmDeC_SHPfaOlxE_EoFAY_JVAaVSR9HaJIBET8GzxwOZbqlyu5q_HrWT0zV0EMkUrxPkfHZuqhZprLACAZUDLOWfsvDl4it5cmZi3eHd8ld3qiSkedZ90je6a8T27O-6n4B-T3iJbVD3NO51-mDLEwo5kxa9rLUJzSsltgXlNoX-h-w3Ec86VYz9OusKSFwazjs7qgQJzp-gJvjYuw6dF4tvBHhx_pt6qofrWn1aamqNdjr8IMKNg_K-l0PGHFBlWQqa4bAOK2qQr9kCyvwx6PyH5ZleYJoYHQvglTT-aZ4TJKVBq6URLxPATSCT1dh3hDk8dpXwEdhTjO423tZmumGMwUWzPFrUPebq9Zd_U_rjz7YLBk3MeCOt55rkNebQ_DX4xTM7o00IgxkASsvA9c2iGPOw_YPg5aSQTw6Q55N7jE7ub_f5enV7_LS3JrspyfxCfTxewZue0DV-tGlg7IfnOxMc-BazXJC-vhlMTX_Ef9BRE-NdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIU28IMZnYICR4Ams5sOO4weEykrVUlohNKS-WWnijElL0i0pKPwj_C38d9w5SSs0sbe9JcqX4zvf_Wzf3Y-QVzKQRolIsVB6ioH1c9kqMy4zqREr5aZC2fSx-SKcfOOflmK5R_70uTAYVtnbRGuo0zLBNfKBr8DZgzP3-CDrwiK-jMbv1xcMGaRwp7Wn02hVZGaanzB9q95NRyDr174__nhyPGEdwwBLAilqlqVZGvIYfCgXtlK8yTgcSjdOYwNYQCSZb2LpcRPxKBQGfytQMTJK-nGIhBFg_W_JgAcYTSaXclfv17PcZq4CeyKV4l2-js3aQ_40l4GzZADPOGfNvz7xCtC9sklrfd_4LrnTgVY6bLXskOyZ4h45mHfb8vfJ7yEtyh_mnM6_Thn6xZSmxqxpR0lxSos22Lyi0NcwFYfruP5LsbanjbakucEM5LMqpwCi6foSX40B2fR4NFv4w8EH-r3My1_NabmpKHL32KcwGwrOzwo6HU1YvkFGZBpXNTjlpi7z-AE5uQl5PCT7RVmYx4QGIvZNmHgySw2X0UoloRutIp6FAEBh1usQr-9ynXTV0JGU41xv6zhbMWkQk7Zi0o1D3myfWbe1QK69-6iXpO7sQqV3WuyQl9vLMKJxmyYuDHSiBsCAVfgBVzvkUasB289BL4kAft0hb3uV2L38_215cn1bXpADGEv683Qxe0pu-wDb2kWmI7JfX27MM4Bd9eq5VXBK9A0PqL-9JjoP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+MRI-based+deep+learning+networks+combined+with+attention+mechanism+for+predicting+CDKN2A%2FB+homozygous+deletion+status+in+IDH-mutant+astrocytoma&rft.jtitle=European+radiology&rft.au=Zhang%2C+Liqiang&rft.au=Wang%2C+Rui&rft.au=Gao%2C+Jueni&rft.au=Tang%2C+Yi&rft.date=2024-01-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=34&rft.issue=1&rft.spage=391&rft_id=info:doi/10.1007%2Fs00330-023-09944-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |