A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma

Objectives To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma. Methods Multiparametric brain MRI data and corresponding genomic information of 234 s...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 34; no. 1; pp. 391 - 399
Main Authors Zhang, Liqiang, Wang, Rui, Gao, Jueni, Tang, Yi, Xu, Xinyi, Kan, Yubo, Cao, Xu, Wen, Zhipeng, Liu, Zhi, Cui, Shaoguo, Li, Yongmei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-023-09944-y

Cover

Abstract Objectives To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma. Methods Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed. Results The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively. Conclusions The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. Clinical relevance statement A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning. Key Points • CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.
AbstractList To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed. The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively. The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning. • CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.
Objectives To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma. Methods Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed. Results The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively. Conclusions The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. Clinical relevance statement A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning. Key Points • CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.
To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.OBJECTIVESTo develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.METHODSMultiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.RESULTSThe average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.CONCLUSIONSThe FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.CLINICAL RELEVANCE STATEMENTA novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.KEY POINTS• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.
ObjectivesTo develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma.MethodsMultiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.ResultsThe average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.ConclusionsThe FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.Clinical relevance statementA novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.Key Points• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis.• An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status.• The predictive performance based on ConvNeXt network was better than that of ResNet network.
Author Wen, Zhipeng
Li, Yongmei
Liu, Zhi
Cui, Shaoguo
Zhang, Liqiang
Gao, Jueni
Xu, Xinyi
Cao, Xu
Kan, Yubo
Tang, Yi
Wang, Rui
Author_xml – sequence: 1
  givenname: Liqiang
  orcidid: 0000-0002-8414-9405
  surname: Zhang
  fullname: Zhang, Liqiang
  organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: School of Computer Science and Engineering, Chongqing Normal University
– sequence: 3
  givenname: Jueni
  surname: Gao
  fullname: Gao, Jueni
  organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University
– sequence: 4
  givenname: Yi
  surname: Tang
  fullname: Tang, Yi
  organization: Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University
– sequence: 5
  givenname: Xinyi
  surname: Xu
  fullname: Xu, Xinyi
  organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University
– sequence: 6
  givenname: Yubo
  surname: Kan
  fullname: Kan, Yubo
  organization: School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine
– sequence: 7
  givenname: Xu
  surname: Cao
  fullname: Cao, Xu
  organization: School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine
– sequence: 8
  givenname: Zhipeng
  surname: Wen
  fullname: Wen, Zhipeng
  organization: Department of Radiology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China
– sequence: 9
  givenname: Zhi
  surname: Liu
  fullname: Liu, Zhi
  email: liuzhi071120@163.com
  organization: Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine
– sequence: 10
  givenname: Shaoguo
  surname: Cui
  fullname: Cui, Shaoguo
  email: csg@cqnu.edu.cn
  organization: School of Computer Science and Engineering, Chongqing Normal University
– sequence: 11
  givenname: Yongmei
  surname: Li
  fullname: Li, Yongmei
  email: lymzhang70@163.com
  organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37553486$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUha0KVCDtC3RRWeqGjYt_52eZhrZEQCtV7C1n5k5iOmOntqdo-iJ93RoCBbFg5Wv5fNf3nnOE9px3gNA7Rj8ySsuTSKkQlFAuCK1rKcn0Ch0yKThhtJJ7T-oDdBTjNaW0ZrJ8jQ5EqZSQVXGI_s6x87-hx5c_lmRlIrS4BdjiHkxw1q2xg3Tjw8-IGz-srMvvNzZtsEkJXLLe4QGajXE2DrjzAW8DtLZJt-Ti9Pwbn598whs_-D_T2o8x9-7hjorJpHy3Di9Pz8gwJuMSNjEF30zJD-YN2u9MH-Ht_TlDV18-Xy3OyMX3r8vF_II0eYdEurZrC2kEK2XeSPECOpnLkprWgCqoajoOpmQSqryuAqhVJWqjCsa5KZSYoeNd223wv0aISQ82NtD3xkGeV_OMcV4LXmTph2fSaz8Gl4fTvGZKippnv2fo_b1qXA3Q6m2wgwmTfnA8C_hO0AQfY4Duv4RRfRur3sWqc6z6LlY9Zah6BjU2G5iNTMHY_mVU7NCY_3FrCI9jv0D9A04Kt-o
CitedBy_id crossref_primary_10_1002_acn3_52128
crossref_primary_10_1016_j_mri_2024_05_012
crossref_primary_10_3174_ajnr_A8148
crossref_primary_10_3390_diagnostics15070797
crossref_primary_10_1158_1078_0432_CCR_24_0311
crossref_primary_10_1186_s40644_024_00769_6
crossref_primary_10_3390_cancers16101792
crossref_primary_10_1016_j_compbiomed_2025_109736
crossref_primary_10_3389_fonc_2024_1384105
crossref_primary_10_1007_s40477_024_00961_1
crossref_primary_10_1016_j_critrevonc_2025_104682
Cites_doi 10.3390/diagnostics12051053
10.1093/neuonc/nos284
10.3174/ajnr.A7029
10.3390/jpm11090909
10.1109/CVPR.2016.90
10.1007/s10278-013-9622-7
10.3390/cancers14051349
10.1016/j.mri.2012.05.001
10.1097/PPO.0000000000000020
10.3389/fonc.2021.803975
10.1093/noajnl/vdab103
10.3390/jpm11111213
10.3390/jcm11123445
10.1016/j.ajpath.2015.02.023
10.1038/s41374-021-00692-5
10.1093/neuonc/now121
10.1097/PAI.0000000000000396
10.1097/NEN.0000000000000188
10.1007/s11060-020-03528-2
10.48550/arXiv.2010.11929
10.1093/neuonc/noz199
10.1093/neuonc/noab106
10.1097/PAP.0000000000000048
10.1093/noajnl/vdac060
10.1093/neuonc/noaa177
10.1109/CVPR52688.2022.01167
10.1007/s00330-019-06548-3
10.3164/jcbn.11-001FR
10.1093/neuonc/noy131
10.3174/ajnr.A5667
10.1093/neuonc/noz052
10.1016/j.cell.2015.12.028
10.1007/s00401-018-1849-4
10.1007/s00401-020-02127-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to European Society of Radiology.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to European Society of Radiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOI 10.1007/s00330-023-09944-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 399
ExternalDocumentID 37553486
10_1007_s00330_023_09944_y
Genre Journal Article
GrantInformation_xml – fundername: Chongqing Postgraduate Scientific Research Innovation Project
  grantid: CYS22558
– fundername: the Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau
  grantid: CSTC2021 jscx-gksb-N0008
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c375t-fdfd64a3174553526ef474570adae5605cf2ea714e84865ee95839a56122a653
IEDL.DBID AGYKE
ISSN 1432-1084
0938-7994
IngestDate Fri Sep 05 00:07:09 EDT 2025
Fri Jul 25 19:04:18 EDT 2025
Mon Jul 21 05:32:28 EDT 2025
Wed Oct 01 01:17:15 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Fri Feb 21 02:41:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Brain
Magnetic resonance imaging
Genomics
Astrocytoma
Language English
License 2023. The Author(s), under exclusive licence to European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-fdfd64a3174553526ef474570adae5605cf2ea714e84865ee95839a56122a653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8414-9405
PMID 37553486
PQID 2915439214
PQPubID 54162
PageCount 9
ParticipantIDs proquest_miscellaneous_2848229326
proquest_journals_2915439214
pubmed_primary_37553486
crossref_primary_10_1007_s00330_023_09944_y
crossref_citationtrail_10_1007_s00330_023_09944_y
springer_journals_10_1007_s00330_023_09944_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. arXiv e-prints
CeccarelliMBarthelFPMaltaTMMolecular profiling reveals biologically discrete subsets and pathways of progression in diffuse gliomaCell20161645505631:CAS:528:DC%2BC28Xhs12ls7o%3D10.1016/j.cell.2015.12.028268246614754110
ReisGFPekmezciMHansenHMCDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomasJ Neuropathol Exp Neurol2015744424521:CAS:528:DC%2BC2MXmslWisr8%3D10.1097/NEN.000000000000018825853694
LuVMO'ConnorKPShahAHThe prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literatureJ Neurooncol20201482212291:CAS:528:DC%2BB3cXovFKrtLo%3D10.1007/s11060-020-03528-232385699
Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4:vdac060
Di Bonaventura R, Montano N, Giordano M et al (2021) Reassessing the role of brain tumor biopsy in the era of advanced surgical, molecular, and imaging techniques-a single-center experience with long-term follow-up. J Pers Med 11:1213
AppinCLBratDJMolecular pathways in gliomagenesis and their relevance to neuropathologic diagnosisAdv Anat Pathol20152250581:CAS:528:DC%2BC2cXitVKmt7jM10.1097/PAP.000000000000004825461780
YoganandaCGBShahBRNalawadeSSMRI-based deep-learning method for determining glioma MGMT promoter methylation statusAJNR Am J Neuroradiol2021428458521:STN:280:DC%2BB3sjhvF2lsA%3D%3D10.3174/ajnr.A7029336641118115363
Di StefanoALEnciso-MoraVMarieYAssociation between glioma susceptibility loci and tumour pathology defines specific molecular etiologiesNeuro Oncol20131554254710.1093/neuonc/nos28423161787
LouisDNPerryAWesselingPThe 2021 WHO Classification of Tumors of the Central Nervous System: a summaryNeuro Oncol202123123112511:CAS:528:DC%2BB3MXisFSht73J10.1093/neuonc/noab106341850768328013
KimMJungSYParkJEDiffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade gliomaEur Radiol2020302142215110.1007/s00330-019-06548-331828414
BratDJAldapeKColmanHcIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomasActa Neuropathol202013960360810.1007/s00401-020-02127-9319969928443062
CarstamLCorellASmitsAWHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomasFront Oncol20211110.3389/fonc.2021.80397535083156
He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Verheul C, Ntafoulis I, Kers TV et al (2021) Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 3:vdab103
CrespoIVitalALGonzalez-TablasMMolecular and genomic alterations in glioblastoma multiformeAm J Pathol2015185182018331:CAS:528:DC%2BC2MXot1Wmtbg%3D10.1016/j.ajpath.2015.02.02325976245
ClarkKVendtBSmithKThe Cancer Imaging Archive (TCIA): maintaining and operating a public information repositoryJ Digit Imaging2013261045105710.1007/s10278-013-9622-7238846573824915
Vaswani A, Shazeer N, Parmar N et al (2017) Attention Is All You NeedarXiv
FedorovABeichelRKalpathy-CramerJ3D Slicer as an image computing platform for the Quantitative Imaging NetworkMagn Reson Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397
ToyokuniSMysterious link between iron overload and CDKN2A/2BJ Clin Biochem Nutr20114846491:CAS:528:DC%2BC3MXltlektLY%3D10.3164/jcbn.11-001FR21297911
ChoiYSBaeSChangJHFully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomicsNeuro Oncol2021233043131:CAS:528:DC%2BB38Xht1WmsbrL10.1093/neuonc/noaa17732706862
ChangPGrinbandJWeinbergBDDeep-learning convolutional neural networks accurately classify genetic mutations in gliomasAJNR Am J Neuroradiol201839120112071:STN:280:DC%2BC1MfhvFKktw%3D%3D10.3174/ajnr.A5667297482066880932
WooSParkJLeeJYKweonISCBAM: convolutional block attention module2018ChamSpringer
ZhangMPanYQiXIdentification of new biomarkers associated with IDH mutation and prognosis in astrocytic tumors using NanoString nCounter Analysis SystemAppl Immunohistochem Mol Morphol20182610110710.1097/PAI.000000000000039627258564
YanJZhangSSunQPredicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation studyLab Invest20221021541591:CAS:528:DC%2BB38XmsFCiu70%3D10.1038/s41374-021-00692-534782727
Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1-iv86
Bangalore YoganandaCGShahBRVejdani-JahromiMA novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomasNeuro Oncol20202240241110.1093/neuonc/noz19931637430
Hassanien MA, Singh VK, Puig D, Abdel-Nasser M (2022) Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences. Diagnostics (Basel) 12
ZhangBChangKRamkissoonSMultimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomasNeuro Oncol2017191091171:CAS:528:DC%2BC1cXitFSntr%2FE10.1093/neuonc/now12127353503
CiminoPJHollandECTargeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomasNeuro Oncol20192181982110.1093/neuonc/noz052309189616556841
Esmaeili M, Vettukattil R, Banitalebi H, Krogh NR, Geitung JT (2021) Explainable artificial intelligence for human-machine interaction in brain tumor localization. J Pers Med 11:1213
ShirahataMOnoTStichelDNovel, improved grading system(s) for IDH-mutant astrocytic gliomasActa Neuropathol20181361531661:CAS:528:DC%2BC1cXos1Sgsb4%3D10.1007/s00401-018-1849-429687258
Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 https://doi.org/10.48550/arXiv.2010.11929
AppinCLBratDJMolecular genetics of gliomasCancer J20142066721:CAS:528:DC%2BC2cXhtlShtLs%3D10.1097/PPO.000000000000002024445767
Chen S, Xu Y, Ye M et al (2022) Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics. J Clin Med 11:3445
Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR (2022) Advancements in oncology with artificial intelligence-a review article. Cancers (Basel) 14:1349
YS Choi (9944_CR9) 2021; 23
M Zhang (9944_CR4) 2018; 26
I Crespo (9944_CR22) 2015; 185
DJ Brat (9944_CR26) 2020; 139
K Clark (9944_CR17) 2013; 26
CG Bangalore Yogananda (9944_CR8) 2020; 22
9944_CR25
9944_CR28
CL Appin (9944_CR2) 2014; 20
S Toyokuni (9944_CR23) 2011; 48
M Ceccarelli (9944_CR11) 2016; 164
CGB Yogananda (9944_CR29) 2021; 42
CL Appin (9944_CR3) 2015; 22
9944_CR20
A Fedorov (9944_CR18) 2012; 30
9944_CR21
AL Di Stefano (9944_CR24) 2013; 15
PJ Cimino (9944_CR5) 2019; 21
M Kim (9944_CR7) 2020; 30
9944_CR1
9944_CR15
9944_CR36
9944_CR19
B Zhang (9944_CR6) 2017; 19
L Carstam (9944_CR27) 2021; 11
J Yan (9944_CR31) 2022; 102
9944_CR30
S Woo (9944_CR35) 2018
VM Lu (9944_CR14) 2020; 148
GF Reis (9944_CR10) 2015; 74
DN Louis (9944_CR13) 2021; 23
9944_CR33
9944_CR34
9944_CR32
M Shirahata (9944_CR12) 2018; 136
P Chang (9944_CR16) 2018; 39
References_xml – reference: AppinCLBratDJMolecular genetics of gliomasCancer J20142066721:CAS:528:DC%2BC2cXhtlShtLs%3D10.1097/PPO.000000000000002024445767
– reference: ChoiYSBaeSChangJHFully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomicsNeuro Oncol2021233043131:CAS:528:DC%2BB38Xht1WmsbrL10.1093/neuonc/noaa17732706862
– reference: WooSParkJLeeJYKweonISCBAM: convolutional block attention module2018ChamSpringer
– reference: FedorovABeichelRKalpathy-CramerJ3D Slicer as an image computing platform for the Quantitative Imaging NetworkMagn Reson Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397
– reference: CrespoIVitalALGonzalez-TablasMMolecular and genomic alterations in glioblastoma multiformeAm J Pathol2015185182018331:CAS:528:DC%2BC2MXot1Wmtbg%3D10.1016/j.ajpath.2015.02.02325976245
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
– reference: CarstamLCorellASmitsAWHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomasFront Oncol20211110.3389/fonc.2021.80397535083156
– reference: CiminoPJHollandECTargeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomasNeuro Oncol20192181982110.1093/neuonc/noz052309189616556841
– reference: Bangalore YoganandaCGShahBRVejdani-JahromiMA novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomasNeuro Oncol20202240241110.1093/neuonc/noz19931637430
– reference: Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4:vdac060
– reference: Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 https://doi.org/10.48550/arXiv.2010.11929
– reference: CeccarelliMBarthelFPMaltaTMMolecular profiling reveals biologically discrete subsets and pathways of progression in diffuse gliomaCell20161645505631:CAS:528:DC%2BC28Xhs12ls7o%3D10.1016/j.cell.2015.12.028268246614754110
– reference: Chen S, Xu Y, Ye M et al (2022) Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics. J Clin Med 11:3445
– reference: ReisGFPekmezciMHansenHMCDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomasJ Neuropathol Exp Neurol2015744424521:CAS:528:DC%2BC2MXmslWisr8%3D10.1097/NEN.000000000000018825853694
– reference: LouisDNPerryAWesselingPThe 2021 WHO Classification of Tumors of the Central Nervous System: a summaryNeuro Oncol202123123112511:CAS:528:DC%2BB3MXisFSht73J10.1093/neuonc/noab106341850768328013
– reference: Hassanien MA, Singh VK, Puig D, Abdel-Nasser M (2022) Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences. Diagnostics (Basel) 12
– reference: Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1-iv86
– reference: ZhangMPanYQiXIdentification of new biomarkers associated with IDH mutation and prognosis in astrocytic tumors using NanoString nCounter Analysis SystemAppl Immunohistochem Mol Morphol20182610110710.1097/PAI.000000000000039627258564
– reference: YoganandaCGBShahBRNalawadeSSMRI-based deep-learning method for determining glioma MGMT promoter methylation statusAJNR Am J Neuroradiol2021428458521:STN:280:DC%2BB3sjhvF2lsA%3D%3D10.3174/ajnr.A7029336641118115363
– reference: Verheul C, Ntafoulis I, Kers TV et al (2021) Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 3:vdab103
– reference: LuVMO'ConnorKPShahAHThe prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literatureJ Neurooncol20201482212291:CAS:528:DC%2BB3cXovFKrtLo%3D10.1007/s11060-020-03528-232385699
– reference: Di Bonaventura R, Montano N, Giordano M et al (2021) Reassessing the role of brain tumor biopsy in the era of advanced surgical, molecular, and imaging techniques-a single-center experience with long-term follow-up. J Pers Med 11:1213
– reference: ChangPGrinbandJWeinbergBDDeep-learning convolutional neural networks accurately classify genetic mutations in gliomasAJNR Am J Neuroradiol201839120112071:STN:280:DC%2BC1MfhvFKktw%3D%3D10.3174/ajnr.A5667297482066880932
– reference: Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR (2022) Advancements in oncology with artificial intelligence-a review article. Cancers (Basel) 14:1349
– reference: AppinCLBratDJMolecular pathways in gliomagenesis and their relevance to neuropathologic diagnosisAdv Anat Pathol20152250581:CAS:528:DC%2BC2cXitVKmt7jM10.1097/PAP.000000000000004825461780
– reference: Esmaeili M, Vettukattil R, Banitalebi H, Krogh NR, Geitung JT (2021) Explainable artificial intelligence for human-machine interaction in brain tumor localization. J Pers Med 11:1213
– reference: KimMJungSYParkJEDiffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade gliomaEur Radiol2020302142215110.1007/s00330-019-06548-331828414
– reference: BratDJAldapeKColmanHcIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomasActa Neuropathol202013960360810.1007/s00401-020-02127-9319969928443062
– reference: ClarkKVendtBSmithKThe Cancer Imaging Archive (TCIA): maintaining and operating a public information repositoryJ Digit Imaging2013261045105710.1007/s10278-013-9622-7238846573824915
– reference: ShirahataMOnoTStichelDNovel, improved grading system(s) for IDH-mutant astrocytic gliomasActa Neuropathol20181361531661:CAS:528:DC%2BC1cXos1Sgsb4%3D10.1007/s00401-018-1849-429687258
– reference: YanJZhangSSunQPredicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation studyLab Invest20221021541591:CAS:528:DC%2BB38XmsFCiu70%3D10.1038/s41374-021-00692-534782727
– reference: Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. arXiv e-prints
– reference: ToyokuniSMysterious link between iron overload and CDKN2A/2BJ Clin Biochem Nutr20114846491:CAS:528:DC%2BC3MXltlektLY%3D10.3164/jcbn.11-001FR21297911
– reference: Di StefanoALEnciso-MoraVMarieYAssociation between glioma susceptibility loci and tumour pathology defines specific molecular etiologiesNeuro Oncol20131554254710.1093/neuonc/nos28423161787
– reference: ZhangBChangKRamkissoonSMultimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomasNeuro Oncol2017191091171:CAS:528:DC%2BC1cXitFSntr%2FE10.1093/neuonc/now12127353503
– reference: Vaswani A, Shazeer N, Parmar N et al (2017) Attention Is All You NeedarXiv,
– ident: 9944_CR34
  doi: 10.3390/diagnostics12051053
– volume: 15
  start-page: 542
  year: 2013
  ident: 9944_CR24
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nos284
– volume: 42
  start-page: 845
  year: 2021
  ident: 9944_CR29
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A7029
– ident: 9944_CR15
  doi: 10.3390/jpm11090909
– ident: 9944_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 26
  start-page: 1045
  year: 2013
  ident: 9944_CR17
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– ident: 9944_CR32
  doi: 10.3390/cancers14051349
– volume: 30
  start-page: 1323
  year: 2012
  ident: 9944_CR18
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 20
  start-page: 66
  year: 2014
  ident: 9944_CR2
  publication-title: Cancer J
  doi: 10.1097/PPO.0000000000000020
– volume: 11
  year: 2021
  ident: 9944_CR27
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.803975
– ident: 9944_CR25
  doi: 10.1093/noajnl/vdab103
– ident: 9944_CR28
  doi: 10.3390/jpm11111213
– ident: 9944_CR30
  doi: 10.3390/jcm11123445
– volume: 185
  start-page: 1820
  year: 2015
  ident: 9944_CR22
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2015.02.023
– volume: 102
  start-page: 154
  year: 2022
  ident: 9944_CR31
  publication-title: Lab Invest
  doi: 10.1038/s41374-021-00692-5
– volume: 19
  start-page: 109
  year: 2017
  ident: 9944_CR6
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now121
– volume-title: CBAM: convolutional block attention module
  year: 2018
  ident: 9944_CR35
– volume: 26
  start-page: 101
  year: 2018
  ident: 9944_CR4
  publication-title: Appl Immunohistochem Mol Morphol
  doi: 10.1097/PAI.0000000000000396
– volume: 74
  start-page: 442
  year: 2015
  ident: 9944_CR10
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0000000000000188
– volume: 148
  start-page: 221
  year: 2020
  ident: 9944_CR14
  publication-title: J Neurooncol
  doi: 10.1007/s11060-020-03528-2
– ident: 9944_CR36
  doi: 10.48550/arXiv.2010.11929
– volume: 22
  start-page: 402
  year: 2020
  ident: 9944_CR8
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz199
– ident: 9944_CR20
– volume: 23
  start-page: 1231
  year: 2021
  ident: 9944_CR13
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noab106
– volume: 22
  start-page: 50
  year: 2015
  ident: 9944_CR3
  publication-title: Adv Anat Pathol
  doi: 10.1097/PAP.0000000000000048
– ident: 9944_CR21
  doi: 10.1093/noajnl/vdac060
– volume: 23
  start-page: 304
  year: 2021
  ident: 9944_CR9
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noaa177
– ident: 9944_CR33
  doi: 10.1109/CVPR52688.2022.01167
– volume: 30
  start-page: 2142
  year: 2020
  ident: 9944_CR7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06548-3
– volume: 48
  start-page: 46
  year: 2011
  ident: 9944_CR23
  publication-title: J Clin Biochem Nutr
  doi: 10.3164/jcbn.11-001FR
– ident: 9944_CR1
  doi: 10.1093/neuonc/noy131
– volume: 39
  start-page: 1201
  year: 2018
  ident: 9944_CR16
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5667
– volume: 21
  start-page: 819
  year: 2019
  ident: 9944_CR5
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz052
– volume: 164
  start-page: 550
  year: 2016
  ident: 9944_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.028
– volume: 136
  start-page: 153
  year: 2018
  ident: 9944_CR12
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-018-1849-4
– volume: 139
  start-page: 603
  year: 2020
  ident: 9944_CR26
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-020-02127-9
SSID ssj0009147
Score 2.5161407
Snippet Objectives To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion...
To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in...
ObjectivesTo develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 391
SubjectTerms Astrocytoma
Astrocytoma - diagnostic imaging
Astrocytoma - genetics
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - genetics
Cancer
Cyclin-dependent kinase
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-dependent kinases
Deep Learning
Diagnostic Radiology
Gene deletion
Glioma
Glioma - genetics
Homozygote
Humans
Image contrast
Image enhancement
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - genetics
Kinases
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine
Medicine & Public Health
Mutants
Mutation
Networks
Neuroimaging
Neuroradiology
Nucleotide sequence
Performance prediction
Radiology
Sequence Deletion
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLojwDLTISN7Cah53EJ7R9LFvQ9oCK1FvkxJNSqUmWJou0_BH-LjOOd1eoordEjh3bM_Z8fsx8jL3Pkgy0yrVIs0gLnP1CUdYQCrCgSh1apZ372PwsnX2XXy7Uhd9w6_21yvWc6CZq21W0R34QazT2aMwj-WnxUxBrFJ2uegqN--xBFKMmkaf49PM26G7kCMZw0Z6LTGvpnWac6xyRmIUCLZZAjCSlWP1rmG6hzVsnpc4ATZ-wxx458sko6l12D9qn7OHcn40_Y38mvO1-wTWffzsVZJwstwAL7nkhLnk73vjuOTYY18OYTpuwnAJsuiuPvAFyA77qG45Ili9uqGi6Fc2Pjr-exZODQ_6ja7rfq8tu2XMi0HG5yCUJ369afno8E82SaIm56Qe0jKuha8xzdj49OT-aCU-7IKokU4OobW1TaRBYSOXC50Mt8TELjTWAAElVdQwmiyTkMk8VkKwTbYhmMzapSl6wnbZr4RXjiTIxpFWU1RZklpe6SsO8zGWdIgrEpWfAonWXF5UPSU7MGNfFJpiyE1OBYiqcmIpVwD5s8izGgBx3fr23lmThB2dfbFUpYO82yTis6KzEtICdWKDVplD4CG4D9nLUgM3vsJdUgk0P2Me1SmwL_39dXt9dlzfsUYyAadze2WM7w80S9hHwDOVbp9V_Aa9w-t8
  priority: 102
  providerName: ProQuest
Title A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma
URI https://link.springer.com/article/10.1007/s00330-023-09944-y
https://www.ncbi.nlm.nih.gov/pubmed/37553486
https://www.proquest.com/docview/2915439214
https://www.proquest.com/docview/2848229326
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb5wwEB41G6nqS--DNo1cqW-tUw4bwyNJdrNptKsqykrbJ2TApFEDrAJbafNH-nc7BkPUpq2UFy7bGIYx89lzAbwXnlAhD0LqCyek-PezaZIrm6pM8SS0Mx627mOzuT9dsM9LvjROYXVv7d6rJNs_9eDsptOO2RRlDEVUwxjdbME21xOUEWxHR19PxjfBdh0mjIPM31v-LoRuIctbWtFW2EwewaJ_zM7G5Pveukn20us_Ijje9T0ew0ODPknUscsTuKfKp3B_ZvTrz-BnRMrqh7oks9NjqgVcRjKlVsTkljgnZWc1XhPsC-fUWK4XcokO0tmaTZJCaVfii7ogiIbJ6krfWltWk4PDk7kbfdon36qiut6cV-ua6CQ8bSvt1oTnFyU5PpzSYq1TGxNZNyhdN01VyOdwNhmfHUypSd1AU0_whuZZnvlMIjhhvA3Br3KGh8KWmVQIsniau0oKh6mABT5Xml-8UOpUna70ufcCRmVVqldAPC5d5aeOyDPFRJCEqW8HScByH5EkTl8tcPpPGacmrLnOrnEZDwGZW4LHSPC4JXi8seDD0GbVBfX4b-2dnkNiM8Dr2A0ReyK2dJgF74ZiHJpa3yJLhUSMUfLrcPoIkC142XHW0B1SiXv46hZ87Lnk5ub_fpbXd6v-Bh64CMK6JaMdGDVXa_UWQVST7MKWWArcBpOjXTN-cL8_nn85xasLN_oFWuwX_Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQIuiDeGAosEJ1jVj12v94BQaKgS0uSAgpSbtbbXpVJth9oBmT_Cr-A_MrO2E6GK3nqz5ffOeL5vHzMfIa9lII0SkWKh9BSD6OeyJDcuM5kRiXIzoWz62HwRTr7yzyux2iN_hlwYXFY5xEQbqLMqxTHyQ18B2AOYe_zD-jtD1SicXR0kNDq3mJn2J3TZ6vfTMdj3je8ff1oeTVivKsDSQIqG5VmehVwDbnJhq8ObnMOmdHWmDeC_SHPfaOlxE_EoFAY_JVAaVSR9HaJIBET8GzxwOZbqlyu5q_HrWT0zV0EMkUrxPkfHZuqhZprLACAZUDLOWfsvDl4it5cmZi3eHd8ld3qiSkedZ90je6a8T27O-6n4B-T3iJbVD3NO51-mDLEwo5kxa9rLUJzSsltgXlNoX-h-w3Ec86VYz9OusKSFwazjs7qgQJzp-gJvjYuw6dF4tvBHhx_pt6qofrWn1aamqNdjr8IMKNg_K-l0PGHFBlWQqa4bAOK2qQr9kCyvwx6PyH5ZleYJoYHQvglTT-aZ4TJKVBq6URLxPATSCT1dh3hDk8dpXwEdhTjO423tZmumGMwUWzPFrUPebq9Zd_U_rjz7YLBk3MeCOt55rkNebQ_DX4xTM7o00IgxkASsvA9c2iGPOw_YPg5aSQTw6Q55N7jE7ub_f5enV7_LS3JrspyfxCfTxewZue0DV-tGlg7IfnOxMc-BazXJC-vhlMTX_Ef9BRE-NdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIU28IMZnYICR4Ams5sOO4weEykrVUlohNKS-WWnijElL0i0pKPwj_C38d9w5SSs0sbe9JcqX4zvf_Wzf3Y-QVzKQRolIsVB6ioH1c9kqMy4zqREr5aZC2fSx-SKcfOOflmK5R_70uTAYVtnbRGuo0zLBNfKBr8DZgzP3-CDrwiK-jMbv1xcMGaRwp7Wn02hVZGaanzB9q95NRyDr174__nhyPGEdwwBLAilqlqVZGvIYfCgXtlK8yTgcSjdOYwNYQCSZb2LpcRPxKBQGfytQMTJK-nGIhBFg_W_JgAcYTSaXclfv17PcZq4CeyKV4l2-js3aQ_40l4GzZADPOGfNvz7xCtC9sklrfd_4LrnTgVY6bLXskOyZ4h45mHfb8vfJ7yEtyh_mnM6_Thn6xZSmxqxpR0lxSos22Lyi0NcwFYfruP5LsbanjbakucEM5LMqpwCi6foSX40B2fR4NFv4w8EH-r3My1_NabmpKHL32KcwGwrOzwo6HU1YvkFGZBpXNTjlpi7z-AE5uQl5PCT7RVmYx4QGIvZNmHgySw2X0UoloRutIp6FAEBh1usQr-9ynXTV0JGU41xv6zhbMWkQk7Zi0o1D3myfWbe1QK69-6iXpO7sQqV3WuyQl9vLMKJxmyYuDHSiBsCAVfgBVzvkUasB289BL4kAft0hb3uV2L38_215cn1bXpADGEv683Qxe0pu-wDb2kWmI7JfX27MM4Bd9eq5VXBK9A0PqL-9JjoP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+MRI-based+deep+learning+networks+combined+with+attention+mechanism+for+predicting+CDKN2A%2FB+homozygous+deletion+status+in+IDH-mutant+astrocytoma&rft.jtitle=European+radiology&rft.au=Zhang%2C+Liqiang&rft.au=Wang%2C+Rui&rft.au=Gao%2C+Jueni&rft.au=Tang%2C+Yi&rft.date=2024-01-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=34&rft.issue=1&rft.spage=391&rft_id=info:doi/10.1007%2Fs00330-023-09944-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon