Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer–based Chan–Vese model

The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, activ...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 57; no. 8; pp. 1763 - 1782
Main Authors Femina, M. A., Raajagopalan, S. P.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-019-01991-2

Cover

Abstract The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan–Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination–based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model
AbstractList The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model.
The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan–Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination–based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model
The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan–Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination–based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods.
The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model.The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model.
Author Femina, M. A.
Raajagopalan, S. P.
Author_xml – sequence: 1
  givenname: M. A.
  surname: Femina
  fullname: Femina, M. A.
  email: feminaphd@gmail.com, femijeni@yahoo.co.in
  organization: Electrical and Electronics Engineering, KCG College of Technology
– sequence: 2
  givenname: S. P.
  surname: Raajagopalan
  fullname: Raajagopalan, S. P.
  organization: Computer Science and Engineering, GKM College of Engineering and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31190201$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKcDL8ACWWLDJuDrxHGyHI34kyqxKWwtJ74ZXDn2YDtCZcUTsOENeRI8pBVSF11YV5a_c3R9zgU588EjIc-BvQbG5JsEIEBWDPrT6aHij8gGZAMVa5rmjGwYNKw8QXdOLlK6ZoyD4M0Tcl4D9Iwz2JBfO69zmO2oHU05LmNeItKEhxl91tkGT6cYZoo6uhs6YS7c4nLUKSzeFPDbgn7ERJdk_YEeXBgKcQzOWb_K97srmr7rONNwzHa2PzD--fl70AkN3X_Vvly-YEI6B4PuKXk8aZfw2e3cks_v3l7tP1SXn95_3O8uq7GWIldoGK_HXkuGXHadFlzCVCM3g5h4C2Lg0KFpp1YY3Zt66jqUgNJIKZnoGdZb8mr1PcZQfpCymm0a0TntMSxJcd4K2UrOREFf3kOvwxJ92a5QddeVwMvckhe31DLMaNQx2lnHG3WXdAG6FRhjSCnipEa7BlzCtE4BU6dS1VqqKoWqf6Wqkze_J71zf1BUr6JUYH_A-H_tB1R_AaGCt8c
CitedBy_id crossref_primary_10_1155_2021_2852399
crossref_primary_10_3389_fmed_2021_729978
crossref_primary_10_3389_fmed_2021_733468
crossref_primary_10_1088_2057_1976_ad4f91
crossref_primary_10_3390_informatics9020034
crossref_primary_10_3390_biomimetics8070519
crossref_primary_10_1080_21681163_2023_2179343
Cites_doi 10.1109/ACCESS.2017.2789179
10.1016/j.media.2017.01.003
10.1016/S0929-8266(00)00123-3
10.1007/s11760-012-0298-0
10.1023/A:1020878408985
10.1016/S0735-1097(02)01886-7
10.1109/34.841758
10.1016/S0895-6111(00)00032-X
10.1016/0021-9991(88)90002-2
10.1002/cpa.3160420503
10.1016/j.procs.2010.04.306
10.1109/42.764905
10.1016/S1361-8415(03)00035-5
10.1073/pnas.110135797
10.1007/s11263-008-0163-3
10.1016/j.media.2015.07.002
10.1016/j.aeue.2016.11.016
10.1109/TIP.2010.2069690
10.1109/TMI.2003.814785
10.1109/TPAMI.2006.161
10.1016/S0167-8655(03)00121-1
10.1007/978-1-4614-5076-4_11
10.1007/s10877-012-9404-7
10.1109/TMI.2002.804418
10.1023/A:1020826424915
10.1161/01.CIR.43.3.323
10.1007/s11263-007-0054-z
10.1016/0167-5273(89)90218-0
10.1016/S0167-8655(02)00181-2
10.1002/uog.2709
10.1023/A:1016375620596
10.1016/j.engappai.2018.04.027
10.1109/83.902291
10.1109/TMI.2017.2746879
10.1109/TIP.2008.2002304
10.1016/j.jcp.2007.06.008
10.1016/S0262-8856(03)00121-5
10.1007/s11277-018-6014-9
10.1016/j.asoc.2015.09.002
10.22266/ijies2016.0930.12
10.1016/j.asoc.2016.10.038
10.1049/cp:19990374
10.1016/j.bspc.2014.09.013
10.1007/3-540-44935-3_27
10.1109/ISBI.2007.356989
10.1016/j.cose.2018.04.009
10.1007/978-3-642-23672-3_7
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2019
Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2019
– notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-019-01991-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
ProQuest Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1782
ExternalDocumentID 31190201
10_1007_s11517_019_01991_2
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
04C
06D
0R~
0VY
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
40D
40E
5GY
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N9A
NAPCQ
NB0
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R89
R9I
RHV
ROL
RPX
RSV
RXW
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZL0
ZMTXR
ZOVNA
~8M
~EX
~KM
-Y2
.55
.GJ
1SB
2.D
28-
2VQ
53G
5QI
AAAVM
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABQSL
ABRTQ
ABULA
ACBNA
ACBXY
ACSTC
ADHKG
ADYPR
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
IHE
LAI
N2Q
NDZJH
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
R4E
RNI
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TAE
UZXMN
VFIZW
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
RIG
3V.
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-ed023c9a70e2788a5271f3e2db5f2615b218ed6f65da9d3f88e71e7d7770590e3
IEDL.DBID BENPR
ISSN 0140-0118
1741-0444
IngestDate Thu Sep 04 17:43:45 EDT 2025
Tue Oct 07 05:48:12 EDT 2025
Thu Apr 03 07:02:31 EDT 2025
Wed Oct 01 03:37:58 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Fri Feb 21 02:31:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Congenital heart defect
Global pollination
Level set
CAT swarm
Chan–Vese
Fetal heart
Ultrasound
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-ed023c9a70e2788a5271f3e2db5f2615b218ed6f65da9d3f88e71e7d7770590e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31190201
PQID 2238817422
PQPubID 54161
PageCount 20
ParticipantIDs proquest_miscellaneous_2265767205
proquest_journals_2238817422
pubmed_primary_31190201
crossref_citationtrail_10_1007_s11517_019_01991_2
crossref_primary_10_1007_s11517_019_01991_2
springer_journals_10_1007_s11517_019_01991_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190801
2019-8-00
2019-Aug
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190801
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fong, Toi, Salem, Hornberger, Chitayat, Keating, McAuliffe, Johnson (CR31) 2004; 24
Cremers (CR43) 2006; 28
Chan, Vese (CR16) 2001; 10
Cremers, Tischhauser, Weickert, Schnorr (CR26) 2002; 50
Paragios (CR11) 2003; 22
CR37
CR34
Lassige, Benkeser, Fyfe, Sharma (CR22) 2000; 24
CR33
Vijayalakshmi, Sriraam, Suresh, Muttan (CR6) 2013; 27
Siqueira, Scharcanski, Navaux (CR23) 2002; 32
Çataloluk, Vehbi Çelebi (CR35) 2018; 73
Rousson, Paragios (CR44) 2008; 76
Hunter, Soraghan, Christie, Durrani (CR40) 1993; 20
Chunming, Chenyang, Changfeng, Fox (CR18) 2010; 19
CR9
CR48
CR47
Chen, Zhang, Zhang, X, Zhang, Li (CR27) 2018; 6
Rueda, Knight, Papageorghiou, Noble (CR1) 2015; 26
Skalskia, Turczaa, Zieli skib, Królczykc, Grodzickic (CR45) 2012; 1
Yan, Zhuang (CR38) 2003; 24
Chen, Tagare, Thiruvenkadam, Huang, Wilson, Gopinath, Briggs, Geiser (CR25) 2002; 50
Mohammed, Chinnaiya (CR49) 2011; 61
Lin, Yu, Duncan (CR10) 2003; 7
Chunming, Chiu-Yen, Gore, Zhaohua (CR17) 2008; 17
Z Gao, Li, Sun, Yang, Xiong, Zhang, Liu, Liang, Li (CR30) 2018; 37
Zhang, Gao, Xu, Yu, Wong, Liu, Zhuang, Shi (CR29) 2018; 6
Osher, Sethian (CR8) 1988; 79
CR57
CR12
CR56
CR55
Sarti, Malladi, Sethian (CR13) 2000; 12
CR54
CR50
Mumford, Shah (CR51) 1989; 42
Maraci, Bridge, Napolitano, Papageorghiou, Noble (CR5) 2017; 37
Foulonneau, Charbonnier, Heitz (CR46) 2009; 81
Corsi, Saracino, Sarti, Lamberti (CR15) 2002; 21
Paragios, Deriche (CR19) 2000; 22
Pappula, Ghosh (CR53) 2017; 72
Becher, Wegner (CR7) 2006; 27
Hoffman, Kaplan (CR3) 2002; 39
Allan, Chita, Sharland, Fagg, Anderson, Crawford (CR4) 1989; 25
Mishra, Dutta, Ghosh (CR39) 2003; 21
Boukerroui, Baskurt, Noble, Basset (CR42) 2003; 24
X, Zhang, Zhang, Chen, Zhang, JC Warrington, Brahm (CR28) 2018; 6
Santiago, Marques, Nascimento (CR36) 2013; 30
Malassiotis, Strintzis (CR41) 1999; 18
Corsi, Borsari, Sarti, Lamberti, Travaglini, Shiota, Thomas (CR14) 2001; 13
CR24
Bhadauria, Dewal (CR58) 2014; 8
CR21
CR20
Mitchell, Korones, Berendes (CR2) 1971; 43
Lin, Weichuan, Duncan (CR32) 2002
Pavlyukevich (CR52) 2007; 226
JY Yan (1991_CR38) 2003; 24
HS Bhadauria (1991_CR58) 2014; 8
1991_CR57
D X (1991_CR28) 2018; 6
MA Maraci (1991_CR5) 2017; 37
Y Chen (1991_CR25) 2002; 50
1991_CR12
1991_CR56
1991_CR55
1991_CR54
M Rousson (1991_CR44) 2008; 76
1991_CR50
N Lin (1991_CR10) 2003; 7
I Pavlyukevich (1991_CR52) 2007; 226
H Zhang (1991_CR29) 2018; 6
SC Mitchell (1991_CR2) 1971; 43
A Mishra (1991_CR39) 2003; 21
1991_CR48
1991_CR47
S Rueda (1991_CR1) 2015; 26
C Corsi (1991_CR14) 2001; 13
R Becher (1991_CR7) 2006; 27
N Paragios (1991_CR11) 2003; 22
D Boukerroui (1991_CR42) 2003; 24
N Paragios (1991_CR19) 2000; 22
D Cremers (1991_CR26) 2002; 50
Foulonneau (1991_CR46) 2009; 81
T Lassige (1991_CR22) 2000; 24
S Vijayalakshmi (1991_CR6) 2013; 27
T Chan (1991_CR16) 2001; 10
NB Mohammed (1991_CR49) 2011; 61
1991_CR37
S Osher (1991_CR8) 1988; 79
KW Fong (1991_CR31) 2004; 24
N Lin (1991_CR32) 2002
Y Z Gao (1991_CR30) 2018; 37
A Sarti (1991_CR13) 2000; 12
1991_CR9
S Malassiotis (1991_CR41) 1999; 18
M Siqueira (1991_CR23) 2002; 32
1991_CR34
1991_CR33
D Cremers (1991_CR43) 2006; 28
J Chen (1991_CR27) 2018; 6
C Santiago (1991_CR36) 2013; 30
H Çataloluk (1991_CR35) 2018; 73
D Mumford (1991_CR51) 1989; 42
1991_CR24
L Chunming (1991_CR18) 2010; 19
L Chunming (1991_CR17) 2008; 17
A Skalskia (1991_CR45) 2012; 1
L Pappula (1991_CR53) 2017; 72
KL Hoffman (1991_CR3) 2002; 39
C Corsi (1991_CR15) 2002; 21
I Hunter (1991_CR40) 1993; 20
1991_CR21
1991_CR20
LD Allan (1991_CR4) 1989; 25
References_xml – volume: 6
  start-page: 3828
  year: 2018
  end-page: 3838
  ident: CR28
  article-title: Deep regression segmentation for cardiac bi-ventricle MR images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2789179
– ident: CR12
– volume: 37
  start-page: 22
  year: 2017
  end-page: 36
  ident: CR5
  article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.003
– volume: 13
  start-page: 41
  year: 2001
  end-page: 51
  ident: CR14
  article-title: Left ventricular endocardial surface detection based on real time 3D echocardiographic data
  publication-title: Eur J Ultrasound
  doi: 10.1016/S0929-8266(00)00123-3
– volume: 8
  start-page: 357
  issue: 2
  year: 2014
  end-page: 364
  ident: CR58
  article-title: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging
  publication-title: SIViP
  doi: 10.1007/s11760-012-0298-0
– volume: 50
  start-page: 315
  issue: 3
  year: 2002
  end-page: 328
  ident: CR25
  article-title: Using prior shapes in geometric active contours in a variational framework
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1020878408985
– ident: CR54
– volume: 39
  start-page: 1890
  year: 2002
  end-page: 1900
  ident: CR3
  article-title: The incidence of congenital heart disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(02)01886-7
– volume: 6
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR27
  article-title: Correlated regression feature learning for automated right ventricle segmentation
  publication-title: IEEE J Transl Eng Health Med
– volume: 22
  start-page: 266
  issue: 3
  year: 2000
  end-page: 280
  ident: CR19
  article-title: Geodesic active contours and level sets for the detection and tracking of moving objects
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.841758
– volume: 24
  start-page: 377
  issue: 6
  year: 2000
  end-page: 388
  ident: CR22
  article-title: Comparison of septal defects in 2d and 3d echocardiography using active contour models
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/S0895-6111(00)00032-X
– ident: CR21
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: CR8
  article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– volume: 42
  start-page: 577
  year: 1989
  end-page: 685
  ident: CR51
  article-title: Optimal approximation by piecewise smooth functions and associated variational problems
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160420503
– start-page: 682
  year: 2002
  end-page: 689
  ident: CR32
  publication-title: Combinative multi-scale level set framework for echocardiographic image segmentation
– ident: CR50
– volume: 1
  start-page: 2723
  year: 2012
  end-page: 2732
  ident: CR45
  article-title: Left ventricle USG image segmentation using active contour model
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2010.04.306
– volume: 18
  start-page: 282
  issue: 3
  year: 1999
  end-page: 290
  ident: CR41
  article-title: Tracking the left ventricle in echocardiographic images by learning heart dynamics
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.764905
– ident: CR9
– volume: 7
  start-page: 529
  issue: 4
  year: 2003
  end-page: 537
  ident: CR10
  article-title: Combinative multi-scale level set framework for echocardiographic image segmentation
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(03)00035-5
– ident: CR57
– volume: 20
  start-page: 201
  year: 1993
  end-page: 204
  ident: CR40
  article-title: Detection of echocardiographic left ventricle boundaries using neural networks
  publication-title: Comput Cardiol
– volume: 24
  start-page: 157
  year: 2004
  end-page: 174
  ident: CR31
  article-title: Detection of fetal structural abnormalities with US during early pregnancy
  publication-title: Radio Graphics
– volume: 12
  start-page: 6258
  issue: 97
  year: 2000
  end-page: 6263
  ident: CR13
  article-title: Subjective surfaces: a method for completion of missing boundaries
  publication-title: PNAS
  doi: 10.1073/pnas.110135797
– volume: 81
  start-page: 68
  issue: 1
  year: 2009
  end-page: 81
  ident: CR46
  article-title: Multi-reference shape priors for active contours
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-008-0163-3
– volume: 26
  start-page: 30
  year: 2015
  end-page: 46
  ident: CR1
  article-title: Feature-based fuzzy connectedness segmentation of ultrasound images with an object completion step
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.07.002
– ident: CR47
– volume: 72
  start-page: 52
  year: 2017
  end-page: 64
  ident: CR53
  article-title: Synthesis of linear aperiodic array using Cauchy mutated cat swarm optimization
  publication-title: Int J Electron Commun (AEÜ)
  doi: 10.1016/j.aeue.2016.11.016
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  end-page: 3254
  ident: CR18
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2069690
– ident: CR37
– volume: 22
  start-page: 773
  issue: 6
  year: 2003
  end-page: 776
  ident: CR11
  article-title: A level set approach for shape-driven segmentation and tracking of the left ventricle
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.814785
– volume: 28
  start-page: 1262
  issue: 8
  year: 2006
  end-page: 1273
  ident: CR43
  article-title: Dynamical statistical shape priors for level set based tracking
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.161
– volume: 61
  start-page: 904
  year: 2011
  end-page: 909
  ident: CR49
  article-title: Evolution of foetal echocardiography as a screening tool for prenatal diagnosis of congenital heart defects
  publication-title: J Pak Med Assoc
– ident: CR33
– volume: 24
  start-page: 2777
  issue: 15
  year: 2003
  end-page: 2784
  ident: CR38
  article-title: Applying improved fast marching method to endocardial boundary detection in echocardiographic images
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(03)00121-1
– volume: 30
  start-page: 163
  year: 2013
  end-page: 178
  ident: CR36
  article-title: A robust deformable model for 3D segmentation of the left ventricle from ultrasound data, mathematical methodologies in pattern recognition and machine learning
  publication-title: Springer Proc
  doi: 10.1007/978-1-4614-5076-4_11
– ident: CR56
– volume: 27
  start-page: 205
  issue: 2
  year: 2013
  end-page: 209
  ident: CR6
  article-title: Automated region mask for four-chamber fetal heart biometry
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-012-9404-7
– volume: 21
  start-page: 1202
  year: 2002
  end-page: 1208
  ident: CR15
  article-title: Left ventricular volume estimation for real-time-dimensional echocardiography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2002.804418
– volume: 50
  start-page: 295
  issue: 3
  year: 2002
  end-page: 313
  ident: CR26
  article-title: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1020826424915
– volume: 43
  start-page: 323
  issue: 3
  year: 1971
  end-page: 332
  ident: CR2
  article-title: Congenital heart disease in 56,109 births: incidence and natural history
  publication-title: Circulation
  doi: 10.1161/01.CIR.43.3.323
– volume: 76
  start-page: 231
  issue: 3
  year: 2008
  end-page: 243
  ident: CR44
  article-title: Prior knowledge, level set representations & visual grouping
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-007-0054-z
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR29
  article-title: A Meshfree representation for cardiac medical image computing
  publication-title: IEEE J Transl Eng Health Med
– ident: CR48
– volume: 25
  start-page: 279
  year: 1989
  end-page: 288
  ident: CR4
  article-title: The accuracy of fetal echocardiography in the diagnosis of congenital heart disease
  publication-title: Int J Cardiol
  doi: 10.1016/0167-5273(89)90218-0
– volume: 24
  start-page: 779
  year: 2003
  end-page: 790
  ident: CR42
  article-title: Segmentation of ultrasound images; multi-resolution 2D and 3D algorithm based on global and local statistics
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(02)00181-2
– volume: 27
  start-page: 613
  year: 2006
  end-page: 618
  ident: CR7
  article-title: Detailed screening for fetal anomalies and cardiac defects at the 11–13 week scan
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.2709
– volume: 32
  start-page: 135
  year: 2002
  end-page: 145
  ident: CR23
  article-title: Echocardiographic image sequence segmentation and analysis using self-organizing maps
  publication-title: J VLSI Signal Proc SystSignal, Image, Video Technol
  doi: 10.1023/A:1016375620596
– volume: 73
  start-page: 22
  year: 2018
  end-page: 30
  ident: CR35
  article-title: A novel hybrid model for two-phase image segmentation: GSA based Chan-Vese algorithm
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.027
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  end-page: 277
  ident: CR16
  article-title: Active contours without edges
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– volume: 37
  start-page: 273
  year: 2018
  end-page: 283
  ident: CR30
  article-title: Motion tracking of the carotid artery wall from ultrasound image sequences: a nonlinear state-space approach
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2746879
– ident: CR34
– ident: CR55
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  end-page: 1949
  ident: CR17
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2002304
– ident: CR24
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  end-page: 1844
  ident: CR52
  article-title: Lévy flights, non-local search and simulated annealing
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.06.008
– ident: CR20
– volume: 21
  start-page: 967
  year: 2003
  end-page: 976
  ident: CR39
  article-title: A GA based approach for boundary detection of left ventricle with echocardiographic image sequences
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(03)00121-5
– ident: 1991_CR9
– volume: 6
  start-page: 1
  year: 2018
  ident: 1991_CR27
  publication-title: IEEE J Transl Eng Health Med
– ident: 1991_CR57
  doi: 10.1007/s11277-018-6014-9
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  ident: 1991_CR52
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.06.008
– volume: 50
  start-page: 295
  issue: 3
  year: 2002
  ident: 1991_CR26
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1020826424915
– volume: 26
  start-page: 30
  year: 2015
  ident: 1991_CR1
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.07.002
– ident: 1991_CR33
– ident: 1991_CR50
  doi: 10.1016/j.asoc.2015.09.002
– volume: 12
  start-page: 6258
  issue: 97
  year: 2000
  ident: 1991_CR13
  publication-title: PNAS
  doi: 10.1073/pnas.110135797
– volume: 39
  start-page: 1890
  year: 2002
  ident: 1991_CR3
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(02)01886-7
– volume: 28
  start-page: 1262
  issue: 8
  year: 2006
  ident: 1991_CR43
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.161
– volume: 43
  start-page: 323
  issue: 3
  year: 1971
  ident: 1991_CR2
  publication-title: Circulation
  doi: 10.1161/01.CIR.43.3.323
– volume: 22
  start-page: 266
  issue: 3
  year: 2000
  ident: 1991_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.841758
– volume: 24
  start-page: 377
  issue: 6
  year: 2000
  ident: 1991_CR22
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/S0895-6111(00)00032-X
– volume: 42
  start-page: 577
  year: 1989
  ident: 1991_CR51
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160420503
– volume: 27
  start-page: 613
  year: 2006
  ident: 1991_CR7
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.2709
– volume: 79
  start-page: 12
  year: 1988
  ident: 1991_CR8
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– volume: 50
  start-page: 315
  issue: 3
  year: 2002
  ident: 1991_CR25
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1020878408985
– volume: 25
  start-page: 279
  year: 1989
  ident: 1991_CR4
  publication-title: Int J Cardiol
  doi: 10.1016/0167-5273(89)90218-0
– ident: 1991_CR55
  doi: 10.22266/ijies2016.0930.12
– volume: 7
  start-page: 529
  issue: 4
  year: 2003
  ident: 1991_CR10
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(03)00035-5
– ident: 1991_CR54
  doi: 10.1016/j.asoc.2016.10.038
– volume: 73
  start-page: 22
  year: 2018
  ident: 1991_CR35
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.027
– volume: 22
  start-page: 773
  issue: 6
  year: 2003
  ident: 1991_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.814785
– volume: 18
  start-page: 282
  issue: 3
  year: 1999
  ident: 1991_CR41
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.764905
– volume: 20
  start-page: 201
  year: 1993
  ident: 1991_CR40
  publication-title: Comput Cardiol
– volume: 8
  start-page: 357
  issue: 2
  year: 2014
  ident: 1991_CR58
  publication-title: SIViP
  doi: 10.1007/s11760-012-0298-0
– volume: 24
  start-page: 2777
  issue: 15
  year: 2003
  ident: 1991_CR38
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(03)00121-1
– ident: 1991_CR12
– volume: 24
  start-page: 779
  year: 2003
  ident: 1991_CR42
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(02)00181-2
– ident: 1991_CR21
  doi: 10.1049/cp:19990374
– ident: 1991_CR37
  doi: 10.1016/j.bspc.2014.09.013
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  ident: 1991_CR18
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2069690
– volume: 6
  start-page: 1
  year: 2018
  ident: 1991_CR29
  publication-title: IEEE J Transl Eng Health Med
– volume: 81
  start-page: 68
  issue: 1
  year: 2009
  ident: 1991_CR46
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-008-0163-3
– ident: 1991_CR20
  doi: 10.1007/3-540-44935-3_27
– volume: 61
  start-page: 904
  year: 2011
  ident: 1991_CR49
  publication-title: J Pak Med Assoc
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  ident: 1991_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2002304
– volume: 1
  start-page: 2723
  year: 2012
  ident: 1991_CR45
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2010.04.306
– volume: 30
  start-page: 163
  year: 2013
  ident: 1991_CR36
  publication-title: Springer Proc
  doi: 10.1007/978-1-4614-5076-4_11
– ident: 1991_CR24
  doi: 10.1109/ISBI.2007.356989
– volume: 13
  start-page: 41
  year: 2001
  ident: 1991_CR14
  publication-title: Eur J Ultrasound
  doi: 10.1016/S0929-8266(00)00123-3
– volume: 37
  start-page: 273
  year: 2018
  ident: 1991_CR30
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2746879
– ident: 1991_CR34
– volume: 37
  start-page: 22
  year: 2017
  ident: 1991_CR5
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.003
– ident: 1991_CR56
  doi: 10.1016/j.cose.2018.04.009
– volume: 72
  start-page: 52
  year: 2017
  ident: 1991_CR53
  publication-title: Int J Electron Commun (AEÜ)
  doi: 10.1016/j.aeue.2016.11.016
– volume: 24
  start-page: 157
  year: 2004
  ident: 1991_CR31
  publication-title: Radio Graphics
– volume: 6
  start-page: 3828
  year: 2018
  ident: 1991_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2789179
– volume: 21
  start-page: 1202
  year: 2002
  ident: 1991_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2002.804418
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 1991_CR16
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– volume: 32
  start-page: 135
  year: 2002
  ident: 1991_CR23
  publication-title: J VLSI Signal Proc SystSignal, Image, Video Technol
  doi: 10.1023/A:1016375620596
– volume: 21
  start-page: 967
  year: 2003
  ident: 1991_CR39
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(03)00121-5
– volume: 76
  start-page: 231
  issue: 3
  year: 2008
  ident: 1991_CR44
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-007-0054-z
– ident: 1991_CR47
  doi: 10.1007/978-3-642-23672-3_7
– ident: 1991_CR48
– start-page: 682
  volume-title: Combinative multi-scale level set framework for echocardiographic image segmentation
  year: 2002
  ident: 1991_CR32
– volume: 27
  start-page: 205
  issue: 2
  year: 2013
  ident: 1991_CR6
  publication-title: J Clin Monit Comput
  doi: 10.1007/s10877-012-9404-7
SSID ssj0021524
Score 2.2881112
Snippet The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1763
SubjectTerms Adult
Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Boundaries
Computer Applications
Contours
Energy conservation
Female
Fetal Heart - diagnostic imaging
Fetuses
Gestational Age
Heuristic methods
Human Physiology
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Model accuracy
Optimization
Original Article
Pollination
Pregnancy
Radiology
Shape
Ultrasonic imaging
Ultrasonography, Prenatal - methods
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZQkRCX5bHsbnnJK-2NDUqcOE6PFeIhEJwoYk-RE4_RammKmlZInPgFXPiH_BJmEifV8pK4RKpiJ6kz9nyT-eYzY79ARhj4COVJP6NPN1Z7WYCHJLO5MRZfek4Z3dOz-GgQHV_KS1cUVjZs9yYlWa3Us2I3dE5EkyR-D_F1cOGdr_S2Omy-f_jnZL8NtNAnRS11ERG0K5Z5-yr_O6RXKPNVhrRyPAdLbNA8cs03-bc7nWS7-d0LNcfP_qdl9sUhUd6vTWeFzUGxyhZOXa79K3voFxiQV2oCvFaZnY6Bl3A1dOVKBafaFA4kkcwtIIrn0-vJWJe0UxNvOdqcqPVXvFYe4TeVCHjdfa9_zstbPR7yES5cw793MH66fyS_ajhVPeCPCyiBV7v1rLHBwf753pHndm_w8lDJiQcG4UDe08oHgXG2lkIFNgRhMmkxbJMZggswsY2l0T0T2iQBFYAySikqiIXwG-sUowJ-MC7iHlgdmAjDuSiwSvcy4UdaWz_Q6E1FlwXNK0xzJ21OO2xcpzNRZhroFAc5rQY6xT47bZ-bWtjjw9abjWWkbpKXKSKrJMGITuDpn-1pnJ6Uc9EFjKbUJsaITglfdtn32qLa24UBojEEYF32u7GO2cXff5b1zzXfYIuiMjAiLW6yDhoMbCGQmmTbbt48AxbWFcM
  priority: 102
  providerName: Springer Nature
Title Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer–based Chan–Vese model
URI https://link.springer.com/article/10.1007/s11517-019-01991-2
https://www.ncbi.nlm.nih.gov/pubmed/31190201
https://www.proquest.com/docview/2238817422
https://www.proquest.com/docview/2265767205
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_uWhBfxG97nmUF3zSYbD42fRBJj_YO5YrIVepT2GRnD-Ga1qblwCf_Al_8D_1LnMlXkcN7SQibTUJmsvObzMxvAF5hGJDjI5UTuhn_urHayTzaxJnNjbEk9Jwjuuez6GwefFiEiwOYtbUwnFbZronVQm1WOf8jf0tmLI4JPkv5fv3d4a5RHF1tW2joprWCeVdRjB1CXzIzVg_648ns0-fOBSNrFXRJjYStmzKaupiOjB-nYXL-EOcDyX9N1Q38eSN2Wpmk6X2412BJkdTCfwAHWDyEO-dNtPwR_EoKcqkrPgBR88TuNihKvFw2BUeF4OoSgUxyLCwSDhe7q-1Gl9xrSXRZ1oKT4y9FzR0i1hWNdz39JLkQ5bXeLMWKlp7ltx-4-fPzN1tGI7hugQ6-YImi6rfzGObTycXJmdP0X3ByX4VbBw0Z9HyklYuSPGUdSuVZH6XJQkuOV5gRPEAT2Sg0emR8G8eoPFRGKcUlreg_gV6xKvAZCBmN0GrPBOSQBZ5VepRJN9Daup4meygH4LWvOs0bcnLukXGV7mmVWTwpiSatxJPSnNfdnHVNzXHr2cetBNPmMy3TvVIN4GU3TB8YR010gasdnxORT6akGw7gaS357na-R3iKINQA3rSqsL_4_5_l6PZneQ53ZaWGnGZ4DD1SEHxB0GebDeFQLRRt4-npEPrJdDye8f7068fJsNF1Gp3L5C_MoggX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVgIuiH9SCiwSnMDCXnu99qFCobRKaRMhlKLezNo7WyE1ThonquDEE3DhfXgYnoQZe-0IVfTWS6QoXsfyjPebzzPzDWMvQEZIfITypJ_TqxurvTzAjyS3hTEWjV5QRnc4igdH0YdjebzGfre9MFRW2e6J9UZtpgW9I3-DMJYkGD4L8XZ25tHUKMqutiM0tButYLZriTHX2HEA386RwlXb--_R3i-F2Nsd7ww8N2XAK0IlFx4YhK0i1coHgXxQS6ECG4IwubRIL2SOIAgmtrE0OjWhTRJQASijlKLGTQjxvNfYRhRGKZK_jXe7o4-fOsqH6Bh1RZQYy7u2naZ5D8GWyj6pXonqj8S_0Hgh3r2Qq60hcO82u-ViV95vnO0OW4PyLrs-dNn5e-xnv0QKX-sP8EaXdjkHXsHJxDU4lZy6WTiQqDK3gHE_X54u5rqi2U68q-rmVIx_whutEj6rZcOb5Tv9Ma_O9XzCp7jVTb5-h_mfH78IiQ2nPgn88hkq4PV8n_vs6Eos8YCtl9MSHjEu4hSsDkyEBDAKrNJpLvxIa-sHGvFX9FjQ3uqscGLoNJPjNFvJOJN5MjRNVpsnwzWvujWzRgrk0qO3WgtmbluospUT99jz7md8oClLo0uYLumYGDmgEr7ssYeN5bu_CwOM3zBk67HXrSusTv7_a9m8_FqesRuD8fAwO9wfHTxmN0XtklTiuMXW0VngCYZdi_yp823Ovlz14_QXYaU-4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLZKkSouiH-WFhgkOEHUZJLJJAeEVi2rltKKQ4v2FiYZT4XUzW43u6rgxBNw4W14HJ4EO38rVNFbL5GiZJIo9sxnjz_bAC9RReT4SO0pP-etG2e8PKBDkrvCWkdCLziie3gU751EH8ZqvAa_u1wYplV2a2K9UNtpwXvk2wRjSULms5TbrqVFfNodvZude9xBiiOtXTuNRkUO8NsFuW_V2_1dkvUrKUfvj3f2vLbDgFeEWi08tARZRWq0j5J8QaOkDlyI0ubKkWuhcgJAtLGLlTWpDV2SoA5QW601J21iSM-9ATd1GKZMJ9TjlbNHuBj19Emy4tuEnSZtj2CWCZ_MVGLmkfwXFC9ZupeitDX4je7A7dZqFcNGze7CGpb3YOOwjcvfh5_Dkpz3uvKAaCrSLucoKjydtKlNpeA8FoFcTlk4JItfLM8Wc1NxVyfR87kF0_BPRVOlRMzqguHN8J3hsaguzHwiprTITb5-x_mfH78Yg63gDAk6-YwVirqzzwM4uRY5PIT1clriYxAyTtGZwEbk-kWB0ybNpR8Z4_zAEPLKAQTdr86Ktgw6d-M4y1YFnFk8GYkmq8WT0ZjX_ZhZUwTkyru3Oglm7YJQZSv1HcCL_jJNZY7PmBKnS74nJu9PS18N4FEj-f51YUCWGxlrA3jTqcLq4f__lidXf8tz2KBJlH3cPzrYhFuy1kjmNm7BOukKPiV7a5E_qxVbwJfrnkl_AaE8PH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomical+structure+segmentation+from+early+fetal+ultrasound+sequences+using+global+pollination+CAT+swarm+optimizer%E2%80%93based+Chan%E2%80%93Vese+model&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Femina%2C+M+A&rft.au=Raajagopalan%2C+S+P&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=8&rft.spage=1763&rft.epage=1782&rft_id=info:doi/10.1007%2Fs11517-019-01991-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon