Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer–based Chan–Vese model
The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, activ...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 57; no. 8; pp. 1763 - 1782 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-019-01991-2 |
Cover
| Abstract | The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan–Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination–based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods.
Graphical Abstract
Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model |
|---|---|
| AbstractList | The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model. The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan–Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination–based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan–Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination–based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model.The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model. |
| Author | Femina, M. A. Raajagopalan, S. P. |
| Author_xml | – sequence: 1 givenname: M. A. surname: Femina fullname: Femina, M. A. email: feminaphd@gmail.com, femijeni@yahoo.co.in organization: Electrical and Electronics Engineering, KCG College of Technology – sequence: 2 givenname: S. P. surname: Raajagopalan fullname: Raajagopalan, S. P. organization: Computer Science and Engineering, GKM College of Engineering and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31190201$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKcDL8ACWWLDJuDrxHGyHI34kyqxKWwtJ74ZXDn2YDtCZcUTsOENeRI8pBVSF11YV5a_c3R9zgU588EjIc-BvQbG5JsEIEBWDPrT6aHij8gGZAMVa5rmjGwYNKw8QXdOLlK6ZoyD4M0Tcl4D9Iwz2JBfO69zmO2oHU05LmNeItKEhxl91tkGT6cYZoo6uhs6YS7c4nLUKSzeFPDbgn7ERJdk_YEeXBgKcQzOWb_K97srmr7rONNwzHa2PzD--fl70AkN3X_Vvly-YEI6B4PuKXk8aZfw2e3cks_v3l7tP1SXn95_3O8uq7GWIldoGK_HXkuGXHadFlzCVCM3g5h4C2Lg0KFpp1YY3Zt66jqUgNJIKZnoGdZb8mr1PcZQfpCymm0a0TntMSxJcd4K2UrOREFf3kOvwxJ92a5QddeVwMvckhe31DLMaNQx2lnHG3WXdAG6FRhjSCnipEa7BlzCtE4BU6dS1VqqKoWqf6Wqkze_J71zf1BUr6JUYH_A-H_tB1R_AaGCt8c |
| CitedBy_id | crossref_primary_10_1155_2021_2852399 crossref_primary_10_3389_fmed_2021_729978 crossref_primary_10_3389_fmed_2021_733468 crossref_primary_10_1088_2057_1976_ad4f91 crossref_primary_10_3390_informatics9020034 crossref_primary_10_3390_biomimetics8070519 crossref_primary_10_1080_21681163_2023_2179343 |
| Cites_doi | 10.1109/ACCESS.2017.2789179 10.1016/j.media.2017.01.003 10.1016/S0929-8266(00)00123-3 10.1007/s11760-012-0298-0 10.1023/A:1020878408985 10.1016/S0735-1097(02)01886-7 10.1109/34.841758 10.1016/S0895-6111(00)00032-X 10.1016/0021-9991(88)90002-2 10.1002/cpa.3160420503 10.1016/j.procs.2010.04.306 10.1109/42.764905 10.1016/S1361-8415(03)00035-5 10.1073/pnas.110135797 10.1007/s11263-008-0163-3 10.1016/j.media.2015.07.002 10.1016/j.aeue.2016.11.016 10.1109/TIP.2010.2069690 10.1109/TMI.2003.814785 10.1109/TPAMI.2006.161 10.1016/S0167-8655(03)00121-1 10.1007/978-1-4614-5076-4_11 10.1007/s10877-012-9404-7 10.1109/TMI.2002.804418 10.1023/A:1020826424915 10.1161/01.CIR.43.3.323 10.1007/s11263-007-0054-z 10.1016/0167-5273(89)90218-0 10.1016/S0167-8655(02)00181-2 10.1002/uog.2709 10.1023/A:1016375620596 10.1016/j.engappai.2018.04.027 10.1109/83.902291 10.1109/TMI.2017.2746879 10.1109/TIP.2008.2002304 10.1016/j.jcp.2007.06.008 10.1016/S0262-8856(03)00121-5 10.1007/s11277-018-6014-9 10.1016/j.asoc.2015.09.002 10.22266/ijies2016.0930.12 10.1016/j.asoc.2016.10.038 10.1049/cp:19990374 10.1016/j.bspc.2014.09.013 10.1007/3-540-44935-3_27 10.1109/ISBI.2007.356989 10.1016/j.cose.2018.04.009 10.1007/978-3-642-23672-3_7 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2019 Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2019 – notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s11517-019-01991-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database ProQuest Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 1782 |
| ExternalDocumentID | 31190201 10_1007_s11517_019_01991_2 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -5B -5G -BR -EM -~C -~X .4S .86 .DC .VR 04C 06D 0R~ 0VY 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 40D 40E 5GY 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CCPQU CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N9A NAPCQ NB0 NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R89 R9I RHV ROL RPX RSV RXW S16 S27 S3B SAP SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZL0 ZMTXR ZOVNA ~8M ~EX ~KM -Y2 .55 .GJ 1SB 2.D 28- 2VQ 53G 5QI AAAVM AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABDPE ABFSG ABQSL ABRTQ ABULA ACBNA ACBXY ACSTC ADHKG ADYPR AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 IHE LAI N2Q NDZJH PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO R4E RNI RZK S1Z S26 S28 SBY SCLPG T16 TAE UZXMN VFIZW X7M ZGI ZXP CGR CUY CVF ECM EIF NPM RIG 3V. 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c375t-ed023c9a70e2788a5271f3e2db5f2615b218ed6f65da9d3f88e71e7d7770590e3 |
| IEDL.DBID | BENPR |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Sep 04 17:43:45 EDT 2025 Tue Oct 07 05:48:12 EDT 2025 Thu Apr 03 07:02:31 EDT 2025 Wed Oct 01 03:37:58 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Fri Feb 21 02:31:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Congenital heart defect Global pollination Level set CAT swarm Chan–Vese Fetal heart Ultrasound |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-ed023c9a70e2788a5271f3e2db5f2615b218ed6f65da9d3f88e71e7d7770590e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31190201 |
| PQID | 2238817422 |
| PQPubID | 54161 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2265767205 proquest_journals_2238817422 pubmed_primary_31190201 crossref_citationtrail_10_1007_s11517_019_01991_2 crossref_primary_10_1007_s11517_019_01991_2 springer_journals_10_1007_s11517_019_01991_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190801 2019-8-00 2019-Aug |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 8 year: 2019 text: 20190801 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Fong, Toi, Salem, Hornberger, Chitayat, Keating, McAuliffe, Johnson (CR31) 2004; 24 Cremers (CR43) 2006; 28 Chan, Vese (CR16) 2001; 10 Cremers, Tischhauser, Weickert, Schnorr (CR26) 2002; 50 Paragios (CR11) 2003; 22 CR37 CR34 Lassige, Benkeser, Fyfe, Sharma (CR22) 2000; 24 CR33 Vijayalakshmi, Sriraam, Suresh, Muttan (CR6) 2013; 27 Siqueira, Scharcanski, Navaux (CR23) 2002; 32 Çataloluk, Vehbi Çelebi (CR35) 2018; 73 Rousson, Paragios (CR44) 2008; 76 Hunter, Soraghan, Christie, Durrani (CR40) 1993; 20 Chunming, Chenyang, Changfeng, Fox (CR18) 2010; 19 CR9 CR48 CR47 Chen, Zhang, Zhang, X, Zhang, Li (CR27) 2018; 6 Rueda, Knight, Papageorghiou, Noble (CR1) 2015; 26 Skalskia, Turczaa, Zieli skib, Królczykc, Grodzickic (CR45) 2012; 1 Yan, Zhuang (CR38) 2003; 24 Chen, Tagare, Thiruvenkadam, Huang, Wilson, Gopinath, Briggs, Geiser (CR25) 2002; 50 Mohammed, Chinnaiya (CR49) 2011; 61 Lin, Yu, Duncan (CR10) 2003; 7 Chunming, Chiu-Yen, Gore, Zhaohua (CR17) 2008; 17 Z Gao, Li, Sun, Yang, Xiong, Zhang, Liu, Liang, Li (CR30) 2018; 37 Zhang, Gao, Xu, Yu, Wong, Liu, Zhuang, Shi (CR29) 2018; 6 Osher, Sethian (CR8) 1988; 79 CR57 CR12 CR56 CR55 Sarti, Malladi, Sethian (CR13) 2000; 12 CR54 CR50 Mumford, Shah (CR51) 1989; 42 Maraci, Bridge, Napolitano, Papageorghiou, Noble (CR5) 2017; 37 Foulonneau, Charbonnier, Heitz (CR46) 2009; 81 Corsi, Saracino, Sarti, Lamberti (CR15) 2002; 21 Paragios, Deriche (CR19) 2000; 22 Pappula, Ghosh (CR53) 2017; 72 Becher, Wegner (CR7) 2006; 27 Hoffman, Kaplan (CR3) 2002; 39 Allan, Chita, Sharland, Fagg, Anderson, Crawford (CR4) 1989; 25 Mishra, Dutta, Ghosh (CR39) 2003; 21 Boukerroui, Baskurt, Noble, Basset (CR42) 2003; 24 X, Zhang, Zhang, Chen, Zhang, JC Warrington, Brahm (CR28) 2018; 6 Santiago, Marques, Nascimento (CR36) 2013; 30 Malassiotis, Strintzis (CR41) 1999; 18 Corsi, Borsari, Sarti, Lamberti, Travaglini, Shiota, Thomas (CR14) 2001; 13 CR24 Bhadauria, Dewal (CR58) 2014; 8 CR21 CR20 Mitchell, Korones, Berendes (CR2) 1971; 43 Lin, Weichuan, Duncan (CR32) 2002 Pavlyukevich (CR52) 2007; 226 JY Yan (1991_CR38) 2003; 24 HS Bhadauria (1991_CR58) 2014; 8 1991_CR57 D X (1991_CR28) 2018; 6 MA Maraci (1991_CR5) 2017; 37 Y Chen (1991_CR25) 2002; 50 1991_CR12 1991_CR56 1991_CR55 1991_CR54 M Rousson (1991_CR44) 2008; 76 1991_CR50 N Lin (1991_CR10) 2003; 7 I Pavlyukevich (1991_CR52) 2007; 226 H Zhang (1991_CR29) 2018; 6 SC Mitchell (1991_CR2) 1971; 43 A Mishra (1991_CR39) 2003; 21 1991_CR48 1991_CR47 S Rueda (1991_CR1) 2015; 26 C Corsi (1991_CR14) 2001; 13 R Becher (1991_CR7) 2006; 27 N Paragios (1991_CR11) 2003; 22 D Boukerroui (1991_CR42) 2003; 24 N Paragios (1991_CR19) 2000; 22 D Cremers (1991_CR26) 2002; 50 Foulonneau (1991_CR46) 2009; 81 T Lassige (1991_CR22) 2000; 24 S Vijayalakshmi (1991_CR6) 2013; 27 T Chan (1991_CR16) 2001; 10 NB Mohammed (1991_CR49) 2011; 61 1991_CR37 S Osher (1991_CR8) 1988; 79 KW Fong (1991_CR31) 2004; 24 N Lin (1991_CR32) 2002 Y Z Gao (1991_CR30) 2018; 37 A Sarti (1991_CR13) 2000; 12 1991_CR9 S Malassiotis (1991_CR41) 1999; 18 M Siqueira (1991_CR23) 2002; 32 1991_CR34 1991_CR33 D Cremers (1991_CR43) 2006; 28 J Chen (1991_CR27) 2018; 6 C Santiago (1991_CR36) 2013; 30 H Çataloluk (1991_CR35) 2018; 73 D Mumford (1991_CR51) 1989; 42 1991_CR24 L Chunming (1991_CR18) 2010; 19 L Chunming (1991_CR17) 2008; 17 A Skalskia (1991_CR45) 2012; 1 L Pappula (1991_CR53) 2017; 72 KL Hoffman (1991_CR3) 2002; 39 C Corsi (1991_CR15) 2002; 21 I Hunter (1991_CR40) 1993; 20 1991_CR21 1991_CR20 LD Allan (1991_CR4) 1989; 25 |
| References_xml | – volume: 6 start-page: 3828 year: 2018 end-page: 3838 ident: CR28 article-title: Deep regression segmentation for cardiac bi-ventricle MR images publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2789179 – ident: CR12 – volume: 37 start-page: 22 year: 2017 end-page: 36 ident: CR5 article-title: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat publication-title: Med Image Anal doi: 10.1016/j.media.2017.01.003 – volume: 13 start-page: 41 year: 2001 end-page: 51 ident: CR14 article-title: Left ventricular endocardial surface detection based on real time 3D echocardiographic data publication-title: Eur J Ultrasound doi: 10.1016/S0929-8266(00)00123-3 – volume: 8 start-page: 357 issue: 2 year: 2014 end-page: 364 ident: CR58 article-title: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging publication-title: SIViP doi: 10.1007/s11760-012-0298-0 – volume: 50 start-page: 315 issue: 3 year: 2002 end-page: 328 ident: CR25 article-title: Using prior shapes in geometric active contours in a variational framework publication-title: Int J Comput Vis doi: 10.1023/A:1020878408985 – ident: CR54 – volume: 39 start-page: 1890 year: 2002 end-page: 1900 ident: CR3 article-title: The incidence of congenital heart disease publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(02)01886-7 – volume: 6 start-page: 1 year: 2018 end-page: 10 ident: CR27 article-title: Correlated regression feature learning for automated right ventricle segmentation publication-title: IEEE J Transl Eng Health Med – volume: 22 start-page: 266 issue: 3 year: 2000 end-page: 280 ident: CR19 article-title: Geodesic active contours and level sets for the detection and tracking of moving objects publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.841758 – volume: 24 start-page: 377 issue: 6 year: 2000 end-page: 388 ident: CR22 article-title: Comparison of septal defects in 2d and 3d echocardiography using active contour models publication-title: Comput Med Imaging Graph doi: 10.1016/S0895-6111(00)00032-X – ident: CR21 – volume: 79 start-page: 12 year: 1988 end-page: 49 ident: CR8 article-title: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90002-2 – volume: 42 start-page: 577 year: 1989 end-page: 685 ident: CR51 article-title: Optimal approximation by piecewise smooth functions and associated variational problems publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160420503 – start-page: 682 year: 2002 end-page: 689 ident: CR32 publication-title: Combinative multi-scale level set framework for echocardiographic image segmentation – ident: CR50 – volume: 1 start-page: 2723 year: 2012 end-page: 2732 ident: CR45 article-title: Left ventricle USG image segmentation using active contour model publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2010.04.306 – volume: 18 start-page: 282 issue: 3 year: 1999 end-page: 290 ident: CR41 article-title: Tracking the left ventricle in echocardiographic images by learning heart dynamics publication-title: IEEE Trans Med Imaging doi: 10.1109/42.764905 – ident: CR9 – volume: 7 start-page: 529 issue: 4 year: 2003 end-page: 537 ident: CR10 article-title: Combinative multi-scale level set framework for echocardiographic image segmentation publication-title: Med Image Anal doi: 10.1016/S1361-8415(03)00035-5 – ident: CR57 – volume: 20 start-page: 201 year: 1993 end-page: 204 ident: CR40 article-title: Detection of echocardiographic left ventricle boundaries using neural networks publication-title: Comput Cardiol – volume: 24 start-page: 157 year: 2004 end-page: 174 ident: CR31 article-title: Detection of fetal structural abnormalities with US during early pregnancy publication-title: Radio Graphics – volume: 12 start-page: 6258 issue: 97 year: 2000 end-page: 6263 ident: CR13 article-title: Subjective surfaces: a method for completion of missing boundaries publication-title: PNAS doi: 10.1073/pnas.110135797 – volume: 81 start-page: 68 issue: 1 year: 2009 end-page: 81 ident: CR46 article-title: Multi-reference shape priors for active contours publication-title: Int J Comput Vis doi: 10.1007/s11263-008-0163-3 – volume: 26 start-page: 30 year: 2015 end-page: 46 ident: CR1 article-title: Feature-based fuzzy connectedness segmentation of ultrasound images with an object completion step publication-title: Med Image Anal doi: 10.1016/j.media.2015.07.002 – ident: CR47 – volume: 72 start-page: 52 year: 2017 end-page: 64 ident: CR53 article-title: Synthesis of linear aperiodic array using Cauchy mutated cat swarm optimization publication-title: Int J Electron Commun (AEÜ) doi: 10.1016/j.aeue.2016.11.016 – volume: 19 start-page: 3243 issue: 12 year: 2010 end-page: 3254 ident: CR18 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2069690 – ident: CR37 – volume: 22 start-page: 773 issue: 6 year: 2003 end-page: 776 ident: CR11 article-title: A level set approach for shape-driven segmentation and tracking of the left ventricle publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.814785 – volume: 28 start-page: 1262 issue: 8 year: 2006 end-page: 1273 ident: CR43 article-title: Dynamical statistical shape priors for level set based tracking publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.161 – volume: 61 start-page: 904 year: 2011 end-page: 909 ident: CR49 article-title: Evolution of foetal echocardiography as a screening tool for prenatal diagnosis of congenital heart defects publication-title: J Pak Med Assoc – ident: CR33 – volume: 24 start-page: 2777 issue: 15 year: 2003 end-page: 2784 ident: CR38 article-title: Applying improved fast marching method to endocardial boundary detection in echocardiographic images publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(03)00121-1 – volume: 30 start-page: 163 year: 2013 end-page: 178 ident: CR36 article-title: A robust deformable model for 3D segmentation of the left ventricle from ultrasound data, mathematical methodologies in pattern recognition and machine learning publication-title: Springer Proc doi: 10.1007/978-1-4614-5076-4_11 – ident: CR56 – volume: 27 start-page: 205 issue: 2 year: 2013 end-page: 209 ident: CR6 article-title: Automated region mask for four-chamber fetal heart biometry publication-title: J Clin Monit Comput doi: 10.1007/s10877-012-9404-7 – volume: 21 start-page: 1202 year: 2002 end-page: 1208 ident: CR15 article-title: Left ventricular volume estimation for real-time-dimensional echocardiography publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.804418 – volume: 50 start-page: 295 issue: 3 year: 2002 end-page: 313 ident: CR26 article-title: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional publication-title: Int J Comput Vis doi: 10.1023/A:1020826424915 – volume: 43 start-page: 323 issue: 3 year: 1971 end-page: 332 ident: CR2 article-title: Congenital heart disease in 56,109 births: incidence and natural history publication-title: Circulation doi: 10.1161/01.CIR.43.3.323 – volume: 76 start-page: 231 issue: 3 year: 2008 end-page: 243 ident: CR44 article-title: Prior knowledge, level set representations & visual grouping publication-title: Int J Comput Vis doi: 10.1007/s11263-007-0054-z – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: CR29 article-title: A Meshfree representation for cardiac medical image computing publication-title: IEEE J Transl Eng Health Med – ident: CR48 – volume: 25 start-page: 279 year: 1989 end-page: 288 ident: CR4 article-title: The accuracy of fetal echocardiography in the diagnosis of congenital heart disease publication-title: Int J Cardiol doi: 10.1016/0167-5273(89)90218-0 – volume: 24 start-page: 779 year: 2003 end-page: 790 ident: CR42 article-title: Segmentation of ultrasound images; multi-resolution 2D and 3D algorithm based on global and local statistics publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(02)00181-2 – volume: 27 start-page: 613 year: 2006 end-page: 618 ident: CR7 article-title: Detailed screening for fetal anomalies and cardiac defects at the 11–13 week scan publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.2709 – volume: 32 start-page: 135 year: 2002 end-page: 145 ident: CR23 article-title: Echocardiographic image sequence segmentation and analysis using self-organizing maps publication-title: J VLSI Signal Proc SystSignal, Image, Video Technol doi: 10.1023/A:1016375620596 – volume: 73 start-page: 22 year: 2018 end-page: 30 ident: CR35 article-title: A novel hybrid model for two-phase image segmentation: GSA based Chan-Vese algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.027 – volume: 10 start-page: 266 issue: 2 year: 2001 end-page: 277 ident: CR16 article-title: Active contours without edges publication-title: IEEE Trans Image Process doi: 10.1109/83.902291 – volume: 37 start-page: 273 year: 2018 end-page: 283 ident: CR30 article-title: Motion tracking of the carotid artery wall from ultrasound image sequences: a nonlinear state-space approach publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2746879 – ident: CR34 – ident: CR55 – volume: 17 start-page: 1940 issue: 10 year: 2008 end-page: 1949 ident: CR17 article-title: Minimization of region-scalable fitting energy for image segmentation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2002304 – ident: CR24 – volume: 226 start-page: 1830 issue: 2 year: 2007 end-page: 1844 ident: CR52 article-title: Lévy flights, non-local search and simulated annealing publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.06.008 – ident: CR20 – volume: 21 start-page: 967 year: 2003 end-page: 976 ident: CR39 article-title: A GA based approach for boundary detection of left ventricle with echocardiographic image sequences publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00121-5 – ident: 1991_CR9 – volume: 6 start-page: 1 year: 2018 ident: 1991_CR27 publication-title: IEEE J Transl Eng Health Med – ident: 1991_CR57 doi: 10.1007/s11277-018-6014-9 – volume: 226 start-page: 1830 issue: 2 year: 2007 ident: 1991_CR52 publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.06.008 – volume: 50 start-page: 295 issue: 3 year: 2002 ident: 1991_CR26 publication-title: Int J Comput Vis doi: 10.1023/A:1020826424915 – volume: 26 start-page: 30 year: 2015 ident: 1991_CR1 publication-title: Med Image Anal doi: 10.1016/j.media.2015.07.002 – ident: 1991_CR33 – ident: 1991_CR50 doi: 10.1016/j.asoc.2015.09.002 – volume: 12 start-page: 6258 issue: 97 year: 2000 ident: 1991_CR13 publication-title: PNAS doi: 10.1073/pnas.110135797 – volume: 39 start-page: 1890 year: 2002 ident: 1991_CR3 publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(02)01886-7 – volume: 28 start-page: 1262 issue: 8 year: 2006 ident: 1991_CR43 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.161 – volume: 43 start-page: 323 issue: 3 year: 1971 ident: 1991_CR2 publication-title: Circulation doi: 10.1161/01.CIR.43.3.323 – volume: 22 start-page: 266 issue: 3 year: 2000 ident: 1991_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.841758 – volume: 24 start-page: 377 issue: 6 year: 2000 ident: 1991_CR22 publication-title: Comput Med Imaging Graph doi: 10.1016/S0895-6111(00)00032-X – volume: 42 start-page: 577 year: 1989 ident: 1991_CR51 publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160420503 – volume: 27 start-page: 613 year: 2006 ident: 1991_CR7 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.2709 – volume: 79 start-page: 12 year: 1988 ident: 1991_CR8 publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90002-2 – volume: 50 start-page: 315 issue: 3 year: 2002 ident: 1991_CR25 publication-title: Int J Comput Vis doi: 10.1023/A:1020878408985 – volume: 25 start-page: 279 year: 1989 ident: 1991_CR4 publication-title: Int J Cardiol doi: 10.1016/0167-5273(89)90218-0 – ident: 1991_CR55 doi: 10.22266/ijies2016.0930.12 – volume: 7 start-page: 529 issue: 4 year: 2003 ident: 1991_CR10 publication-title: Med Image Anal doi: 10.1016/S1361-8415(03)00035-5 – ident: 1991_CR54 doi: 10.1016/j.asoc.2016.10.038 – volume: 73 start-page: 22 year: 2018 ident: 1991_CR35 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.027 – volume: 22 start-page: 773 issue: 6 year: 2003 ident: 1991_CR11 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.814785 – volume: 18 start-page: 282 issue: 3 year: 1999 ident: 1991_CR41 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.764905 – volume: 20 start-page: 201 year: 1993 ident: 1991_CR40 publication-title: Comput Cardiol – volume: 8 start-page: 357 issue: 2 year: 2014 ident: 1991_CR58 publication-title: SIViP doi: 10.1007/s11760-012-0298-0 – volume: 24 start-page: 2777 issue: 15 year: 2003 ident: 1991_CR38 publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(03)00121-1 – ident: 1991_CR12 – volume: 24 start-page: 779 year: 2003 ident: 1991_CR42 publication-title: Pattern Recogn Lett doi: 10.1016/S0167-8655(02)00181-2 – ident: 1991_CR21 doi: 10.1049/cp:19990374 – ident: 1991_CR37 doi: 10.1016/j.bspc.2014.09.013 – volume: 19 start-page: 3243 issue: 12 year: 2010 ident: 1991_CR18 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2069690 – volume: 6 start-page: 1 year: 2018 ident: 1991_CR29 publication-title: IEEE J Transl Eng Health Med – volume: 81 start-page: 68 issue: 1 year: 2009 ident: 1991_CR46 publication-title: Int J Comput Vis doi: 10.1007/s11263-008-0163-3 – ident: 1991_CR20 doi: 10.1007/3-540-44935-3_27 – volume: 61 start-page: 904 year: 2011 ident: 1991_CR49 publication-title: J Pak Med Assoc – volume: 17 start-page: 1940 issue: 10 year: 2008 ident: 1991_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2002304 – volume: 1 start-page: 2723 year: 2012 ident: 1991_CR45 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2010.04.306 – volume: 30 start-page: 163 year: 2013 ident: 1991_CR36 publication-title: Springer Proc doi: 10.1007/978-1-4614-5076-4_11 – ident: 1991_CR24 doi: 10.1109/ISBI.2007.356989 – volume: 13 start-page: 41 year: 2001 ident: 1991_CR14 publication-title: Eur J Ultrasound doi: 10.1016/S0929-8266(00)00123-3 – volume: 37 start-page: 273 year: 2018 ident: 1991_CR30 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2746879 – ident: 1991_CR34 – volume: 37 start-page: 22 year: 2017 ident: 1991_CR5 publication-title: Med Image Anal doi: 10.1016/j.media.2017.01.003 – ident: 1991_CR56 doi: 10.1016/j.cose.2018.04.009 – volume: 72 start-page: 52 year: 2017 ident: 1991_CR53 publication-title: Int J Electron Commun (AEÜ) doi: 10.1016/j.aeue.2016.11.016 – volume: 24 start-page: 157 year: 2004 ident: 1991_CR31 publication-title: Radio Graphics – volume: 6 start-page: 3828 year: 2018 ident: 1991_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2789179 – volume: 21 start-page: 1202 year: 2002 ident: 1991_CR15 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.804418 – volume: 10 start-page: 266 issue: 2 year: 2001 ident: 1991_CR16 publication-title: IEEE Trans Image Process doi: 10.1109/83.902291 – volume: 32 start-page: 135 year: 2002 ident: 1991_CR23 publication-title: J VLSI Signal Proc SystSignal, Image, Video Technol doi: 10.1023/A:1016375620596 – volume: 21 start-page: 967 year: 2003 ident: 1991_CR39 publication-title: Image Vis Comput doi: 10.1016/S0262-8856(03)00121-5 – volume: 76 start-page: 231 issue: 3 year: 2008 ident: 1991_CR44 publication-title: Int J Comput Vis doi: 10.1007/s11263-007-0054-z – ident: 1991_CR47 doi: 10.1007/978-3-642-23672-3_7 – ident: 1991_CR48 – start-page: 682 volume-title: Combinative multi-scale level set framework for echocardiographic image segmentation year: 2002 ident: 1991_CR32 – volume: 27 start-page: 205 issue: 2 year: 2013 ident: 1991_CR6 publication-title: J Clin Monit Comput doi: 10.1007/s10877-012-9404-7 |
| SSID | ssj0021524 |
| Score | 2.2881112 |
| Snippet | The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1763 |
| SubjectTerms | Adult Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Boundaries Computer Applications Contours Energy conservation Female Fetal Heart - diagnostic imaging Fetuses Gestational Age Heuristic methods Human Physiology Humans Image Interpretation, Computer-Assisted - methods Image processing Image Processing, Computer-Assisted - methods Image segmentation Imaging Model accuracy Optimization Original Article Pollination Pregnancy Radiology Shape Ultrasonic imaging Ultrasonography, Prenatal - methods Ultrasound |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZQkRCX5bHsbnnJK-2NDUqcOE6PFeIhEJwoYk-RE4_RammKmlZInPgFXPiH_BJmEifV8pK4RKpiJ6kz9nyT-eYzY79ARhj4COVJP6NPN1Z7WYCHJLO5MRZfek4Z3dOz-GgQHV_KS1cUVjZs9yYlWa3Us2I3dE5EkyR-D_F1cOGdr_S2Omy-f_jnZL8NtNAnRS11ERG0K5Z5-yr_O6RXKPNVhrRyPAdLbNA8cs03-bc7nWS7-d0LNcfP_qdl9sUhUd6vTWeFzUGxyhZOXa79K3voFxiQV2oCvFaZnY6Bl3A1dOVKBafaFA4kkcwtIIrn0-vJWJe0UxNvOdqcqPVXvFYe4TeVCHjdfa9_zstbPR7yES5cw793MH66fyS_ajhVPeCPCyiBV7v1rLHBwf753pHndm_w8lDJiQcG4UDe08oHgXG2lkIFNgRhMmkxbJMZggswsY2l0T0T2iQBFYAySikqiIXwG-sUowJ-MC7iHlgdmAjDuSiwSvcy4UdaWz_Q6E1FlwXNK0xzJ21OO2xcpzNRZhroFAc5rQY6xT47bZ-bWtjjw9abjWWkbpKXKSKrJMGITuDpn-1pnJ6Uc9EFjKbUJsaITglfdtn32qLa24UBojEEYF32u7GO2cXff5b1zzXfYIuiMjAiLW6yDhoMbCGQmmTbbt48AxbWFcM priority: 102 providerName: Springer Nature |
| Title | Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer–based Chan–Vese model |
| URI | https://link.springer.com/article/10.1007/s11517-019-01991-2 https://www.ncbi.nlm.nih.gov/pubmed/31190201 https://www.proquest.com/docview/2238817422 https://www.proquest.com/docview/2265767205 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_uWhBfxG97nmUF3zSYbD42fRBJj_YO5YrIVepT2GRnD-Ga1qblwCf_Al_8D_1LnMlXkcN7SQibTUJmsvObzMxvAF5hGJDjI5UTuhn_urHayTzaxJnNjbEk9Jwjuuez6GwefFiEiwOYtbUwnFbZronVQm1WOf8jf0tmLI4JPkv5fv3d4a5RHF1tW2joprWCeVdRjB1CXzIzVg_648ns0-fOBSNrFXRJjYStmzKaupiOjB-nYXL-EOcDyX9N1Q38eSN2Wpmk6X2412BJkdTCfwAHWDyEO-dNtPwR_EoKcqkrPgBR88TuNihKvFw2BUeF4OoSgUxyLCwSDhe7q-1Gl9xrSXRZ1oKT4y9FzR0i1hWNdz39JLkQ5bXeLMWKlp7ltx-4-fPzN1tGI7hugQ6-YImi6rfzGObTycXJmdP0X3ByX4VbBw0Z9HyklYuSPGUdSuVZH6XJQkuOV5gRPEAT2Sg0emR8G8eoPFRGKcUlreg_gV6xKvAZCBmN0GrPBOSQBZ5VepRJN9Daup4meygH4LWvOs0bcnLukXGV7mmVWTwpiSatxJPSnNfdnHVNzXHr2cetBNPmMy3TvVIN4GU3TB8YR010gasdnxORT6akGw7gaS357na-R3iKINQA3rSqsL_4_5_l6PZneQ53ZaWGnGZ4DD1SEHxB0GebDeFQLRRt4-npEPrJdDye8f7068fJsNF1Gp3L5C_MoggX |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVgIuiH9SCiwSnMDCXnu99qFCobRKaRMhlKLezNo7WyE1ThonquDEE3DhfXgYnoQZe-0IVfTWS6QoXsfyjPebzzPzDWMvQEZIfITypJ_TqxurvTzAjyS3hTEWjV5QRnc4igdH0YdjebzGfre9MFRW2e6J9UZtpgW9I3-DMJYkGD4L8XZ25tHUKMqutiM0tButYLZriTHX2HEA386RwlXb--_R3i-F2Nsd7ww8N2XAK0IlFx4YhK0i1coHgXxQS6ECG4IwubRIL2SOIAgmtrE0OjWhTRJQASijlKLGTQjxvNfYRhRGKZK_jXe7o4-fOsqH6Bh1RZQYy7u2naZ5D8GWyj6pXonqj8S_0Hgh3r2Qq60hcO82u-ViV95vnO0OW4PyLrs-dNn5e-xnv0QKX-sP8EaXdjkHXsHJxDU4lZy6WTiQqDK3gHE_X54u5rqi2U68q-rmVIx_whutEj6rZcOb5Tv9Ma_O9XzCp7jVTb5-h_mfH78IiQ2nPgn88hkq4PV8n_vs6Eos8YCtl9MSHjEu4hSsDkyEBDAKrNJpLvxIa-sHGvFX9FjQ3uqscGLoNJPjNFvJOJN5MjRNVpsnwzWvujWzRgrk0qO3WgtmbluospUT99jz7md8oClLo0uYLumYGDmgEr7ssYeN5bu_CwOM3zBk67HXrSusTv7_a9m8_FqesRuD8fAwO9wfHTxmN0XtklTiuMXW0VngCYZdi_yp823Ovlz14_QXYaU-4w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLZKkSouiH-WFhgkOEHUZJLJJAeEVi2rltKKQ4v2FiYZT4XUzW43u6rgxBNw4W14HJ4EO38rVNFbL5GiZJIo9sxnjz_bAC9RReT4SO0pP-etG2e8PKBDkrvCWkdCLziie3gU751EH8ZqvAa_u1wYplV2a2K9UNtpwXvk2wRjSULms5TbrqVFfNodvZude9xBiiOtXTuNRkUO8NsFuW_V2_1dkvUrKUfvj3f2vLbDgFeEWi08tARZRWq0j5J8QaOkDlyI0ubKkWuhcgJAtLGLlTWpDV2SoA5QW601J21iSM-9ATd1GKZMJ9TjlbNHuBj19Emy4tuEnSZtj2CWCZ_MVGLmkfwXFC9ZupeitDX4je7A7dZqFcNGze7CGpb3YOOwjcvfh5_Dkpz3uvKAaCrSLucoKjydtKlNpeA8FoFcTlk4JItfLM8Wc1NxVyfR87kF0_BPRVOlRMzqguHN8J3hsaguzHwiprTITb5-x_mfH78Yg63gDAk6-YwVirqzzwM4uRY5PIT1clriYxAyTtGZwEbk-kWB0ybNpR8Z4_zAEPLKAQTdr86Ktgw6d-M4y1YFnFk8GYkmq8WT0ZjX_ZhZUwTkyru3Oglm7YJQZSv1HcCL_jJNZY7PmBKnS74nJu9PS18N4FEj-f51YUCWGxlrA3jTqcLq4f__lidXf8tz2KBJlH3cPzrYhFuy1kjmNm7BOukKPiV7a5E_qxVbwJfrnkl_AaE8PH0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomical+structure+segmentation+from+early+fetal+ultrasound+sequences+using+global+pollination+CAT+swarm+optimizer%E2%80%93based+Chan%E2%80%93Vese+model&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Femina%2C+M+A&rft.au=Raajagopalan%2C+S+P&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=8&rft.spage=1763&rft.epage=1782&rft_id=info:doi/10.1007%2Fs11517-019-01991-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |