Advanced Learning Technologies for Intelligent Transportation Systems: Prospects and Challenges

Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather. Navig...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of vehicular technology Vol. 5; pp. 397 - 427
Main Authors Khalil, Ruhul Amin, Safelnasr, Ziad, Yemane, Naod, Kedir, Mebruk, Shafiqurrahman, Atawulrahman, SAEED, NASIR
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text
ISSN2644-1330
2644-1330
DOI10.1109/OJVT.2024.3369691

Cover

Abstract Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather. Navigating the intricacies of modeling the intricate interaction among these elements, creating universal representations, and employing them to address transportation issues. Yet, these intricacies comprise just one facet of the multifaceted trials confronting contemporary ITS. This paper offers an all-encompassing survey exploring Deep learning (DL) utilization in ITS, primarily focusing on practitioners' methodologies to address these multifaceted challenges. The emphasis lies on the architectural and problem-specific factors that guide the formulation of innovative solutions. In addition to shedding light on the state-of-the-art DL algorithms, we also explore potential applications of DL and large language models (LLMs) in ITS, including traffic flow prediction, vehicle detection and classification, road condition monitoring, traffic sign recognition, and autonomous vehicles. Besides, we identify several future challenges and research directions that can push the boundaries of ITS, including the critical aspects, including transfer learning, hybrid models, privacy and security, and ultra-reliable low-latency communication. Our aim for this survey is to bridge the gap between the burgeoning DL and transportation communities. By doing so, we aim to facilitate a deeper comprehension of the challenges and possibilities within this field. We hope that this effort will inspire further exploration of fresh perspectives and issues, which, in turn, will play a pivotal role in shaping the future of transportation systems.
AbstractList Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather. Navigating the intricacies of modeling the intricate interaction among these elements, creating universal representations, and employing them to address transportation issues. Yet, these intricacies comprise just one facet of the multifaceted trials confronting contemporary ITS. This paper offers an all-encompassing survey exploring Deep learning (DL) utilization in ITS, primarily focusing on practitioners' methodologies to address these multifaceted challenges. The emphasis lies on the architectural and problem-specific factors that guide the formulation of innovative solutions. In addition to shedding light on the state-of-the-art DL algorithms, we also explore potential applications of DL and large language models (LLMs) in ITS, including traffic flow prediction, vehicle detection and classification, road condition monitoring, traffic sign recognition, and autonomous vehicles. Besides, we identify several future challenges and research directions that can push the boundaries of ITS, including the critical aspects, including transfer learning, hybrid models, privacy and security, and ultra-reliable low-latency communication. Our aim for this survey is to bridge the gap between the burgeoning DL and transportation communities. By doing so, we aim to facilitate a deeper comprehension of the challenges and possibilities within this field. We hope that this effort will inspire further exploration of fresh perspectives and issues, which, in turn, will play a pivotal role in shaping the future of transportation systems.
Author Kedir, Mebruk
Safelnasr, Ziad
Shafiqurrahman, Atawulrahman
SAEED, NASIR
Khalil, Ruhul Amin
Yemane, Naod
Author_xml – sequence: 1
  givenname: Ruhul Amin
  orcidid: 0000-0003-4039-9901
  surname: Khalil
  fullname: Khalil, Ruhul Amin
  organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE
– sequence: 2
  givenname: Ziad
  surname: Safelnasr
  fullname: Safelnasr, Ziad
  organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE
– sequence: 3
  givenname: Naod
  surname: Yemane
  fullname: Yemane, Naod
  organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE
– sequence: 4
  givenname: Mebruk
  surname: Kedir
  fullname: Kedir, Mebruk
  organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE
– sequence: 5
  givenname: Atawulrahman
  surname: Shafiqurrahman
  fullname: Shafiqurrahman, Atawulrahman
  organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE
– sequence: 6
  givenname: NASIR
  orcidid: 0000-0002-5123-5139
  surname: SAEED
  fullname: SAEED, NASIR
  email: mr.nasir.saeed@ieee.org
  organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE
BookMark eNp9kM9qGzEQh0VJoWniBwj0oBewq5G00qo3Y_rHweBC3VyFrJ1dy2wkI4mC3752nEDIIacZhvl9zHyfyVVMEQm5AzYDYObr-v5hM-OMy5kQyigDH8g1V1JOQQh29ar_RCal7BljvAEAoa-JnXf_XPTY0RW6HEMc6Ab9LqYxDQEL7VOmy1hxHMOAsdJNdrEcUq6uhhTpn2Op-Fi-0d85lQP6WqiLHV3s3DhiHLDcko-9GwtOnusN-fvj-2bxa7pa_1wu5qupF7qpU2xbCYxpBdx73nvpmQDoFPNGND20Bvptxw03iikvUSuDArDtvNRcMtOIG7K8cLvk9vaQw6PLR5tcsE-DlAfrcg1-RKsbw7UQIMVWS-P6FpQ3aqtkx_UJ7k8sfWH501MlY299uPxbswujBWbP2u1Zuz1rt8_aT0l4k3y55L3Ml0smIOKrfSmlASP-AxN3j24
CODEN IOJVAO
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3514157
crossref_primary_10_1109_ACCESS_2024_3519512
crossref_primary_10_1007_s41870_024_02112_5
crossref_primary_10_1109_OJVT_2024_3446799
crossref_primary_10_3390_wevj16020082
crossref_primary_10_3390_machines13040258
crossref_primary_10_3390_futuretransp4030042
crossref_primary_10_1109_OJVT_2024_3431449
crossref_primary_10_1049_itr2_70018
crossref_primary_10_1088_1402_4896_ad8f6c
crossref_primary_10_3390_smartcities8010024
crossref_primary_10_1007_s42979_025_03736_5
crossref_primary_10_1016_j_jii_2024_100694
crossref_primary_10_3390_electronics13132673
Cites_doi 10.1145/3535101
10.1109/CoDIT55151.2022.9803895
10.1007/978-3-319-46448-0_2
10.1049/iet-its.2016.0208
10.1049/iet-its.2018.5537
10.3390/s19102229
10.3390/electronics12081802
10.1109/WiSPNET.2017.8300034
10.1109/TVT.2020.3027568
10.1007/s11042-020-10366-x
10.1109/BIGCOMP.2017.7881687
10.1109/TITS.2020.2973279
10.1109/ICDMW.2017.33
10.3390/app13031252
10.1016/j.cose.2016.04.006
10.1109/FSKD.2016.7603237
10.1007/s11432-012-4725-1
10.1080/15472450701410395
10.1109/TVT.2016.2585575
10.1109/TITS.2020.3042504
10.1109/TITS.2020.3009223
10.1109/GlobalSIP45357.2019.8969516
10.3390/su14137701
10.1016/S0262-8856(02)00156-7
10.1016/0968-090X(95)00009-8
10.1109/TITS.2021.3053178
10.1007/978-981-10-7299-4_57
10.1109/MITS.2018.2842249
10.3390/s20092483
10.1109/KST.2019.8687542
10.1016/j.compeleceng.2023.108839
10.1109/TITS.2021.3052796
10.1016/j.comcom.2020.01.058
10.1080/23249935.2019.1637966
10.1109/TITS.2019.2958859
10.1109/SIU59756.2023.10223809
10.1109/ICTC.2018.8539377
10.1109/ASONAM49781.2020.9381433
10.1016/j.commtr.2023.100103
10.1109/TITS.2018.2801560
10.1145/3219819.3220096
10.1109/ICoDSA50139.2020.9212858
10.48550/ARXIV.1404.7828
10.1002/ett.4427
10.1007/s42486-020-00039-x
10.1109/INAPR.2018.8627013
10.1109/TII.2020.3009280
10.1109/TITS.2011.2132799
10.3390/s22083044
10.1109/TITS.2020.3030707
10.1007/978-3-031-09644-0_1
10.1007/s10489-020-01801-5
10.1109/ITSC48978.2021.9564839
10.1016/j.eswa.2018.12.031
10.1109/ICWAPR.2010.5576425
10.1007/978-3-030-96630-0_11
10.1109/NOMS47738.2020.9110461
10.1109/NBiS.2015.56
10.1109/TITS.2022.3215572
10.1201/9781003324140-5
10.4218/etrij.2021-0404
10.1109/tits.2023.3343434
10.1007/3-540-28428-1_7
10.1109/ICDCS.2015.15
10.1016/j.comnet.2016.11.008
10.5121/ijcses.2011.2110
10.1016/j.treng.2021.100083
10.1109/TITS.2021.3052908
10.1109/TITS.2019.2963722
10.1109/VTCSpring.2016.7504493
10.1016/j.comnet.2020.107484
10.1016/j.eswa.2019.113074
10.1080/15472450.2020.1721289
10.1109/IGESSC55810.2022.9955329
10.1109/ITSC.2003.1251955
10.1016/j.techfore.2020.119970
10.1049/iet-its.2011.0150
10.1002/9781118971666.ch5
10.1109/OJITS.2021.3083201
10.1201/9781003172772-17
10.1109/ATC58710.2023.10318848
10.1109/ACCESS.2021.3050038
10.1007/978-981-19-0770-8_4
10.1016/j.eswa.2022.117921
10.1109/TITS.2021.3098636
10.1109/CVPR.2014.81
10.1109/TITS.2023.3307589
10.1007/978-981-33-4597-3_10
10.1049/iet-its.2019.0552
10.1109/TITS.2023.3309600
10.1007/s11235-019-00639-8
10.1016/j.procs.2016.04.135
10.1155/2022/6201367
10.1109/TITS.2022.3179893
10.1109/ICCP.2009.5284724
10.1109/TITS.2019.2929020
10.1016/j.physa.2020.125574
10.1109/TITS.2020.2984813
10.3390/su142315996
10.1016/j.trc.2018.12.004
10.1109/ITSC.2017.8317943
10.1109/ICAIT51105.2020.9261783
10.1049/iet-its.2018.0064
10.1109/IAECST54258.2021.9695635
10.1109/TITS.2019.2924883
10.1109/SSCI.2016.7850097
10.1109/TITS.2022.3147826
10.22381/crlsj14120229
10.1109/ICCV.2015.169
10.1109/MICC.2009.5431547
10.1109/TGRS.2020.3042974
10.1109/IEEECONF56737.2023.10092084
10.1109/JAS.2023.123744
10.1109/TITS.2020.3017505
10.1109/MDM61037.2024.00025
10.20537/2076-7633-2021-13-2-429-435
10.1109/IVS.2008.4621301
10.1109/MVT.2018.2883777
10.1109/MCOM.2009.5307471
10.1109/TITS.2020.3017183
10.1109/TITS.2022.3221388
10.1109/CVPR.2016.308
10.1109/ITSC.2018.8569441
10.1109/ICACI49185.2020.9177506
10.1109/TITS.2019.2906365
10.1109/TITS.2020.3025687
10.1177/0278364917710318
10.1109/ICACCS51430.2021.9441929
10.1109/ITSC.2019.8917019
10.1109/TII.2021.3101651
10.1109/TIRVED53476.2021.9639133
10.1109/CICSyN.2011.76
10.1109/ICC.2012.6364667
10.1109/ITSC48978.2021.9565120
10.1109/ICCA59364.2023.10401518
10.1109/ICIEV.2018.8641040
10.1002/dac.4814
10.1109/JIOT.2021.3051414
10.1007/s00521-021-05982-z
10.1109/TITS.2019.2963700
10.1109/ICAAIC53929.2022.9792638
10.1155/2017/6575947
10.1109/DICTA51227.2020.9363395
10.1016/j.heliyon.2021.e08615
10.1109/TITS.2023.3248483
10.1109/TITS.2018.2828025
10.1109/ITSC45102.2020.9294213
10.1109/TITS.2020.3025856
10.37591/rtpc.v9i1.269
10.1109/TITS.2018.2815678
10.1007/978-3-031-09644-0
10.1109/VTCSpring.2017.8108186
10.1117/12.2177465
10.1109/DSN-S.2019.00010
10.1609/aaai.v31i1.11168
10.1016/j.eswa.2011.09.106
10.1109/TITS.2020.3031721
10.1109/MITS.2019.2898973
10.1109/ICISC47916.2020.9171224
10.1109/TVT.2020.3003933
10.1109/ACCESS.2019.2946468
10.1016/j.ins.2022.11.062
10.1016/j.trc.2012.04.002
10.1162/neco.2006.18.7.1527
10.1109/TITS.2012.2225618
10.1109/TNSE.2022.3140529
10.1109/TITS.2022.3158253
10.1109/TITS.2022.3188671
10.1109/ICMLA52953.2021.00138
10.1109/TITS.2018.2838132
10.1016/j.aiopen.2021.01.001
10.1109/SMC53654.2022.9945292
10.1109/TITS.2018.2807199
10.1016/S1570-8705(03)00013-1
10.1109/TITS.2022.3227245
10.1109/ICCSS.2018.8572451
10.1109/CCUBE.2017.8394167
10.3390/computers10110148
10.1109/APCC55198.2022.9943588
10.1109/TELFOR.2016.7818753
10.1109/ITSC55140.2022.9922325
10.1109/TITS.2020.2993926
10.1109/ITSC.2016.7795531
10.24963/ijcai.2018/505
10.1109/ITSC.2001.948835
10.1109/COMST.2008.4564481
10.1016/j.comcom.2020.03.041
10.1109/TITS.2019.2913588
10.1109/TITS.2011.2158001
10.1109/TII.2021.3116132
10.1109/SURV.2009.090202
10.1016/j.aap.2020.105628
10.1109/ICACCS.2019.8728394
10.1109/TITS.2023.3243913
10.1109/TITS.2022.3216462
10.1155/2021/6262194
10.1109/IWCMC.2015.7289164
10.1201/9781003324140-11
10.1109/ITSC45102.2020.9294455
10.13140/RG.2.2.18893.74727
10.1109/IJCNN.1993.714089
10.1061/9780784482292.446
10.1002/9781118971666.ch15
10.11591/ijeecs.v18.i1.pp188-198
10.1016/j.future.2020.07.025
10.1109/TITS.2020.3012034
10.1007/978-1-4419-9563-6_1
10.1109/TITS.2012.2209421
10.1002/ett.4169
10.1109/TITS.2021.3054625
10.1109/ICPR.1996.547421
10.1109/ACCESS.2019.2939532
10.1109/ICCWorkshops50388.2021.9473555
10.1109/TITS.2020.3020556
10.1109/TITS.2023.3258063
10.3390/fi10020014
10.1109/ICC.2019.8761300
10.1007/978-981-16-3067-5_16
10.1109/TITS.2022.3170354
10.1109/ACCESS.2019.2936124
10.1109/TITS.2022.3140767
10.1109/TITS.2020.3032227
10.1109/CVPR.2016.90
10.1016/j.knosys.2023.110273
10.1109/TITS.2020.2980864
10.1016/j.iatssr.2018.05.005
10.1016/j.trc.2017.02.024
10.1109/ACCESS.2020.2993008
10.1117/1.JEI.22.4.041121
10.3390/app12199677
10.1007/978-981-16-3264-8_18
10.1109/IVCNZ51579.2020.9290664
10.1109/TITS.2020.3017882
10.1109/WCICA.2006.1713671
10.1007/s11227-021-03712-9
10.1109/TITS.2014.2308281
10.1049/itr2.12252
10.1109/TITS.2019.2962338
10.1145/3065386
10.1109/WSC.2015.7408214
10.1109/ACCESS.2020.3015096
10.1109/URAI.2016.7734014
10.1109/ACCESS.2019.2902813
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJVT.2024.3369691
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1330
EndPage 427
ExternalDocumentID oai_doaj_org_article_7592733143b749af816c96b64d276c4c
10_1109_OJVT_2024_3369691
10444919
Genre orig-research
GrantInformation_xml – fundername: Summer Undergraduate Research Experience
– fundername: United Arab Emirates University
  grantid: G00004359
  funderid: 10.13039/501100006013
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c375t-e8841007612cc2fc4c0311d60c935f1891fbd2929606c4e769e31e8dc47240953
IEDL.DBID RIE
ISSN 2644-1330
IngestDate Wed Aug 27 01:29:55 EDT 2025
Tue Jul 01 01:47:51 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Wed Aug 27 01:53:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-e8841007612cc2fc4c0311d60c935f1891fbd2929606c4e769e31e8dc47240953
ORCID 0000-0002-5123-5139
0000-0003-4039-9901
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10444919
PageCount 31
ParticipantIDs crossref_citationtrail_10_1109_OJVT_2024_3369691
doaj_primary_oai_doaj_org_article_7592733143b749af816c96b64d276c4c
crossref_primary_10_1109_OJVT_2024_3369691
ieee_primary_10444919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE open journal of vehicular technology
PublicationTitleAbbrev OJVT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref207
ref56
ref208
ref59
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
Anderljung (ref227) 2023
ref54
ref209
ref210
ref211
ref51
ref50
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref43
ref213
Manikandan (ref236) 2020; 13
Goodfellow (ref127) 2016
ref7
ref9
ref4
ref3
ref100
ref221
ref101
ref222
ref40
Brbisson (ref131) 2015
ref35
ref34
ref37
ref36
ref31
ref30
Ren (ref121) 2015
ref32
ref39
ref38
Oord (ref123) 2016
Martin (ref33) 1999
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref200
Howard (ref202) 2017
ref128
ref249
ref129
ref97
ref126
ref247
ref96
ref248
ref99
ref124
ref98
ref125
ref246
ref93
ref133
ref254
ref92
ref134
ref255
ref95
ref252
ref94
ref132
ref253
ref250
ref130
ref251
ref91
ref90
ref89
ref139
ref86
ref137
ref258
ref85
ref138
ref259
ref88
ref135
ref256
ref87
ref136
ref257
ref82
ref144
ref81
ref145
ref84
ref142
ref263
ref83
ref143
ref140
ref261
ref141
ref262
ref80
ref260
ref79
ref108
ref229
ref78
ref109
ref106
ref107
ref228
ref75
ref104
ref225
ref74
ref105
ref77
ref102
ref76
ref103
ref71
ref111
ref232
ref70
ref112
ref233
ref73
ref230
ref72
ref110
ref231
ref68
ref119
ref67
Sha (ref223) 2023
ref117
ref238
ref69
ref118
ref239
ref64
ref115
ref63
ref116
ref237
ref66
ref113
ref234
ref65
ref114
ref235
ref60
ref122
ref243
ref244
ref62
ref120
ref241
ref61
ref242
ref240
ref168
ref169
Fernandes (ref49) 2007
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
Zhou (ref245) 2023
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref149
ref146
ref147
Dai (ref198) 2016
ref155
ref156
ref153
ref154
ref151
ref152
Xu (ref148) 2019
ref150
ref159
ref157
ref158
Zheng (ref220) 2023
Qureshi (ref6) 2013; 15
Srivastava (ref180) 2014; 15
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Liu (ref224) 2024
(ref5) 2021
Wang (ref226) 2023
Mohri (ref22) 2018
Shaheen (ref8) 2013
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref195
ref196
ref193
ref194
References_xml – start-page: 1
  volume-title: Proc. Florida Conf. Recent Adv. Robot. Citeseer
  year: 1999
  ident: ref33
  article-title: Intelligent vehicle/highway system: A surveyPart 1
– ident: ref151
  doi: 10.1145/3535101
– ident: ref182
  doi: 10.1109/CoDIT55151.2022.9803895
– ident: ref199
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref72
  doi: 10.1049/iet-its.2016.0208
– ident: ref193
  doi: 10.1049/iet-its.2018.5537
– ident: ref158
  doi: 10.3390/s19102229
– ident: ref186
  doi: 10.3390/electronics12081802
– ident: ref42
  doi: 10.1109/WiSPNET.2017.8300034
– ident: ref206
  doi: 10.1109/TVT.2020.3027568
– ident: ref141
  doi: 10.1007/s11042-020-10366-x
– start-page: 91
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  year: 2015
  ident: ref121
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref74
  doi: 10.1109/BIGCOMP.2017.7881687
– ident: ref134
  doi: 10.1109/TITS.2020.2973279
– volume: 15
  start-page: 629
  issue: 5
  year: 2013
  ident: ref6
  article-title: A survey on intelligent transportation systems
  publication-title: Middle-East J. Sci. Res.
– ident: ref63
  doi: 10.1109/ICDMW.2017.33
– ident: ref253
  doi: 10.3390/app13031252
– year: 2023
  ident: ref223
  article-title: LanguageMPC: Large language models as decision makers for autonomous driving
– ident: ref242
  doi: 10.1016/j.cose.2016.04.006
– ident: ref184
  doi: 10.1109/FSKD.2016.7603237
– ident: ref12
  doi: 10.1007/s11432-012-4725-1
– ident: ref234
  doi: 10.1080/15472450701410395
– ident: ref76
  doi: 10.1109/TVT.2016.2585575
– ident: ref105
  doi: 10.1109/TITS.2020.3042504
– ident: ref112
  doi: 10.1109/TITS.2020.3009223
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref180
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: ref5
  article-title: Middle east intelligent transportation systems market size, share & trends analysis
– ident: ref102
  doi: 10.1109/GlobalSIP45357.2019.8969516
– ident: ref100
  doi: 10.3390/su14137701
– ident: ref179
  doi: 10.1016/S0262-8856(02)00156-7
– ident: ref26
  doi: 10.1016/0968-090X(95)00009-8
– ident: ref140
  doi: 10.1109/TITS.2021.3053178
– ident: ref85
  doi: 10.1007/978-981-10-7299-4_57
– ident: ref137
  doi: 10.1109/MITS.2018.2842249
– ident: ref239
  doi: 10.3390/s20092483
– ident: ref181
  doi: 10.1109/KST.2019.8687542
– ident: ref97
  doi: 10.1016/j.compeleceng.2023.108839
– ident: ref217
  doi: 10.1109/TITS.2021.3052796
– ident: ref25
  doi: 10.1016/j.comcom.2020.01.058
– ident: ref173
  doi: 10.1080/23249935.2019.1637966
– ident: ref170
  doi: 10.1109/TITS.2019.2958859
– ident: ref261
  doi: 10.1109/SIU59756.2023.10223809
– ident: ref169
  doi: 10.1109/ICTC.2018.8539377
– ident: ref246
  doi: 10.1109/ASONAM49781.2020.9381433
– ident: ref225
  doi: 10.1016/j.commtr.2023.100103
– ident: ref86
  doi: 10.1109/TITS.2018.2801560
– ident: ref165
  doi: 10.1145/3219819.3220096
– ident: ref62
  doi: 10.1109/ICoDSA50139.2020.9212858
– ident: ref116
  doi: 10.48550/ARXIV.1404.7828
– ident: ref16
  doi: 10.1002/ett.4427
– ident: ref66
  doi: 10.1007/s42486-020-00039-x
– ident: ref58
  doi: 10.1109/INAPR.2018.8627013
– ident: ref146
  doi: 10.1109/TII.2020.3009280
– ident: ref212
  doi: 10.1109/TITS.2011.2132799
– year: 2016
  ident: ref123
  article-title: Wavenet: A generative model for raw audio
– ident: ref216
  doi: 10.3390/s22083044
– ident: ref259
  doi: 10.1109/TITS.2020.3030707
– ident: ref70
  doi: 10.1007/978-3-031-09644-0_1
– ident: ref248
  doi: 10.1007/s10489-020-01801-5
– ident: ref159
  doi: 10.1109/ITSC48978.2021.9564839
– ident: ref77
  doi: 10.1016/j.eswa.2018.12.031
– ident: ref177
  doi: 10.1109/ICWAPR.2010.5576425
– ident: ref252
  doi: 10.1007/978-3-030-96630-0_11
– ident: ref61
  doi: 10.1109/NOMS47738.2020.9110461
– start-page: 379
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref198
  article-title: R-FCN: Object detection via region-based fully convolutional networks
– ident: ref60
  doi: 10.1109/NBiS.2015.56
– ident: ref189
  doi: 10.1109/TITS.2022.3215572
– ident: ref230
  doi: 10.1201/9781003324140-5
– ident: ref164
  doi: 10.4218/etrij.2021-0404
– volume-title: Foundations of Machine Learning.
  year: 2018
  ident: ref22
– ident: ref14
  doi: 10.1109/tits.2023.3343434
– ident: ref48
  doi: 10.1007/3-540-28428-1_7
– ident: ref233
  doi: 10.1109/ICDCS.2015.15
– ident: ref52
  doi: 10.1016/j.comnet.2016.11.008
– ident: ref36
  doi: 10.5121/ijcses.2011.2110
– ident: ref68
  doi: 10.1016/j.treng.2021.100083
– year: 2023
  ident: ref227
  article-title: Frontier AI regulation: Managing emerging risks to public safety
– ident: ref195
  doi: 10.1109/TITS.2021.3052908
– ident: ref132
  doi: 10.1109/TITS.2019.2963722
– ident: ref53
  doi: 10.1109/VTCSpring.2016.7504493
– ident: ref69
  doi: 10.1016/j.comnet.2020.107484
– ident: ref109
  doi: 10.1016/j.eswa.2019.113074
– ident: ref50
  doi: 10.1080/15472450.2020.1721289
– ident: ref263
  doi: 10.1109/IGESSC55810.2022.9955329
– ident: ref98
  doi: 10.1109/ITSC.2003.1251955
– ident: ref237
  doi: 10.1016/j.techfore.2020.119970
– ident: ref56
  doi: 10.1049/iet-its.2011.0150
– ident: ref15
  doi: 10.1002/9781118971666.ch5
– ident: ref171
  doi: 10.1109/OJITS.2021.3083201
– ident: ref103
  doi: 10.1201/9781003172772-17
– ident: ref256
  doi: 10.1109/ATC58710.2023.10318848
– ident: ref9
  doi: 10.1109/ACCESS.2021.3050038
– ident: ref35
  doi: 10.1007/978-981-19-0770-8_4
– ident: ref149
  doi: 10.1016/j.eswa.2022.117921
– ident: ref244
  doi: 10.1109/TITS.2021.3098636
– ident: ref122
  doi: 10.1109/CVPR.2014.81
– ident: ref187
  doi: 10.1109/TITS.2023.3307589
– ident: ref41
  doi: 10.1007/978-981-33-4597-3_10
– ident: ref139
  doi: 10.1049/iet-its.2019.0552
– ident: ref188
  doi: 10.1109/TITS.2023.3309600
– ident: ref46
  doi: 10.1007/s11235-019-00639-8
– ident: ref215
  doi: 10.1016/j.procs.2016.04.135
– ident: ref59
  doi: 10.1155/2022/6201367
– ident: ref255
  doi: 10.1109/TITS.2022.3179893
– ident: ref213
  doi: 10.1109/ICCP.2009.5284724
– ident: ref32
  doi: 10.1109/TITS.2019.2929020
– ident: ref73
  doi: 10.1016/j.physa.2020.125574
– ident: ref152
  doi: 10.1109/TITS.2020.2984813
– ident: ref156
  doi: 10.3390/su142315996
– start-page: 40
  year: 2015
  ident: ref131
  article-title: Artificial neural networks applied to taxi destination prediction
– ident: ref31
  doi: 10.1016/j.trc.2018.12.004
– ident: ref133
  doi: 10.1109/ITSC.2017.8317943
– ident: ref11
  doi: 10.1109/ICAIT51105.2020.9261783
– ident: ref30
  doi: 10.1049/iet-its.2018.0064
– year: 2023
  ident: ref245
  article-title: Vision language models in autonomous driving and intelligent transportation systems
– ident: ref247
  doi: 10.1109/IAECST54258.2021.9695635
– ident: ref88
  doi: 10.1109/TITS.2019.2924883
– ident: ref29
  doi: 10.1109/SSCI.2016.7850097
– ident: ref95
  doi: 10.1109/TITS.2022.3147826
– ident: ref110
  doi: 10.22381/crlsj14120229
– ident: ref120
  doi: 10.1109/ICCV.2015.169
– ident: ref39
  doi: 10.1109/MICC.2009.5431547
– ident: ref135
  doi: 10.1109/TGRS.2020.3042974
– ident: ref142
  doi: 10.1109/IEEECONF56737.2023.10092084
– ident: ref136
  doi: 10.1109/JAS.2023.123744
– ident: ref87
  doi: 10.1109/TITS.2020.3017505
– year: 2024
  ident: ref224
  article-title: Spatial-temporal large language model for traffic prediction
  doi: 10.1109/MDM61037.2024.00025
– ident: ref80
  doi: 10.20537/2076-7633-2021-13-2-429-435
– ident: ref45
  doi: 10.1109/IVS.2008.4621301
– ident: ref23
  doi: 10.1109/MVT.2018.2883777
– ident: ref44
  doi: 10.1109/MCOM.2009.5307471
– ident: ref67
  doi: 10.1109/TITS.2020.3017183
– ident: ref257
  doi: 10.1109/TITS.2022.3221388
– ident: ref201
  doi: 10.1109/CVPR.2016.308
– ident: ref129
  doi: 10.1109/ITSC.2018.8569441
– ident: ref175
  doi: 10.1109/ICACI49185.2020.9177506
– ident: ref144
  doi: 10.1109/TITS.2019.2906365
– ident: ref209
  doi: 10.1109/TITS.2020.3025687
– ident: ref124
  doi: 10.1177/0278364917710318
– ident: ref145
  doi: 10.1109/ICACCS51430.2021.9441929
– ident: ref155
  doi: 10.1109/ITSC.2019.8917019
– ident: ref218
  doi: 10.1109/TII.2021.3101651
– ident: ref214
  doi: 10.1109/TIRVED53476.2021.9639133
– ident: ref4
  doi: 10.1109/CICSyN.2011.76
– ident: ref54
  doi: 10.1109/ICC.2012.6364667
– ident: ref161
  doi: 10.1109/ITSC48978.2021.9565120
– ident: ref219
  doi: 10.1109/ICCA59364.2023.10401518
– ident: ref249
  doi: 10.1109/ICIEV.2018.8641040
– ident: ref20
  doi: 10.1002/dac.4814
– volume: 13
  start-page: 1006
  issue: 1
  year: 2020
  ident: ref236
  article-title: Real-time traffic flow prediction and intelligent traffic control from remote location for large-scale heterogeneous networking using tensorflow
  publication-title: Int. J. Future Gener. Commun. Netw.
– ident: ref115
  doi: 10.1109/JIOT.2021.3051414
– ident: ref183
  doi: 10.1007/s00521-021-05982-z
– ident: ref205
  doi: 10.1109/TITS.2019.2963700
– ident: ref34
  doi: 10.1109/ICAAIC53929.2022.9792638
– ident: ref75
  doi: 10.1155/2017/6575947
– ident: ref154
  doi: 10.1109/DICTA51227.2020.9363395
– ident: ref221
  doi: 10.1016/j.heliyon.2021.e08615
– year: 2013
  ident: ref8
  article-title: Intelligent transportation systems
– ident: ref262
  doi: 10.1109/TITS.2023.3248483
– ident: ref207
  doi: 10.1109/TITS.2018.2828025
– ident: ref229
  doi: 10.1109/ITSC45102.2020.9294213
– ident: ref176
  doi: 10.1109/TITS.2020.3025856
– ident: ref185
  doi: 10.37591/rtpc.v9i1.269
– ident: ref28
  doi: 10.1109/TITS.2018.2815678
– ident: ref231
  doi: 10.1007/978-3-031-09644-0
– ident: ref208
  doi: 10.1109/VTCSpring.2017.8108186
– ident: ref51
  doi: 10.1117/12.2177465
– ident: ref241
  doi: 10.1109/DSN-S.2019.00010
– ident: ref96
  doi: 10.1609/aaai.v31i1.11168
– start-page: 1
  volume-title: Proc. 7th Int. Conf. Learn. Representations
  year: 2019
  ident: ref148
  article-title: How powerful are graph neural networks?
– ident: ref194
  doi: 10.1016/j.eswa.2011.09.106
– ident: ref243
  doi: 10.1109/TITS.2020.3031721
– ident: ref238
  doi: 10.1109/MITS.2019.2898973
– ident: ref101
  doi: 10.1109/ICISC47916.2020.9171224
– ident: ref24
  doi: 10.1109/TVT.2020.3003933
– ident: ref92
  doi: 10.1109/ACCESS.2019.2946468
– ident: ref167
  doi: 10.1016/j.ins.2022.11.062
– ident: ref240
  doi: 10.1016/j.trc.2012.04.002
– ident: ref117
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref82
  doi: 10.1109/TITS.2012.2225618
– ident: ref65
  doi: 10.1109/TNSE.2022.3140529
– ident: ref104
  doi: 10.1109/TITS.2022.3158253
– ident: ref232
  doi: 10.1109/TITS.2022.3188671
– ident: ref130
  doi: 10.1109/ICMLA52953.2021.00138
– ident: ref147
  doi: 10.1109/TITS.2018.2838132
– ident: ref150
  doi: 10.1016/j.aiopen.2021.01.001
– ident: ref166
  doi: 10.1109/SMC53654.2022.9945292
– ident: ref204
  doi: 10.1109/TITS.2018.2807199
– ident: ref210
  doi: 10.1016/S1570-8705(03)00013-1
– ident: ref143
  doi: 10.1109/TITS.2022.3227245
– ident: ref174
  doi: 10.1109/ICCSS.2018.8572451
– ident: ref7
  doi: 10.1109/CCUBE.2017.8394167
– ident: ref99
  doi: 10.3390/computers10110148
– ident: ref251
  doi: 10.1109/APCC55198.2022.9943588
– ident: ref57
  doi: 10.1109/TELFOR.2016.7818753
– ident: ref106
  doi: 10.1109/ITSC55140.2022.9922325
– ident: ref197
  doi: 10.1109/TITS.2020.2993926
– ident: ref10
  doi: 10.1109/ITSC.2016.7795531
– ident: ref71
  doi: 10.24963/ijcai.2018/505
– ident: ref2
  doi: 10.1109/ITSC.2001.948835
– ident: ref37
  doi: 10.1109/COMST.2008.4564481
– ident: ref43
  doi: 10.1016/j.comcom.2020.03.041
– ident: ref79
  doi: 10.1109/TITS.2019.2913588
– ident: ref3
  doi: 10.1109/TITS.2011.2158001
– ident: ref203
  doi: 10.1109/TII.2021.3116132
– ident: ref38
  doi: 10.1109/SURV.2009.090202
– ident: ref90
  doi: 10.1016/j.aap.2020.105628
– ident: ref153
  doi: 10.1109/ICACCS.2019.8728394
– ident: ref163
  doi: 10.1109/TITS.2023.3243913
– ident: ref18
  doi: 10.1109/TITS.2022.3216462
– ident: ref94
  doi: 10.1155/2021/6262194
– ident: ref260
  doi: 10.1109/IWCMC.2015.7289164
– ident: ref250
  doi: 10.1201/9781003324140-11
– ident: ref160
  doi: 10.1109/ITSC45102.2020.9294455
– ident: ref125
  doi: 10.13140/RG.2.2.18893.74727
– ident: ref126
  doi: 10.1109/IJCNN.1993.714089
– ident: ref162
  doi: 10.1061/9780784482292.446
– ident: ref211
  doi: 10.1002/9781118971666.ch15
– ident: ref40
  doi: 10.11591/ijeecs.v18.i1.pp188-198
– ident: ref196
  doi: 10.1016/j.future.2020.07.025
– ident: ref113
  doi: 10.1109/TITS.2020.3012034
– ident: ref192
  doi: 10.1007/978-1-4419-9563-6_1
– ident: ref81
  doi: 10.1109/TITS.2012.2209421
– ident: ref21
  doi: 10.1002/ett.4169
– ident: ref114
  doi: 10.1109/TITS.2021.3054625
– volume-title: Deep Learning
  year: 2016
  ident: ref127
– ident: ref128
  doi: 10.1109/ICPR.1996.547421
– ident: ref89
  doi: 10.1109/ACCESS.2019.2939532
– ident: ref168
  doi: 10.1109/ICCWorkshops50388.2021.9473555
– ident: ref190
  doi: 10.1109/TITS.2020.3020556
– ident: ref138
  doi: 10.1109/TITS.2023.3258063
– ident: ref47
  doi: 10.3390/fi10020014
– ident: ref222
  doi: 10.1109/ICC.2019.8761300
– ident: ref17
  doi: 10.1007/978-981-16-3067-5_16
– year: 2023
  ident: ref220
  article-title: ChatGPT is on the horizon: Could a large language model be all we need for intelligent transportation?
– ident: ref83
  doi: 10.1109/TITS.2022.3170354
– ident: ref119
  doi: 10.1109/ACCESS.2019.2936124
– ident: ref191
  doi: 10.1109/TITS.2022.3140767
– start-page: 134
  volume-title: Proc. IADIS Telecommun., Netw. Syst.
  year: 2007
  ident: ref49
  article-title: Vehicle communications: A short survey
– ident: ref108
  doi: 10.1109/TITS.2020.3032227
– ident: ref200
  doi: 10.1109/CVPR.2016.90
– ident: ref254
  doi: 10.1016/j.knosys.2023.110273
– ident: ref19
  doi: 10.1109/TITS.2020.2980864
– ident: ref13
  doi: 10.1016/j.iatssr.2018.05.005
– ident: ref78
  doi: 10.1016/j.trc.2017.02.024
– ident: ref91
  doi: 10.1109/ACCESS.2020.2993008
– ident: ref27
  doi: 10.1117/1.JEI.22.4.041121
– ident: ref55
  doi: 10.3390/app12199677
– ident: ref107
  doi: 10.1007/978-981-16-3264-8_18
– ident: ref157
  doi: 10.1109/IVCNZ51579.2020.9290664
– ident: ref93
  doi: 10.1109/TITS.2020.3017882
– ident: ref172
  doi: 10.1109/WCICA.2006.1713671
– ident: ref64
  doi: 10.1007/s11227-021-03712-9
– year: 2023
  ident: ref226
  article-title: AccidentGPT: Accident analysis and prevention from V2X environmental perception with multi-modal large model
– ident: ref84
  doi: 10.1109/TITS.2014.2308281
– ident: ref1
  doi: 10.1049/itr2.12252
– ident: ref111
  doi: 10.1109/TITS.2019.2962338
– ident: ref118
  doi: 10.1145/3065386
– ident: ref258
  doi: 10.1109/WSC.2015.7408214
– ident: ref235
  doi: 10.1109/ACCESS.2020.3015096
– year: 2017
  ident: ref202
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– ident: ref178
  doi: 10.1109/URAI.2016.7734014
– ident: ref228
  doi: 10.1109/ACCESS.2019.2902813
SSID ssj0002511137
Score 2.4844654
Snippet Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 397
SubjectTerms Autonomous vehicles
Deep learning
explainable AI
Intelligent transportation systems
Large language models
Surveys
Traffic control
traffic flow prediction
Transportation
Vehicle dynamics
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLVQJxgQRxHlkgcmpFA7dmx_bKWiKpU4hhZ1sxLHYUEBteH_YydulC6wsEZOYj0f3_t8vIfQNeSEZyxPIxetZMQlsZEqCETKsWfFiCUC_OXkp2cxXfDZMll2rL78mbBGHrgBbigTiL2vIGeZ5JAWigoDIhM8j6Uw3PjZlwDpJFN-DvbEmTIZtjEpgeHL7G3u0sGY3zJvYQd0KxDVev1bBit1fJkcoP1ADPGoqdAh2rHlEdrryAUeIz0KG_Y4qKK-43Zl3CW82PFP_NhKbFa4FS6v0cdBnPwOv64-6wuWa5yWOR5v7FTWfbSYPMzH0ygYJESGyaSKrFLcn3JwLMWYuHBouCFKc0EMsKSgCmiR5bEjQC5LMdxKAZZRq3LDpQvkkLAT1Cs_S3uKsMwEsSZJC6ssj6VNHZVw5I8UskjdmGcDRDZoaRPUw72JxYeuswgC2gOsPcA6ADxAN-0rX410xm-F730TtAW96nX9wPUFHfqC_qsvDFDfN2Dnb5xzoHD2Hx8_R7u-ws3yywXqVatve-kISZVd1X3vB3jk2As
  priority: 102
  providerName: Directory of Open Access Journals
Title Advanced Learning Technologies for Intelligent Transportation Systems: Prospects and Challenges
URI https://ieeexplore.ieee.org/document/10444919
https://doaj.org/article/7592733143b749af816c96b64d276c4c
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQaeRZRH5YEJKcWJndhmg4qqIPEYCuoWJc6FAdSiNl0Y-O2cHTcqSCCWKLIcxc5nx9-dfd8RcqoLJnJeZAGuVjIQkkGgSqYDhexZcQYs0TY4-e4-GTyJ21E88sHqLhYGANzhM-jaW7eXX0zM3LrKcIYLIbQV-VzFcVYHazUOFcuVQy79zmXI9PnD7fMQLcBIdLnNWqfDb2uPk-j_llPFLSn9LXK_aEx9kuS1O6_yrvn4odP479Zuk01PLullPRp2yAqMd8nGkuTgHkkv_aY_9cqqL7TxrqPRTJHD0ptGprOijfi5Q5B6gfML-jiduCDNGc3GBe0tUrLMWuSpfz3sDQKfZCEwXMZVAEoJe1ICmY4xUWmEwWkeFgkzmsdlqHRY5kWEJAotHSNAJhp4CKowQiIZ0DHfJ2vjyRgOCJV5wsDEWQkKRCQhQzqCBJKVsszwv8HbhC0-f2q8ArlNhPGWOkuE6dQillrEUo9Ym5w1j7zX8ht_Vb6ymDYVrXK2K0BYUj8RUxnryOapFDyXQmelChOjkzwRRSSxg6ZNWhbKpbfVKB7-Un5E1m0baq_MMVmrpnM4QZ5S5R1n3-P17vO648bqFzJA5Yk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECZGD-rBt3F9cvBk0pUWWsCbGs36Wj2sxhtp6dSDZtdo9-Kvd6BsoyYabw2hKe0H5ZsZ5htC9nXJRMHLPMLdSkZCMohUxXSkkD0rzoBl2iUn3_Sz3r24fEwfQ7K6z4UBAH_4DLru0sfyy5EdO1cZrnAhhHYinzMpmhWqSddqXSqOLcdchthlzPTh7eXDAG3ARHS5q1un42-7jxfp_1ZVxW8q54ukPxlOc5bkuTuui679-KHU-O_xLpGFQC_pcTMflskUDFfI_BfRwVVijkPYnwZt1Sfa-tfRbKbIYulFK9RZ01b-3GNIg8T5Eb17G_k0zXeaD0t6OinK8r5G7s_PBqe9KJRZiCyXaR2BUsKdlUCuY21SWWFxocdlxqzmaRUrHVdFmSCNQlvHCpCZBh6DKq2QSAd0ytfJ9HA0hA1CZZExsGlegQKRSMiRkCCFZJWscvxz8A5hk89vbNAgd6UwXoy3RZg2DjHjEDMBsQ45aG95bQQ4_up84jBtOzrtbN-AsJiwFI1MdeIqVQpeSKHzSsWZ1VmRiTKR-IK2Q9YclF-e1qC4-Uv7HpntDW6uzfVF_2qLzLnxND6abTJdv41hB1lLXez6ufoJm03mtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Learning+Technologies+for+Intelligent+Transportation+Systems%3A+Prospects+and+Challenges&rft.jtitle=IEEE+open+journal+of+vehicular+technology&rft.au=Khalil%2C+Ruhul+Amin&rft.au=Safelnasr%2C+Ziad&rft.au=Yemane%2C+Naod&rft.au=Kedir%2C+Mebruk&rft.date=2024&rft.pub=IEEE&rft.eissn=2644-1330&rft.volume=5&rft.spage=397&rft.epage=427&rft_id=info:doi/10.1109%2FOJVT.2024.3369691&rft.externalDocID=10444919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1330&client=summon