Advanced Learning Technologies for Intelligent Transportation Systems: Prospects and Challenges
Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather. Navig...
Saved in:
Published in | IEEE open journal of vehicular technology Vol. 5; pp. 397 - 427 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2644-1330 2644-1330 |
DOI | 10.1109/OJVT.2024.3369691 |
Cover
Abstract | Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather. Navigating the intricacies of modeling the intricate interaction among these elements, creating universal representations, and employing them to address transportation issues. Yet, these intricacies comprise just one facet of the multifaceted trials confronting contemporary ITS. This paper offers an all-encompassing survey exploring Deep learning (DL) utilization in ITS, primarily focusing on practitioners' methodologies to address these multifaceted challenges. The emphasis lies on the architectural and problem-specific factors that guide the formulation of innovative solutions. In addition to shedding light on the state-of-the-art DL algorithms, we also explore potential applications of DL and large language models (LLMs) in ITS, including traffic flow prediction, vehicle detection and classification, road condition monitoring, traffic sign recognition, and autonomous vehicles. Besides, we identify several future challenges and research directions that can push the boundaries of ITS, including the critical aspects, including transfer learning, hybrid models, privacy and security, and ultra-reliable low-latency communication. Our aim for this survey is to bridge the gap between the burgeoning DL and transportation communities. By doing so, we aim to facilitate a deeper comprehension of the challenges and possibilities within this field. We hope that this effort will inspire further exploration of fresh perspectives and issues, which, in turn, will play a pivotal role in shaping the future of transportation systems. |
---|---|
AbstractList | Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at various scales, further compounded by fluctuating conditions influenced by external factors such as social events, holidays, and weather. Navigating the intricacies of modeling the intricate interaction among these elements, creating universal representations, and employing them to address transportation issues. Yet, these intricacies comprise just one facet of the multifaceted trials confronting contemporary ITS. This paper offers an all-encompassing survey exploring Deep learning (DL) utilization in ITS, primarily focusing on practitioners' methodologies to address these multifaceted challenges. The emphasis lies on the architectural and problem-specific factors that guide the formulation of innovative solutions. In addition to shedding light on the state-of-the-art DL algorithms, we also explore potential applications of DL and large language models (LLMs) in ITS, including traffic flow prediction, vehicle detection and classification, road condition monitoring, traffic sign recognition, and autonomous vehicles. Besides, we identify several future challenges and research directions that can push the boundaries of ITS, including the critical aspects, including transfer learning, hybrid models, privacy and security, and ultra-reliable low-latency communication. Our aim for this survey is to bridge the gap between the burgeoning DL and transportation communities. By doing so, we aim to facilitate a deeper comprehension of the challenges and possibilities within this field. We hope that this effort will inspire further exploration of fresh perspectives and issues, which, in turn, will play a pivotal role in shaping the future of transportation systems. |
Author | Kedir, Mebruk Safelnasr, Ziad Shafiqurrahman, Atawulrahman SAEED, NASIR Khalil, Ruhul Amin Yemane, Naod |
Author_xml | – sequence: 1 givenname: Ruhul Amin orcidid: 0000-0003-4039-9901 surname: Khalil fullname: Khalil, Ruhul Amin organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE – sequence: 2 givenname: Ziad surname: Safelnasr fullname: Safelnasr, Ziad organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE – sequence: 3 givenname: Naod surname: Yemane fullname: Yemane, Naod organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE – sequence: 4 givenname: Mebruk surname: Kedir fullname: Kedir, Mebruk organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE – sequence: 5 givenname: Atawulrahman surname: Shafiqurrahman fullname: Shafiqurrahman, Atawulrahman organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE – sequence: 6 givenname: NASIR orcidid: 0000-0002-5123-5139 surname: SAEED fullname: SAEED, NASIR email: mr.nasir.saeed@ieee.org organization: Department of Electrical and Communication Engineering, United Arab Emirates University (UAEU), Al-Ain, UAE |
BookMark | eNp9kM9qGzEQh0VJoWniBwj0oBewq5G00qo3Y_rHweBC3VyFrJ1dy2wkI4mC3752nEDIIacZhvl9zHyfyVVMEQm5AzYDYObr-v5hM-OMy5kQyigDH8g1V1JOQQh29ar_RCal7BljvAEAoa-JnXf_XPTY0RW6HEMc6Ab9LqYxDQEL7VOmy1hxHMOAsdJNdrEcUq6uhhTpn2Op-Fi-0d85lQP6WqiLHV3s3DhiHLDcko-9GwtOnusN-fvj-2bxa7pa_1wu5qupF7qpU2xbCYxpBdx73nvpmQDoFPNGND20Bvptxw03iikvUSuDArDtvNRcMtOIG7K8cLvk9vaQw6PLR5tcsE-DlAfrcg1-RKsbw7UQIMVWS-P6FpQ3aqtkx_UJ7k8sfWH501MlY299uPxbswujBWbP2u1Zuz1rt8_aT0l4k3y55L3Ml0smIOKrfSmlASP-AxN3j24 |
CODEN | IOJVAO |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3514157 crossref_primary_10_1109_ACCESS_2024_3519512 crossref_primary_10_1007_s41870_024_02112_5 crossref_primary_10_1109_OJVT_2024_3446799 crossref_primary_10_3390_wevj16020082 crossref_primary_10_3390_machines13040258 crossref_primary_10_3390_futuretransp4030042 crossref_primary_10_1109_OJVT_2024_3431449 crossref_primary_10_1049_itr2_70018 crossref_primary_10_1088_1402_4896_ad8f6c crossref_primary_10_3390_smartcities8010024 crossref_primary_10_1007_s42979_025_03736_5 crossref_primary_10_1016_j_jii_2024_100694 crossref_primary_10_3390_electronics13132673 |
Cites_doi | 10.1145/3535101 10.1109/CoDIT55151.2022.9803895 10.1007/978-3-319-46448-0_2 10.1049/iet-its.2016.0208 10.1049/iet-its.2018.5537 10.3390/s19102229 10.3390/electronics12081802 10.1109/WiSPNET.2017.8300034 10.1109/TVT.2020.3027568 10.1007/s11042-020-10366-x 10.1109/BIGCOMP.2017.7881687 10.1109/TITS.2020.2973279 10.1109/ICDMW.2017.33 10.3390/app13031252 10.1016/j.cose.2016.04.006 10.1109/FSKD.2016.7603237 10.1007/s11432-012-4725-1 10.1080/15472450701410395 10.1109/TVT.2016.2585575 10.1109/TITS.2020.3042504 10.1109/TITS.2020.3009223 10.1109/GlobalSIP45357.2019.8969516 10.3390/su14137701 10.1016/S0262-8856(02)00156-7 10.1016/0968-090X(95)00009-8 10.1109/TITS.2021.3053178 10.1007/978-981-10-7299-4_57 10.1109/MITS.2018.2842249 10.3390/s20092483 10.1109/KST.2019.8687542 10.1016/j.compeleceng.2023.108839 10.1109/TITS.2021.3052796 10.1016/j.comcom.2020.01.058 10.1080/23249935.2019.1637966 10.1109/TITS.2019.2958859 10.1109/SIU59756.2023.10223809 10.1109/ICTC.2018.8539377 10.1109/ASONAM49781.2020.9381433 10.1016/j.commtr.2023.100103 10.1109/TITS.2018.2801560 10.1145/3219819.3220096 10.1109/ICoDSA50139.2020.9212858 10.48550/ARXIV.1404.7828 10.1002/ett.4427 10.1007/s42486-020-00039-x 10.1109/INAPR.2018.8627013 10.1109/TII.2020.3009280 10.1109/TITS.2011.2132799 10.3390/s22083044 10.1109/TITS.2020.3030707 10.1007/978-3-031-09644-0_1 10.1007/s10489-020-01801-5 10.1109/ITSC48978.2021.9564839 10.1016/j.eswa.2018.12.031 10.1109/ICWAPR.2010.5576425 10.1007/978-3-030-96630-0_11 10.1109/NOMS47738.2020.9110461 10.1109/NBiS.2015.56 10.1109/TITS.2022.3215572 10.1201/9781003324140-5 10.4218/etrij.2021-0404 10.1109/tits.2023.3343434 10.1007/3-540-28428-1_7 10.1109/ICDCS.2015.15 10.1016/j.comnet.2016.11.008 10.5121/ijcses.2011.2110 10.1016/j.treng.2021.100083 10.1109/TITS.2021.3052908 10.1109/TITS.2019.2963722 10.1109/VTCSpring.2016.7504493 10.1016/j.comnet.2020.107484 10.1016/j.eswa.2019.113074 10.1080/15472450.2020.1721289 10.1109/IGESSC55810.2022.9955329 10.1109/ITSC.2003.1251955 10.1016/j.techfore.2020.119970 10.1049/iet-its.2011.0150 10.1002/9781118971666.ch5 10.1109/OJITS.2021.3083201 10.1201/9781003172772-17 10.1109/ATC58710.2023.10318848 10.1109/ACCESS.2021.3050038 10.1007/978-981-19-0770-8_4 10.1016/j.eswa.2022.117921 10.1109/TITS.2021.3098636 10.1109/CVPR.2014.81 10.1109/TITS.2023.3307589 10.1007/978-981-33-4597-3_10 10.1049/iet-its.2019.0552 10.1109/TITS.2023.3309600 10.1007/s11235-019-00639-8 10.1016/j.procs.2016.04.135 10.1155/2022/6201367 10.1109/TITS.2022.3179893 10.1109/ICCP.2009.5284724 10.1109/TITS.2019.2929020 10.1016/j.physa.2020.125574 10.1109/TITS.2020.2984813 10.3390/su142315996 10.1016/j.trc.2018.12.004 10.1109/ITSC.2017.8317943 10.1109/ICAIT51105.2020.9261783 10.1049/iet-its.2018.0064 10.1109/IAECST54258.2021.9695635 10.1109/TITS.2019.2924883 10.1109/SSCI.2016.7850097 10.1109/TITS.2022.3147826 10.22381/crlsj14120229 10.1109/ICCV.2015.169 10.1109/MICC.2009.5431547 10.1109/TGRS.2020.3042974 10.1109/IEEECONF56737.2023.10092084 10.1109/JAS.2023.123744 10.1109/TITS.2020.3017505 10.1109/MDM61037.2024.00025 10.20537/2076-7633-2021-13-2-429-435 10.1109/IVS.2008.4621301 10.1109/MVT.2018.2883777 10.1109/MCOM.2009.5307471 10.1109/TITS.2020.3017183 10.1109/TITS.2022.3221388 10.1109/CVPR.2016.308 10.1109/ITSC.2018.8569441 10.1109/ICACI49185.2020.9177506 10.1109/TITS.2019.2906365 10.1109/TITS.2020.3025687 10.1177/0278364917710318 10.1109/ICACCS51430.2021.9441929 10.1109/ITSC.2019.8917019 10.1109/TII.2021.3101651 10.1109/TIRVED53476.2021.9639133 10.1109/CICSyN.2011.76 10.1109/ICC.2012.6364667 10.1109/ITSC48978.2021.9565120 10.1109/ICCA59364.2023.10401518 10.1109/ICIEV.2018.8641040 10.1002/dac.4814 10.1109/JIOT.2021.3051414 10.1007/s00521-021-05982-z 10.1109/TITS.2019.2963700 10.1109/ICAAIC53929.2022.9792638 10.1155/2017/6575947 10.1109/DICTA51227.2020.9363395 10.1016/j.heliyon.2021.e08615 10.1109/TITS.2023.3248483 10.1109/TITS.2018.2828025 10.1109/ITSC45102.2020.9294213 10.1109/TITS.2020.3025856 10.37591/rtpc.v9i1.269 10.1109/TITS.2018.2815678 10.1007/978-3-031-09644-0 10.1109/VTCSpring.2017.8108186 10.1117/12.2177465 10.1109/DSN-S.2019.00010 10.1609/aaai.v31i1.11168 10.1016/j.eswa.2011.09.106 10.1109/TITS.2020.3031721 10.1109/MITS.2019.2898973 10.1109/ICISC47916.2020.9171224 10.1109/TVT.2020.3003933 10.1109/ACCESS.2019.2946468 10.1016/j.ins.2022.11.062 10.1016/j.trc.2012.04.002 10.1162/neco.2006.18.7.1527 10.1109/TITS.2012.2225618 10.1109/TNSE.2022.3140529 10.1109/TITS.2022.3158253 10.1109/TITS.2022.3188671 10.1109/ICMLA52953.2021.00138 10.1109/TITS.2018.2838132 10.1016/j.aiopen.2021.01.001 10.1109/SMC53654.2022.9945292 10.1109/TITS.2018.2807199 10.1016/S1570-8705(03)00013-1 10.1109/TITS.2022.3227245 10.1109/ICCSS.2018.8572451 10.1109/CCUBE.2017.8394167 10.3390/computers10110148 10.1109/APCC55198.2022.9943588 10.1109/TELFOR.2016.7818753 10.1109/ITSC55140.2022.9922325 10.1109/TITS.2020.2993926 10.1109/ITSC.2016.7795531 10.24963/ijcai.2018/505 10.1109/ITSC.2001.948835 10.1109/COMST.2008.4564481 10.1016/j.comcom.2020.03.041 10.1109/TITS.2019.2913588 10.1109/TITS.2011.2158001 10.1109/TII.2021.3116132 10.1109/SURV.2009.090202 10.1016/j.aap.2020.105628 10.1109/ICACCS.2019.8728394 10.1109/TITS.2023.3243913 10.1109/TITS.2022.3216462 10.1155/2021/6262194 10.1109/IWCMC.2015.7289164 10.1201/9781003324140-11 10.1109/ITSC45102.2020.9294455 10.13140/RG.2.2.18893.74727 10.1109/IJCNN.1993.714089 10.1061/9780784482292.446 10.1002/9781118971666.ch15 10.11591/ijeecs.v18.i1.pp188-198 10.1016/j.future.2020.07.025 10.1109/TITS.2020.3012034 10.1007/978-1-4419-9563-6_1 10.1109/TITS.2012.2209421 10.1002/ett.4169 10.1109/TITS.2021.3054625 10.1109/ICPR.1996.547421 10.1109/ACCESS.2019.2939532 10.1109/ICCWorkshops50388.2021.9473555 10.1109/TITS.2020.3020556 10.1109/TITS.2023.3258063 10.3390/fi10020014 10.1109/ICC.2019.8761300 10.1007/978-981-16-3067-5_16 10.1109/TITS.2022.3170354 10.1109/ACCESS.2019.2936124 10.1109/TITS.2022.3140767 10.1109/TITS.2020.3032227 10.1109/CVPR.2016.90 10.1016/j.knosys.2023.110273 10.1109/TITS.2020.2980864 10.1016/j.iatssr.2018.05.005 10.1016/j.trc.2017.02.024 10.1109/ACCESS.2020.2993008 10.1117/1.JEI.22.4.041121 10.3390/app12199677 10.1007/978-981-16-3264-8_18 10.1109/IVCNZ51579.2020.9290664 10.1109/TITS.2020.3017882 10.1109/WCICA.2006.1713671 10.1007/s11227-021-03712-9 10.1109/TITS.2014.2308281 10.1049/itr2.12252 10.1109/TITS.2019.2962338 10.1145/3065386 10.1109/WSC.2015.7408214 10.1109/ACCESS.2020.3015096 10.1109/URAI.2016.7734014 10.1109/ACCESS.2019.2902813 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJVT.2024.3369691 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2644-1330 |
EndPage | 427 |
ExternalDocumentID | oai_doaj_org_article_7592733143b749af816c96b64d276c4c 10_1109_OJVT_2024_3369691 10444919 |
Genre | orig-research |
GrantInformation_xml | – fundername: Summer Undergraduate Research Experience – fundername: United Arab Emirates University grantid: G00004359 funderid: 10.13039/501100006013 |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c375t-e8841007612cc2fc4c0311d60c935f1891fbd2929606c4e769e31e8dc47240953 |
IEDL.DBID | RIE |
ISSN | 2644-1330 |
IngestDate | Wed Aug 27 01:29:55 EDT 2025 Tue Jul 01 01:47:51 EDT 2025 Thu Apr 24 23:07:19 EDT 2025 Wed Aug 27 01:53:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-e8841007612cc2fc4c0311d60c935f1891fbd2929606c4e769e31e8dc47240953 |
ORCID | 0000-0002-5123-5139 0000-0003-4039-9901 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10444919 |
PageCount | 31 |
ParticipantIDs | crossref_citationtrail_10_1109_OJVT_2024_3369691 doaj_primary_oai_doaj_org_article_7592733143b749af816c96b64d276c4c crossref_primary_10_1109_OJVT_2024_3369691 ieee_primary_10444919 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE open journal of vehicular technology |
PublicationTitleAbbrev | OJVT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 Anderljung (ref227) 2023 ref54 ref209 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 Manikandan (ref236) 2020; 13 Goodfellow (ref127) 2016 ref7 ref9 ref4 ref3 ref100 ref221 ref101 ref222 ref40 Brbisson (ref131) 2015 ref35 ref34 ref37 ref36 ref31 ref30 Ren (ref121) 2015 ref32 ref39 ref38 Oord (ref123) 2016 Martin (ref33) 1999 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref200 Howard (ref202) 2017 ref128 ref249 ref129 ref97 ref126 ref247 ref96 ref248 ref99 ref124 ref98 ref125 ref246 ref93 ref133 ref254 ref92 ref134 ref255 ref95 ref252 ref94 ref132 ref253 ref250 ref130 ref251 ref91 ref90 ref89 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref88 ref135 ref256 ref87 ref136 ref257 ref82 ref144 ref81 ref145 ref84 ref142 ref263 ref83 ref143 ref140 ref261 ref141 ref262 ref80 ref260 ref79 ref108 ref229 ref78 ref109 ref106 ref107 ref228 ref75 ref104 ref225 ref74 ref105 ref77 ref102 ref76 ref103 ref71 ref111 ref232 ref70 ref112 ref233 ref73 ref230 ref72 ref110 ref231 ref68 ref119 ref67 Sha (ref223) 2023 ref117 ref238 ref69 ref118 ref239 ref64 ref115 ref63 ref116 ref237 ref66 ref113 ref234 ref65 ref114 ref235 ref60 ref122 ref243 ref244 ref62 ref120 ref241 ref61 ref242 ref240 ref168 ref169 Fernandes (ref49) 2007 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 Zhou (ref245) 2023 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref149 ref146 ref147 Dai (ref198) 2016 ref155 ref156 ref153 ref154 ref151 ref152 Xu (ref148) 2019 ref150 ref159 ref157 ref158 Zheng (ref220) 2023 Qureshi (ref6) 2013; 15 Srivastava (ref180) 2014; 15 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Liu (ref224) 2024 (ref5) 2021 Wang (ref226) 2023 Mohri (ref22) 2018 Shaheen (ref8) 2013 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref195 ref196 ref193 ref194 |
References_xml | – start-page: 1 volume-title: Proc. Florida Conf. Recent Adv. Robot. Citeseer year: 1999 ident: ref33 article-title: Intelligent vehicle/highway system: A surveyPart 1 – ident: ref151 doi: 10.1145/3535101 – ident: ref182 doi: 10.1109/CoDIT55151.2022.9803895 – ident: ref199 doi: 10.1007/978-3-319-46448-0_2 – ident: ref72 doi: 10.1049/iet-its.2016.0208 – ident: ref193 doi: 10.1049/iet-its.2018.5537 – ident: ref158 doi: 10.3390/s19102229 – ident: ref186 doi: 10.3390/electronics12081802 – ident: ref42 doi: 10.1109/WiSPNET.2017.8300034 – ident: ref206 doi: 10.1109/TVT.2020.3027568 – ident: ref141 doi: 10.1007/s11042-020-10366-x – start-page: 91 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. year: 2015 ident: ref121 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – ident: ref74 doi: 10.1109/BIGCOMP.2017.7881687 – ident: ref134 doi: 10.1109/TITS.2020.2973279 – volume: 15 start-page: 629 issue: 5 year: 2013 ident: ref6 article-title: A survey on intelligent transportation systems publication-title: Middle-East J. Sci. Res. – ident: ref63 doi: 10.1109/ICDMW.2017.33 – ident: ref253 doi: 10.3390/app13031252 – year: 2023 ident: ref223 article-title: LanguageMPC: Large language models as decision makers for autonomous driving – ident: ref242 doi: 10.1016/j.cose.2016.04.006 – ident: ref184 doi: 10.1109/FSKD.2016.7603237 – ident: ref12 doi: 10.1007/s11432-012-4725-1 – ident: ref234 doi: 10.1080/15472450701410395 – ident: ref76 doi: 10.1109/TVT.2016.2585575 – ident: ref105 doi: 10.1109/TITS.2020.3042504 – ident: ref112 doi: 10.1109/TITS.2020.3009223 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref180 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2021 ident: ref5 article-title: Middle east intelligent transportation systems market size, share & trends analysis – ident: ref102 doi: 10.1109/GlobalSIP45357.2019.8969516 – ident: ref100 doi: 10.3390/su14137701 – ident: ref179 doi: 10.1016/S0262-8856(02)00156-7 – ident: ref26 doi: 10.1016/0968-090X(95)00009-8 – ident: ref140 doi: 10.1109/TITS.2021.3053178 – ident: ref85 doi: 10.1007/978-981-10-7299-4_57 – ident: ref137 doi: 10.1109/MITS.2018.2842249 – ident: ref239 doi: 10.3390/s20092483 – ident: ref181 doi: 10.1109/KST.2019.8687542 – ident: ref97 doi: 10.1016/j.compeleceng.2023.108839 – ident: ref217 doi: 10.1109/TITS.2021.3052796 – ident: ref25 doi: 10.1016/j.comcom.2020.01.058 – ident: ref173 doi: 10.1080/23249935.2019.1637966 – ident: ref170 doi: 10.1109/TITS.2019.2958859 – ident: ref261 doi: 10.1109/SIU59756.2023.10223809 – ident: ref169 doi: 10.1109/ICTC.2018.8539377 – ident: ref246 doi: 10.1109/ASONAM49781.2020.9381433 – ident: ref225 doi: 10.1016/j.commtr.2023.100103 – ident: ref86 doi: 10.1109/TITS.2018.2801560 – ident: ref165 doi: 10.1145/3219819.3220096 – ident: ref62 doi: 10.1109/ICoDSA50139.2020.9212858 – ident: ref116 doi: 10.48550/ARXIV.1404.7828 – ident: ref16 doi: 10.1002/ett.4427 – ident: ref66 doi: 10.1007/s42486-020-00039-x – ident: ref58 doi: 10.1109/INAPR.2018.8627013 – ident: ref146 doi: 10.1109/TII.2020.3009280 – ident: ref212 doi: 10.1109/TITS.2011.2132799 – year: 2016 ident: ref123 article-title: Wavenet: A generative model for raw audio – ident: ref216 doi: 10.3390/s22083044 – ident: ref259 doi: 10.1109/TITS.2020.3030707 – ident: ref70 doi: 10.1007/978-3-031-09644-0_1 – ident: ref248 doi: 10.1007/s10489-020-01801-5 – ident: ref159 doi: 10.1109/ITSC48978.2021.9564839 – ident: ref77 doi: 10.1016/j.eswa.2018.12.031 – ident: ref177 doi: 10.1109/ICWAPR.2010.5576425 – ident: ref252 doi: 10.1007/978-3-030-96630-0_11 – ident: ref61 doi: 10.1109/NOMS47738.2020.9110461 – start-page: 379 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. year: 2016 ident: ref198 article-title: R-FCN: Object detection via region-based fully convolutional networks – ident: ref60 doi: 10.1109/NBiS.2015.56 – ident: ref189 doi: 10.1109/TITS.2022.3215572 – ident: ref230 doi: 10.1201/9781003324140-5 – ident: ref164 doi: 10.4218/etrij.2021-0404 – volume-title: Foundations of Machine Learning. year: 2018 ident: ref22 – ident: ref14 doi: 10.1109/tits.2023.3343434 – ident: ref48 doi: 10.1007/3-540-28428-1_7 – ident: ref233 doi: 10.1109/ICDCS.2015.15 – ident: ref52 doi: 10.1016/j.comnet.2016.11.008 – ident: ref36 doi: 10.5121/ijcses.2011.2110 – ident: ref68 doi: 10.1016/j.treng.2021.100083 – year: 2023 ident: ref227 article-title: Frontier AI regulation: Managing emerging risks to public safety – ident: ref195 doi: 10.1109/TITS.2021.3052908 – ident: ref132 doi: 10.1109/TITS.2019.2963722 – ident: ref53 doi: 10.1109/VTCSpring.2016.7504493 – ident: ref69 doi: 10.1016/j.comnet.2020.107484 – ident: ref109 doi: 10.1016/j.eswa.2019.113074 – ident: ref50 doi: 10.1080/15472450.2020.1721289 – ident: ref263 doi: 10.1109/IGESSC55810.2022.9955329 – ident: ref98 doi: 10.1109/ITSC.2003.1251955 – ident: ref237 doi: 10.1016/j.techfore.2020.119970 – ident: ref56 doi: 10.1049/iet-its.2011.0150 – ident: ref15 doi: 10.1002/9781118971666.ch5 – ident: ref171 doi: 10.1109/OJITS.2021.3083201 – ident: ref103 doi: 10.1201/9781003172772-17 – ident: ref256 doi: 10.1109/ATC58710.2023.10318848 – ident: ref9 doi: 10.1109/ACCESS.2021.3050038 – ident: ref35 doi: 10.1007/978-981-19-0770-8_4 – ident: ref149 doi: 10.1016/j.eswa.2022.117921 – ident: ref244 doi: 10.1109/TITS.2021.3098636 – ident: ref122 doi: 10.1109/CVPR.2014.81 – ident: ref187 doi: 10.1109/TITS.2023.3307589 – ident: ref41 doi: 10.1007/978-981-33-4597-3_10 – ident: ref139 doi: 10.1049/iet-its.2019.0552 – ident: ref188 doi: 10.1109/TITS.2023.3309600 – ident: ref46 doi: 10.1007/s11235-019-00639-8 – ident: ref215 doi: 10.1016/j.procs.2016.04.135 – ident: ref59 doi: 10.1155/2022/6201367 – ident: ref255 doi: 10.1109/TITS.2022.3179893 – ident: ref213 doi: 10.1109/ICCP.2009.5284724 – ident: ref32 doi: 10.1109/TITS.2019.2929020 – ident: ref73 doi: 10.1016/j.physa.2020.125574 – ident: ref152 doi: 10.1109/TITS.2020.2984813 – ident: ref156 doi: 10.3390/su142315996 – start-page: 40 year: 2015 ident: ref131 article-title: Artificial neural networks applied to taxi destination prediction – ident: ref31 doi: 10.1016/j.trc.2018.12.004 – ident: ref133 doi: 10.1109/ITSC.2017.8317943 – ident: ref11 doi: 10.1109/ICAIT51105.2020.9261783 – ident: ref30 doi: 10.1049/iet-its.2018.0064 – year: 2023 ident: ref245 article-title: Vision language models in autonomous driving and intelligent transportation systems – ident: ref247 doi: 10.1109/IAECST54258.2021.9695635 – ident: ref88 doi: 10.1109/TITS.2019.2924883 – ident: ref29 doi: 10.1109/SSCI.2016.7850097 – ident: ref95 doi: 10.1109/TITS.2022.3147826 – ident: ref110 doi: 10.22381/crlsj14120229 – ident: ref120 doi: 10.1109/ICCV.2015.169 – ident: ref39 doi: 10.1109/MICC.2009.5431547 – ident: ref135 doi: 10.1109/TGRS.2020.3042974 – ident: ref142 doi: 10.1109/IEEECONF56737.2023.10092084 – ident: ref136 doi: 10.1109/JAS.2023.123744 – ident: ref87 doi: 10.1109/TITS.2020.3017505 – year: 2024 ident: ref224 article-title: Spatial-temporal large language model for traffic prediction doi: 10.1109/MDM61037.2024.00025 – ident: ref80 doi: 10.20537/2076-7633-2021-13-2-429-435 – ident: ref45 doi: 10.1109/IVS.2008.4621301 – ident: ref23 doi: 10.1109/MVT.2018.2883777 – ident: ref44 doi: 10.1109/MCOM.2009.5307471 – ident: ref67 doi: 10.1109/TITS.2020.3017183 – ident: ref257 doi: 10.1109/TITS.2022.3221388 – ident: ref201 doi: 10.1109/CVPR.2016.308 – ident: ref129 doi: 10.1109/ITSC.2018.8569441 – ident: ref175 doi: 10.1109/ICACI49185.2020.9177506 – ident: ref144 doi: 10.1109/TITS.2019.2906365 – ident: ref209 doi: 10.1109/TITS.2020.3025687 – ident: ref124 doi: 10.1177/0278364917710318 – ident: ref145 doi: 10.1109/ICACCS51430.2021.9441929 – ident: ref155 doi: 10.1109/ITSC.2019.8917019 – ident: ref218 doi: 10.1109/TII.2021.3101651 – ident: ref214 doi: 10.1109/TIRVED53476.2021.9639133 – ident: ref4 doi: 10.1109/CICSyN.2011.76 – ident: ref54 doi: 10.1109/ICC.2012.6364667 – ident: ref161 doi: 10.1109/ITSC48978.2021.9565120 – ident: ref219 doi: 10.1109/ICCA59364.2023.10401518 – ident: ref249 doi: 10.1109/ICIEV.2018.8641040 – ident: ref20 doi: 10.1002/dac.4814 – volume: 13 start-page: 1006 issue: 1 year: 2020 ident: ref236 article-title: Real-time traffic flow prediction and intelligent traffic control from remote location for large-scale heterogeneous networking using tensorflow publication-title: Int. J. Future Gener. Commun. Netw. – ident: ref115 doi: 10.1109/JIOT.2021.3051414 – ident: ref183 doi: 10.1007/s00521-021-05982-z – ident: ref205 doi: 10.1109/TITS.2019.2963700 – ident: ref34 doi: 10.1109/ICAAIC53929.2022.9792638 – ident: ref75 doi: 10.1155/2017/6575947 – ident: ref154 doi: 10.1109/DICTA51227.2020.9363395 – ident: ref221 doi: 10.1016/j.heliyon.2021.e08615 – year: 2013 ident: ref8 article-title: Intelligent transportation systems – ident: ref262 doi: 10.1109/TITS.2023.3248483 – ident: ref207 doi: 10.1109/TITS.2018.2828025 – ident: ref229 doi: 10.1109/ITSC45102.2020.9294213 – ident: ref176 doi: 10.1109/TITS.2020.3025856 – ident: ref185 doi: 10.37591/rtpc.v9i1.269 – ident: ref28 doi: 10.1109/TITS.2018.2815678 – ident: ref231 doi: 10.1007/978-3-031-09644-0 – ident: ref208 doi: 10.1109/VTCSpring.2017.8108186 – ident: ref51 doi: 10.1117/12.2177465 – ident: ref241 doi: 10.1109/DSN-S.2019.00010 – ident: ref96 doi: 10.1609/aaai.v31i1.11168 – start-page: 1 volume-title: Proc. 7th Int. Conf. Learn. Representations year: 2019 ident: ref148 article-title: How powerful are graph neural networks? – ident: ref194 doi: 10.1016/j.eswa.2011.09.106 – ident: ref243 doi: 10.1109/TITS.2020.3031721 – ident: ref238 doi: 10.1109/MITS.2019.2898973 – ident: ref101 doi: 10.1109/ICISC47916.2020.9171224 – ident: ref24 doi: 10.1109/TVT.2020.3003933 – ident: ref92 doi: 10.1109/ACCESS.2019.2946468 – ident: ref167 doi: 10.1016/j.ins.2022.11.062 – ident: ref240 doi: 10.1016/j.trc.2012.04.002 – ident: ref117 doi: 10.1162/neco.2006.18.7.1527 – ident: ref82 doi: 10.1109/TITS.2012.2225618 – ident: ref65 doi: 10.1109/TNSE.2022.3140529 – ident: ref104 doi: 10.1109/TITS.2022.3158253 – ident: ref232 doi: 10.1109/TITS.2022.3188671 – ident: ref130 doi: 10.1109/ICMLA52953.2021.00138 – ident: ref147 doi: 10.1109/TITS.2018.2838132 – ident: ref150 doi: 10.1016/j.aiopen.2021.01.001 – ident: ref166 doi: 10.1109/SMC53654.2022.9945292 – ident: ref204 doi: 10.1109/TITS.2018.2807199 – ident: ref210 doi: 10.1016/S1570-8705(03)00013-1 – ident: ref143 doi: 10.1109/TITS.2022.3227245 – ident: ref174 doi: 10.1109/ICCSS.2018.8572451 – ident: ref7 doi: 10.1109/CCUBE.2017.8394167 – ident: ref99 doi: 10.3390/computers10110148 – ident: ref251 doi: 10.1109/APCC55198.2022.9943588 – ident: ref57 doi: 10.1109/TELFOR.2016.7818753 – ident: ref106 doi: 10.1109/ITSC55140.2022.9922325 – ident: ref197 doi: 10.1109/TITS.2020.2993926 – ident: ref10 doi: 10.1109/ITSC.2016.7795531 – ident: ref71 doi: 10.24963/ijcai.2018/505 – ident: ref2 doi: 10.1109/ITSC.2001.948835 – ident: ref37 doi: 10.1109/COMST.2008.4564481 – ident: ref43 doi: 10.1016/j.comcom.2020.03.041 – ident: ref79 doi: 10.1109/TITS.2019.2913588 – ident: ref3 doi: 10.1109/TITS.2011.2158001 – ident: ref203 doi: 10.1109/TII.2021.3116132 – ident: ref38 doi: 10.1109/SURV.2009.090202 – ident: ref90 doi: 10.1016/j.aap.2020.105628 – ident: ref153 doi: 10.1109/ICACCS.2019.8728394 – ident: ref163 doi: 10.1109/TITS.2023.3243913 – ident: ref18 doi: 10.1109/TITS.2022.3216462 – ident: ref94 doi: 10.1155/2021/6262194 – ident: ref260 doi: 10.1109/IWCMC.2015.7289164 – ident: ref250 doi: 10.1201/9781003324140-11 – ident: ref160 doi: 10.1109/ITSC45102.2020.9294455 – ident: ref125 doi: 10.13140/RG.2.2.18893.74727 – ident: ref126 doi: 10.1109/IJCNN.1993.714089 – ident: ref162 doi: 10.1061/9780784482292.446 – ident: ref211 doi: 10.1002/9781118971666.ch15 – ident: ref40 doi: 10.11591/ijeecs.v18.i1.pp188-198 – ident: ref196 doi: 10.1016/j.future.2020.07.025 – ident: ref113 doi: 10.1109/TITS.2020.3012034 – ident: ref192 doi: 10.1007/978-1-4419-9563-6_1 – ident: ref81 doi: 10.1109/TITS.2012.2209421 – ident: ref21 doi: 10.1002/ett.4169 – ident: ref114 doi: 10.1109/TITS.2021.3054625 – volume-title: Deep Learning year: 2016 ident: ref127 – ident: ref128 doi: 10.1109/ICPR.1996.547421 – ident: ref89 doi: 10.1109/ACCESS.2019.2939532 – ident: ref168 doi: 10.1109/ICCWorkshops50388.2021.9473555 – ident: ref190 doi: 10.1109/TITS.2020.3020556 – ident: ref138 doi: 10.1109/TITS.2023.3258063 – ident: ref47 doi: 10.3390/fi10020014 – ident: ref222 doi: 10.1109/ICC.2019.8761300 – ident: ref17 doi: 10.1007/978-981-16-3067-5_16 – year: 2023 ident: ref220 article-title: ChatGPT is on the horizon: Could a large language model be all we need for intelligent transportation? – ident: ref83 doi: 10.1109/TITS.2022.3170354 – ident: ref119 doi: 10.1109/ACCESS.2019.2936124 – ident: ref191 doi: 10.1109/TITS.2022.3140767 – start-page: 134 volume-title: Proc. IADIS Telecommun., Netw. Syst. year: 2007 ident: ref49 article-title: Vehicle communications: A short survey – ident: ref108 doi: 10.1109/TITS.2020.3032227 – ident: ref200 doi: 10.1109/CVPR.2016.90 – ident: ref254 doi: 10.1016/j.knosys.2023.110273 – ident: ref19 doi: 10.1109/TITS.2020.2980864 – ident: ref13 doi: 10.1016/j.iatssr.2018.05.005 – ident: ref78 doi: 10.1016/j.trc.2017.02.024 – ident: ref91 doi: 10.1109/ACCESS.2020.2993008 – ident: ref27 doi: 10.1117/1.JEI.22.4.041121 – ident: ref55 doi: 10.3390/app12199677 – ident: ref107 doi: 10.1007/978-981-16-3264-8_18 – ident: ref157 doi: 10.1109/IVCNZ51579.2020.9290664 – ident: ref93 doi: 10.1109/TITS.2020.3017882 – ident: ref172 doi: 10.1109/WCICA.2006.1713671 – ident: ref64 doi: 10.1007/s11227-021-03712-9 – year: 2023 ident: ref226 article-title: AccidentGPT: Accident analysis and prevention from V2X environmental perception with multi-modal large model – ident: ref84 doi: 10.1109/TITS.2014.2308281 – ident: ref1 doi: 10.1049/itr2.12252 – ident: ref111 doi: 10.1109/TITS.2019.2962338 – ident: ref118 doi: 10.1145/3065386 – ident: ref258 doi: 10.1109/WSC.2015.7408214 – ident: ref235 doi: 10.1109/ACCESS.2020.3015096 – year: 2017 ident: ref202 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications – ident: ref178 doi: 10.1109/URAI.2016.7734014 – ident: ref228 doi: 10.1109/ACCESS.2019.2902813 |
SSID | ssj0002511137 |
Score | 2.4844654 |
Snippet | Intelligent Transportation Systems (ITS) operate within a highly intricate and dynamic environment characterized by complex spatial and temporal dynamics at... |
SourceID | doaj crossref ieee |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 397 |
SubjectTerms | Autonomous vehicles Deep learning explainable AI Intelligent transportation systems Large language models Surveys Traffic control traffic flow prediction Transportation Vehicle dynamics |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLVQJxgQRxHlkgcmpFA7dmx_bKWiKpU4hhZ1sxLHYUEBteH_YydulC6wsEZOYj0f3_t8vIfQNeSEZyxPIxetZMQlsZEqCETKsWfFiCUC_OXkp2cxXfDZMll2rL78mbBGHrgBbigTiL2vIGeZ5JAWigoDIhM8j6Uw3PjZlwDpJFN-DvbEmTIZtjEpgeHL7G3u0sGY3zJvYQd0KxDVev1bBit1fJkcoP1ADPGoqdAh2rHlEdrryAUeIz0KG_Y4qKK-43Zl3CW82PFP_NhKbFa4FS6v0cdBnPwOv64-6wuWa5yWOR5v7FTWfbSYPMzH0ygYJESGyaSKrFLcn3JwLMWYuHBouCFKc0EMsKSgCmiR5bEjQC5LMdxKAZZRq3LDpQvkkLAT1Cs_S3uKsMwEsSZJC6ssj6VNHZVw5I8UskjdmGcDRDZoaRPUw72JxYeuswgC2gOsPcA6ADxAN-0rX410xm-F730TtAW96nX9wPUFHfqC_qsvDFDfN2Dnb5xzoHD2Hx8_R7u-ws3yywXqVatve-kISZVd1X3vB3jk2As priority: 102 providerName: Directory of Open Access Journals |
Title | Advanced Learning Technologies for Intelligent Transportation Systems: Prospects and Challenges |
URI | https://ieeexplore.ieee.org/document/10444919 https://doaj.org/article/7592733143b749af816c96b64d276c4c |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQaeRZRH5YEJKcWJndhmg4qqIPEYCuoWJc6FAdSiNl0Y-O2cHTcqSCCWKLIcxc5nx9-dfd8RcqoLJnJeZAGuVjIQkkGgSqYDhexZcQYs0TY4-e4-GTyJ21E88sHqLhYGANzhM-jaW7eXX0zM3LrKcIYLIbQV-VzFcVYHazUOFcuVQy79zmXI9PnD7fMQLcBIdLnNWqfDb2uPk-j_llPFLSn9LXK_aEx9kuS1O6_yrvn4odP479Zuk01PLullPRp2yAqMd8nGkuTgHkkv_aY_9cqqL7TxrqPRTJHD0ptGprOijfi5Q5B6gfML-jiduCDNGc3GBe0tUrLMWuSpfz3sDQKfZCEwXMZVAEoJe1ICmY4xUWmEwWkeFgkzmsdlqHRY5kWEJAotHSNAJhp4CKowQiIZ0DHfJ2vjyRgOCJV5wsDEWQkKRCQhQzqCBJKVsszwv8HbhC0-f2q8ArlNhPGWOkuE6dQillrEUo9Ym5w1j7zX8ht_Vb6ymDYVrXK2K0BYUj8RUxnryOapFDyXQmelChOjkzwRRSSxg6ZNWhbKpbfVKB7-Un5E1m0baq_MMVmrpnM4QZ5S5R1n3-P17vO648bqFzJA5Yk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECZGD-rBt3F9cvBk0pUWWsCbGs36Wj2sxhtp6dSDZtdo9-Kvd6BsoyYabw2hKe0H5ZsZ5htC9nXJRMHLPMLdSkZCMohUxXSkkD0rzoBl2iUn3_Sz3r24fEwfQ7K6z4UBAH_4DLru0sfyy5EdO1cZrnAhhHYinzMpmhWqSddqXSqOLcdchthlzPTh7eXDAG3ARHS5q1un42-7jxfp_1ZVxW8q54ukPxlOc5bkuTuui679-KHU-O_xLpGFQC_pcTMflskUDFfI_BfRwVVijkPYnwZt1Sfa-tfRbKbIYulFK9RZ01b-3GNIg8T5Eb17G_k0zXeaD0t6OinK8r5G7s_PBqe9KJRZiCyXaR2BUsKdlUCuY21SWWFxocdlxqzmaRUrHVdFmSCNQlvHCpCZBh6DKq2QSAd0ytfJ9HA0hA1CZZExsGlegQKRSMiRkCCFZJWscvxz8A5hk89vbNAgd6UwXoy3RZg2DjHjEDMBsQ45aG95bQQ4_up84jBtOzrtbN-AsJiwFI1MdeIqVQpeSKHzSsWZ1VmRiTKR-IK2Q9YclF-e1qC4-Uv7HpntDW6uzfVF_2qLzLnxND6abTJdv41hB1lLXez6ufoJm03mtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Learning+Technologies+for+Intelligent+Transportation+Systems%3A+Prospects+and+Challenges&rft.jtitle=IEEE+open+journal+of+vehicular+technology&rft.au=Khalil%2C+Ruhul+Amin&rft.au=Safelnasr%2C+Ziad&rft.au=Yemane%2C+Naod&rft.au=Kedir%2C+Mebruk&rft.date=2024&rft.pub=IEEE&rft.eissn=2644-1330&rft.volume=5&rft.spage=397&rft.epage=427&rft_id=info:doi/10.1109%2FOJVT.2024.3369691&rft.externalDocID=10444919 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1330&client=summon |