PRMT5 Circular RNA Promotes Metastasis of Urothelial Carcinoma of the Bladder through Sponging miR-30c to Induce Epithelial–Mesenchymal Transition
Purpose: Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial–mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs th...
Saved in:
Published in | Clinical cancer research Vol. 24; no. 24; pp. 6319 - 6330 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0432 1557-3265 1557-3265 |
DOI | 10.1158/1078-0432.CCR-18-1270 |
Cover
Abstract | Purpose: Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial–mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells’ EMT and explored their regulatory mechanisms and clinical significance in UCBs.
Experimental Design: We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells’ EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA).
Results: We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis.
Conclusions: CircPRMT5 exerts critical roles in promoting UCB cells’ EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB. |
---|---|
AbstractList | Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial-mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells' EMT and explored their regulatory mechanisms and clinical significance in UCBs.
We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells' EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes,
and
, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA).
We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis.
CircPRMT5 exerts critical roles in promoting UCB cells' EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB. Purpose: Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial–mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells’ EMT and explored their regulatory mechanisms and clinical significance in UCBs. Experimental Design: We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells’ EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA). Results: We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis. Conclusions: CircPRMT5 exerts critical roles in promoting UCB cells’ EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB. Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial-mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells' EMT and explored their regulatory mechanisms and clinical significance in UCBs.PURPOSECircular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of circRNAs in cancer cells epithelial-mesenchymal transition (EMT) remains unclear. In this study, we aimed to identify novel circRNAs that regulate urothelial carcinoma of the bladder (UCB) cells' EMT and explored their regulatory mechanisms and clinical significance in UCBs.We first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells' EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA).EXPERIMENTAL DESIGNWe first screened circRNA expression profiles using a circRNA microarray in paired UCB and normal tissues, and then studied the clinical significance of an upregulated circRNA, circPRMT5, in a large cohort of patients with UCB. We further investigated the functions and underlying mechanisms of circPRMT5 in UCB cells' EMT. Moreover, we evaluated the regulation effect of circPRMT5 on miR-30c, and its target genes, SNAIL1 and E-cadherin, in two independent cohorts from our institute and The Cancer Genome Atlas (TCGA).We demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis.RESULTSWe demonstrated that upregulated expression of circPRMT5 was positively associated with advanced clinical stage and worse survival in patients with UCB. We further revealed that circPRMT5 promoted UCB cell's EMT via sponging miR-30c. Clinical analysis from two independent UCB cohorts showed that the circPRMT5/miR-30c/SNAIL1/E-cadherin pathway was essential in supporting UCB progression. Importantly, we identified that circPRMT5 was upregulated in serum and urine exosomes from patients with UCB, and significantly correlated with tumor metastasis.CircPRMT5 exerts critical roles in promoting UCB cells' EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB.CONCLUSIONSCircPRMT5 exerts critical roles in promoting UCB cells' EMT and/or aggressiveness and is a prognostic biomarker of the disease, suggesting that circPRMT5 may serve as an exploitable therapeutic target for patients with UCB. |
Author | Chen, Si-Liang Yuan, Gang-Jun Liu, Zhuo-Wei Xie, Dan Xiao, Kang-Hua Chen, Ri-Xin Wei, Wen-Su Tan, Lei Zhou, Fang-Jian Chen, Xin Guo, Sheng-Jie Li, Yong-Hong Chen, Jie-Wei Feng, Zi-Hao Luo, Jun-Hang |
Author_xml | – sequence: 1 givenname: Xin surname: Chen fullname: Chen, Xin – sequence: 2 givenname: Ri-Xin surname: Chen fullname: Chen, Ri-Xin – sequence: 3 givenname: Wen-Su surname: Wei fullname: Wei, Wen-Su – sequence: 4 givenname: Yong-Hong surname: Li fullname: Li, Yong-Hong – sequence: 5 givenname: Zi-Hao surname: Feng fullname: Feng, Zi-Hao – sequence: 6 givenname: Lei surname: Tan fullname: Tan, Lei – sequence: 7 givenname: Jie-Wei surname: Chen fullname: Chen, Jie-Wei – sequence: 8 givenname: Gang-Jun surname: Yuan fullname: Yuan, Gang-Jun – sequence: 9 givenname: Si-Liang surname: Chen fullname: Chen, Si-Liang – sequence: 10 givenname: Sheng-Jie surname: Guo fullname: Guo, Sheng-Jie – sequence: 11 givenname: Kang-Hua surname: Xiao fullname: Xiao, Kang-Hua – sequence: 12 givenname: Zhuo-Wei surname: Liu fullname: Liu, Zhuo-Wei – sequence: 13 givenname: Jun-Hang surname: Luo fullname: Luo, Jun-Hang – sequence: 14 givenname: Fang-Jian surname: Zhou fullname: Zhou, Fang-Jian – sequence: 15 givenname: Dan surname: Xie fullname: Xie, Dan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30305293$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVAR_YCfAPKRS4rHjpOsOJWolEpdqJbt2fI6k12jxF5s59Ab_wF-YX8Jjrp74YA00oye3nujmXdOTpx3SMhbYJcAsvkArG4KVgp-2barApoCeM1ekDOQsi4Er-RJno-cU3Ie4w_GoARWviKnggkm-UKckT_3q-Va0tYGMw060NXXK3of_OgTRrrEpGMuG6nv6UPwaYeD1QNtdTDW-VHPeAbpp0F3HYY8Bz9td_T73rutdVs62lUhmKHJ01vXTQbp9d4ebJ5-_V5iRGd2j2M2XQftok3Wu9fkZa-HiG8O_YI8fL5et1-Ku283t-3VXWFELVOBUpqqFpXRYsMaML3MF1Z6wzmwDheiFLKXDcCGs4XWNRipOVRY9T2aylSNuCDvn333wf-cMCY12mhwGLRDP0XFAZr8KFHyTH13oE6bETu1D3bU4VEdP5kJH58JJvgYA_bK2KTna1LQdlDA1JybmjNRcyYq56YgAzm3rJb_qI8L_q_7C7M9nOY |
CitedBy_id | crossref_primary_10_1080_15384101_2019_1601477 crossref_primary_10_1186_s12943_021_01360_4 crossref_primary_10_4239_wjd_v13_i4_358 crossref_primary_10_3390_cancers16050923 crossref_primary_10_2147_CMAR_S232260 crossref_primary_10_3390_cancers13112652 crossref_primary_10_1038_s41388_019_1092_z crossref_primary_10_3389_fonc_2020_01612 crossref_primary_10_1016_j_intimp_2022_109476 crossref_primary_10_1007_s13238_020_00799_3 crossref_primary_10_3389_fgene_2019_01125 crossref_primary_10_3389_fgene_2022_1001608 crossref_primary_10_3389_fonc_2022_962831 crossref_primary_10_1002_cam4_5942 crossref_primary_10_1016_j_omtn_2019_11_023 crossref_primary_10_1016_j_jare_2024_11_032 crossref_primary_10_1186_s12943_021_01318_6 crossref_primary_10_3390_ijms21249738 crossref_primary_10_1007_s10555_024_10182_x crossref_primary_10_1038_s41388_022_02386_8 crossref_primary_10_1038_s41419_019_2028_9 crossref_primary_10_15252_embr_201949689 crossref_primary_10_1016_j_bbamcr_2025_119923 crossref_primary_10_1038_s41467_019_12651_2 crossref_primary_10_1002_mco2_699 crossref_primary_10_1038_s41392_020_0194_y crossref_primary_10_2174_1566524023666221221094432 crossref_primary_10_32604_or_2022_027547 crossref_primary_10_3390_cancers14225693 crossref_primary_10_1016_j_vesic_2022_100015 crossref_primary_10_3389_fonc_2020_606485 crossref_primary_10_1080_15476286_2020_1853975 crossref_primary_10_1186_s12943_021_01361_3 crossref_primary_10_1016_j_semcancer_2021_04_017 crossref_primary_10_3389_fphar_2021_784801 crossref_primary_10_1016_j_ymthe_2021_01_018 crossref_primary_10_1038_s41419_020_2514_0 crossref_primary_10_2147_CMAR_S245233 crossref_primary_10_1038_s41419_019_2127_7 crossref_primary_10_3389_fonc_2022_848341 crossref_primary_10_1002_smll_202007971 crossref_primary_10_3390_ijms23031379 crossref_primary_10_1016_j_mam_2019_10_006 crossref_primary_10_1186_s12943_020_01149_x crossref_primary_10_3390_ijms21124463 crossref_primary_10_1038_s41419_021_03680_1 crossref_primary_10_1016_j_omtn_2020_06_008 crossref_primary_10_1155_2019_4649705 crossref_primary_10_1002_cbin_11449 crossref_primary_10_1186_s12943_022_01543_7 crossref_primary_10_1016_j_semcancer_2019_01_003 crossref_primary_10_1155_2020_4030826 crossref_primary_10_1016_j_tice_2022_101788 crossref_primary_10_1158_1078_0432_CCR_21_0936 crossref_primary_10_2217_epi_2019_0352 crossref_primary_10_1016_j_omtn_2020_10_003 crossref_primary_10_1111_jop_13163 crossref_primary_10_1128_JVI_02145_20 crossref_primary_10_1016_j_biopha_2024_117480 crossref_primary_10_1631_jzus_B2000711 crossref_primary_10_1016_j_bioorg_2024_107859 crossref_primary_10_2147_IJN_S502400 crossref_primary_10_1016_j_molmed_2019_05_007 crossref_primary_10_1186_s12943_019_1041_z crossref_primary_10_1002_jcp_29473 crossref_primary_10_1016_j_biopha_2022_114062 crossref_primary_10_1038_s41419_021_04193_7 crossref_primary_10_1186_s40364_022_00375_3 crossref_primary_10_1186_s12958_021_00795_0 crossref_primary_10_1038_s12276_022_00744_w crossref_primary_10_3389_fcell_2021_786224 crossref_primary_10_1038_s41419_023_05598_2 crossref_primary_10_1016_j_heliyon_2024_e32621 crossref_primary_10_1186_s12943_019_1002_6 crossref_primary_10_1186_s40824_022_00251_z crossref_primary_10_1007_s12094_023_03131_7 crossref_primary_10_1016_j_biopha_2019_108790 crossref_primary_10_1016_j_omtm_2020_05_027 crossref_primary_10_3389_fcell_2021_666863 crossref_primary_10_3390_cancers13184618 crossref_primary_10_1016_j_biopha_2023_115027 crossref_primary_10_1186_s12935_020_01703_z crossref_primary_10_1096_fj_202101307R crossref_primary_10_3233_CBM_190561 crossref_primary_10_1038_s41598_024_71119_6 crossref_primary_10_3390_cancers12010209 crossref_primary_10_1158_0008_5472_CAN_21_1628 crossref_primary_10_3389_fimmu_2024_1453774 crossref_primary_10_3892_ol_2019_11150 crossref_primary_10_3390_ijms241512311 crossref_primary_10_1080_15384101_2021_1874684 crossref_primary_10_1080_21691401_2019_1671857 crossref_primary_10_18632_aging_102091 crossref_primary_10_2147_OTT_S268859 crossref_primary_10_3389_fcell_2022_804247 crossref_primary_10_1111_jcmm_15019 crossref_primary_10_3389_fonc_2021_704703 crossref_primary_10_1016_j_urolonc_2023_10_012 crossref_primary_10_18632_aging_102414 crossref_primary_10_18632_aging_103746 crossref_primary_10_1016_j_gene_2019_144099 crossref_primary_10_1186_s12943_020_01298_z crossref_primary_10_3390_cells11060947 crossref_primary_10_1016_j_aohep_2020_01_002 crossref_primary_10_1002_iub_2404 crossref_primary_10_1186_s12943_019_0986_2 crossref_primary_10_1186_s13046_020_01601_2 crossref_primary_10_18632_aging_102525 crossref_primary_10_1186_s12943_020_01225_2 crossref_primary_10_1016_j_lfs_2021_119039 crossref_primary_10_1186_s12943_020_01300_8 crossref_primary_10_1016_j_canlet_2022_215809 crossref_primary_10_3390_cells9091973 crossref_primary_10_1002_jcla_23433 crossref_primary_10_3390_cancers11081170 crossref_primary_10_1016_j_apsb_2021_01_001 crossref_primary_10_1038_s41419_019_1827_3 crossref_primary_10_3390_jcm11102909 crossref_primary_10_1093_carcin_bgab071 crossref_primary_10_1016_j_omtn_2021_10_006 crossref_primary_10_1186_s13045_020_00987_y crossref_primary_10_3892_ijo_2022_5346 crossref_primary_10_1186_s12943_019_1129_5 crossref_primary_10_1016_j_neo_2023_100963 crossref_primary_10_1016_j_omtn_2020_04_017 crossref_primary_10_1016_j_ymeth_2022_07_011 crossref_primary_10_1002_ctd2_183 crossref_primary_10_1016_j_envpol_2019_113749 crossref_primary_10_1016_j_prp_2024_155645 crossref_primary_10_1002_iub_2346 crossref_primary_10_1016_j_canlet_2024_216759 crossref_primary_10_1016_j_csbj_2021_01_018 crossref_primary_10_1016_j_ncrna_2024_05_004 crossref_primary_10_1002_cam4_3006 crossref_primary_10_1186_s10020_021_00359_3 crossref_primary_10_1021_acs_jmedchem_3c00250 crossref_primary_10_1186_s13046_022_02488_x crossref_primary_10_3389_fonc_2021_614462 crossref_primary_10_1186_s12943_020_01203_8 crossref_primary_10_1111_jcmm_15619 crossref_primary_10_4251_wjgo_v14_i3_678 crossref_primary_10_1016_j_omto_2019_12_014 crossref_primary_10_1016_j_bioana_2024_11_002 crossref_primary_10_1186_s12935_020_01301_z crossref_primary_10_3389_fimmu_2022_900155 crossref_primary_10_4014_jmb_2106_06031 crossref_primary_10_1002_mco2_70079 crossref_primary_10_1016_j_mvr_2020_103983 crossref_primary_10_1186_s12943_019_1025_z crossref_primary_10_1016_j_bcp_2022_115038 crossref_primary_10_1016_j_trecan_2020_01_012 crossref_primary_10_1080_10409238_2023_2185764 crossref_primary_10_36401_JIPO_22_1 crossref_primary_10_3390_ijms24076757 crossref_primary_10_1186_s12943_022_01607_8 crossref_primary_10_1016_j_canlet_2024_216613 crossref_primary_10_1186_s13045_021_01210_2 crossref_primary_10_3390_genes12111701 crossref_primary_10_1002_mgg3_991 crossref_primary_10_1002_ctm2_636 crossref_primary_10_1016_j_biopha_2021_112252 crossref_primary_10_1038_s41417_021_00306_8 crossref_primary_10_1111_cas_14774 crossref_primary_10_1016_j_bbrc_2018_11_102 crossref_primary_10_3390_cells11101716 crossref_primary_10_3389_fonc_2021_736546 crossref_primary_10_1371_journal_pone_0298947 crossref_primary_10_4014_jmb_2312_12014 crossref_primary_10_1002_ctm2_360 crossref_primary_10_1111_jcmm_17979 crossref_primary_10_1016_j_bbrc_2019_04_017 crossref_primary_10_1158_1055_9965_EPI_20_0796 crossref_primary_10_1002_mco2_70009 crossref_primary_10_1016_j_intimp_2022_108626 crossref_primary_10_1186_s13046_023_02743_9 crossref_primary_10_3892_ijmm_2019_4340 crossref_primary_10_1002_hep_31068 crossref_primary_10_1002_cjp2_194 crossref_primary_10_1186_s13046_020_01799_1 crossref_primary_10_1186_s13046_021_02138_8 crossref_primary_10_1038_s41598_024_78413_3 crossref_primary_10_1186_s12943_020_01183_9 crossref_primary_10_1186_s12943_019_1071_6 crossref_primary_10_1155_2021_9970272 crossref_primary_10_18632_aging_102464 crossref_primary_10_1038_s41420_022_00941_6 crossref_primary_10_1038_s41585_019_0261_8 crossref_primary_10_1016_j_bbrc_2021_04_099 crossref_primary_10_1016_j_canlet_2020_06_006 crossref_primary_10_1002_ijc_35035 crossref_primary_10_3389_fphar_2020_00605 crossref_primary_10_1007_s11356_019_06489_w crossref_primary_10_1186_s11658_019_0198_1 crossref_primary_10_3390_cancers13164180 crossref_primary_10_1186_s11658_023_00442_z crossref_primary_10_1038_s41419_020_2616_8 crossref_primary_10_2147_CMAR_S249237 crossref_primary_10_1016_j_canlet_2024_216794 crossref_primary_10_5483_BMBRep_2020_53_2_059 crossref_primary_10_1007_s12094_020_02485_6 crossref_primary_10_1002_mc_23717 crossref_primary_10_1042_BSR20212510 crossref_primary_10_1016_j_omtn_2022_05_034 crossref_primary_10_3389_fonc_2020_00663 crossref_primary_10_1186_s12964_020_00643_5 crossref_primary_10_3389_fonc_2020_01756 crossref_primary_10_7124_bc_000A23 crossref_primary_10_1007_s10565_023_09838_1 crossref_primary_10_1186_s12575_020_00122_8 crossref_primary_10_1038_s41419_019_2191_z crossref_primary_10_1002_jcp_30277 crossref_primary_10_1186_s12943_020_01184_8 crossref_primary_10_2174_0109298665263662231108053654 crossref_primary_10_1016_j_ymthe_2019_12_008 crossref_primary_10_1038_s41419_021_03743_3 crossref_primary_10_1016_j_ymthe_2022_12_005 crossref_primary_10_1016_j_tranon_2023_101823 crossref_primary_10_1038_s41417_023_00617_y crossref_primary_10_1186_s12943_021_01314_w crossref_primary_10_1016_j_canlet_2023_216481 crossref_primary_10_3892_or_2021_8169 crossref_primary_10_12998_wjcc_v7_i8_908 crossref_primary_10_1093_carcin_bgz071 crossref_primary_10_1016_j_snb_2021_130824 crossref_primary_10_3389_fonc_2022_864980 |
Cites_doi | 10.1158/0008-5472.CAN-17-2808 10.1038/nature11993 10.1186/s13046-014-0062-0 10.1016/j.jhep.2018.01.012 10.1158/1078-0432.CCR-08-2245 10.1158/0008-5472.CAN-13-1568 10.1016/j.molcel.2014.08.019 10.1038/nrm.2015.32 10.1083/jcb.101.3.942 10.1128/MCB.00323-08 10.1158/0008-5472.CAN-17-1545 10.1016/j.canlet.2016.12.036 10.1016/j.celrep.2014.12.002 10.1096/fasebj.7.1.7678559 10.1007/s00292-010-1349-3 10.3322/caac.20107 10.3322/caac.21166 10.1038/ncomms11215 10.1186/gb-2010-11-8-r90 10.1038/cr.2015.82 10.1016/j.juro.2014.05.050 10.7554/eLife.05005 10.1038/nrurol.2014.301 10.1038/srep37982 10.1038/nature11928 10.1093/jnci/djx166 10.4103/jcrt.JCRT_132_17 10.1016/0092-8674(93)90279-Y 10.1261/rna.052282.115 10.1007/s00281-010-0234-8 10.1038/onc.2015.69 10.1016/j.ccell.2016.10.009 10.1261/rna.035667.112 10.1038/nsmb.2959 10.1371/journal.pgen.1004652 |
ContentType | Journal Article |
Copyright | 2018 American Association for Cancer Research. |
Copyright_xml | – notice: 2018 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-18-1270 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 6330 |
ExternalDocumentID | 30305293 10_1158_1078_0432_CCR_18_1270 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c375t-e55c6736ca3b081cf50016ab2210de93435f5811b209aa71c5a216e6ffec6c683 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Fri Sep 05 04:56:34 EDT 2025 Mon Jul 21 06:03:01 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Tue Jul 01 01:30:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | 2018 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c375t-e55c6736ca3b081cf50016ab2210de93435f5811b209aa71c5a216e6ffec6c683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30305293 |
PQID | 2118305342 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2118305342 pubmed_primary_30305293 crossref_citationtrail_10_1158_1078_0432_CCR_18_1270 crossref_primary_10_1158_1078_0432_CCR_18_1270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2018 |
References | Wang (2022061021150656000_bib35) 2017; 13 Nawaz (2022061021150656000_bib18) 2014; 11 Starke (2022061021150656000_bib4) 2015; 10 Wittekind (2022061021150656000_bib19) 2010; 31 Perdigao-Henriques (2022061021150656000_bib26) 2016; 35 Capel (2022061021150656000_bib6) 1993; 73 Herranz (2022061021150656000_bib24) 2008; 28 Yu (2022061021150656000_bib20) 2018; 78 Kaufhold (2022061021150656000_bib28) 2014; 33 Agarwal (2022061021150656000_bib22) 2015; 4 Qiu (2022061021150656000_bib32) 2018; 78 Taylor (2022061021150656000_bib27) 2011; 33 Adam (2022061021150656000_bib25) 2009; 15 Becker (2022061021150656000_bib14) 2016; 30 Siegel (2022061021150656000_bib2) 2013; 63 Street (2022061021150656000_bib17) 2014; 192 Jeck (2022061021150656000_bib9) 2013; 19 Li (2022061021150656000_bib21) 2015; 22 Chen (2022061021150656000_bib29) 2016; 17 Yang (2022061021150656000_bib30) 2018; 110 Lu (2022061021150656000_bib8) 2015; 21 Cocquerelle (2022061021150656000_bib5) 1993; 7 Hansen (2022061021150656000_bib10) 2013; 495 Li (2022061021150656000_bib15) 2015; 25 Memczak (2022061021150656000_bib7) 2013; 495 Wang (2022061021150656000_bib31) 2017; 394 Ashwal-Fluss (2022061021150656000_bib3) 2014; 56 Zheng (2022061021150656000_bib11) 2016; 7 Dou (2022061021150656000_bib16) 2016; 6 Hansen (2022061021150656000_bib33) 2013; 73 Pan (2022061021150656000_bib13) 1985; 101 Betel (2022061021150656000_bib23) 2010; 11 Suh (2022061021150656000_bib34) 2014; 10 Jemal (2022061021150656000_bib1) 2011; 61 Yu (2022061021150656000_bib12) 2018; 68 33941547 - Clin Cancer Res. 2021 May 1;27(9):2664 |
References_xml | – volume: 78 start-page: 2839 year: 2018 ident: 2022061021150656000_bib32 article-title: The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-2808 – volume: 495 start-page: 384 year: 2013 ident: 2022061021150656000_bib10 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 33 start-page: 62 year: 2014 ident: 2022061021150656000_bib28 article-title: Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-014-0062-0 – volume: 68 start-page: 1214 year: 2018 ident: 2022061021150656000_bib12 article-title: Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2018.01.012 – volume: 15 start-page: 5060 year: 2009 ident: 2022061021150656000_bib25 article-title: miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-2245 – volume: 73 start-page: 5609 year: 2013 ident: 2022061021150656000_bib33 article-title: Circular RNA and miR-7 in cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-1568 – volume: 56 start-page: 55 year: 2014 ident: 2022061021150656000_bib3 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 17 start-page: 205 year: 2016 ident: 2022061021150656000_bib29 article-title: The biogenesis and emerging roles of circular RNAs publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2015.32 – volume: 101 start-page: 942 year: 1985 ident: 2022061021150656000_bib13 article-title: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes publication-title: J Cell Biol doi: 10.1083/jcb.101.3.942 – volume: 28 start-page: 4772 year: 2008 ident: 2022061021150656000_bib24 article-title: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor publication-title: Mol Cell Biol doi: 10.1128/MCB.00323-08 – volume: 78 start-page: 1241 year: 2018 ident: 2022061021150656000_bib20 article-title: Nkx2.8 inhibits epithelial-mesenchymal transition in bladder urothelial carcinoma via transcriptional repression of twist1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-1545 – volume: 394 start-page: 1 year: 2017 ident: 2022061021150656000_bib31 article-title: Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals publication-title: Cancer Lett doi: 10.1016/j.canlet.2016.12.036 – volume: 10 start-page: 103 year: 2015 ident: 2022061021150656000_bib4 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.002 – volume: 7 start-page: 155 year: 1993 ident: 2022061021150656000_bib5 article-title: Mis-splicing yields circular RNA molecules publication-title: FASEB J doi: 10.1096/fasebj.7.1.7678559 – volume: 31 start-page: 331 year: 2010 ident: 2022061021150656000_bib19 article-title: [2010 TNM system: on the 7th edition of TNM classification of malignant tumors] publication-title: Pathologe doi: 10.1007/s00292-010-1349-3 – volume: 61 start-page: 69 year: 2011 ident: 2022061021150656000_bib1 article-title: Global cancer statistics publication-title: CA Cancer J Clin doi: 10.3322/caac.20107 – volume: 63 start-page: 11 year: 2013 ident: 2022061021150656000_bib2 article-title: Cancer statistics, 2013 publication-title: CA Cancer J Clin doi: 10.3322/caac.21166 – volume: 7 start-page: 11215 year: 2016 ident: 2022061021150656000_bib11 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs publication-title: Nat Commun doi: 10.1038/ncomms11215 – volume: 11 start-page: R90 year: 2010 ident: 2022061021150656000_bib23 article-title: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites publication-title: Genome Biol doi: 10.1186/gb-2010-11-8-r90 – volume: 25 start-page: 981 year: 2015 ident: 2022061021150656000_bib15 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell Res doi: 10.1038/cr.2015.82 – volume: 192 start-page: 297 year: 2014 ident: 2022061021150656000_bib17 article-title: Bioactive exosomes: possibilities for diagnosis and management of bladder cancer publication-title: J Urol doi: 10.1016/j.juro.2014.05.050 – volume: 4 year: 2015 ident: 2022061021150656000_bib22 article-title: Predicting effective microRNA target sites in mammalian mRNAs publication-title: eLife doi: 10.7554/eLife.05005 – volume: 11 start-page: 688 year: 2014 ident: 2022061021150656000_bib18 article-title: The emerging role of extracellular vesicles as biomarkers for urogenital cancers publication-title: Nat Rev Urol doi: 10.1038/nrurol.2014.301 – volume: 6 start-page: 37982 year: 2016 ident: 2022061021150656000_bib16 article-title: Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes publication-title: Sci Rep doi: 10.1038/srep37982 – volume: 495 start-page: 333 year: 2013 ident: 2022061021150656000_bib7 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 110 year: 2018 ident: 2022061021150656000_bib30 article-title: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djx166 – volume: 13 start-page: 676 year: 2017 ident: 2022061021150656000_bib35 article-title: MicroRNA-30c inhibits metastasis of ovarian cancer by targeting metastasis-associated gene 1 publication-title: J Cancer Res Ther doi: 10.4103/jcrt.JCRT_132_17 – volume: 73 start-page: 1019 year: 1993 ident: 2022061021150656000_bib6 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis publication-title: Cell doi: 10.1016/0092-8674(93)90279-Y – volume: 21 start-page: 2076 year: 2015 ident: 2022061021150656000_bib8 article-title: Transcriptome-wide investigation of circular RNAs in rice publication-title: RNA doi: 10.1261/rna.052282.115 – volume: 33 start-page: 441 year: 2011 ident: 2022061021150656000_bib27 article-title: Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments publication-title: Semin Immunopathol doi: 10.1007/s00281-010-0234-8 – volume: 35 start-page: 158 year: 2016 ident: 2022061021150656000_bib26 article-title: miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes publication-title: Oncogene doi: 10.1038/onc.2015.69 – volume: 30 start-page: 836 year: 2016 ident: 2022061021150656000_bib14 article-title: Extracellular vesicles in cancer: cell-to-cell mediators of metastasis publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.009 – volume: 19 start-page: 141 year: 2013 ident: 2022061021150656000_bib9 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 22 start-page: 256 year: 2015 ident: 2022061021150656000_bib21 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2959 – volume: 10 start-page: e1004652 year: 2014 ident: 2022061021150656000_bib34 article-title: FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs publication-title: PLos Genet doi: 10.1371/journal.pgen.1004652 – reference: 33941547 - Clin Cancer Res. 2021 May 1;27(9):2664 |
SSID | ssj0014104 |
Score | 2.6667972 |
Snippet | Purpose: Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the... Circular RNAs (circRNAs), a novel class of noncoding RNAs, have recently drawn lots of attention in the pathogenesis of human cancers. However, the role of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 6319 |
SubjectTerms | Cadherins - metabolism Carcinoma, Transitional Cell - genetics Carcinoma, Transitional Cell - metabolism Carcinoma, Transitional Cell - pathology Cell Line, Tumor Computational Biology - methods Epithelial-Mesenchymal Transition - genetics Gene Expression Profiling Gene Expression Regulation, Neoplastic Gene Silencing Humans MicroRNAs - genetics Protein-Arginine N-Methyltransferases - genetics RNA RNA Interference RNA, Circular Signal Transduction Snail Family Transcription Factors - genetics Snail Family Transcription Factors - metabolism Urinary Bladder Neoplasms - genetics Urinary Bladder Neoplasms - metabolism Urinary Bladder Neoplasms - pathology |
Title | PRMT5 Circular RNA Promotes Metastasis of Urothelial Carcinoma of the Bladder through Sponging miR-30c to Induce Epithelial–Mesenchymal Transition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30305293 https://www.proquest.com/docview/2118305342 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbpFpa9lL6bvlCht6A0kizHPi5m21CapWQTNj0ZW5FZQ2KHrHNof0ah_7cztuSk2yx9XEwyjmXj78t4JH8zQ8jbxNeBHmjJ-CLNmBdywUKjBkwYuUh5Gipdp4-Nz_3RzPs4V_NO58eeamlbpX397WBeyf-gCjbAFbNk_wHZdlAwwGfAF7aAMGz_CuPPk_FU9aJ804hJJ-enKPyHm2-ue2NTJRD52Xojsw1mWi1xeTzC7kFFuUpaecASvc-mbdlzsS6LunXRKp8wOdAYnmKHD_AAZ-vcDsPGmLakr76uMMEfH3h5C7ErfOCSLjUya9OzdYXa9efIJobM8-KmaZKzPeulqSUHl6ZgF1tn_FTbvsClslFpH7929YIHqARp8jf7xnpcBV5ONA0jnEtu0qot9eyXxsH6svGwv3t-FdSLEFgw2JOiH0UTVp-u6Uuyx4b1qqaDRFcnmvaMN0puu113yF0xHHJUin6Yt8ohVMZ6NhkMzvru4DlPyLEb5deI55ZpTB3OTO-Te3YeQk8bUj0gHVM8JMdjq7R4RL7X3KKOWxS4RR236I5btMzojlu05RbawUgtt6jlFnXcopZbtCppwy16mFt0x63HZPb-bBqNmO3fwbQcqooZpTTKBnUiU4g8daZwgpGkQvDBwoQSIvVMBZynYhAmyZBrlQjuGx-FTL72A_mEHBVlYZ4RukjhYj2VGp6FXga_zoyCJ4-UIsyUyNIu8dw9jrUtbo89VpZxPclVQYwoxYhSDCjFHAyAUpf028PWTXWXPx3wxgEYgx_Gl2tJYcrtdSxgpg54S090ydMG2XZIx4Tnt-55QU52_46X5KjabM0riHar9HXNvZ8HF6Zi |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PRMT5+Circular+RNA+Promotes+Metastasis+of+Urothelial+Carcinoma+of+the+Bladder+through+Sponging+miR-30c+to+Induce+Epithelial-Mesenchymal+Transition&rft.jtitle=Clinical+cancer+research&rft.au=Chen%2C+Xin&rft.au=Chen%2C+Ri-Xin&rft.au=Wei%2C+Wen-Su&rft.au=Li%2C+Yong-Hong&rft.date=2018-12-15&rft.eissn=1557-3265&rft.volume=24&rft.issue=24&rft.spage=6319&rft_id=info:doi/10.1158%2F1078-0432.CCR-18-1270&rft_id=info%3Apmid%2F30305293&rft.externalDocID=30305293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |