Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation

Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of per...

Full description

Saved in:
Bibliographic Details
Published inBiomechanics and modeling in mechanobiology Vol. 20; no. 3; pp. 1115 - 1134
Main Authors Mathai, Basil, Dhara, Santanu, Gupta, Sanjay
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-7959
1617-7940
1617-7940
DOI10.1007/s10237-021-01436-6

Cover

Abstract Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities ( R = 0.71 ) , the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4–8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation ( R = 0.99 ) between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.
AbstractList Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities [Formula: see text], the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4-8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation [Formula: see text] between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities [Formula: see text], the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4-8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation [Formula: see text] between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.
Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities [Formula: see text], the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4-8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation [Formula: see text] between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.
Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities ( R = 0.71 ) , the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4–8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation ( R = 0.99 ) between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.
Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities (R=0.71), the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4–8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation (R=0.99) between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.
Author Mathai, Basil
Dhara, Santanu
Gupta, Sanjay
Author_xml – sequence: 1
  givenname: Basil
  surname: Mathai
  fullname: Mathai, Basil
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur
– sequence: 2
  givenname: Santanu
  surname: Dhara
  fullname: Dhara, Santanu
  organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur
– sequence: 3
  givenname: Sanjay
  surname: Gupta
  fullname: Gupta, Sanjay
  email: sangupta@mech.iitkgp.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33768358$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrHiEUhqUkNJf2D3RRhG6ymeao42W6KyG9QCCbdi2Oo18MMzpVh9J_X5PvawpZZOUBn_dc3vcMHcUUHULvCHwkAPKyEKBMdkBJB6RnohOv0CkRRHZy6OHoqebDCTor5R6AAlPsNTphTArFuDpFu9tc71LNaQ0Wj60_zm5Jk5vnEHfY5LTFCW_RusXF6ibs2282Mw7LOptYP2GDbVpWk0NJEf8O9Q636tDPp7xss6khxTfo2Ju5uLeH9xz9_HL94-pbd3P79fvV55vOMslrZwXncpB8BOodH6ZhNAwUMV6YfnSCC0XAUSd6qwTj1I0evFKeGs9hZIaxc3Sx77vm9GtzpeolFNvOMdGlrWjKQVApmlsN_fAMvU9bjm27RjHas6HnQ6PeH6htXNyk1xwWk__ofxY2gO4Bm1Mp2fknhIB-yEnvc9ItJ_2Yk36YrZ6JbKiPRtVswvyylO2lpc2JO5f_r_2C6i_QUKfX
CitedBy_id crossref_primary_10_1115_1_4054457
crossref_primary_10_1016_j_ijengsci_2024_104209
crossref_primary_10_1007_s11517_024_03023_0
crossref_primary_10_1016_j_jmbbm_2021_104903
crossref_primary_10_2139_ssrn_4149704
crossref_primary_10_3390_biology12020170
crossref_primary_10_1007_s10237_023_01692_8
crossref_primary_10_1016_j_rineng_2025_103932
crossref_primary_10_1039_D3TB01469J
Cites_doi 10.1007/978-94-009-6827-1_44
10.1007/s10237-015-0696-7
10.1016/j.medengphy.2010.01.004
10.1007/s10237-015-0740-7
10.1080/23335432.2015.1017609
10.2106/00004623-197052030-00005
10.1080/10255840108908014
10.1016/j.jbiomech.2006.10.038
10.2106/00004623-200606000-00019
10.1016/S0021-9290(03)00071-X
10.1152/jappl.2000.88.6.2183
10.1016/S0021-9290(02)00022-2
10.1016/S0268-0033(97)00018-1
10.1016/0021-9290(87)90058-3
10.1016/0021-9290(87)90030-3
10.1016/j.jbiomech.2010.11.029
10.1016/S0021-9290(97)84505-8
10.1016/0021-9290(96)00025-5
10.1115/1.4029059
10.1016/S0021-9290(01)00040-9
10.1002/cnm.3353
10.1016/S0021-9290(01)00069-0
10.1038/35015116
10.1016/j.jbiomech.2012.08.022
10.1016/j.medengphy.2006.10.014
10.1007/BF01637666
10.1016/0021-9290(86)90112-0
10.1002/jor.1100080506
10.1177/0954411916661368
10.1007/s00223-002-2036-z
10.1002/jor.1100080507
10.1115/1.4037223
10.1016/j.jbiomech.2014.12.019
10.1016/j.clinbiomech.2017.10.015
10.1016/0021-9290(95)80008-5
10.1016/0021-9290(89)90091-2
10.1115/1.4026642
10.1016/j.jtbi.2006.06.029
10.1007/s10237-019-01166-w
10.1016/j.jbiomech.2004.03.005
10.1016/S0021-9290(99)00041-X
10.1016/j.medengphy.2011.08.015
10.1007/s00296-005-0077-0
10.1007/s40520-015-0424-2
10.1109/10.102791
10.1016/S0021-9290(98)00080-3
10.1177/0954411915591617
10.1016/S0045-7949(98)00312-5
10.1016/0021-9290(93)90001-U
10.1016/S0021-9290(01)00192-0
10.5301/HIP.2012.9103
10.1016/B978-012387582-2/50038-1
10.1007/s10237-016-0765-6
10.1016/j.jbiomech.2007.02.010
10.1016/j.medengphy.2011.10.008
10.1016/j.medengphy.2013.12.006
10.1177/0954411919840524
10.1007/s10237-015-0735-4
10.1016/S1350-4533(03)00138-3
10.1016/S0021-9290(02)00173-2
10.1016/S1350-4533(97)00002-7
10.1243/095441103765212677
10.1201/b14263
10.1007/s00223-002-2123-1
10.1016/j.jbiomech.2005.10.027
10.2140/memocs.2018.6.307
10.1016/j.medengphy.2008.12.008
10.1177/09544119JEIM895
10.1115/1.4029061
10.1002/jbm.820241107
10.1016/S8756-3282(02)00828-1
10.1177/0954411912461238
10.1007/978-3-642-71031-5_1
10.1016/0021-9290(87)90026-1
10.1243/09544119JEIM341
10.1016/j.jbiomech.2014.08.020
10.1016/S0927-0256(02)00254-9
10.1097/00003086-197906000-00002
10.1016/S0021-9290(01)00178-6
10.1016/S0021-9290(02)00187-2
10.1242/jeb.01971
10.1016/S0021-9290(96)00189-3
10.1007/s00158-019-02229-3
10.1016/S0021-9290(97)00052-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
3V.
7QO
7QP
7TB
7TK
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
7X8
DOI 10.1007/s10237-021-01436-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database (Proquest)
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1617-7940
EndPage 1134
ExternalDocumentID 33768358
10_1007_s10237_021_01436_6
Genre Journal Article
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7Y
Z83
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7QO
7QP
7TB
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-c6557975b02fe59d9ba3081af6a4be656810e2e64c86352ebf0f88f2af50b3a33
IEDL.DBID U2A
ISSN 1617-7959
1617-7940
IngestDate Thu Oct 02 06:16:56 EDT 2025
Tue Oct 07 05:53:25 EDT 2025
Mon Jul 21 06:00:38 EDT 2025
Wed Oct 01 01:37:18 EDT 2025
Thu Apr 24 23:12:18 EDT 2025
Fri Feb 21 02:49:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Finite element analysis
Total hip replacement
Proximal femur
Bone remodelling
Bone orthotropy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-c6557975b02fe59d9ba3081af6a4be656810e2e64c86352ebf0f88f2af50b3a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 33768358
PQID 2532439459
PQPubID 54766
PageCount 20
ParticipantIDs proquest_miscellaneous_2506276436
proquest_journals_2532439459
pubmed_primary_33768358
crossref_primary_10_1007_s10237_021_01436_6
crossref_citationtrail_10_1007_s10237_021_01436_6
springer_journals_10_1007_s10237_021_01436_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Dordrecht
PublicationTitle Biomechanics and modeling in mechanobiology
PublicationTitleAbbrev Biomech Model Mechanobiol
PublicationTitleAlternate Biomech Model Mechanobiol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References TaddeiFPancantiAVicecontiMAn improved method for the automatic mapping of computed tomography numbers onto finite element modelsMed Eng Phys20042616169
SkedrosJGBaucomSLMathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femurJ Theor Biol20072441154522804801450.92015
LanyonLFunctional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodellingJ Biomech19872011–1210831093
PrendergastPFinite element models in tissue mechanics and orthopaedic implant designClin Biomech1997126343366
Wolff J (1986) The law of bone remodelling. translated by p. maquet and r. furlong. New York, Springer 1(9):8
PhillipsAThe femur as a musculo-skeletal construct: a free boundary condition modelling approachMed Eng Phys2009316673680
Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. Vis Handb 717(8)
GhoshRGuptaSDickinsonABrowneMExperimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvisesProc Inst Mech Eng H20132272162174
MukherjeeKGuptaSCombined bone ingrowth and remodeling around uncemented acetabular component: a multiscale mechanobiology-based finite element analysisJ Biomech Eng20171399091007
Chanda S, Gupta S, Kumar Pratihar D (2015b) A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant. J Biomech Eng 137(3)
Van RietbergenBHuiskesRWeinansHSumnerDTurnerTGalanteJThe mechanism of bone remodeling and resorption around press-fitted tha stemsJ Biomech1993264–5369382
MartinRBPorosity and specific surface of boneCrit Rev Biomed Eng1984103179222
KiTAdachiTTomitaYFunctional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress stateJ Biomech2002351215411551
ten BroekeRHTaralaMArtsJJJanssenDWVerdonschotNGeesinkRGImproving peri-prosthetic bone adaptation around cementless hip stems: a clinical and finite element studyMed Eng Phys2014363345353
PhillipsATVilletteCCModeneseLFemoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modellingInt Biomech2015214361
PontzerHLiebermanDEMominEDevlinMJPolkJHallgrimssonBCooperDTrabecular bone in the bird knee responds with high sensitivity to changes in load orientationJ Exp Biol200620915765
Cordebois J, Sidoroff F (1982) Damage induced elastic anisotropy. In: Mechanical behavior of anisotropic solids/comportment Méchanique des Solides Anisotropes, Springer, pp 761–774
TaddeiFSchileoEHelgasonBCristofoliniLVicecontiMThe material mapping strategy influences the accuracy of ct-based finite element models of bones: an evaluation against experimental measurementsMed Eng Phys2007299973979
BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–application: A preliminary remodeling simulationJ Orthop Res199085662670
BergmannGDeuretzbacherGHellerMGraichenFRohlmannAStraussJDudaGHip contact forces and gait patterns from routine activitiesJ Biomech2001347859871
CupponeMSeedhomBBerryEOstellAThe longitudinal young’s modulus of cortical bone in the midshaft of human femur and its correlation with ct scanning dataCalcif Tissue Int2004743302309
BendsoeMPSigmundOTopology optimization: theory, methods, and applications2013BerlinSpringer1059.74001
GiorgioIDell’IsolaFAndreausUAlzahraniFHayatTLekszyckiTOn mechanically driven biological stimulus for bone remodeling as a diffusive phenomenonBiomech Model Mechanobiol201918616391663
KernerJHuiskesRVan LentheGWeinansHVan RietbergenBEnghCAmisACorrelation between pre-operative periprosthetic bone density and post-operative bone loss in tha can be explained by strain-adaptive remodellingJ Biomech1999327695703
ChandaSDickinsonAGuptaSBrowneMFull-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplastyProc Inst Mech Eng H20152298549559
Gruen TA, McNeice GM, Amstutz HC (1979) ”modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27
FrostHMBone’s mechanostat: a 2003 updateAnat Rec Part A Discov Mol Cell Evol Biol Offi Publ Am Assoc Anat2003275210811101
Weinans H, Huiskes R, van Rietbergen B, Sumner D, Turner T, Galante J (1993) Validation of adaptive bone-remodeling analysis to predict bone morphology around noncemented tha. Mechanically induced bone adaptations around orthopaedic implants pp 19–40
Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three-dimensional linear elastic structures with a constraint on ”perimeter”. Comput Struct 73(6):583–594
BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–theoretical developmentJ Orthop Res199085651661
CowinSCVan BuskirkWCThermodynamic restrictions on the elastic constants of boneJ Biomech19861918587
VerhulpEvan RietbergenBHuiskesRComparison of micro-level and continuum-level voxel models of the proximal femurJ Biomech2006391629512957
JudexSZernickeRFHigh-impact exercise and growing bone: relation between high strain rates and enhanced bone formationJ Appl Physiol200088621832191
SarikanatMYildizHDetermination of bone density distribution in proximal femur by using the 3d orthotropic bone adaptation modelProc Inst Mech Eng H20112254365375
ColabellaLCisilinoAPFachinottiVKowalczykPMultiscale design of elastic solids with biomimetic cancellous bone cellular microstructuresStruct Multidiscip Optim20196026396613977530
DudaGNBrandDFreitagSLierseWSchneiderEVariability of femoral muscle attachmentsJ Biomech199629911851190
KalmeyJLovejoyCOCollagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading?Bone2002312327332
LengsfeldMGüntherDPresselTLeppekRSchmittJGrissPValidation data for periprosthetic bone remodelling theoriesJ Biomech2002351215531564
VilletteCCPhillipsATInforming phenomenological structural bone remodelling with a mechanistic poroelastic modelBiomech Model Mechanobiol20161516982
Frost HM (1964) The laws of bone structure. springfield il. Charles C Thomas
GiorgioIAndreausUScerratoDDell’IsolaFA visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materialsBiomech Model Mechanobiol201615513251343
AvvalPTKlikaVBougheraraHPredicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical modelJ Biomech Eng20141365051002
BoyleCKimIYThree-dimensional micro-level computational study of wolff’s law via trabecular bone remodeling in the human proximal femur using design space topology optimizationJ Biomech2011445935942
DoblaréMGarcıaJApplication of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacementJ Biomech200134911571170
TaylorMPrendergastPJFour decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?J Biomech2015485767778
Banijamali SMA, Oftadeh R, Nazarian A, Goebel R, Vaziri A, Nayeb-Hashemi H (2015) Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling. J Biomech Eng 137(1)
HuiskesRWeinansHGrootenboerHDalstraMFudalaBSlooffTAdaptive bone-remodeling theory applied to prosthetic-design analysisJ Biomech1987201111351150
McNamaraBPTaylorDPrendergastPJComputer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithmsMed Eng Phys1997195454463
Enns-BrayWSOwocJSNishiyamaKKBoydSKMapping anisotropy of the proximal femur for enhanced image based finite element analysisJ Biomech2014471332723278
MorganEFBayraktarHHKeavenyTMTrabecular bone modulus-density relationships depend on anatomic siteJ Biomech2003367897904
PidapartiRTurnerCCancellous bone architecture: advantages of nonorthogonal trabecular alignment under multidirectional joint loadingJ Biomech1997309979983
PedersenPOn optimal orientation of orthotropic materialsStructural optimization198912101106
SinghMNagrathAMainiPChanges in trabecular pattern of the upper end of the femur as an index of osteoporosisJBJS1970523457467
DudaGNHellerMAlbingerJSchulzOSchneiderEClaesLInfluence of muscle forces on femoral strain distributionJ Biomech1998319841846
AldingerPSaboDPritschMThomsenMMauHEwerbeckVBreuschSPattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with dxaCalcif Tissue Int2003732115121
CarterDOrrTFyhrieDPRelationships between loading history and femoral cancellous bone architectureJ Biomech1989223231244
MukherjeeKGuptaSThe effects of musculoskeletal loading regimes on numerical evaluations of acetabular componentProc Inst Mech Eng H201623010918929
CaouetteCBureauMVendittoliPALavigneMNunoNAnisotropic bone remodeling of a biomimetic metal-on-metal hip resurfacing implantMed Eng Phys2012345559565
WardFOutlines of human osteology1838LondonHenry Renshaw
ten BroekeRHHendrickxRPLeffersPJuttenLMGeesinkRGRandomised trial comparing bone remodelling around two uncemented stems using modified gruen zonesHip Int20122214149
TaylorWRolandEPloegHHertigDKlabundeRWarnerMHobathoMRakotomananaLCliftSDetermination of orthotropic bone elastic constants using fea and modal analysisJ Biomech2002356767773
GeraldesDMModeneseLPhillipsATConsideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femurBiomech Model Mechanobiol201615510291042
PolgarKGillHVicecontiMMurrayDO’connorJStrain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur modelProc Inst Mech Eng H20032173173189
YangHMaXGuoTSome factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models o
J Garcıa (1436_CR33) 2002; 25
C Boyle (1436_CR11) 2011; 44
H Yang (1436_CR91) 2010; 32
GN Duda (1436_CR27) 1998; 31
B van Rietbergen (1436_CR85) 1995; 28
EF Morgan (1436_CR58) 2003; 36
CR Jacobs (1436_CR44) 1997; 30
B Mathai (1436_CR55) 2020; 36
RH ten Broeke (1436_CR81) 2012; 22
D Carter (1436_CR13) 1987; 20
SC Cowin (1436_CR20) 1986; 19
L Lanyon (1436_CR49) 1987; 20
1436_CR16
M Doblaré (1436_CR25) 2002; 35
1436_CR18
D Dan (1436_CR22) 2006; 26
P Pedersen (1436_CR62) 1989; 1
J Garcia (1436_CR32) 2001; 4
1436_CR1
K Mukherjee (1436_CR60) 2016; 230
A Phillips (1436_CR63) 2009; 31
Y Shang (1436_CR73) 2008; 222
1436_CR5
M Lengsfeld (1436_CR50) 2002; 35
M Taylor (1436_CR79) 2015; 48
L Colabella (1436_CR17) 2019; 60
BP McNamara (1436_CR56) 1997; 19
R Pidaparti (1436_CR65) 1997; 30
1436_CR90
S Chanda (1436_CR15) 2015; 229
G Beaupré (1436_CR6) 1990; 8
B Mathai (1436_CR54) 2019; 233
F Taddei (1436_CR77) 2004; 26
1436_CR41
E Gasbarra (1436_CR34) 2015; 27
J Kerner (1436_CR47) 1999; 32
H Pontzer (1436_CR67) 2006; 209
C Caouette (1436_CR12) 2012; 34
P Prendergast (1436_CR68) 1997; 12
M Sarikanat (1436_CR71) 2011; 225
RH ten Broeke (1436_CR82) 2014; 36
1436_CR89
M Cuppone (1436_CR21) 2004; 74
J Kalmey (1436_CR46) 2002; 31
R Huiskes (1436_CR43) 2000; 405
DM Geraldes (1436_CR37) 2016; 15
CH Turner (1436_CR83) 1997; 30
HM Frost (1436_CR31) 2003; 275
JG Skedros (1436_CR75) 2007; 244
G Beaupré (1436_CR7) 1990; 8
M Singh (1436_CR74) 1970; 52
SC Cowin (1436_CR19) 2001
K Mukherjee (1436_CR59) 2016; 15
G Bergmann (1436_CR9) 2001; 34
DM Geraldes (1436_CR36) 2014; 30
T Ki (1436_CR48) 2002; 35
P Aldinger (1436_CR3) 2003; 73
1436_CR30
K Polgar (1436_CR66) 2003; 217
GN Duda (1436_CR26) 1996; 29
RB Martin (1436_CR53) 1984; 10
S Judex (1436_CR45) 2000; 88
WS Enns-Bray (1436_CR28) 2014; 47
M Doblaré (1436_CR24) 2001; 34
AD Speirs (1436_CR76) 2007; 40
D Carter (1436_CR14) 1989; 22
D George (1436_CR35) 2018; 6
F Ward (1436_CR88) 1838
MP Bendsoe (1436_CR8) 2013
JH Marangalou (1436_CR52) 2012; 45
C Bitsakos (1436_CR10) 2005; 38
F Taddei (1436_CR78) 2007; 29
I Levadnyi (1436_CR51) 2017; 50
Z Miller (1436_CR57) 2002; 35
PT Avval (1436_CR4) 2014; 136
S Akhavan (1436_CR2) 2006; 88
E Verhulp (1436_CR86) 2006; 39
D Rancourt (1436_CR69) 1990; 24
E Schileo (1436_CR72) 2007; 40
SL Delp (1436_CR23) 1990; 37
B Van Rietbergen (1436_CR84) 1993; 26
AT Phillips (1436_CR64) 2015; 2
I Giorgio (1436_CR40) 2019; 18
R Ghosh (1436_CR38) 2013; 227
I Giorgio (1436_CR39) 2016; 15
T San Antonio (1436_CR70) 2012; 34
1436_CR29
W Taylor (1436_CR80) 2002; 35
R Huiskes (1436_CR42) 1987; 20
CC Villette (1436_CR87) 2016; 15
K Mukherjee (1436_CR61) 2017; 139
References_xml – reference: JacobsCRSimoJCBeaupreGSCarterDRAdaptive bone remodeling incorporating simultaneous density and anisotropy considerationsJ Biomech1997306603613
– reference: van RietbergenBWeinansHHuiskesROdgaardAA new method to determine trabecular bone elastic properties and loading using micromechanical finite-element modelsJ Biomech19952816981
– reference: MathaiBGuptaSNumerical predictions of hip joint and muscle forces during daily activities: a comparison of musculoskeletal modelsProc Inst Mech Eng H20192336636647
– reference: AvvalPTKlikaVBougheraraHPredicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical modelJ Biomech Eng20141365051002
– reference: Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. Vis Handb 717(8)
– reference: Banijamali SMA, Oftadeh R, Nazarian A, Goebel R, Vaziri A, Nayeb-Hashemi H (2015) Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling. J Biomech Eng 137(1)
– reference: KernerJHuiskesRVan LentheGWeinansHVan RietbergenBEnghCAmisACorrelation between pre-operative periprosthetic bone density and post-operative bone loss in tha can be explained by strain-adaptive remodellingJ Biomech1999327695703
– reference: BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–theoretical developmentJ Orthop Res199085651661
– reference: DoblaréMGarcıaJAnisotropic bone remodelling model based on a continuum damage-repair theoryJ Biomech2002351117
– reference: BoyleCKimIYThree-dimensional micro-level computational study of wolff’s law via trabecular bone remodeling in the human proximal femur using design space topology optimizationJ Biomech2011445935942
– reference: KalmeyJLovejoyCOCollagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading?Bone2002312327332
– reference: HuiskesRRuimermanRVan LentheGHJanssenJDEffects of mechanical forces on maintenance and adaptation of form in trabecular boneNature20004056787704
– reference: BergmannGDeuretzbacherGHellerMGraichenFRohlmannAStraussJDudaGHip contact forces and gait patterns from routine activitiesJ Biomech2001347859871
– reference: VerhulpEvan RietbergenBHuiskesRComparison of micro-level and continuum-level voxel models of the proximal femurJ Biomech2006391629512957
– reference: CowinSCBone mechanics handbook2001Boca RatonCRC Press
– reference: TaddeiFSchileoEHelgasonBCristofoliniLVicecontiMThe material mapping strategy influences the accuracy of ct-based finite element models of bones: an evaluation against experimental measurementsMed Eng Phys2007299973979
– reference: TaylorWRolandEPloegHHertigDKlabundeRWarnerMHobathoMRakotomananaLCliftSDetermination of orthotropic bone elastic constants using fea and modal analysisJ Biomech2002356767773
– reference: ten BroekeRHTaralaMArtsJJJanssenDWVerdonschotNGeesinkRGImproving peri-prosthetic bone adaptation around cementless hip stems: a clinical and finite element studyMed Eng Phys2014363345353
– reference: PolgarKGillHVicecontiMMurrayDO’connorJStrain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur modelProc Inst Mech Eng H20032173173189
– reference: ten BroekeRHHendrickxRPLeffersPJuttenLMGeesinkRGRandomised trial comparing bone remodelling around two uncemented stems using modified gruen zonesHip Int20122214149
– reference: MathaiBGuptaSThe influence of loading configurations on numerical evaluation of failure mechanisms in an uncemented femoral prosthesisInt J Number Meth Bio2020368e3353415670510.1002/cnm.3353
– reference: AkhavanSMatthiesenMMSchulteLPenoyarTKraayMJRimnacCMGoldbergVMClinical and histologic results related to a low-modulus composite total hip replacement stemJBJS200688613081314
– reference: ShangYBaiJPengLThe effects of the spatial influence function on orthotropic femur remodellingProc Inst Mech Eng H20082225601609
– reference: CowinSCVan BuskirkWCThermodynamic restrictions on the elastic constants of boneJ Biomech19861918587
– reference: MartinRBPorosity and specific surface of boneCrit Rev Biomed Eng1984103179222
– reference: PrendergastPFinite element models in tissue mechanics and orthopaedic implant designClin Biomech1997126343366
– reference: Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three-dimensional linear elastic structures with a constraint on ”perimeter”. Comput Struct 73(6):583–594
– reference: SpeirsADHellerMODudaGNTaylorWRPhysiologically based boundary conditions in finite element modellingJ Biomech2007401023182323
– reference: HuiskesRWeinansHGrootenboerHDalstraMFudalaBSlooffTAdaptive bone-remodeling theory applied to prosthetic-design analysisJ Biomech1987201111351150
– reference: RancourtDShirazi-AdlADrouinGPaiementGFriction properties of the interface between porous-surfaced metals and tibial cancellous boneJ Biomed Mater Res1990241115031519
– reference: WardFOutlines of human osteology1838LondonHenry Renshaw
– reference: MillerZFuchsMBArcanMTrabecular bone adaptation with an orthotropic material modelJ Biomech2002352247256
– reference: TaylorMPrendergastPJFour decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?J Biomech2015485767778
– reference: Van RietbergenBHuiskesRWeinansHSumnerDTurnerTGalanteJThe mechanism of bone remodeling and resorption around press-fitted tha stemsJ Biomech1993264–5369382
– reference: GeraldesDMModeneseLPhillipsATConsideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femurBiomech Model Mechanobiol201615510291042
– reference: McNamaraBPTaylorDPrendergastPJComputer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithmsMed Eng Phys1997195454463
– reference: LengsfeldMGüntherDPresselTLeppekRSchmittJGrissPValidation data for periprosthetic bone remodelling theoriesJ Biomech2002351215531564
– reference: GhoshRGuptaSDickinsonABrowneMExperimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvisesProc Inst Mech Eng H20132272162174
– reference: CarterDOrrTFyhrieDPRelationships between loading history and femoral cancellous bone architectureJ Biomech1989223231244
– reference: CarterDFyhrieDPWhalenRTrabecular bone density and loading history: regulation of connective tissue biology by mechanical energyJ Biomech1987208785794
– reference: Chanda S, Gupta S, Kumar Pratihar D (2015b) A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant. J Biomech Eng 137(3)
– reference: MorganEFBayraktarHHKeavenyTMTrabecular bone modulus-density relationships depend on anatomic siteJ Biomech2003367897904
– reference: BitsakosCKernerJFisherIAmisAAThe effect of muscle loading on the simulation of bone remodelling in the proximal femurJ Biomech2005381133139
– reference: DelpSLLoanJPHoyMGZajacFEToppELRosenJMAn interactive graphics-based model of the lower extremity to study orthopaedic surgical proceduresIEEE Trans Biomed Eng1990378757767
– reference: TaddeiFPancantiAVicecontiMAn improved method for the automatic mapping of computed tomography numbers onto finite element modelsMed Eng Phys20042616169
– reference: DanDGermannDBurkiHHausnerPKappelerUMeyerRPKlaghoferRStollTBone loss after total hip arthroplastyRheumatol Int2006269792798
– reference: ChandaSDickinsonAGuptaSBrowneMFull-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplastyProc Inst Mech Eng H20152298549559
– reference: MukherjeeKGuptaSThe effects of musculoskeletal loading regimes on numerical evaluations of acetabular componentProc Inst Mech Eng H201623010918929
– reference: GarcıaJDoblaréMCegoninoJBone remodelling simulation: a tool for implant designComput Mater Sci2002251100114
– reference: PhillipsAThe femur as a musculo-skeletal construct: a free boundary condition modelling approachMed Eng Phys2009316673680
– reference: YangHMaXGuoTSome factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femurMed Eng Phys2010326553560
– reference: GeraldesDMPhillipsAA comparative study of orthotropic and isotropic bone adaptation in the femurInt J Number Meth Bio2014309873889
– reference: FrostHMBone’s mechanostat: a 2003 updateAnat Rec Part A Discov Mol Cell Evol Biol Offi Publ Am Assoc Anat2003275210811101
– reference: SinghMNagrathAMainiPChanges in trabecular pattern of the upper end of the femur as an index of osteoporosisJBJS1970523457467
– reference: JudexSZernickeRFHigh-impact exercise and growing bone: relation between high strain rates and enhanced bone formationJ Appl Physiol200088621832191
– reference: BendsoeMPSigmundOTopology optimization: theory, methods, and applications2013BerlinSpringer1059.74001
– reference: AldingerPSaboDPritschMThomsenMMauHEwerbeckVBreuschSPattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with dxaCalcif Tissue Int2003732115121
– reference: LevadnyiIAwrejcewiczJGubauaJEPereiraJTNumerical evaluation of bone remodelling and adaptation considering different hip prosthesis designsClin Biomech201750122129
– reference: CaouetteCBureauMVendittoliPALavigneMNunoNAnisotropic bone remodeling of a biomimetic metal-on-metal hip resurfacing implantMed Eng Phys2012345559565
– reference: Cordebois J, Sidoroff F (1982) Damage induced elastic anisotropy. In: Mechanical behavior of anisotropic solids/comportment Méchanique des Solides Anisotropes, Springer, pp 761–774
– reference: BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–application: A preliminary remodeling simulationJ Orthop Res199085662670
– reference: San AntonioTCiacciaMMüller-KargerCCasanovaEOrientation of orthotropic material properties in a femur fe model: a method based on the principal stresses directionsMed Eng Phys2012347914919
– reference: SchileoETaddeiFMalandrinoACristofoliniLVicecontiMSubject-specific finite element models can accurately predict strain levels in long bonesJ Biomech2007401329822989
– reference: CupponeMSeedhomBBerryEOstellAThe longitudinal young’s modulus of cortical bone in the midshaft of human femur and its correlation with ct scanning dataCalcif Tissue Int2004743302309
– reference: DudaGNBrandDFreitagSLierseWSchneiderEVariability of femoral muscle attachmentsJ Biomech199629911851190
– reference: Enns-BrayWSOwocJSNishiyamaKKBoydSKMapping anisotropy of the proximal femur for enhanced image based finite element analysisJ Biomech2014471332723278
– reference: PontzerHLiebermanDEMominEDevlinMJPolkJHallgrimssonBCooperDTrabecular bone in the bird knee responds with high sensitivity to changes in load orientationJ Exp Biol200620915765
– reference: GarciaJMartinezMDoblaréMAn anisotropic internal-external bone adaptation model based on a combination of cao and continuum damage mechanics technologiesComput Methods Biomech Biomed Engin200144355377
– reference: MarangalouJHItoKvan RietbergenBA new approach to determine the accuracy of morphology-elasticity relationships in continuum fe analyses of human proximal femurJ Biomech2012451628842892
– reference: VilletteCCPhillipsATInforming phenomenological structural bone remodelling with a mechanistic poroelastic modelBiomech Model Mechanobiol20161516982
– reference: DoblaréMGarcıaJApplication of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacementJ Biomech200134911571170
– reference: KiTAdachiTTomitaYFunctional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress stateJ Biomech2002351215411551
– reference: LanyonLFunctional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodellingJ Biomech19872011–1210831093
– reference: MukherjeeKGuptaSBone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithmBiomech Model Mechanobiol2016152389403
– reference: Wolff J (1986) The law of bone remodelling. translated by p. maquet and r. furlong. New York, Springer 1(9):8
– reference: MukherjeeKGuptaSCombined bone ingrowth and remodeling around uncemented acetabular component: a multiscale mechanobiology-based finite element analysisJ Biomech Eng20171399091007
– reference: GiorgioIAndreausUScerratoDDell’IsolaFA visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materialsBiomech Model Mechanobiol201615513251343
– reference: SkedrosJGBaucomSLMathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femurJ Theor Biol20072441154522804801450.92015
– reference: GiorgioIDell’IsolaFAndreausUAlzahraniFHayatTLekszyckiTOn mechanically driven biological stimulus for bone remodeling as a diffusive phenomenonBiomech Model Mechanobiol201918616391663
– reference: Weinans H, Huiskes R, van Rietbergen B, Sumner D, Turner T, Galante J (1993) Validation of adaptive bone-remodeling analysis to predict bone morphology around noncemented tha. Mechanically induced bone adaptations around orthopaedic implants pp 19–40
– reference: PidapartiRTurnerCCancellous bone architecture: advantages of nonorthogonal trabecular alignment under multidirectional joint loadingJ Biomech1997309979983
– reference: Frost HM (1964) The laws of bone structure. springfield il. Charles C Thomas
– reference: PedersenPOn optimal orientation of orthotropic materialsStructural optimization198912101106
– reference: ColabellaLCisilinoAPFachinottiVKowalczykPMultiscale design of elastic solids with biomimetic cancellous bone cellular microstructuresStruct Multidiscip Optim20196026396613977530
– reference: TurnerCHAnneVPidapartiRMA uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation?J Biomech1997306555563
– reference: DudaGNHellerMAlbingerJSchulzOSchneiderEClaesLInfluence of muscle forces on femoral strain distributionJ Biomech1998319841846
– reference: Gruen TA, McNeice GM, Amstutz HC (1979) ”modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27
– reference: PhillipsATVilletteCCModeneseLFemoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modellingInt Biomech2015214361
– reference: GeorgeDAllenaRRemondYA multiphysics stimulus for continuum mechanics bone remodelingMath Mech Complex Syst20186430731938735851422.65295
– reference: GasbarraEIundusiRPerroneFLSaturninoLTarantinoUDensitometric evaluation of bone remodelling around trabecular metal primary stem: a 24-month follow-upAging Clin Exp Res20152716975
– reference: SarikanatMYildizHDetermination of bone density distribution in proximal femur by using the 3d orthotropic bone adaptation modelProc Inst Mech Eng H20112254365375
– ident: 1436_CR18
  doi: 10.1007/978-94-009-6827-1_44
– volume: 15
  start-page: 389
  issue: 2
  year: 2016
  ident: 1436_CR59
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-015-0696-7
– volume: 32
  start-page: 553
  issue: 6
  year: 2010
  ident: 1436_CR91
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.01.004
– volume: 15
  start-page: 1029
  issue: 5
  year: 2016
  ident: 1436_CR37
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-015-0740-7
– volume: 2
  start-page: 43
  issue: 1
  year: 2015
  ident: 1436_CR64
  publication-title: Int Biomech
  doi: 10.1080/23335432.2015.1017609
– volume: 52
  start-page: 457
  issue: 3
  year: 1970
  ident: 1436_CR74
  publication-title: JBJS
  doi: 10.2106/00004623-197052030-00005
– volume: 4
  start-page: 355
  issue: 4
  year: 2001
  ident: 1436_CR32
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255840108908014
– volume: 40
  start-page: 2318
  issue: 10
  year: 2007
  ident: 1436_CR76
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.10.038
– volume: 88
  start-page: 1308
  issue: 6
  year: 2006
  ident: 1436_CR2
  publication-title: JBJS
  doi: 10.2106/00004623-200606000-00019
– volume: 36
  start-page: 897
  issue: 7
  year: 2003
  ident: 1436_CR58
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 88
  start-page: 2183
  issue: 6
  year: 2000
  ident: 1436_CR45
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.2000.88.6.2183
– volume: 10
  start-page: 179
  issue: 3
  year: 1984
  ident: 1436_CR53
  publication-title: Crit Rev Biomed Eng
– volume: 35
  start-page: 767
  issue: 6
  year: 2002
  ident: 1436_CR80
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(02)00022-2
– volume: 12
  start-page: 343
  issue: 6
  year: 1997
  ident: 1436_CR68
  publication-title: Clin Biomech
  doi: 10.1016/S0268-0033(97)00018-1
– volume: 20
  start-page: 785
  issue: 8
  year: 1987
  ident: 1436_CR13
  publication-title: J Biomech
  doi: 10.1016/0021-9290(87)90058-3
– volume: 20
  start-page: 1135
  issue: 11
  year: 1987
  ident: 1436_CR42
  publication-title: J Biomech
  doi: 10.1016/0021-9290(87)90030-3
– volume: 44
  start-page: 935
  issue: 5
  year: 2011
  ident: 1436_CR11
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.11.029
– volume: 30
  start-page: 555
  issue: 6
  year: 1997
  ident: 1436_CR83
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(97)84505-8
– volume: 29
  start-page: 1185
  issue: 9
  year: 1996
  ident: 1436_CR26
  publication-title: J Biomech
  doi: 10.1016/0021-9290(96)00025-5
– ident: 1436_CR5
  doi: 10.1115/1.4029059
– volume: 34
  start-page: 859
  issue: 7
  year: 2001
  ident: 1436_CR9
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00040-9
– volume: 36
  start-page: e3353
  issue: 8
  year: 2020
  ident: 1436_CR55
  publication-title: Int J Number Meth Bio
  doi: 10.1002/cnm.3353
– volume: 34
  start-page: 1157
  issue: 9
  year: 2001
  ident: 1436_CR24
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00069-0
– volume: 405
  start-page: 704
  issue: 6787
  year: 2000
  ident: 1436_CR43
  publication-title: Nature
  doi: 10.1038/35015116
– volume: 45
  start-page: 2884
  issue: 16
  year: 2012
  ident: 1436_CR52
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.08.022
– volume: 30
  start-page: 873
  issue: 9
  year: 2014
  ident: 1436_CR36
  publication-title: Int J Number Meth Bio
– volume: 29
  start-page: 973
  issue: 9
  year: 2007
  ident: 1436_CR78
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.10.014
– volume: 1
  start-page: 101
  issue: 2
  year: 1989
  ident: 1436_CR62
  publication-title: Structural optimization
  doi: 10.1007/BF01637666
– volume: 19
  start-page: 85
  issue: 1
  year: 1986
  ident: 1436_CR20
  publication-title: J Biomech
  doi: 10.1016/0021-9290(86)90112-0
– volume: 8
  start-page: 651
  issue: 5
  year: 1990
  ident: 1436_CR7
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100080506
– volume: 230
  start-page: 918
  issue: 10
  year: 2016
  ident: 1436_CR60
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411916661368
– volume: 73
  start-page: 115
  issue: 2
  year: 2003
  ident: 1436_CR3
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-002-2036-z
– volume-title: Topology optimization: theory, methods, and applications
  year: 2013
  ident: 1436_CR8
– volume: 8
  start-page: 662
  issue: 5
  year: 1990
  ident: 1436_CR6
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100080507
– volume: 139
  start-page: 091007
  issue: 9
  year: 2017
  ident: 1436_CR61
  publication-title: J Biomech Eng
  doi: 10.1115/1.4037223
– volume: 48
  start-page: 767
  issue: 5
  year: 2015
  ident: 1436_CR79
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.12.019
– volume: 50
  start-page: 122
  year: 2017
  ident: 1436_CR51
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2017.10.015
– volume: 28
  start-page: 69
  issue: 1
  year: 1995
  ident: 1436_CR85
  publication-title: J Biomech
  doi: 10.1016/0021-9290(95)80008-5
– volume: 22
  start-page: 231
  issue: 3
  year: 1989
  ident: 1436_CR14
  publication-title: J Biomech
  doi: 10.1016/0021-9290(89)90091-2
– volume: 136
  start-page: 051002
  issue: 5
  year: 2014
  ident: 1436_CR4
  publication-title: J Biomech Eng
  doi: 10.1115/1.4026642
– volume: 244
  start-page: 15
  issue: 1
  year: 2007
  ident: 1436_CR75
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2006.06.029
– ident: 1436_CR89
– volume: 18
  start-page: 1639
  issue: 6
  year: 2019
  ident: 1436_CR40
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-019-01166-w
– volume: 38
  start-page: 133
  issue: 1
  year: 2005
  ident: 1436_CR10
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.03.005
– volume: 32
  start-page: 695
  issue: 7
  year: 1999
  ident: 1436_CR47
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(99)00041-X
– volume: 34
  start-page: 559
  issue: 5
  year: 2012
  ident: 1436_CR12
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.08.015
– volume-title: Outlines of human osteology
  year: 1838
  ident: 1436_CR88
– volume: 26
  start-page: 792
  issue: 9
  year: 2006
  ident: 1436_CR22
  publication-title: Rheumatol Int
  doi: 10.1007/s00296-005-0077-0
– volume: 27
  start-page: 69
  issue: 1
  year: 2015
  ident: 1436_CR34
  publication-title: Aging Clin Exp Res
  doi: 10.1007/s40520-015-0424-2
– volume: 37
  start-page: 757
  issue: 8
  year: 1990
  ident: 1436_CR23
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.102791
– volume: 31
  start-page: 841
  issue: 9
  year: 1998
  ident: 1436_CR27
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00080-3
– volume: 229
  start-page: 549
  issue: 8
  year: 2015
  ident: 1436_CR15
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411915591617
– ident: 1436_CR29
  doi: 10.1016/S0045-7949(98)00312-5
– volume: 26
  start-page: 369
  issue: 4–5
  year: 1993
  ident: 1436_CR84
  publication-title: J Biomech
  doi: 10.1016/0021-9290(93)90001-U
– volume: 35
  start-page: 247
  issue: 2
  year: 2002
  ident: 1436_CR57
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00192-0
– volume: 22
  start-page: 41
  issue: 1
  year: 2012
  ident: 1436_CR81
  publication-title: Hip Int
  doi: 10.5301/HIP.2012.9103
– ident: 1436_CR1
  doi: 10.1016/B978-012387582-2/50038-1
– volume: 15
  start-page: 1325
  issue: 5
  year: 2016
  ident: 1436_CR39
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-016-0765-6
– volume: 40
  start-page: 2982
  issue: 13
  year: 2007
  ident: 1436_CR72
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 34
  start-page: 914
  issue: 7
  year: 2012
  ident: 1436_CR70
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.10.008
– volume: 36
  start-page: 345
  issue: 3
  year: 2014
  ident: 1436_CR82
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.12.006
– volume: 233
  start-page: 636
  issue: 6
  year: 2019
  ident: 1436_CR54
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411919840524
– volume: 15
  start-page: 69
  issue: 1
  year: 2016
  ident: 1436_CR87
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-015-0735-4
– volume: 26
  start-page: 61
  issue: 1
  year: 2004
  ident: 1436_CR77
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(03)00138-3
– volume: 35
  start-page: 1541
  issue: 12
  year: 2002
  ident: 1436_CR48
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(02)00173-2
– volume: 19
  start-page: 454
  issue: 5
  year: 1997
  ident: 1436_CR56
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(97)00002-7
– volume: 217
  start-page: 173
  issue: 3
  year: 2003
  ident: 1436_CR66
  publication-title: Proc Inst Mech Eng H
  doi: 10.1243/095441103765212677
– volume-title: Bone mechanics handbook
  year: 2001
  ident: 1436_CR19
  doi: 10.1201/b14263
– volume: 74
  start-page: 302
  issue: 3
  year: 2004
  ident: 1436_CR21
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-002-2123-1
– volume: 39
  start-page: 2951
  issue: 16
  year: 2006
  ident: 1436_CR86
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2005.10.027
– ident: 1436_CR30
– volume: 6
  start-page: 307
  issue: 4
  year: 2018
  ident: 1436_CR35
  publication-title: Math Mech Complex Syst
  doi: 10.2140/memocs.2018.6.307
– volume: 31
  start-page: 673
  issue: 6
  year: 2009
  ident: 1436_CR63
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.12.008
– volume: 225
  start-page: 365
  issue: 4
  year: 2011
  ident: 1436_CR71
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/09544119JEIM895
– ident: 1436_CR16
  doi: 10.1115/1.4029061
– volume: 24
  start-page: 1503
  issue: 11
  year: 1990
  ident: 1436_CR69
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.820241107
– volume: 31
  start-page: 327
  issue: 2
  year: 2002
  ident: 1436_CR46
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00828-1
– volume: 227
  start-page: 162
  issue: 2
  year: 2013
  ident: 1436_CR38
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411912461238
– ident: 1436_CR90
  doi: 10.1007/978-3-642-71031-5_1
– volume: 20
  start-page: 1083
  issue: 11–12
  year: 1987
  ident: 1436_CR49
  publication-title: J Biomech
  doi: 10.1016/0021-9290(87)90026-1
– volume: 222
  start-page: 601
  issue: 5
  year: 2008
  ident: 1436_CR73
  publication-title: Proc Inst Mech Eng H
  doi: 10.1243/09544119JEIM341
– volume: 47
  start-page: 3272
  issue: 13
  year: 2014
  ident: 1436_CR28
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.08.020
– volume: 25
  start-page: 100
  issue: 1
  year: 2002
  ident: 1436_CR33
  publication-title: Comput Mater Sci
  doi: 10.1016/S0927-0256(02)00254-9
– ident: 1436_CR41
  doi: 10.1097/00003086-197906000-00002
– volume: 35
  start-page: 1
  issue: 1
  year: 2002
  ident: 1436_CR25
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00178-6
– volume: 35
  start-page: 1553
  issue: 12
  year: 2002
  ident: 1436_CR50
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(02)00187-2
– volume: 209
  start-page: 57
  issue: 1
  year: 2006
  ident: 1436_CR67
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01971
– volume: 275
  start-page: 1081
  issue: 2
  year: 2003
  ident: 1436_CR31
  publication-title: Anat Rec Part A Discov Mol Cell Evol Biol Offi Publ Am Assoc Anat
– volume: 30
  start-page: 603
  issue: 6
  year: 1997
  ident: 1436_CR44
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(96)00189-3
– volume: 60
  start-page: 639
  issue: 2
  year: 2019
  ident: 1436_CR17
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02229-3
– volume: 30
  start-page: 979
  issue: 9
  year: 1997
  ident: 1436_CR65
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(97)00052-3
SSID ssj0020383
Score 2.3255594
Snippet Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1115
SubjectTerms Adaptation
Algorithms
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Bone density
Bone remodeling
Bone resorption
Computed tomography
Engineering
Femur
Finite element method
Isotropic material
Material properties
Mathematical models
Mechanical loading
Original Paper
Prostheses
Regression analysis
Strain
Surgical implants
Theoretical and Applied Mechanics
Three dimensional models
Two dimensional models
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9UwFD7MOwRfxPlrVzeJ4JsG702atBVEVDaG4FXEwd5Kkp7oYLu91u7B_95z2rQXGe4t0CYNJz_O15Oc7wN44ZbotEUly4BRZjFSKatruYw55jFfhhw53_nzyp6cZp_OzNkOrMZcGL5WOe6J_UZdN4Fj5K-VIdevy8yU7za_JKtG8enqKKHhkrRC_banGLsFu4qZsWaw--Fo9fXb9Au2GIg5GdRLVtlOaTQpmU7pXPKVBea8s9L-66qu4c9rZ6e9Szq-B3cTlhTvh8Hfgx1c34fbg7rknwfw40vb_Wy6ttmcB-GbNYoWe-EbzkAXrmVBJUFurQ8QYi0iX7ql9s4vNxdk7zfCiTCpFAoO2AoqpfYY6yblr4dwenz0_eOJTLoKMujcdDJYY_IyN36hIpqyLr3ThAxctC7zaHuKMlRos1AQHFHo4yIWRVQumoXXTutHMFtTr_dBRI-K6hdOGcyQ_BzjpxpjwbDKKzeH5WjCKiTScda-uKi2dMls9orMXvVmr-wcXk51NgPlxo1vH4wjU6Xl97vaTpY5PJ8e08Lh0xC3xuaK32GGZgJk1MTjYUSnz2nadgmaFnN4NQ7xtvH_9-XJzX15CndUP704hnMAs669wkOCNJ1_lubpX0qL8uo
  priority: 102
  providerName: ProQuest
Title Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation
URI https://link.springer.com/article/10.1007/s10237-021-01436-6
https://www.ncbi.nlm.nih.gov/pubmed/33768358
https://www.proquest.com/docview/2532439459
https://www.proquest.com/docview/2506276436
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1617-7940
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: ADMLS
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1617-7940
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: AFBBN
  dateStart: 20020601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1617-7940
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: 7X7
  dateStart: 20020601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1617-7940
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: BENPR
  dateStart: 20020601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1617-7940
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: 8FG
  dateStart: 20020601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1617-7940
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: AGYKE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1617-7940
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: U2A
  dateStart: 20020624
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhwQFBeC2VlJG5gadeO7YTbgnZbgSgIsdJyiuxkDJXK7ipND_33ncmrRQUkLkmk2BPL48cX2_N9AK_8FL22qGRWYJRJjPSUlKWcRocuumnhkOOdPx3bo2XyYWVWXVDYWX_avd-SbEbqa8FuSjvJRwqYk85KuwN7hum8qBUv1Wz4zZq05JsM3CUraXehMn-28ft0dANj3tgfbaadxX241-FFMWsd_ABu4XofbrcKkhf7cPcan-BD-PG5qn9u6mqzPSlE2KxRVNhI3XDMufAVSygJmsiaJUEsReRjtmT95Nf2lGr4rfCiGHQJBS_RCnrq7DG67bS-HsFyMf_2_kh2Sgqy0M7UsrDGuMyZMFERTVZmwWvCAj5anwS0DSkZKrRJkRIAURjiJKZpVD6aSdBe68ewu6ZSPwURAyrKn3plMEGa2RgxlRhTBlJB-RFM-wrNi45mnNUuTvMrgmR2Qk5OyBsn5HYEr4c825Zk45-pD3o_5V2HO8uVIWSos8RkI3g5vKauwvsffo2bc07DnMwEwcjEk9a_w-c0DbQERtMRvOkdfmX872V59n_Jn8Md1TQ-XsU5gN26OscXBGrqMIYdt3J0TReHY9ibHX7_OKf7u_nxl6_jpn1fAtNd8rg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDI-mTQheEN8cDAgSPEHEXZqkLdKE-Nh0Y9uB0CbtrUtSByaN69F1Qvvn-Nuw27QnNLG3vUVq4ka2EztO7B9jL-wEbGJAitxDECoEbKmyFJOQQhrSiU-B8p33ZmZ6oD4f6sMV9qfPhaFnlf2e2G7UZeUpRv5GajT9Sa50_m7xSxBqFN2u9hAaNkIrlBttibGY2LED57_xCHe6sf0J5f1Syq3N_Y9TEVEGhE9S3QhvtE7zVLuxDKDzMnc2QTtpg7HKgWkLdoEEo3yGxlmCC-OQZUHaoMcusRQQRROwphKV4-Fv7cPm7Ou34cg37gqB0iFCEKp3TNuJyXsySQU9kaAae0aYf03jBX_3wl1tawK3brGb0Xfl7ztlu81WYH6HXevQLM_vsu9f6uZH1dTV4thzV82B19AC7VDGO7c1AThxNKNtQBJKHuiRL9I7_rk4Qfm-5Zb7ARWRU4CYYyvSI986Io3dYwdXwuH7bHWOs37IeHAgcXxmpQYFaFfJXyshZOTGOWlHbNKzsPCxyDlhbZwUy_LMxPYC2V60bC_MiL0axiy6Eh-X9l7vJVPE5X5aLJVzxJ4Pn3Gh0u2LnUN1Rn2oIjQ6gEjiQSfR4XcJbvPoCmcj9roX8ZL4_-fy6PK5PGPXp_t7u8Xu9mznMbshW1Wj-NE6W23qM3iC7lTjnkad5ezoqpfJX33qL8s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BURE9oNJSWGjBSL1Rq7t27CTcKtpVv2h7YKXeIjsZQ6WSXaXpgX_PTJJNF7VF4mYp9sTy2JkX2_MewLYbodMWlUxzDDIKgUpRUchRiDEO8SiPkfOdv53Zw0l0fGkuF7L4m9vu8yPJNqeBWZrKendWhN2FxDelY8nXC5ifzkr7FJ5FTJRAM3qi9vpfrmFLxMkgXrKqdpc287CNv0PTPbx576y0CUHjVXjZYUex1zr7FTzBcg2WWzXJ32uwssAtuA4_zqv657SuprOrXPhpiaLCRvaG88-Fq1hOSVBQa7YHsRCBr9yS9atfs2sa7S_CibzXKBS8XSuo1NljpNvpfr2Gyfjg-9dD2akqyFzHppa5NSZOY-OHKqBJi9Q7TbjABesij7YhKEOFNsoTAiMKfRiGJAnKBTP02mm9AUsl9fotiOBRUfvEKYMRUpRj9FRgSBhUeeUGMJoPaJZ3lOOsfHGd3ZElsxMyckLWOCGzA_jct5m1hBv_rL0591PWLb6bTBlCiTqNTDqAT_1jWjZ8FuJKnN5yHeZnJjhGJt60_u1fp-mjS8A0GcDO3OF3xh_vy7v_q_4Rnl_sj7PTo7OT9_BCNfOQN3c2YamubnGLsE7tPzTT-Q-_d_Tl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthotropic+bone+remodelling+around+uncemented+femoral+implant%3A+a+comparison+with+isotropic+formulation&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Mathai%2C+Basil&rft.au=Dhara%2C+Santanu&rft.au=Gupta%2C+Sanjay&rft.date=2021-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=20&rft.issue=3&rft.spage=1115&rft.epage=1134&rft_id=info:doi/10.1007%2Fs10237-021-01436-6&rft.externalDocID=10_1007_s10237_021_01436_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon