Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation
Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of per...
        Saved in:
      
    
          | Published in | Biomechanics and modeling in mechanobiology Vol. 20; no. 3; pp. 1115 - 1134 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.06.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1617-7959 1617-7940 1617-7940  | 
| DOI | 10.1007/s10237-021-01436-6 | 
Cover
| Abstract | Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities
(
R
=
0.71
)
, the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4–8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation
(
R
=
0.99
)
between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process. | 
    
|---|---|
| AbstractList | Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities [Formula: see text], the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4-8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation [Formula: see text] between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities [Formula: see text], the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4-8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation [Formula: see text] between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process. Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities [Formula: see text], the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4-8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation [Formula: see text] between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process. Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities ( R = 0.71 ) , the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4–8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation ( R = 0.99 ) between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process. Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and assuming isotropic bone material property. The objective of the study is to develop an orthotropic bone remodelling algorithm for evaluation of peri-prosthetic bone adaptation in the uncemented implanted femur. The simulations considered loading conditions from a variety of daily activities. The orthotropic algorithm was tested on 2D and 3D models of the intact femur for verification of predicted results. The predicted orthotropic directionality, based on principal stress directions, was in agreement with the trabecular orientation in a micro-CT data of proximal femur. The validity of the proposed strain-based algorithm was assessed by comparing the predicted results of the orthotropic model with those of the strain-energy-density-based isotropic formulation. Despite agreement in cortical densities (R=0.71), the isotropic remodelling algorithm tends to predict relatively higher values around the distal tip of the implant as compared to the orthotropic model. Both formulations predicted 4–8% bone resorption in the proximal femur. A linear regression analysis revealed a significant correlation (R=0.99) between the stresses and strains on the cortex of the proximal femur, predicted by the isotropic and orthotropic formulations. Despite reasonable agreement in peri-prosthetic bone density distributions, the quantitative differences with isotropic model predictions highlight the combined influences of bone orthotropy and mechanical stimulus in the adaptation process.  | 
    
| Author | Mathai, Basil Dhara, Santanu Gupta, Sanjay  | 
    
| Author_xml | – sequence: 1 givenname: Basil surname: Mathai fullname: Mathai, Basil organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur – sequence: 2 givenname: Santanu surname: Dhara fullname: Dhara, Santanu organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur – sequence: 3 givenname: Sanjay surname: Gupta fullname: Gupta, Sanjay email: sangupta@mech.iitkgp.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33768358$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kUtrHiEUhqUkNJf2D3RRhG6ymeao42W6KyG9QCCbdi2Oo18MMzpVh9J_X5PvawpZZOUBn_dc3vcMHcUUHULvCHwkAPKyEKBMdkBJB6RnohOv0CkRRHZy6OHoqebDCTor5R6AAlPsNTphTArFuDpFu9tc71LNaQ0Wj60_zm5Jk5vnEHfY5LTFCW_RusXF6ibs2282Mw7LOptYP2GDbVpWk0NJEf8O9Q636tDPp7xss6khxTfo2Ju5uLeH9xz9_HL94-pbd3P79fvV55vOMslrZwXncpB8BOodH6ZhNAwUMV6YfnSCC0XAUSd6qwTj1I0evFKeGs9hZIaxc3Sx77vm9GtzpeolFNvOMdGlrWjKQVApmlsN_fAMvU9bjm27RjHas6HnQ6PeH6htXNyk1xwWk__ofxY2gO4Bm1Mp2fknhIB-yEnvc9ItJ_2Yk36YrZ6JbKiPRtVswvyylO2lpc2JO5f_r_2C6i_QUKfX | 
    
| CitedBy_id | crossref_primary_10_1115_1_4054457 crossref_primary_10_1016_j_ijengsci_2024_104209 crossref_primary_10_1007_s11517_024_03023_0 crossref_primary_10_1016_j_jmbbm_2021_104903 crossref_primary_10_2139_ssrn_4149704 crossref_primary_10_3390_biology12020170 crossref_primary_10_1007_s10237_023_01692_8 crossref_primary_10_1016_j_rineng_2025_103932 crossref_primary_10_1039_D3TB01469J  | 
    
| Cites_doi | 10.1007/978-94-009-6827-1_44 10.1007/s10237-015-0696-7 10.1016/j.medengphy.2010.01.004 10.1007/s10237-015-0740-7 10.1080/23335432.2015.1017609 10.2106/00004623-197052030-00005 10.1080/10255840108908014 10.1016/j.jbiomech.2006.10.038 10.2106/00004623-200606000-00019 10.1016/S0021-9290(03)00071-X 10.1152/jappl.2000.88.6.2183 10.1016/S0021-9290(02)00022-2 10.1016/S0268-0033(97)00018-1 10.1016/0021-9290(87)90058-3 10.1016/0021-9290(87)90030-3 10.1016/j.jbiomech.2010.11.029 10.1016/S0021-9290(97)84505-8 10.1016/0021-9290(96)00025-5 10.1115/1.4029059 10.1016/S0021-9290(01)00040-9 10.1002/cnm.3353 10.1016/S0021-9290(01)00069-0 10.1038/35015116 10.1016/j.jbiomech.2012.08.022 10.1016/j.medengphy.2006.10.014 10.1007/BF01637666 10.1016/0021-9290(86)90112-0 10.1002/jor.1100080506 10.1177/0954411916661368 10.1007/s00223-002-2036-z 10.1002/jor.1100080507 10.1115/1.4037223 10.1016/j.jbiomech.2014.12.019 10.1016/j.clinbiomech.2017.10.015 10.1016/0021-9290(95)80008-5 10.1016/0021-9290(89)90091-2 10.1115/1.4026642 10.1016/j.jtbi.2006.06.029 10.1007/s10237-019-01166-w 10.1016/j.jbiomech.2004.03.005 10.1016/S0021-9290(99)00041-X 10.1016/j.medengphy.2011.08.015 10.1007/s00296-005-0077-0 10.1007/s40520-015-0424-2 10.1109/10.102791 10.1016/S0021-9290(98)00080-3 10.1177/0954411915591617 10.1016/S0045-7949(98)00312-5 10.1016/0021-9290(93)90001-U 10.1016/S0021-9290(01)00192-0 10.5301/HIP.2012.9103 10.1016/B978-012387582-2/50038-1 10.1007/s10237-016-0765-6 10.1016/j.jbiomech.2007.02.010 10.1016/j.medengphy.2011.10.008 10.1016/j.medengphy.2013.12.006 10.1177/0954411919840524 10.1007/s10237-015-0735-4 10.1016/S1350-4533(03)00138-3 10.1016/S0021-9290(02)00173-2 10.1016/S1350-4533(97)00002-7 10.1243/095441103765212677 10.1201/b14263 10.1007/s00223-002-2123-1 10.1016/j.jbiomech.2005.10.027 10.2140/memocs.2018.6.307 10.1016/j.medengphy.2008.12.008 10.1177/09544119JEIM895 10.1115/1.4029061 10.1002/jbm.820241107 10.1016/S8756-3282(02)00828-1 10.1177/0954411912461238 10.1007/978-3-642-71031-5_1 10.1016/0021-9290(87)90026-1 10.1243/09544119JEIM341 10.1016/j.jbiomech.2014.08.020 10.1016/S0927-0256(02)00254-9 10.1097/00003086-197906000-00002 10.1016/S0021-9290(01)00178-6 10.1016/S0021-9290(02)00187-2 10.1242/jeb.01971 10.1016/S0021-9290(96)00189-3 10.1007/s00158-019-02229-3 10.1016/S0021-9290(97)00052-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 7X8  | 
    
| DOI | 10.1007/s10237-021-01436-6 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database (Proquest) Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Biology  | 
    
| EISSN | 1617-7940 | 
    
| EndPage | 1134 | 
    
| ExternalDocumentID | 33768358 10_1007_s10237_021_01436_6  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c375t-c6557975b02fe59d9ba3081af6a4be656810e2e64c86352ebf0f88f2af50b3a33 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1617-7959 1617-7940  | 
    
| IngestDate | Thu Oct 02 06:16:56 EDT 2025 Tue Oct 07 05:53:25 EDT 2025 Mon Jul 21 06:00:38 EDT 2025 Wed Oct 01 01:37:18 EDT 2025 Thu Apr 24 23:12:18 EDT 2025 Fri Feb 21 02:49:25 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Finite element analysis Total hip replacement Proximal femur Bone remodelling Bone orthotropy  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c375t-c6557975b02fe59d9ba3081af6a4be656810e2e64c86352ebf0f88f2af50b3a33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PMID | 33768358 | 
    
| PQID | 2532439459 | 
    
| PQPubID | 54766 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | proquest_miscellaneous_2506276436 proquest_journals_2532439459 pubmed_primary_33768358 crossref_primary_10_1007_s10237_021_01436_6 crossref_citationtrail_10_1007_s10237_021_01436_6 springer_journals_10_1007_s10237_021_01436_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-06-01 | 
    
| PublicationDateYYYYMMDD | 2021-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht  | 
    
| PublicationTitle | Biomechanics and modeling in mechanobiology | 
    
| PublicationTitleAbbrev | Biomech Model Mechanobiol | 
    
| PublicationTitleAlternate | Biomech Model Mechanobiol | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | TaddeiFPancantiAVicecontiMAn improved method for the automatic mapping of computed tomography numbers onto finite element modelsMed Eng Phys20042616169 SkedrosJGBaucomSLMathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femurJ Theor Biol20072441154522804801450.92015 LanyonLFunctional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodellingJ Biomech19872011–1210831093 PrendergastPFinite element models in tissue mechanics and orthopaedic implant designClin Biomech1997126343366 Wolff J (1986) The law of bone remodelling. translated by p. maquet and r. furlong. New York, Springer 1(9):8 PhillipsAThe femur as a musculo-skeletal construct: a free boundary condition modelling approachMed Eng Phys2009316673680 Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. Vis Handb 717(8) GhoshRGuptaSDickinsonABrowneMExperimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvisesProc Inst Mech Eng H20132272162174 MukherjeeKGuptaSCombined bone ingrowth and remodeling around uncemented acetabular component: a multiscale mechanobiology-based finite element analysisJ Biomech Eng20171399091007 Chanda S, Gupta S, Kumar Pratihar D (2015b) A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant. J Biomech Eng 137(3) Van RietbergenBHuiskesRWeinansHSumnerDTurnerTGalanteJThe mechanism of bone remodeling and resorption around press-fitted tha stemsJ Biomech1993264–5369382 MartinRBPorosity and specific surface of boneCrit Rev Biomed Eng1984103179222 KiTAdachiTTomitaYFunctional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress stateJ Biomech2002351215411551 ten BroekeRHTaralaMArtsJJJanssenDWVerdonschotNGeesinkRGImproving peri-prosthetic bone adaptation around cementless hip stems: a clinical and finite element studyMed Eng Phys2014363345353 PhillipsATVilletteCCModeneseLFemoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modellingInt Biomech2015214361 PontzerHLiebermanDEMominEDevlinMJPolkJHallgrimssonBCooperDTrabecular bone in the bird knee responds with high sensitivity to changes in load orientationJ Exp Biol200620915765 Cordebois J, Sidoroff F (1982) Damage induced elastic anisotropy. In: Mechanical behavior of anisotropic solids/comportment Méchanique des Solides Anisotropes, Springer, pp 761–774 TaddeiFSchileoEHelgasonBCristofoliniLVicecontiMThe material mapping strategy influences the accuracy of ct-based finite element models of bones: an evaluation against experimental measurementsMed Eng Phys2007299973979 BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–application: A preliminary remodeling simulationJ Orthop Res199085662670 BergmannGDeuretzbacherGHellerMGraichenFRohlmannAStraussJDudaGHip contact forces and gait patterns from routine activitiesJ Biomech2001347859871 CupponeMSeedhomBBerryEOstellAThe longitudinal young’s modulus of cortical bone in the midshaft of human femur and its correlation with ct scanning dataCalcif Tissue Int2004743302309 BendsoeMPSigmundOTopology optimization: theory, methods, and applications2013BerlinSpringer1059.74001 GiorgioIDell’IsolaFAndreausUAlzahraniFHayatTLekszyckiTOn mechanically driven biological stimulus for bone remodeling as a diffusive phenomenonBiomech Model Mechanobiol201918616391663 KernerJHuiskesRVan LentheGWeinansHVan RietbergenBEnghCAmisACorrelation between pre-operative periprosthetic bone density and post-operative bone loss in tha can be explained by strain-adaptive remodellingJ Biomech1999327695703 ChandaSDickinsonAGuptaSBrowneMFull-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplastyProc Inst Mech Eng H20152298549559 Gruen TA, McNeice GM, Amstutz HC (1979) ”modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27 FrostHMBone’s mechanostat: a 2003 updateAnat Rec Part A Discov Mol Cell Evol Biol Offi Publ Am Assoc Anat2003275210811101 Weinans H, Huiskes R, van Rietbergen B, Sumner D, Turner T, Galante J (1993) Validation of adaptive bone-remodeling analysis to predict bone morphology around noncemented tha. Mechanically induced bone adaptations around orthopaedic implants pp 19–40 Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three-dimensional linear elastic structures with a constraint on ”perimeter”. Comput Struct 73(6):583–594 BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–theoretical developmentJ Orthop Res199085651661 CowinSCVan BuskirkWCThermodynamic restrictions on the elastic constants of boneJ Biomech19861918587 VerhulpEvan RietbergenBHuiskesRComparison of micro-level and continuum-level voxel models of the proximal femurJ Biomech2006391629512957 JudexSZernickeRFHigh-impact exercise and growing bone: relation between high strain rates and enhanced bone formationJ Appl Physiol200088621832191 SarikanatMYildizHDetermination of bone density distribution in proximal femur by using the 3d orthotropic bone adaptation modelProc Inst Mech Eng H20112254365375 ColabellaLCisilinoAPFachinottiVKowalczykPMultiscale design of elastic solids with biomimetic cancellous bone cellular microstructuresStruct Multidiscip Optim20196026396613977530 DudaGNBrandDFreitagSLierseWSchneiderEVariability of femoral muscle attachmentsJ Biomech199629911851190 KalmeyJLovejoyCOCollagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading?Bone2002312327332 LengsfeldMGüntherDPresselTLeppekRSchmittJGrissPValidation data for periprosthetic bone remodelling theoriesJ Biomech2002351215531564 VilletteCCPhillipsATInforming phenomenological structural bone remodelling with a mechanistic poroelastic modelBiomech Model Mechanobiol20161516982 Frost HM (1964) The laws of bone structure. springfield il. Charles C Thomas GiorgioIAndreausUScerratoDDell’IsolaFA visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materialsBiomech Model Mechanobiol201615513251343 AvvalPTKlikaVBougheraraHPredicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical modelJ Biomech Eng20141365051002 BoyleCKimIYThree-dimensional micro-level computational study of wolff’s law via trabecular bone remodeling in the human proximal femur using design space topology optimizationJ Biomech2011445935942 DoblaréMGarcıaJApplication of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacementJ Biomech200134911571170 TaylorMPrendergastPJFour decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?J Biomech2015485767778 Banijamali SMA, Oftadeh R, Nazarian A, Goebel R, Vaziri A, Nayeb-Hashemi H (2015) Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling. J Biomech Eng 137(1) HuiskesRWeinansHGrootenboerHDalstraMFudalaBSlooffTAdaptive bone-remodeling theory applied to prosthetic-design analysisJ Biomech1987201111351150 McNamaraBPTaylorDPrendergastPJComputer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithmsMed Eng Phys1997195454463 Enns-BrayWSOwocJSNishiyamaKKBoydSKMapping anisotropy of the proximal femur for enhanced image based finite element analysisJ Biomech2014471332723278 MorganEFBayraktarHHKeavenyTMTrabecular bone modulus-density relationships depend on anatomic siteJ Biomech2003367897904 PidapartiRTurnerCCancellous bone architecture: advantages of nonorthogonal trabecular alignment under multidirectional joint loadingJ Biomech1997309979983 PedersenPOn optimal orientation of orthotropic materialsStructural optimization198912101106 SinghMNagrathAMainiPChanges in trabecular pattern of the upper end of the femur as an index of osteoporosisJBJS1970523457467 DudaGNHellerMAlbingerJSchulzOSchneiderEClaesLInfluence of muscle forces on femoral strain distributionJ Biomech1998319841846 AldingerPSaboDPritschMThomsenMMauHEwerbeckVBreuschSPattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with dxaCalcif Tissue Int2003732115121 CarterDOrrTFyhrieDPRelationships between loading history and femoral cancellous bone architectureJ Biomech1989223231244 MukherjeeKGuptaSThe effects of musculoskeletal loading regimes on numerical evaluations of acetabular componentProc Inst Mech Eng H201623010918929 CaouetteCBureauMVendittoliPALavigneMNunoNAnisotropic bone remodeling of a biomimetic metal-on-metal hip resurfacing implantMed Eng Phys2012345559565 WardFOutlines of human osteology1838LondonHenry Renshaw ten BroekeRHHendrickxRPLeffersPJuttenLMGeesinkRGRandomised trial comparing bone remodelling around two uncemented stems using modified gruen zonesHip Int20122214149 TaylorWRolandEPloegHHertigDKlabundeRWarnerMHobathoMRakotomananaLCliftSDetermination of orthotropic bone elastic constants using fea and modal analysisJ Biomech2002356767773 GeraldesDMModeneseLPhillipsATConsideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femurBiomech Model Mechanobiol201615510291042 PolgarKGillHVicecontiMMurrayDO’connorJStrain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur modelProc Inst Mech Eng H20032173173189 YangHMaXGuoTSome factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models o J Garcıa (1436_CR33) 2002; 25 C Boyle (1436_CR11) 2011; 44 H Yang (1436_CR91) 2010; 32 GN Duda (1436_CR27) 1998; 31 B van Rietbergen (1436_CR85) 1995; 28 EF Morgan (1436_CR58) 2003; 36 CR Jacobs (1436_CR44) 1997; 30 B Mathai (1436_CR55) 2020; 36 RH ten Broeke (1436_CR81) 2012; 22 D Carter (1436_CR13) 1987; 20 SC Cowin (1436_CR20) 1986; 19 L Lanyon (1436_CR49) 1987; 20 1436_CR16 M Doblaré (1436_CR25) 2002; 35 1436_CR18 D Dan (1436_CR22) 2006; 26 P Pedersen (1436_CR62) 1989; 1 J Garcia (1436_CR32) 2001; 4 1436_CR1 K Mukherjee (1436_CR60) 2016; 230 A Phillips (1436_CR63) 2009; 31 Y Shang (1436_CR73) 2008; 222 1436_CR5 M Lengsfeld (1436_CR50) 2002; 35 M Taylor (1436_CR79) 2015; 48 L Colabella (1436_CR17) 2019; 60 BP McNamara (1436_CR56) 1997; 19 R Pidaparti (1436_CR65) 1997; 30 1436_CR90 S Chanda (1436_CR15) 2015; 229 G Beaupré (1436_CR6) 1990; 8 B Mathai (1436_CR54) 2019; 233 F Taddei (1436_CR77) 2004; 26 1436_CR41 E Gasbarra (1436_CR34) 2015; 27 J Kerner (1436_CR47) 1999; 32 H Pontzer (1436_CR67) 2006; 209 C Caouette (1436_CR12) 2012; 34 P Prendergast (1436_CR68) 1997; 12 M Sarikanat (1436_CR71) 2011; 225 RH ten Broeke (1436_CR82) 2014; 36 1436_CR89 M Cuppone (1436_CR21) 2004; 74 J Kalmey (1436_CR46) 2002; 31 R Huiskes (1436_CR43) 2000; 405 DM Geraldes (1436_CR37) 2016; 15 CH Turner (1436_CR83) 1997; 30 HM Frost (1436_CR31) 2003; 275 JG Skedros (1436_CR75) 2007; 244 G Beaupré (1436_CR7) 1990; 8 M Singh (1436_CR74) 1970; 52 SC Cowin (1436_CR19) 2001 K Mukherjee (1436_CR59) 2016; 15 G Bergmann (1436_CR9) 2001; 34 DM Geraldes (1436_CR36) 2014; 30 T Ki (1436_CR48) 2002; 35 P Aldinger (1436_CR3) 2003; 73 1436_CR30 K Polgar (1436_CR66) 2003; 217 GN Duda (1436_CR26) 1996; 29 RB Martin (1436_CR53) 1984; 10 S Judex (1436_CR45) 2000; 88 WS Enns-Bray (1436_CR28) 2014; 47 M Doblaré (1436_CR24) 2001; 34 AD Speirs (1436_CR76) 2007; 40 D Carter (1436_CR14) 1989; 22 D George (1436_CR35) 2018; 6 F Ward (1436_CR88) 1838 MP Bendsoe (1436_CR8) 2013 JH Marangalou (1436_CR52) 2012; 45 C Bitsakos (1436_CR10) 2005; 38 F Taddei (1436_CR78) 2007; 29 I Levadnyi (1436_CR51) 2017; 50 Z Miller (1436_CR57) 2002; 35 PT Avval (1436_CR4) 2014; 136 S Akhavan (1436_CR2) 2006; 88 E Verhulp (1436_CR86) 2006; 39 D Rancourt (1436_CR69) 1990; 24 E Schileo (1436_CR72) 2007; 40 SL Delp (1436_CR23) 1990; 37 B Van Rietbergen (1436_CR84) 1993; 26 AT Phillips (1436_CR64) 2015; 2 I Giorgio (1436_CR40) 2019; 18 R Ghosh (1436_CR38) 2013; 227 I Giorgio (1436_CR39) 2016; 15 T San Antonio (1436_CR70) 2012; 34 1436_CR29 W Taylor (1436_CR80) 2002; 35 R Huiskes (1436_CR42) 1987; 20 CC Villette (1436_CR87) 2016; 15 K Mukherjee (1436_CR61) 2017; 139  | 
    
| References_xml | – reference: JacobsCRSimoJCBeaupreGSCarterDRAdaptive bone remodeling incorporating simultaneous density and anisotropy considerationsJ Biomech1997306603613 – reference: van RietbergenBWeinansHHuiskesROdgaardAA new method to determine trabecular bone elastic properties and loading using micromechanical finite-element modelsJ Biomech19952816981 – reference: MathaiBGuptaSNumerical predictions of hip joint and muscle forces during daily activities: a comparison of musculoskeletal modelsProc Inst Mech Eng H20192336636647 – reference: AvvalPTKlikaVBougheraraHPredicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical modelJ Biomech Eng20141365051002 – reference: Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for large data visualization. Vis Handb 717(8) – reference: Banijamali SMA, Oftadeh R, Nazarian A, Goebel R, Vaziri A, Nayeb-Hashemi H (2015) Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling. J Biomech Eng 137(1) – reference: KernerJHuiskesRVan LentheGWeinansHVan RietbergenBEnghCAmisACorrelation between pre-operative periprosthetic bone density and post-operative bone loss in tha can be explained by strain-adaptive remodellingJ Biomech1999327695703 – reference: BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–theoretical developmentJ Orthop Res199085651661 – reference: DoblaréMGarcıaJAnisotropic bone remodelling model based on a continuum damage-repair theoryJ Biomech2002351117 – reference: BoyleCKimIYThree-dimensional micro-level computational study of wolff’s law via trabecular bone remodeling in the human proximal femur using design space topology optimizationJ Biomech2011445935942 – reference: KalmeyJLovejoyCOCollagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading?Bone2002312327332 – reference: HuiskesRRuimermanRVan LentheGHJanssenJDEffects of mechanical forces on maintenance and adaptation of form in trabecular boneNature20004056787704 – reference: BergmannGDeuretzbacherGHellerMGraichenFRohlmannAStraussJDudaGHip contact forces and gait patterns from routine activitiesJ Biomech2001347859871 – reference: VerhulpEvan RietbergenBHuiskesRComparison of micro-level and continuum-level voxel models of the proximal femurJ Biomech2006391629512957 – reference: CowinSCBone mechanics handbook2001Boca RatonCRC Press – reference: TaddeiFSchileoEHelgasonBCristofoliniLVicecontiMThe material mapping strategy influences the accuracy of ct-based finite element models of bones: an evaluation against experimental measurementsMed Eng Phys2007299973979 – reference: TaylorWRolandEPloegHHertigDKlabundeRWarnerMHobathoMRakotomananaLCliftSDetermination of orthotropic bone elastic constants using fea and modal analysisJ Biomech2002356767773 – reference: ten BroekeRHTaralaMArtsJJJanssenDWVerdonschotNGeesinkRGImproving peri-prosthetic bone adaptation around cementless hip stems: a clinical and finite element studyMed Eng Phys2014363345353 – reference: PolgarKGillHVicecontiMMurrayDO’connorJStrain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur modelProc Inst Mech Eng H20032173173189 – reference: ten BroekeRHHendrickxRPLeffersPJuttenLMGeesinkRGRandomised trial comparing bone remodelling around two uncemented stems using modified gruen zonesHip Int20122214149 – reference: MathaiBGuptaSThe influence of loading configurations on numerical evaluation of failure mechanisms in an uncemented femoral prosthesisInt J Number Meth Bio2020368e3353415670510.1002/cnm.3353 – reference: AkhavanSMatthiesenMMSchulteLPenoyarTKraayMJRimnacCMGoldbergVMClinical and histologic results related to a low-modulus composite total hip replacement stemJBJS200688613081314 – reference: ShangYBaiJPengLThe effects of the spatial influence function on orthotropic femur remodellingProc Inst Mech Eng H20082225601609 – reference: CowinSCVan BuskirkWCThermodynamic restrictions on the elastic constants of boneJ Biomech19861918587 – reference: MartinRBPorosity and specific surface of boneCrit Rev Biomed Eng1984103179222 – reference: PrendergastPFinite element models in tissue mechanics and orthopaedic implant designClin Biomech1997126343366 – reference: Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three-dimensional linear elastic structures with a constraint on ”perimeter”. Comput Struct 73(6):583–594 – reference: SpeirsADHellerMODudaGNTaylorWRPhysiologically based boundary conditions in finite element modellingJ Biomech2007401023182323 – reference: HuiskesRWeinansHGrootenboerHDalstraMFudalaBSlooffTAdaptive bone-remodeling theory applied to prosthetic-design analysisJ Biomech1987201111351150 – reference: RancourtDShirazi-AdlADrouinGPaiementGFriction properties of the interface between porous-surfaced metals and tibial cancellous boneJ Biomed Mater Res1990241115031519 – reference: WardFOutlines of human osteology1838LondonHenry Renshaw – reference: MillerZFuchsMBArcanMTrabecular bone adaptation with an orthotropic material modelJ Biomech2002352247256 – reference: TaylorMPrendergastPJFour decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?J Biomech2015485767778 – reference: Van RietbergenBHuiskesRWeinansHSumnerDTurnerTGalanteJThe mechanism of bone remodeling and resorption around press-fitted tha stemsJ Biomech1993264–5369382 – reference: GeraldesDMModeneseLPhillipsATConsideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femurBiomech Model Mechanobiol201615510291042 – reference: McNamaraBPTaylorDPrendergastPJComputer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithmsMed Eng Phys1997195454463 – reference: LengsfeldMGüntherDPresselTLeppekRSchmittJGrissPValidation data for periprosthetic bone remodelling theoriesJ Biomech2002351215531564 – reference: GhoshRGuptaSDickinsonABrowneMExperimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvisesProc Inst Mech Eng H20132272162174 – reference: CarterDOrrTFyhrieDPRelationships between loading history and femoral cancellous bone architectureJ Biomech1989223231244 – reference: CarterDFyhrieDPWhalenRTrabecular bone density and loading history: regulation of connective tissue biology by mechanical energyJ Biomech1987208785794 – reference: Chanda S, Gupta S, Kumar Pratihar D (2015b) A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant. J Biomech Eng 137(3) – reference: MorganEFBayraktarHHKeavenyTMTrabecular bone modulus-density relationships depend on anatomic siteJ Biomech2003367897904 – reference: BitsakosCKernerJFisherIAmisAAThe effect of muscle loading on the simulation of bone remodelling in the proximal femurJ Biomech2005381133139 – reference: DelpSLLoanJPHoyMGZajacFEToppELRosenJMAn interactive graphics-based model of the lower extremity to study orthopaedic surgical proceduresIEEE Trans Biomed Eng1990378757767 – reference: TaddeiFPancantiAVicecontiMAn improved method for the automatic mapping of computed tomography numbers onto finite element modelsMed Eng Phys20042616169 – reference: DanDGermannDBurkiHHausnerPKappelerUMeyerRPKlaghoferRStollTBone loss after total hip arthroplastyRheumatol Int2006269792798 – reference: ChandaSDickinsonAGuptaSBrowneMFull-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplastyProc Inst Mech Eng H20152298549559 – reference: MukherjeeKGuptaSThe effects of musculoskeletal loading regimes on numerical evaluations of acetabular componentProc Inst Mech Eng H201623010918929 – reference: GarcıaJDoblaréMCegoninoJBone remodelling simulation: a tool for implant designComput Mater Sci2002251100114 – reference: PhillipsAThe femur as a musculo-skeletal construct: a free boundary condition modelling approachMed Eng Phys2009316673680 – reference: YangHMaXGuoTSome factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femurMed Eng Phys2010326553560 – reference: GeraldesDMPhillipsAA comparative study of orthotropic and isotropic bone adaptation in the femurInt J Number Meth Bio2014309873889 – reference: FrostHMBone’s mechanostat: a 2003 updateAnat Rec Part A Discov Mol Cell Evol Biol Offi Publ Am Assoc Anat2003275210811101 – reference: SinghMNagrathAMainiPChanges in trabecular pattern of the upper end of the femur as an index of osteoporosisJBJS1970523457467 – reference: JudexSZernickeRFHigh-impact exercise and growing bone: relation between high strain rates and enhanced bone formationJ Appl Physiol200088621832191 – reference: BendsoeMPSigmundOTopology optimization: theory, methods, and applications2013BerlinSpringer1059.74001 – reference: AldingerPSaboDPritschMThomsenMMauHEwerbeckVBreuschSPattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with dxaCalcif Tissue Int2003732115121 – reference: LevadnyiIAwrejcewiczJGubauaJEPereiraJTNumerical evaluation of bone remodelling and adaptation considering different hip prosthesis designsClin Biomech201750122129 – reference: CaouetteCBureauMVendittoliPALavigneMNunoNAnisotropic bone remodeling of a biomimetic metal-on-metal hip resurfacing implantMed Eng Phys2012345559565 – reference: Cordebois J, Sidoroff F (1982) Damage induced elastic anisotropy. In: Mechanical behavior of anisotropic solids/comportment Méchanique des Solides Anisotropes, Springer, pp 761–774 – reference: BeaupréGOrrTCarterDAn approach for time-dependent bone modeling and remodeling–application: A preliminary remodeling simulationJ Orthop Res199085662670 – reference: San AntonioTCiacciaMMüller-KargerCCasanovaEOrientation of orthotropic material properties in a femur fe model: a method based on the principal stresses directionsMed Eng Phys2012347914919 – reference: SchileoETaddeiFMalandrinoACristofoliniLVicecontiMSubject-specific finite element models can accurately predict strain levels in long bonesJ Biomech2007401329822989 – reference: CupponeMSeedhomBBerryEOstellAThe longitudinal young’s modulus of cortical bone in the midshaft of human femur and its correlation with ct scanning dataCalcif Tissue Int2004743302309 – reference: DudaGNBrandDFreitagSLierseWSchneiderEVariability of femoral muscle attachmentsJ Biomech199629911851190 – reference: Enns-BrayWSOwocJSNishiyamaKKBoydSKMapping anisotropy of the proximal femur for enhanced image based finite element analysisJ Biomech2014471332723278 – reference: PontzerHLiebermanDEMominEDevlinMJPolkJHallgrimssonBCooperDTrabecular bone in the bird knee responds with high sensitivity to changes in load orientationJ Exp Biol200620915765 – reference: GarciaJMartinezMDoblaréMAn anisotropic internal-external bone adaptation model based on a combination of cao and continuum damage mechanics technologiesComput Methods Biomech Biomed Engin200144355377 – reference: MarangalouJHItoKvan RietbergenBA new approach to determine the accuracy of morphology-elasticity relationships in continuum fe analyses of human proximal femurJ Biomech2012451628842892 – reference: VilletteCCPhillipsATInforming phenomenological structural bone remodelling with a mechanistic poroelastic modelBiomech Model Mechanobiol20161516982 – reference: DoblaréMGarcıaJApplication of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacementJ Biomech200134911571170 – reference: KiTAdachiTTomitaYFunctional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress stateJ Biomech2002351215411551 – reference: LanyonLFunctional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodellingJ Biomech19872011–1210831093 – reference: MukherjeeKGuptaSBone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithmBiomech Model Mechanobiol2016152389403 – reference: Wolff J (1986) The law of bone remodelling. translated by p. maquet and r. furlong. New York, Springer 1(9):8 – reference: MukherjeeKGuptaSCombined bone ingrowth and remodeling around uncemented acetabular component: a multiscale mechanobiology-based finite element analysisJ Biomech Eng20171399091007 – reference: GiorgioIAndreausUScerratoDDell’IsolaFA visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materialsBiomech Model Mechanobiol201615513251343 – reference: SkedrosJGBaucomSLMathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femurJ Theor Biol20072441154522804801450.92015 – reference: GiorgioIDell’IsolaFAndreausUAlzahraniFHayatTLekszyckiTOn mechanically driven biological stimulus for bone remodeling as a diffusive phenomenonBiomech Model Mechanobiol201918616391663 – reference: Weinans H, Huiskes R, van Rietbergen B, Sumner D, Turner T, Galante J (1993) Validation of adaptive bone-remodeling analysis to predict bone morphology around noncemented tha. Mechanically induced bone adaptations around orthopaedic implants pp 19–40 – reference: PidapartiRTurnerCCancellous bone architecture: advantages of nonorthogonal trabecular alignment under multidirectional joint loadingJ Biomech1997309979983 – reference: Frost HM (1964) The laws of bone structure. springfield il. Charles C Thomas – reference: PedersenPOn optimal orientation of orthotropic materialsStructural optimization198912101106 – reference: ColabellaLCisilinoAPFachinottiVKowalczykPMultiscale design of elastic solids with biomimetic cancellous bone cellular microstructuresStruct Multidiscip Optim20196026396613977530 – reference: TurnerCHAnneVPidapartiRMA uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation?J Biomech1997306555563 – reference: DudaGNHellerMAlbingerJSchulzOSchneiderEClaesLInfluence of muscle forces on femoral strain distributionJ Biomech1998319841846 – reference: Gruen TA, McNeice GM, Amstutz HC (1979) ”modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27 – reference: PhillipsATVilletteCCModeneseLFemoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modellingInt Biomech2015214361 – reference: GeorgeDAllenaRRemondYA multiphysics stimulus for continuum mechanics bone remodelingMath Mech Complex Syst20186430731938735851422.65295 – reference: GasbarraEIundusiRPerroneFLSaturninoLTarantinoUDensitometric evaluation of bone remodelling around trabecular metal primary stem: a 24-month follow-upAging Clin Exp Res20152716975 – reference: SarikanatMYildizHDetermination of bone density distribution in proximal femur by using the 3d orthotropic bone adaptation modelProc Inst Mech Eng H20112254365375 – ident: 1436_CR18 doi: 10.1007/978-94-009-6827-1_44 – volume: 15 start-page: 389 issue: 2 year: 2016 ident: 1436_CR59 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-015-0696-7 – volume: 32 start-page: 553 issue: 6 year: 2010 ident: 1436_CR91 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2010.01.004 – volume: 15 start-page: 1029 issue: 5 year: 2016 ident: 1436_CR37 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-015-0740-7 – volume: 2 start-page: 43 issue: 1 year: 2015 ident: 1436_CR64 publication-title: Int Biomech doi: 10.1080/23335432.2015.1017609 – volume: 52 start-page: 457 issue: 3 year: 1970 ident: 1436_CR74 publication-title: JBJS doi: 10.2106/00004623-197052030-00005 – volume: 4 start-page: 355 issue: 4 year: 2001 ident: 1436_CR32 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255840108908014 – volume: 40 start-page: 2318 issue: 10 year: 2007 ident: 1436_CR76 publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.10.038 – volume: 88 start-page: 1308 issue: 6 year: 2006 ident: 1436_CR2 publication-title: JBJS doi: 10.2106/00004623-200606000-00019 – volume: 36 start-page: 897 issue: 7 year: 2003 ident: 1436_CR58 publication-title: J Biomech doi: 10.1016/S0021-9290(03)00071-X – volume: 88 start-page: 2183 issue: 6 year: 2000 ident: 1436_CR45 publication-title: J Appl Physiol doi: 10.1152/jappl.2000.88.6.2183 – volume: 10 start-page: 179 issue: 3 year: 1984 ident: 1436_CR53 publication-title: Crit Rev Biomed Eng – volume: 35 start-page: 767 issue: 6 year: 2002 ident: 1436_CR80 publication-title: J Biomech doi: 10.1016/S0021-9290(02)00022-2 – volume: 12 start-page: 343 issue: 6 year: 1997 ident: 1436_CR68 publication-title: Clin Biomech doi: 10.1016/S0268-0033(97)00018-1 – volume: 20 start-page: 785 issue: 8 year: 1987 ident: 1436_CR13 publication-title: J Biomech doi: 10.1016/0021-9290(87)90058-3 – volume: 20 start-page: 1135 issue: 11 year: 1987 ident: 1436_CR42 publication-title: J Biomech doi: 10.1016/0021-9290(87)90030-3 – volume: 44 start-page: 935 issue: 5 year: 2011 ident: 1436_CR11 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.11.029 – volume: 30 start-page: 555 issue: 6 year: 1997 ident: 1436_CR83 publication-title: J Biomech doi: 10.1016/S0021-9290(97)84505-8 – volume: 29 start-page: 1185 issue: 9 year: 1996 ident: 1436_CR26 publication-title: J Biomech doi: 10.1016/0021-9290(96)00025-5 – ident: 1436_CR5 doi: 10.1115/1.4029059 – volume: 34 start-page: 859 issue: 7 year: 2001 ident: 1436_CR9 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00040-9 – volume: 36 start-page: e3353 issue: 8 year: 2020 ident: 1436_CR55 publication-title: Int J Number Meth Bio doi: 10.1002/cnm.3353 – volume: 34 start-page: 1157 issue: 9 year: 2001 ident: 1436_CR24 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00069-0 – volume: 405 start-page: 704 issue: 6787 year: 2000 ident: 1436_CR43 publication-title: Nature doi: 10.1038/35015116 – volume: 45 start-page: 2884 issue: 16 year: 2012 ident: 1436_CR52 publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.08.022 – volume: 30 start-page: 873 issue: 9 year: 2014 ident: 1436_CR36 publication-title: Int J Number Meth Bio – volume: 29 start-page: 973 issue: 9 year: 2007 ident: 1436_CR78 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2006.10.014 – volume: 1 start-page: 101 issue: 2 year: 1989 ident: 1436_CR62 publication-title: Structural optimization doi: 10.1007/BF01637666 – volume: 19 start-page: 85 issue: 1 year: 1986 ident: 1436_CR20 publication-title: J Biomech doi: 10.1016/0021-9290(86)90112-0 – volume: 8 start-page: 651 issue: 5 year: 1990 ident: 1436_CR7 publication-title: J Orthop Res doi: 10.1002/jor.1100080506 – volume: 230 start-page: 918 issue: 10 year: 2016 ident: 1436_CR60 publication-title: Proc Inst Mech Eng H doi: 10.1177/0954411916661368 – volume: 73 start-page: 115 issue: 2 year: 2003 ident: 1436_CR3 publication-title: Calcif Tissue Int doi: 10.1007/s00223-002-2036-z – volume-title: Topology optimization: theory, methods, and applications year: 2013 ident: 1436_CR8 – volume: 8 start-page: 662 issue: 5 year: 1990 ident: 1436_CR6 publication-title: J Orthop Res doi: 10.1002/jor.1100080507 – volume: 139 start-page: 091007 issue: 9 year: 2017 ident: 1436_CR61 publication-title: J Biomech Eng doi: 10.1115/1.4037223 – volume: 48 start-page: 767 issue: 5 year: 2015 ident: 1436_CR79 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.12.019 – volume: 50 start-page: 122 year: 2017 ident: 1436_CR51 publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2017.10.015 – volume: 28 start-page: 69 issue: 1 year: 1995 ident: 1436_CR85 publication-title: J Biomech doi: 10.1016/0021-9290(95)80008-5 – volume: 22 start-page: 231 issue: 3 year: 1989 ident: 1436_CR14 publication-title: J Biomech doi: 10.1016/0021-9290(89)90091-2 – volume: 136 start-page: 051002 issue: 5 year: 2014 ident: 1436_CR4 publication-title: J Biomech Eng doi: 10.1115/1.4026642 – volume: 244 start-page: 15 issue: 1 year: 2007 ident: 1436_CR75 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2006.06.029 – ident: 1436_CR89 – volume: 18 start-page: 1639 issue: 6 year: 2019 ident: 1436_CR40 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-019-01166-w – volume: 38 start-page: 133 issue: 1 year: 2005 ident: 1436_CR10 publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.03.005 – volume: 32 start-page: 695 issue: 7 year: 1999 ident: 1436_CR47 publication-title: J Biomech doi: 10.1016/S0021-9290(99)00041-X – volume: 34 start-page: 559 issue: 5 year: 2012 ident: 1436_CR12 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.08.015 – volume-title: Outlines of human osteology year: 1838 ident: 1436_CR88 – volume: 26 start-page: 792 issue: 9 year: 2006 ident: 1436_CR22 publication-title: Rheumatol Int doi: 10.1007/s00296-005-0077-0 – volume: 27 start-page: 69 issue: 1 year: 2015 ident: 1436_CR34 publication-title: Aging Clin Exp Res doi: 10.1007/s40520-015-0424-2 – volume: 37 start-page: 757 issue: 8 year: 1990 ident: 1436_CR23 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.102791 – volume: 31 start-page: 841 issue: 9 year: 1998 ident: 1436_CR27 publication-title: J Biomech doi: 10.1016/S0021-9290(98)00080-3 – volume: 229 start-page: 549 issue: 8 year: 2015 ident: 1436_CR15 publication-title: Proc Inst Mech Eng H doi: 10.1177/0954411915591617 – ident: 1436_CR29 doi: 10.1016/S0045-7949(98)00312-5 – volume: 26 start-page: 369 issue: 4–5 year: 1993 ident: 1436_CR84 publication-title: J Biomech doi: 10.1016/0021-9290(93)90001-U – volume: 35 start-page: 247 issue: 2 year: 2002 ident: 1436_CR57 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00192-0 – volume: 22 start-page: 41 issue: 1 year: 2012 ident: 1436_CR81 publication-title: Hip Int doi: 10.5301/HIP.2012.9103 – ident: 1436_CR1 doi: 10.1016/B978-012387582-2/50038-1 – volume: 15 start-page: 1325 issue: 5 year: 2016 ident: 1436_CR39 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-016-0765-6 – volume: 40 start-page: 2982 issue: 13 year: 2007 ident: 1436_CR72 publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.02.010 – volume: 34 start-page: 914 issue: 7 year: 2012 ident: 1436_CR70 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.10.008 – volume: 36 start-page: 345 issue: 3 year: 2014 ident: 1436_CR82 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.12.006 – volume: 233 start-page: 636 issue: 6 year: 2019 ident: 1436_CR54 publication-title: Proc Inst Mech Eng H doi: 10.1177/0954411919840524 – volume: 15 start-page: 69 issue: 1 year: 2016 ident: 1436_CR87 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-015-0735-4 – volume: 26 start-page: 61 issue: 1 year: 2004 ident: 1436_CR77 publication-title: Med Eng Phys doi: 10.1016/S1350-4533(03)00138-3 – volume: 35 start-page: 1541 issue: 12 year: 2002 ident: 1436_CR48 publication-title: J Biomech doi: 10.1016/S0021-9290(02)00173-2 – volume: 19 start-page: 454 issue: 5 year: 1997 ident: 1436_CR56 publication-title: Med Eng Phys doi: 10.1016/S1350-4533(97)00002-7 – volume: 217 start-page: 173 issue: 3 year: 2003 ident: 1436_CR66 publication-title: Proc Inst Mech Eng H doi: 10.1243/095441103765212677 – volume-title: Bone mechanics handbook year: 2001 ident: 1436_CR19 doi: 10.1201/b14263 – volume: 74 start-page: 302 issue: 3 year: 2004 ident: 1436_CR21 publication-title: Calcif Tissue Int doi: 10.1007/s00223-002-2123-1 – volume: 39 start-page: 2951 issue: 16 year: 2006 ident: 1436_CR86 publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.10.027 – ident: 1436_CR30 – volume: 6 start-page: 307 issue: 4 year: 2018 ident: 1436_CR35 publication-title: Math Mech Complex Syst doi: 10.2140/memocs.2018.6.307 – volume: 31 start-page: 673 issue: 6 year: 2009 ident: 1436_CR63 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2008.12.008 – volume: 225 start-page: 365 issue: 4 year: 2011 ident: 1436_CR71 publication-title: Proc Inst Mech Eng H doi: 10.1177/09544119JEIM895 – ident: 1436_CR16 doi: 10.1115/1.4029061 – volume: 24 start-page: 1503 issue: 11 year: 1990 ident: 1436_CR69 publication-title: J Biomed Mater Res doi: 10.1002/jbm.820241107 – volume: 31 start-page: 327 issue: 2 year: 2002 ident: 1436_CR46 publication-title: Bone doi: 10.1016/S8756-3282(02)00828-1 – volume: 227 start-page: 162 issue: 2 year: 2013 ident: 1436_CR38 publication-title: Proc Inst Mech Eng H doi: 10.1177/0954411912461238 – ident: 1436_CR90 doi: 10.1007/978-3-642-71031-5_1 – volume: 20 start-page: 1083 issue: 11–12 year: 1987 ident: 1436_CR49 publication-title: J Biomech doi: 10.1016/0021-9290(87)90026-1 – volume: 222 start-page: 601 issue: 5 year: 2008 ident: 1436_CR73 publication-title: Proc Inst Mech Eng H doi: 10.1243/09544119JEIM341 – volume: 47 start-page: 3272 issue: 13 year: 2014 ident: 1436_CR28 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.08.020 – volume: 25 start-page: 100 issue: 1 year: 2002 ident: 1436_CR33 publication-title: Comput Mater Sci doi: 10.1016/S0927-0256(02)00254-9 – ident: 1436_CR41 doi: 10.1097/00003086-197906000-00002 – volume: 35 start-page: 1 issue: 1 year: 2002 ident: 1436_CR25 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00178-6 – volume: 35 start-page: 1553 issue: 12 year: 2002 ident: 1436_CR50 publication-title: J Biomech doi: 10.1016/S0021-9290(02)00187-2 – volume: 209 start-page: 57 issue: 1 year: 2006 ident: 1436_CR67 publication-title: J Exp Biol doi: 10.1242/jeb.01971 – volume: 275 start-page: 1081 issue: 2 year: 2003 ident: 1436_CR31 publication-title: Anat Rec Part A Discov Mol Cell Evol Biol Offi Publ Am Assoc Anat – volume: 30 start-page: 603 issue: 6 year: 1997 ident: 1436_CR44 publication-title: J Biomech doi: 10.1016/S0021-9290(96)00189-3 – volume: 60 start-page: 639 issue: 2 year: 2019 ident: 1436_CR17 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02229-3 – volume: 30 start-page: 979 issue: 9 year: 1997 ident: 1436_CR65 publication-title: J Biomech doi: 10.1016/S0021-9290(97)00052-3  | 
    
| SSID | ssj0020383 | 
    
| Score | 2.3255594 | 
    
| Snippet | Peri-prosthetic bone adaptation has usually been predicted using subject-specific finite element analysis in combination with remodelling algorithms and... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1115 | 
    
| SubjectTerms | Adaptation Algorithms Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Bone density Bone remodeling Bone resorption Computed tomography Engineering Femur Finite element method Isotropic material Material properties Mathematical models Mechanical loading Original Paper Prostheses Regression analysis Strain Surgical implants Theoretical and Applied Mechanics Three dimensional models Two dimensional models  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9UwFD7MOwRfxPlrVzeJ4JsG702atBVEVDaG4FXEwd5Kkp7oYLu91u7B_95z2rQXGe4t0CYNJz_O15Oc7wN44ZbotEUly4BRZjFSKatruYw55jFfhhw53_nzyp6cZp_OzNkOrMZcGL5WOe6J_UZdN4Fj5K-VIdevy8yU7za_JKtG8enqKKHhkrRC_banGLsFu4qZsWaw--Fo9fXb9Au2GIg5GdRLVtlOaTQpmU7pXPKVBea8s9L-66qu4c9rZ6e9Szq-B3cTlhTvh8Hfgx1c34fbg7rknwfw40vb_Wy6ttmcB-GbNYoWe-EbzkAXrmVBJUFurQ8QYi0iX7ql9s4vNxdk7zfCiTCpFAoO2AoqpfYY6yblr4dwenz0_eOJTLoKMujcdDJYY_IyN36hIpqyLr3ThAxctC7zaHuKMlRos1AQHFHo4yIWRVQumoXXTutHMFtTr_dBRI-K6hdOGcyQ_BzjpxpjwbDKKzeH5WjCKiTScda-uKi2dMls9orMXvVmr-wcXk51NgPlxo1vH4wjU6Xl97vaTpY5PJ8e08Lh0xC3xuaK32GGZgJk1MTjYUSnz2nadgmaFnN4NQ7xtvH_9-XJzX15CndUP704hnMAs669wkOCNJ1_lubpX0qL8uo priority: 102 providerName: ProQuest  | 
    
| Title | Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation | 
    
| URI | https://link.springer.com/article/10.1007/s10237-021-01436-6 https://www.ncbi.nlm.nih.gov/pubmed/33768358 https://www.proquest.com/docview/2532439459 https://www.proquest.com/docview/2506276436  | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1617-7940 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: ADMLS dateStart: 20110201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1617-7940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: AFBBN dateStart: 20020601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1617-7940 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: 7X7 dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1617-7940 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: BENPR dateStart: 20020601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1617-7940 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: 8FG dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1617-7940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1617-7940 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: U2A dateStart: 20020624 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhwQFBeC2VlJG5gadeO7YTbgnZbgSgIsdJyiuxkDJXK7ipND_33ncmrRQUkLkmk2BPL48cX2_N9AK_8FL22qGRWYJRJjPSUlKWcRocuumnhkOOdPx3bo2XyYWVWXVDYWX_avd-SbEbqa8FuSjvJRwqYk85KuwN7hum8qBUv1Wz4zZq05JsM3CUraXehMn-28ft0dANj3tgfbaadxX241-FFMWsd_ABu4XofbrcKkhf7cPcan-BD-PG5qn9u6mqzPSlE2KxRVNhI3XDMufAVSygJmsiaJUEsReRjtmT95Nf2lGr4rfCiGHQJBS_RCnrq7DG67bS-HsFyMf_2_kh2Sgqy0M7UsrDGuMyZMFERTVZmwWvCAj5anwS0DSkZKrRJkRIAURjiJKZpVD6aSdBe68ewu6ZSPwURAyrKn3plMEGa2RgxlRhTBlJB-RFM-wrNi45mnNUuTvMrgmR2Qk5OyBsn5HYEr4c825Zk45-pD3o_5V2HO8uVIWSos8RkI3g5vKauwvsffo2bc07DnMwEwcjEk9a_w-c0DbQERtMRvOkdfmX872V59n_Jn8Md1TQ-XsU5gN26OscXBGrqMIYdt3J0TReHY9ibHX7_OKf7u_nxl6_jpn1fAtNd8rg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDI-mTQheEN8cDAgSPEHEXZqkLdKE-Nh0Y9uB0CbtrUtSByaN69F1Qvvn-Nuw27QnNLG3vUVq4ka2EztO7B9jL-wEbGJAitxDECoEbKmyFJOQQhrSiU-B8p33ZmZ6oD4f6sMV9qfPhaFnlf2e2G7UZeUpRv5GajT9Sa50_m7xSxBqFN2u9hAaNkIrlBttibGY2LED57_xCHe6sf0J5f1Syq3N_Y9TEVEGhE9S3QhvtE7zVLuxDKDzMnc2QTtpg7HKgWkLdoEEo3yGxlmCC-OQZUHaoMcusRQQRROwphKV4-Fv7cPm7Ou34cg37gqB0iFCEKp3TNuJyXsySQU9kaAae0aYf03jBX_3wl1tawK3brGb0Xfl7ztlu81WYH6HXevQLM_vsu9f6uZH1dTV4thzV82B19AC7VDGO7c1AThxNKNtQBJKHuiRL9I7_rk4Qfm-5Zb7ARWRU4CYYyvSI986Io3dYwdXwuH7bHWOs37IeHAgcXxmpQYFaFfJXyshZOTGOWlHbNKzsPCxyDlhbZwUy_LMxPYC2V60bC_MiL0axiy6Eh-X9l7vJVPE5X5aLJVzxJ4Pn3Gh0u2LnUN1Rn2oIjQ6gEjiQSfR4XcJbvPoCmcj9roX8ZL4_-fy6PK5PGPXp_t7u8Xu9mznMbshW1Wj-NE6W23qM3iC7lTjnkad5ezoqpfJX33qL8s | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BURE9oNJSWGjBSL1Rq7t27CTcKtpVv2h7YKXeIjsZQ6WSXaXpgX_PTJJNF7VF4mYp9sTy2JkX2_MewLYbodMWlUxzDDIKgUpRUchRiDEO8SiPkfOdv53Zw0l0fGkuF7L4m9vu8yPJNqeBWZrKendWhN2FxDelY8nXC5ifzkr7FJ5FTJRAM3qi9vpfrmFLxMkgXrKqdpc287CNv0PTPbx576y0CUHjVXjZYUex1zr7FTzBcg2WWzXJ32uwssAtuA4_zqv657SuprOrXPhpiaLCRvaG88-Fq1hOSVBQa7YHsRCBr9yS9atfs2sa7S_CibzXKBS8XSuo1NljpNvpfr2Gyfjg-9dD2akqyFzHppa5NSZOY-OHKqBJi9Q7TbjABesij7YhKEOFNsoTAiMKfRiGJAnKBTP02mm9AUsl9fotiOBRUfvEKYMRUpRj9FRgSBhUeeUGMJoPaJZ3lOOsfHGd3ZElsxMyckLWOCGzA_jct5m1hBv_rL0591PWLb6bTBlCiTqNTDqAT_1jWjZ8FuJKnN5yHeZnJjhGJt60_u1fp-mjS8A0GcDO3OF3xh_vy7v_q_4Rnl_sj7PTo7OT9_BCNfOQN3c2YamubnGLsE7tPzTT-Q-_d_Tl | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orthotropic+bone+remodelling+around+uncemented+femoral+implant%3A+a+comparison+with+isotropic+formulation&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Mathai%2C+Basil&rft.au=Dhara%2C+Santanu&rft.au=Gupta%2C+Sanjay&rft.date=2021-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=20&rft.issue=3&rft.spage=1115&rft.epage=1134&rft_id=info:doi/10.1007%2Fs10237-021-01436-6&rft.externalDocID=10_1007_s10237_021_01436_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |