Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms

Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 57; no. 8; pp. 1783 - 1811
Main Authors Acharya, Vasundhara, Kumar, Preetham
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-019-01984-1

Cover

Abstract Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists. Graphical abstract
AbstractList Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists. Graphical abstract.Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists. Graphical abstract.
Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists. Graphical abstract
Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists.
Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is essential in the field of medicine. Acute lymphoblastic leukemia is a form of blood cancer caused due to the abnormal increase in the production of immature white blood cells in the bone marrow. It mostly affects the children below 5 years and adults above 50 years of age. Due to the late diagnosis and cost of the devices used for the determination, the mortality rate has increased drastically. Flow cytometry technique that performs automated counting fails to identify the abnormal cells. Manual recount performed using hemocytometer are prone to errors and are imprecise. The proposed work aims to survey different computer-aided system techniques used to segment the blood smear image. The primary objective here is to derive knowledge from the different methodologies used for extracting features from white blood cells and develop a system that would accurately segment the blood smear image by overcoming the drawbacks of the previous works. The objective mentioned above is achieved in two ways. Firstly, a novel algorithm is developed to segment the nucleus and cytoplasm of white blood cell. Secondly, a model is built to extract the features and train the model. The different supervised classifiers are compared, and the one with the highest accuracy is used for the classification. Six hundred images are used in the experimentation. InfoGainAttributeEval and the Ranker Search method are used to achieve the feature selection which in turn helps in improvising the classifier performance. The result shows the classification of the acute lymphoblastic leukemia into its three respective categories namely: ALL-L1, ALL-L2, ALL-L3. The model can differentiate between a normal peripheral blood smear and an abnormal blood smear. The extracted feature values of a cancerous cell and a normal cell are also shown. The performance of the model is evaluated using the test images stained with various stains. The proposed algorithm achieved an overall accuracy of 98.6%. The promising results show that it can be used as a diagnostic tool by the pathologists. Graphical abstract.
Author Acharya, Vasundhara
Kumar, Preetham
Author_xml – sequence: 1
  givenname: Vasundhara
  surname: Acharya
  fullname: Acharya, Vasundhara
  email: vasundhara.acharya@manipal.edu
  organization: Department of Computer Science and Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education(MAHE)
– sequence: 2
  givenname: Preetham
  orcidid: 0000-0002-0736-7687
  surname: Kumar
  fullname: Kumar, Preetham
  organization: Department of I&CT, Manipal Institute of Technology, Manipal Academy of Higher Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31201595$$D View this record in MEDLINE/PubMed
BookMark eNp9kT9P3jAQh62KCl4oX6BDFakLS9o7_4mTsaIFKiF1acfKchwnmCb2W9sZ-Pb1S0CVGBhOHu55Tuf7nZIjH7wl5D3CJwSQnxOiQFkDdodqeY1vyA4lxxo450dkB8ihtLA9Iacp3QNQFJQfkxOGFFB0Ykd-f7XZmuyCr8JYabNmW80Py_4u9LNO2Zlqtusfuzhdrcn5qXKLnmyV7LRYn_WjqP1QDTrranH-gOh5CtHluyW9I29HPSd7_vSekV9X335e3tS3P66_X365rQ2TItcGhdRcW9BUQ9c2wHsxsB4NHbHXo-ylbaFlEmHsOpB9M8h-bGAYTGuYoIadkYtt7j6Gv6tNWS0uGTvP2tuwJkVpI2RDkbcF_fgCvQ9r9GW7QrGua5iQolAfnqi1X-yg9rH8Oz6o58MVoN0AE0NK0Y7KuO0cOWo3KwR1yEhtGamSj3rMSGFR6Qv1efqrEtukVGA_2fh_7Vesfw0bo5A
CitedBy_id crossref_primary_10_1007_s11063_020_10321_9
crossref_primary_10_1016_j_medengphy_2021_10_006
crossref_primary_10_1109_ACCESS_2021_3114059
crossref_primary_10_1155_2020_6648574
crossref_primary_10_1016_j_aej_2023_01_004
crossref_primary_10_1007_s11042_023_16228_6
crossref_primary_10_1007_s42235_023_00392_4
crossref_primary_10_1007_s13246_021_00993_5
crossref_primary_10_3233_HAB_211511
crossref_primary_10_1142_S1793545820500054
crossref_primary_10_1016_j_sasc_2024_200121
crossref_primary_10_26102_2310_6018_2020_30_3_011
crossref_primary_10_1016_j_procs_2020_02_229
crossref_primary_10_1155_2021_2577375
crossref_primary_10_21303_2461_4262_2023_003070
crossref_primary_10_1155_2022_2801227
crossref_primary_10_3390_photonics9040261
crossref_primary_10_1007_s11042_024_18373_y
crossref_primary_10_1007_s11042_021_11633_1
crossref_primary_10_1016_j_bbe_2020_08_010
crossref_primary_10_1109_ACCESS_2022_3196037
crossref_primary_10_1177_11779322241272387
crossref_primary_10_1109_TEM_2021_3103549
crossref_primary_10_1007_s11042_024_20312_w
crossref_primary_10_32604_cmc_2022_030879
crossref_primary_10_4015_S1016237221500423
crossref_primary_10_1007_s11042_022_12108_7
crossref_primary_10_1016_j_compbiomed_2022_106028
crossref_primary_10_1145_3514495
crossref_primary_10_1016_j_bspc_2023_105905
crossref_primary_10_3233_JIFS_234188
crossref_primary_10_7717_peerj_cs_460
crossref_primary_10_2147_JMDH_S492655
crossref_primary_10_4015_S1016237224500170
crossref_primary_10_1109_ACCESS_2025_3532305
crossref_primary_10_3390_s24134420
Cites_doi 10.1109/ICIEV.2016.7760026
10.1109/isbi.2007.356789
10.1109/CCECE.2013.6567770
10.1155/2014/979302
10.1109/INFOP.2015.7489422
10.5121/csit.2017.71305
10.1007/978-1-4419-7046-6_35
10.1111/jmi.12314
10.1109/ICIP.2011.6115881
10.1016/j.compbiomed.2005.10.003
10.5120/ijais2015451461
10.11113/jt.v74.4675
10.4103/2153-3539.129442
10.1007/s12575-009-9011-2
10.1109/ICSMC.2009.5346736
10.1007/s10916-018-1010-x
10.1007/s10916-011-9679-0
10.1155/2013/137392
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2019
Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2019
– notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-019-01984-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Business Collection (Alumni Edition)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1811
ExternalDocumentID 31201595
10_1007_s11517_019_01984_1
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
04C
06D
0R~
0VY
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
40D
40E
5GY
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N9A
NAPCQ
NB0
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R89
R9I
RHV
ROL
RPX
RSV
RXW
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZL0
ZMTXR
ZOVNA
~8M
~EX
~KM
-Y2
.55
.GJ
1SB
2.D
28-
2VQ
53G
5QI
AAAVM
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABQSL
ABRTQ
ABULA
ACBNA
ACBXY
ACSTC
ADHKG
ADYPR
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
IHE
LAI
N2Q
NDZJH
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
R4E
RNI
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TAE
UZXMN
VFIZW
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
RIG
3V.
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-c157a4ae0a2a098604b5d3b1c2f1baf7b7e8083710f9907b6d7bf60ddc8c352c3
IEDL.DBID BENPR
ISSN 0140-0118
1741-0444
IngestDate Fri Sep 05 07:34:47 EDT 2025
Tue Oct 07 05:45:17 EDT 2025
Thu Apr 03 07:02:31 EDT 2025
Wed Oct 01 03:37:58 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Feb 21 02:31:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Hemocytometer
Flow cytometry
Blood smear cells
Acute lymphoblastic leukemia
White blood cell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-c157a4ae0a2a098604b5d3b1c2f1baf7b7e8083710f9907b6d7bf60ddc8c352c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0736-7687
PMID 31201595
PQID 2239963575
PQPubID 54161
PageCount 29
ParticipantIDs proquest_miscellaneous_2265762148
proquest_journals_2239963575
pubmed_primary_31201595
crossref_citationtrail_10_1007_s11517_019_01984_1
crossref_primary_10_1007_s11517_019_01984_1
springer_journals_10_1007_s11517_019_01984_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190801
2019-8-00
2019-Aug
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190801
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Adjust operation (2017) https://in.mathworks.com/help/images/ref/imadjust.html. Accessed:16th November, 2017
Nivaldo Medeiros(n.d.) Blood Smear Database. In: Atlas.Available via http://www.hematologyatlas.com/principalpage.htm. Accessed 16th November, 2017.http://www.hematologyatlas.com/principalpage.htm. Accessed 16 Nov 2017
C.I.E primaries (n.d.) http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cieprim.html. Accessed 16th November, 2017
Alreza ZKK, Karimian A (2016) A. Design a new algorithm to count white blood cells for classification leukemic blood image using machine vision system. In Proceedings of the 6th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 251–256
Ahasan R, Ratul AU, Bakibillah ASM White Blood Cells Nucleus Segmentation from Microscopic Images of strained peripheral blood film during Leukemia and Normal Condition. In Proc. of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV): 361–366. https://doi.org/10.1109/ICIEV.2016.7760026
Area open function (2015) https://in.mathworks.com/help/images/ref/bwareaopen.html. Accessed 16th November, 2017
Erosion operation (2017) https://in.mathworks.com/help/images/ref/imerode.html. Accessed 16th November, 2017
MyHematalogy(2017) Leishman Stain . In : MyHematology. Available via https://myhematology.com/red-blood-cells/leishman-stain/ . Accessed: 16th Nov, 2017
RetaCGonzalezJADiazRGuichardJSLeukocytes segmentation using Markov random fieldsAdv Exp Med Biol201169634535310.1007/978-1-4419-7046-6_351:CAS:528:DC%2BC2MXltV2ltQ%3D%3D21431575
Wright Stain Method Technical Data Sheet (2005) Wright Stain . In: Technical Data Sheets. Available via. https://www.emsdiasum.com/microscopy/technical/datasheet/26060.aspx. Accessed 16 Nov 2017
Cuevas E, Díaz M, Manzanares M, Zaldivar D, Perez-Cisnero M (2013) An improved computer vision method for white blood cells detection. Computational and Mathematical Methods in Medicine:1–14
Attribute-Relation File Format (ARFF) (2008) ARFF. In: Attribute-Relation File Format (ARFF). Available via. https://www.cs.waikato.ac.nz/ml/weka/arff.html. Accessed 16 Nov 2017
Karen Seiter (2016) ALL types. In:Acute Lymphoblastic Leukemia Staging. Available via https://emedicine.medscape.com/article/2006661-overview. Accessed 16th Nov,2017
Filling holes (2015) https://in.mathworks.com/help/images/ref/imfill.html. Accessed16th November, 2017
PutzuLRubertoCDWhite blood cells identification and counting from microscopic blood imageInternational journal of medical, health, biomedical, bioengineeringand Pharm Eng2013712027
MulikVBhilarePMAlhatSAnalysis of acute lymphoblastic leukemia cells using digital image processingInternational Journal for Scientific Research and Development2016427072
Kira K, Rendell LA. (1992) The feature selection problem: traditional methods and a newalgorithm. In: Proc. AAAI-92, San Jose, CA 122–126
Wang M, Zhou X, Li F, Huckins J, King RW, Wong STC Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy. In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro 65–68. https://doi.org/10.1109/isbi.2007.356789
VaghelaHPPandyaMModiHPotdarMBLeukemia detection using digital image processing techniquesInternational Journal of Applied Information Systems2015101435110.5120/ijais2015451461
Impose minima (2003) https://in.mathworks.com/help/images/ref/imimposemin.html. Accessed: 16th November, 2017
Sinha N, Ramakrishnan AG (2002) Blood cell segmentation using EM algorithm. In proc. Third Indian conference on computer vision. Graphics & Image Processing (ICVGIP):1–6.https://doi.org/10.1109/ICIEV.2016.7760026
Mohammed EA, Mohamed MMA, Naugler Christopher, Far BH (2013) Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In Proc. of the 26th IEEE Can Con El Comp En(CCECE):1–5
AfsharSAbdolrahmaniFTanhaFVSeifMZTaheriKRecognition and prediction of leukemia with artificial neural network (ANN)Med J Islam Repub Iran20112513539
HoubyEMFEFramework of computer aided diagnosis Systems for Cancer Classification Based on medical imagesJ Med Syst20184215716710.1007/s10916-018-1010-x29995204
MarzukiNICMahmoodNHRazakMAASegmentation of white blood cell nucleus using active contourJ Teknol201574611511810.11113/jt.v74.4675
Nasir A, Mustafa N, Nasir NFM (2009) Application of thresholding technique in determining ratio of blood cells for leukemia detection. In Proceedings of the international conference on man-machine systems (ICoMMS 2009), 1–6
Mishra, S. J., & Deshmukh,A.P. (2014) Detection of Leukemia in Human Blood Sample based on Microscopic Images. International Journal of Advanced Research in Electronics and Communication Engineering, 1(3) :10-14.
Label the components (2015) https://in.mathworks.com/help/images/ref/bwlabel.html. Accessed: 16th November, 2017
BelekarSJChouguleSRWBC segmentation using morphological operation and SMMT operator-a reviewInternational Journal of Innovative Research in Computer and Communication Engineering201531434440
WangQWangJZhouMLiQWangYSpectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technologyBiomedical Optics Express20178630193028
ALL-IDB (2011) https://homes.di.unimi.it/scotti/all/results.php. Accessed 16th January,2019
Almuallim H, Dietterich TG (1991) Learning with many irrelevant features. In: Proc. Ninth National conference on Artificial intelligence (AAAI-91), Anaheim, CA 2: 547–552
Extended maxima (2012) https://in.mathworks.com/help/images/ref/imextendedmax.html. Accessed 16th November, 2017
SaeedizadehZDehnaviAA.M.RabbaniHAutomatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifierJ Microsc20152611465610.1111/jmi.1231426457371
Gonzalez, R. C., R. E. Woods, and S. L. Eddins (2004) Digital Image Processing Using MATLAB. New Jersey, Pearson Prentice Hall
Kumar BR, Joseph DK, Sreenivas TV( 2002) Teager energy based blood cell segmentation. In proceedings of the 14th international conference on digital signal processing, Santorini, Greece, 619–622
JiangKJiangQXXiongYA novel white blood cell segmentation scheme using scale-space filtering and watershed clusteringMach Learning Cybernetics2003528202825
Bhamare, Miss. Madhuri G. and D.S.Patil (2013) Automatic blood cell analysis by using digital image processing: a preliminary study .Int J Eng Res Technol 2(9):3137–3141.
Histogram equalization (2015). Histeq function. In: Histogram Equalization. Available via https://in.mathworks.com/help/images/histogram-equalization.html . Accessed: 16th Nov, 2017 https://in.mathworks.com/help/images/histogram-equalization.html. Accessed: 16 Nov 2017
Measurement properties (2017) https://in.mathworks.com/help/images/ref/regionprops.html. Accessed: 16th November, 2017
Bhagvathi SL, Thomas NS (2016) An automatic system for detecting and counting RBC and WBC using fuzzy logic. ARPN-JEAS 11(11):6891–6894
Khobragade S, Mor DD, Patil CY (2015) Detection of leukemia in microscopic white blood cell images. In Proc. of the 2015 international conference on information processing (ICIP) (ICIP):435–440. https://doi.org/10.1109/INFOP.2015.7489422
GLCM (2006) http://support.echoview.com/WebHelp/Windows_and_Dialog_Boxes/Dialog_Boxes/Variable_properties_dialog_box/Operator_pages/GLCM_Texture_Features.htm#About_the _GLCM_and_textures. Accessed 16th November, 2017
Watershed Transform (2013) https://blogs.mathworks.com/steve/2013/11/19/watershed-transform-question-from-tech-support/. Accessed: 16th November,2017
MohammedEAMohamedMMFarBHNauglerCPeripheral blood smear image analysis: a comprehensive reviewJournal of Pathology Informatics201451910.4103/2153-3539.129442248438214023032
Wang M, Chu R (2009) A novel white blood cell detection method based on boundary support vectors. In proc. of the 2009 IEEE international conference on systems. Man and Cybernetics:2595–2598
Subrajeet Mohapatra (2013) Hematological image analysis for acute lymphoblastic leukemia detection and classification. Doctoral Dissertation, National Institute of Technology Rourkela
AlomariYMAzmaRZAbdullahSNHSOmarKAutomatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithmComputational and Mathematical Methods in Medicine2014201411410.1155/2014/979302
Thanh TTP, Pham GN, Park JH , Moon KS, Lee SH, Kwon KR (2017) Acute leukemia classification using convolution neural network in clinical decision support system. In Proc Of Computer Science & Information Technology, 49–53. https://doi.org/10.5121/csit.2017.71305
Border clear (2015) https://in.mathworks.com/help/images/ref/imclearborder.html. Accessed 16th November, 2017
JoshiMDKarodeAHSuralkarSRWhite blood cells segmentation and classification to detect acute leukemia. International journal of emerging trends Technology in ComputerScience201323147151
Labati RD, Piuri V, Scotti F (2011) ALL -IDB: the acute lymphoblastic leukemia image database for image processing. In Proc. of the 2011 IEEE international conference on image processing 2045–2048. https://doi.org/10.1109/ICIP.2011.6115881
MadhloomHTKareemSAAriffinHAn image processing application for the localization and segmentation of lymphoblast cell using peripheral blood imagesJ Med Syst2011362149215810.1007/s10916-011-9679-021399912
Theera-Umpon N (2005) Patch-based white blood cell nucleus segmentation using fuzzy clustering. ECTI Transactions on Electrical Eng., Electronics, and Communications 3(1):15–19
Esti Suryani and Wiharto Wiharto and Nizomjon Polvonov (2015) Identification and Counting White Blood Cells and Red Blood Cells using Image Processing Case Study of Leukemia. International Journal of Computer Science & Network Solutions 2(6):35–49.
SadeghianFRamliARSemanZKhaharBHASaripanMIA Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processin
1984_CR27
1984_CR26
NIC Marzuki (1984_CR9) 2015; 74
1984_CR22
1984_CR21
V Mulik (1984_CR11) 2016; 4
K Jiang (1984_CR20) 2003; 5
1984_CR29
1984_CR28
1984_CR15
1984_CR57
1984_CR12
1984_CR55
1984_CR10
1984_CR54
1984_CR53
1984_CR52
1984_CR51
1984_CR50
L Putzu (1984_CR13) 2013; 7
YM Alomari (1984_CR3) 2014; 2014
SJ Belekar (1984_CR4) 2015; 3
Q Wang (1984_CR18) 2017; 8
MD Joshi (1984_CR8) 2013; 2
F Sadeghian (1984_CR14) 2009; 11
HP Vaghela (1984_CR16) 2015; 10
1984_CR17
1984_CR49
1984_CR48
1984_CR47
1984_CR46
1984_CR45
1984_CR44
1984_CR43
1984_CR42
1984_CR41
1984_CR40
HT Madhloom (1984_CR24) 2011; 36
S Afshar (1984_CR2) 2011; 25
EMFE Houby (1984_CR25) 2018; 42
EA Mohammed (1984_CR56) 2014; 5
Z Saeedizadeh (1984_CR19) 2015; 261
1984_CR38
1984_CR37
1984_CR36
1984_CR35
1984_CR34
1984_CR33
1984_CR31
1984_CR30
1984_CR1
N Guo (1984_CR32) 2007; 37
1984_CR7
1984_CR6
C Reta (1984_CR23) 2011; 696
1984_CR5
1984_CR39
References_xml – reference: Wang M, Chu R (2009) A novel white blood cell detection method based on boundary support vectors. In proc. of the 2009 IEEE international conference on systems. Man and Cybernetics:2595–2598
– reference: Label the components (2015) https://in.mathworks.com/help/images/ref/bwlabel.html. Accessed: 16th November, 2017
– reference: Attribute-Relation File Format (ARFF) (2008) ARFF. In: Attribute-Relation File Format (ARFF). Available via. https://www.cs.waikato.ac.nz/ml/weka/arff.html. Accessed 16 Nov 2017
– reference: Area open function (2015) https://in.mathworks.com/help/images/ref/bwareaopen.html. Accessed 16th November, 2017
– reference: Wright Stain Method Technical Data Sheet (2005) Wright Stain . In: Technical Data Sheets. Available via. https://www.emsdiasum.com/microscopy/technical/datasheet/26060.aspx. Accessed 16 Nov 2017
– reference: SaeedizadehZDehnaviAA.M.RabbaniHAutomatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifierJ Microsc20152611465610.1111/jmi.1231426457371
– reference: VaghelaHPPandyaMModiHPotdarMBLeukemia detection using digital image processing techniquesInternational Journal of Applied Information Systems2015101435110.5120/ijais2015451461
– reference: Extended maxima (2012) https://in.mathworks.com/help/images/ref/imextendedmax.html. Accessed 16th November, 2017
– reference: Thanh TTP, Pham GN, Park JH , Moon KS, Lee SH, Kwon KR (2017) Acute leukemia classification using convolution neural network in clinical decision support system. In Proc Of Computer Science & Information Technology, 49–53. https://doi.org/10.5121/csit.2017.71305
– reference: Filling holes (2015) https://in.mathworks.com/help/images/ref/imfill.html. Accessed16th November, 2017
– reference: Labati RD, Piuri V, Scotti F (2011) ALL -IDB: the acute lymphoblastic leukemia image database for image processing. In Proc. of the 2011 IEEE international conference on image processing 2045–2048. https://doi.org/10.1109/ICIP.2011.6115881
– reference: Wang M, Zhou X, Li F, Huckins J, King RW, Wong STC Novel cell segmentation and online learning algorithms for cell phase identification in automated time-lapse microscopy. In 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro 65–68. https://doi.org/10.1109/isbi.2007.356789
– reference:  Khobragade S, Mor DD, Patil CY (2015) Detection of leukemia in microscopic white blood cell images. In Proc. of the 2015 international conference on information processing (ICIP) (ICIP):435–440. https://doi.org/10.1109/INFOP.2015.7489422
– reference: Almuallim H, Dietterich TG (1991) Learning with many irrelevant features. In: Proc. Ninth National conference on Artificial intelligence (AAAI-91), Anaheim, CA 2: 547–552
– reference: Ahasan R, Ratul AU, Bakibillah ASM White Blood Cells Nucleus Segmentation from Microscopic Images of strained peripheral blood film during Leukemia and Normal Condition. In Proc. of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV): 361–366. https://doi.org/10.1109/ICIEV.2016.7760026
– reference: GLCM (2006) http://support.echoview.com/WebHelp/Windows_and_Dialog_Boxes/Dialog_Boxes/Variable_properties_dialog_box/Operator_pages/GLCM_Texture_Features.htm#About_the _GLCM_and_textures. Accessed 16th November, 2017
– reference: ALL-IDB (2011) https://homes.di.unimi.it/scotti/all/results.php. Accessed 16th January,2019
– reference: Adjust operation (2017) https://in.mathworks.com/help/images/ref/imadjust.html. Accessed:16th November, 2017
– reference: Sinha N, Ramakrishnan AG (2002) Blood cell segmentation using EM algorithm. In proc. Third Indian conference on computer vision. Graphics & Image Processing (ICVGIP):1–6.https://doi.org/10.1109/ICIEV.2016.7760026
– reference: Bhamare, Miss. Madhuri G. and D.S.Patil (2013) Automatic blood cell analysis by using digital image processing: a preliminary study .Int J Eng Res Technol 2(9):3137–3141.
– reference: RetaCGonzalezJADiazRGuichardJSLeukocytes segmentation using Markov random fieldsAdv Exp Med Biol201169634535310.1007/978-1-4419-7046-6_351:CAS:528:DC%2BC2MXltV2ltQ%3D%3D21431575
– reference: Measurement properties (2017) https://in.mathworks.com/help/images/ref/regionprops.html. Accessed: 16th November, 2017
– reference: Karen Seiter (2016) ALL types. In:Acute Lymphoblastic Leukemia Staging. Available via https://emedicine.medscape.com/article/2006661-overview. Accessed 16th Nov,2017
– reference: PutzuLRubertoCDWhite blood cells identification and counting from microscopic blood imageInternational journal of medical, health, biomedical, bioengineeringand Pharm Eng2013712027
– reference: AfsharSAbdolrahmaniFTanhaFVSeifMZTaheriKRecognition and prediction of leukemia with artificial neural network (ANN)Med J Islam Repub Iran20112513539
– reference: BelekarSJChouguleSRWBC segmentation using morphological operation and SMMT operator-a reviewInternational Journal of Innovative Research in Computer and Communication Engineering201531434440
– reference: MadhloomHTKareemSAAriffinHAn image processing application for the localization and segmentation of lymphoblast cell using peripheral blood imagesJ Med Syst2011362149215810.1007/s10916-011-9679-021399912
– reference: HoubyEMFEFramework of computer aided diagnosis Systems for Cancer Classification Based on medical imagesJ Med Syst20184215716710.1007/s10916-018-1010-x29995204
– reference: AlomariYMAzmaRZAbdullahSNHSOmarKAutomatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithmComputational and Mathematical Methods in Medicine2014201411410.1155/2014/979302
– reference: Cuevas E, Díaz M, Manzanares M, Zaldivar D, Perez-Cisnero M (2013) An improved computer vision method for white blood cells detection. Computational and Mathematical Methods in Medicine:1–14
– reference: C.I.E primaries (n.d.) http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cieprim.html. Accessed 16th November, 2017
– reference: WangQWangJZhouMLiQWangYSpectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technologyBiomedical Optics Express20178630193028
– reference: MohammedEAMohamedMMFarBHNauglerCPeripheral blood smear image analysis: a comprehensive reviewJournal of Pathology Informatics201451910.4103/2153-3539.129442248438214023032
– reference: Kira K, Rendell LA. (1992) The feature selection problem: traditional methods and a newalgorithm. In: Proc. AAAI-92, San Jose, CA 122–126
– reference: Mishra, S. J., & Deshmukh,A.P. (2014) Detection of Leukemia in Human Blood Sample based on Microscopic Images. International Journal of Advanced Research in Electronics and Communication Engineering, 1(3) :10-14. 
– reference: Kumar BR, Joseph DK, Sreenivas TV( 2002) Teager energy based blood cell segmentation. In proceedings of the 14th international conference on digital signal processing, Santorini, Greece, 619–622
– reference: Alreza ZKK, Karimian A (2016) A. Design a new algorithm to count white blood cells for classification leukemic blood image using machine vision system. In Proceedings of the 6th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 251–256
– reference: Theera-Umpon N (2005) Patch-based white blood cell nucleus segmentation using fuzzy clustering. ECTI Transactions on Electrical Eng., Electronics, and Communications 3(1):15–19
– reference: GuoNZengLWuQA method based on multispectral imaging technique for white blood cell segmentationComput Biol Med200737707610.1016/j.compbiomed.2005.10.00316325166
– reference: Bhagvathi SL, Thomas NS (2016) An automatic system for detecting and counting RBC and WBC using fuzzy logic. ARPN-JEAS 11(11):6891–6894
– reference: JiangKJiangQXXiongYA novel white blood cell segmentation scheme using scale-space filtering and watershed clusteringMach Learning Cybernetics2003528202825
– reference: Nivaldo Medeiros(n.d.) Blood Smear Database. In: Atlas.Available via http://www.hematologyatlas.com/principalpage.htm. Accessed 16th November, 2017.http://www.hematologyatlas.com/principalpage.htm. Accessed 16 Nov 2017
– reference: Nasir A, Mustafa N, Nasir NFM (2009) Application of thresholding technique in determining ratio of blood cells for leukemia detection. In Proceedings of the international conference on man-machine systems (ICoMMS 2009), 1–6
– reference: MulikVBhilarePMAlhatSAnalysis of acute lymphoblastic leukemia cells using digital image processingInternational Journal for Scientific Research and Development2016427072
– reference: Impose minima (2003) https://in.mathworks.com/help/images/ref/imimposemin.html. Accessed: 16th November, 2017
– reference: Esti Suryani and Wiharto Wiharto and Nizomjon Polvonov (2015) Identification and Counting White Blood Cells and Red Blood Cells using Image Processing Case Study of Leukemia. International Journal of Computer Science & Network Solutions 2(6):35–49.
– reference: JoshiMDKarodeAHSuralkarSRWhite blood cells segmentation and classification to detect acute leukemia. International journal of emerging trends Technology in ComputerScience201323147151
– reference: Gonzalez, R. C., R. E. Woods, and S. L. Eddins (2004) Digital Image Processing Using MATLAB. New Jersey, Pearson Prentice Hall
– reference: MyHematalogy(2017) Leishman Stain . In : MyHematology. Available via https://myhematology.com/red-blood-cells/leishman-stain/ . Accessed: 16th Nov, 2017
– reference: Histogram equalization (2015). Histeq function. In: Histogram Equalization. Available via https://in.mathworks.com/help/images/histogram-equalization.html . Accessed: 16th Nov, 2017 https://in.mathworks.com/help/images/histogram-equalization.html. Accessed: 16 Nov 2017
– reference: Watershed Transform (2013) https://blogs.mathworks.com/steve/2013/11/19/watershed-transform-question-from-tech-support/. Accessed: 16th November,2017
– reference: Erosion operation (2017) https://in.mathworks.com/help/images/ref/imerode.html. Accessed 16th November, 2017
– reference: SadeghianFRamliARSemanZKhaharBHASaripanMIA Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image ProcessingBiological Procedures Online200911119620610.1007/s12575-009-9011-21:CAS:528:DC%2BC3cXislOqtLs%3D195172063055951
– reference: Mohammed EA, Mohamed MMA, Naugler Christopher, Far BH (2013) Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In Proc. of the 26th IEEE Can Con El Comp En(CCECE):1–5
– reference: MarzukiNICMahmoodNHRazakMAASegmentation of white blood cell nucleus using active contourJ Teknol201574611511810.11113/jt.v74.4675
– reference: Subrajeet Mohapatra (2013) Hematological image analysis for acute lymphoblastic leukemia detection and classification. Doctoral Dissertation, National Institute of Technology Rourkela
– reference: Border clear (2015) https://in.mathworks.com/help/images/ref/imclearborder.html. Accessed 16th November, 2017
– volume: 5
  start-page: 2820
  year: 2003
  ident: 1984_CR20
  publication-title: Mach Learning Cybernetics
– ident: 1984_CR55
– ident: 1984_CR7
– ident: 1984_CR26
– ident: 1984_CR51
– ident: 1984_CR33
  doi: 10.1109/ICIEV.2016.7760026
– volume: 7
  start-page: 20
  issue: 1
  year: 2013
  ident: 1984_CR13
  publication-title: International journal of medical, health, biomedical, bioengineeringand Pharm Eng
– ident: 1984_CR46
– ident: 1984_CR17
  doi: 10.1109/isbi.2007.356789
– ident: 1984_CR42
– ident: 1984_CR27
  doi: 10.1109/CCECE.2013.6567770
– ident: 1984_CR6
– volume: 2014
  start-page: 1
  year: 2014
  ident: 1984_CR3
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2014/979302
– ident: 1984_CR35
– ident: 1984_CR52
– ident: 1984_CR29
  doi: 10.1109/INFOP.2015.7489422
– volume: 4
  start-page: 70
  issue: 2
  year: 2016
  ident: 1984_CR11
  publication-title: International Journal for Scientific Research and Development
– ident: 1984_CR15
  doi: 10.5121/csit.2017.71305
– volume: 696
  start-page: 345
  year: 2011
  ident: 1984_CR23
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4419-7046-6_35
– volume: 261
  start-page: 46
  issue: 1
  year: 2015
  ident: 1984_CR19
  publication-title: J Microsc
  doi: 10.1111/jmi.12314
– ident: 1984_CR36
  doi: 10.1109/ICIP.2011.6115881
– ident: 1984_CR41
– ident: 1984_CR39
– ident: 1984_CR45
– ident: 1984_CR49
– ident: 1984_CR1
– ident: 1984_CR10
– volume: 37
  start-page: 70
  year: 2007
  ident: 1984_CR32
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2005.10.003
– ident: 1984_CR57
– ident: 1984_CR5
– ident: 1984_CR28
– ident: 1984_CR53
– volume: 2
  start-page: 147
  issue: 3
  year: 2013
  ident: 1984_CR8
  publication-title: Science
– volume: 10
  start-page: 43
  issue: 1
  year: 2015
  ident: 1984_CR16
  publication-title: International Journal of Applied Information Systems
  doi: 10.5120/ijais2015451461
– volume: 74
  start-page: 115
  issue: 6
  year: 2015
  ident: 1984_CR9
  publication-title: J Teknol
  doi: 10.11113/jt.v74.4675
– ident: 1984_CR21
– ident: 1984_CR40
– ident: 1984_CR38
– ident: 1984_CR44
– ident: 1984_CR48
– volume: 5
  start-page: 9
  issue: 1
  year: 2014
  ident: 1984_CR56
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/2153-3539.129442
– volume: 11
  start-page: 196
  issue: 1
  year: 2009
  ident: 1984_CR14
  publication-title: Biological Procedures Online
  doi: 10.1007/s12575-009-9011-2
– ident: 1984_CR31
  doi: 10.1109/ICIEV.2016.7760026
– volume: 3
  start-page: 434
  issue: 1
  year: 2015
  ident: 1984_CR4
  publication-title: International Journal of Innovative Research in Computer and Communication Engineering
– ident: 1984_CR54
– ident: 1984_CR37
– ident: 1984_CR34
  doi: 10.1109/ICSMC.2009.5346736
– volume: 25
  start-page: 35
  issue: 1
  year: 2011
  ident: 1984_CR2
  publication-title: Med J Islam Repub Iran
– volume: 42
  start-page: 157
  year: 2018
  ident: 1984_CR25
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1010-x
– ident: 1984_CR22
– ident: 1984_CR47
– volume: 36
  start-page: 2149
  year: 2011
  ident: 1984_CR24
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9679-0
– ident: 1984_CR43
– ident: 1984_CR30
  doi: 10.1155/2013/137392
– ident: 1984_CR50
– ident: 1984_CR12
– volume: 8
  start-page: 3019
  issue: 6
  year: 2017
  ident: 1984_CR18
  publication-title: Biomedical Optics Express
SSID ssj0021524
Score 2.4622574
Snippet Blood is composed of white blood cells, red blood cells, and platelets. Segmentation of the blood smear cells and extraction of features of the cells is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1783
SubjectTerms Accuracy
Acute lymphoblastic leukemia
Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blood
Blood cancer
Bone marrow
Classifiers
Computer Applications
Cytoplasm
Cytoplasm - pathology
Data Mining
Databases, Factual
Diagnostic software
Diagnostic systems
Entropy
Erythrocytes
Experimentation
Feature extraction
Flow cytometry
Fractals
Hematology - methods
Human Physiology
Humans
Image classification
Image detection
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Leukemia
Leukocytes
Leukocytes - pathology
Lymphatic leukemia
Medical imaging
Nuclei (cytology)
Original Article
Peripheral blood
Platelets
Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology
Radiology
Smear
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQXwRv61OieCbFto0abLHoY4hzCcHe5GStOkc9kPW9sH_3kvXdshU8KmFJmm4S3K_4353QejGoRFVTHg2oVzb8EpsFXvaBtMgYuZF3HNNovDk2R9P6dOMzZqksKJlu7chyfqkXie7gXEyNEnD7xkIaoPPs81MOS9YxVMy7NwssEi0Iy4Cfm5SZX4e47s52sCYG_HR2uyM9tFegxfxcKXgA7Sls0O0M2ki4kfo9UGXNZsqw3mMZViVGiefoKJcAS6GTjjR1btOFxIbivscL1I4QXCh52mTdZRhmUXYMEVxWt8WgWUyz5eL8i0tjtF09PhyP7abKxPs0OOstEOXcUmldiSRzkD4Dkg_8pQbkthVMuaKawGgC2BFDGaIKz_iKvadKApFCFAs9E5QL8szfYawLzlRkgrKJLgc0hTychQ8BNOCx8KxkNtKLgibeuLmWoskWFdCNtIOQNJBLe3AtdBt1-djVU3jz9b9ViFBs7OKgJhkXFNEj1nouvsMe8IEOmSm88q08cGNIuDpWeh0pcjud54LkIcNoPddq9n14L_P5fx_zS_QLqlXmWEK9lGvXFb6EtBLqa7qxfoFdxHjaw
  priority: 102
  providerName: Springer Nature
Title Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms
URI https://link.springer.com/article/10.1007/s11517-019-01984-1
https://www.ncbi.nlm.nih.gov/pubmed/31201595
https://www.proquest.com/docview/2239963575
https://www.proquest.com/docview/2265762148
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthLignhvYamMxA0sEseJ3QNCBdpdgbZCiErlgCK_UlY0yULTA_-eceqkQiv2kkSJnVgztuebzAvgRcQt16lMKOPCUbxkVBeJoygaZJEmViSxDxS-WGTnS_5xla6OYNHFwni3ym5PbDdqWxv_j_w180GYPnla-vbqF_VVo7x1tSuhoUJpBfumTTF2DEPmM2MNYPhutvj8pVfBUFrx3qkRsXUIo9kH06Hw826Y3n9oIjmN_xVV1_DnNdtpK5Lmd-FOwJJkumf-PThy1X24dRGs5Q_g-wfXtJ5WFakLosyucWTzB9lXa8TM2Ils3O6nKy8V8e7va3JZ4u5Ctm5dhoikiqjKEu9FSsq2kgRRmzVSpflRbh_Ccj77-v6chnIK1CQibaiJU6G4cpFiKprILELO2ETHhhWxVoXQwkkEZAg5ChRRQmdW6CKLrDXSIEwzySMYVHXlToBkSjCtuOSpQnVE-SRfkcaTTJ0UhYxGEHeUy03INe5LXmzyQ5ZkT-0cKZ231M7jEbzs-1ztM23c2Pq0Y0geVt02P8yRETzvH-N68UYQVbl659tkqGIx1AJH8HjPyP5zSYxwKJ1g71cdZw8v__9Yntw8lqdwm7WzynsNnsKg-b1zzxDJNHoMx2Il8CjnZ2MYTs--fZqNw5TFu0s2_QuD5_Fd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGJgEviP_cGBAkeIKINkmb3MOEgG26sd0JoU3aCypJkx7Tru3gekL7cnw2nF7aE5rY255aqUkb2U5s1z_bAK8iYYVJFKdMSEfxllFTcEdRNagi4Vby2CcKjyfp6Fh8PklO1uBPlwvjYZXdmdge1LbO_T_yd8wnYfriacn785_Ud43y0dWuhYYOrRXsdltiLCR2HLiL3-jCzbf3d5Dfrxnb2z36NKKhywDNuUwamseJ1EK7SDMdDVUa4YItN3HOitjoQhrpFNopqIkLPLmlSa00RRpZm6scrZec43tvwIbgYojO38bH3cmXr73Lh9pR9CBKtOVD2s4yeQ-VrYd9erzSUAka_6saL9m7l2K1rQrcuwt3gu1KPiyF7R6sueo-3ByH6PwD-LbjmhbZVZG6IDpfNI7MLlBcaoM2Ok4iM7c4c-WpJh5uPyWnJZ5mZO6mZciAqoiuLPGoVVK2nSuInk2RC82Pcv4Qjq-FsI9gvaor9wRIqiUzWiiRaHR_tC8qFhm8qMQpWahoAHFHuSwPtc19i41ZtqrK7KmdIaWzltpZPIA3_ZzzZWWPK0dvdQzJwi6fZyuZHMDL_jHuTx900ZWrF35Mii4dQ69zAI-XjOw_x2M0v5Ihzn7bcXb18v-vZfPqtbyAW6Oj8WF2uD85eAq3WSthHrG4BevNr4V7hlZUY54HUSXw_bp3x18slSqC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJTmA18SP2HhBCLKuW0ooDlfaCgu3YS8UmKWxWqH-NX8c4j12hit56SqTYiTWeZ_zNDMCLRBTCSs0pE8pTvGXUBu4pmgYdJC8UT2Oi8NFxtn8iPs7kbAv-DLkwEVY56MRWURe1i__I91hMwozF0-Re6GERnyfTt2c_aewgFU9ah3YaHYsc-vPfGL4t3xxMcK9fMjb98OX9Pu07DFDHlWyoS6UywvjEMJOMdZbgYgtuU8dCak1QVnmNPgpa4YBaW9msUDZkSVE47dBzcRzfew2uK87HEU6oZptgD-2iWMMn0YvvE3a6tD00sxHwGZFKYy1o-q9RvODpXjilbY3f9Bbc7L1W8q5js9uw5as7sHPUn8vfha8T37SYrorUgRi3ajxZnCOj1Ba9c5xEFn71w5enhkSg_ZyclqjHyNLPyz73qSKmKkjEq5Ky7VlBzGKONG--l8t7cHIlZL0P21Vd-YdAMqOYNUILaTDwMbGcWGLxoqXXKuhkBOlAudz1Vc1jc41FvqnHHKmdI6Xzltp5OoJX6zlnXU2PS0fvDhuS9_K9zDfcOILn68comfG4xVS-XsUxGQZzDOPNETzoNnL9OZ6i4yXHOPv1sLObl_9_LY8uX8sz2EGZyD8dHB8-hhusZbAIVdyF7ebXyj9B96mxT1s-JfDtqgXjL--tKBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+acute+lymphoblastic+leukemia+using+image+segmentation+and+data+mining+algorithms&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Acharya%2C+Vasundhara&rft.au=Kumar%2C+Preetham&rft.date=2019-08-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=8&rft.spage=1783&rft.epage=1811&rft_id=info:doi/10.1007%2Fs11517-019-01984-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_019_01984_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon