Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning

Objectives This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral v...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 29; no. 11; pp. 6172 - 6181
Main Authors Forghani, Reza, Chatterjee, Avishek, Reinhold, Caroline, Pérez-Lara, Almudena, Romero-Sanchez, Griselda, Ueno, Yoshiko, Bayat, Maryam, Alexander, James W. M., Kadi, Lynda, Chankowsky, Jeffrey, Seuntjens, Jan, Forghani, Behzad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-019-06159-y

Cover

Abstract Objectives This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction. Methods Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck. Results Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy. Conclusions Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone. Key Points • Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.
AbstractList ObjectivesThis study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.MethodsEighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.ResultsDepending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.ConclusionsMulti-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.Key Points• Texture features of HNSCC tumor are predictive of nodal status.• Multi-energy texture analysis is superior to analysis of datasets at a single energy.• Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.
This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.OBJECTIVESThis study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.METHODSEighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.RESULTSDepending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.CONCLUSIONSMulti-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.• Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.KEY POINTS• Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.
Objectives This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction. Methods Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck. Results Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy. Conclusions Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone. Key Points • Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.
This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction. Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck. Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy. Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone. • Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.
Author Kadi, Lynda
Reinhold, Caroline
Forghani, Behzad
Chankowsky, Jeffrey
Seuntjens, Jan
Alexander, James W. M.
Forghani, Reza
Romero-Sanchez, Griselda
Chatterjee, Avishek
Bayat, Maryam
Ueno, Yoshiko
Pérez-Lara, Almudena
Author_xml – sequence: 1
  givenname: Reza
  orcidid: 0000-0002-8572-1864
  surname: Forghani
  fullname: Forghani, Reza
  email: reza.forghani@mcgill.ca
  organization: Department of Radiology and Research Institute of the McGill University Health Centre, McGill University, Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Radiology, Royal Victoria Hospital, McGill University Health Centre, Gerald Bronfman Department of Oncology, McGill University
– sequence: 2
  givenname: Avishek
  surname: Chatterjee
  fullname: Chatterjee, Avishek
  organization: Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre
– sequence: 3
  givenname: Caroline
  surname: Reinhold
  fullname: Reinhold, Caroline
  organization: Department of Radiology and Research Institute of the McGill University Health Centre, McGill University, Department of Radiology, Royal Victoria Hospital, McGill University Health Centre
– sequence: 4
  givenname: Almudena
  surname: Pérez-Lara
  fullname: Pérez-Lara, Almudena
  organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Radiology, Hospital Regional Universitario de Málaga
– sequence: 5
  givenname: Griselda
  surname: Romero-Sanchez
  fullname: Romero-Sanchez, Griselda
  organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital
– sequence: 6
  givenname: Yoshiko
  surname: Ueno
  fullname: Ueno, Yoshiko
  organization: Department of Radiology, Royal Victoria Hospital, McGill University Health Centre, Department of Radiology, Kobe University Graduate School of Medicine
– sequence: 7
  givenname: Maryam
  surname: Bayat
  fullname: Bayat, Maryam
  organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital
– sequence: 8
  givenname: James W. M.
  surname: Alexander
  fullname: Alexander, James W. M.
  organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital
– sequence: 9
  givenname: Lynda
  surname: Kadi
  fullname: Kadi, Lynda
  organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Faculty of Medicine, Université de Montréal
– sequence: 10
  givenname: Jeffrey
  surname: Chankowsky
  fullname: Chankowsky, Jeffrey
  organization: Department of Radiology, Royal Victoria Hospital, McGill University Health Centre
– sequence: 11
  givenname: Jan
  surname: Seuntjens
  fullname: Seuntjens, Jan
  organization: Gerald Bronfman Department of Oncology, McGill University, Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre
– sequence: 12
  givenname: Behzad
  surname: Forghani
  fullname: Forghani, Behzad
  organization: Department of Radiology and Research Institute of the McGill University Health Centre, McGill University, Gerald Bronfman Department of Oncology, McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30980127$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS3Uik5_XoAFssSGTeA6zo_NDo0oRarEpl1HN_bNjEviTO0EyDvw0PV0CkhdVLJkyf6Or885p-zIj54YeyPggwCoP0YAKSEDoTOoRKmz5RVbiULmmQBVHLEVaKmyWuvihJ3GeAcAWhT1a3YiQSsQeb1if64ILUdvuSfzg8f7GYdxjtxQ33ODwTg_DviJ7wJZZyY3ej526Tb8dAZ73i_Dbsv9aIkPNGFMy0XeLtzO2GfkKWwWvr7hE_2e5kBpEPbLHvnlpi0f0GydJ94TBu_85pwdd9hHunjaz9jt5Zeb9VV2_f3rt_Xn68zIupyy1ihjy7bSuRadsBYklaLuCFHLiopCYd0VQgHZqrQqHWIKRdct6QqKUoA8Y-8P7-7CeD9TnJrBxb1j9JTMN3kOuhIpKpXQd8_Qu3EOycUjpcoESZ2ot0_U3A5km11wA4al-ZtzAvIDYMIYY6DuHyKg2ZfZHMpsUpnNY5nNkkTqmci4CfcdTAFd_7JUHqQxzfEbCv-__YLqAZqYtSQ
CitedBy_id crossref_primary_10_1038_s41598_022_06884_3
crossref_primary_10_1016_j_ejmp_2021_07_023
crossref_primary_10_1007_s00261_024_04459_6
crossref_primary_10_1016_j_crad_2021_02_033
crossref_primary_10_3390_diagnostics14040377
crossref_primary_10_1007_s10278_024_01114_w
crossref_primary_10_2478_acm_2021_0008
crossref_primary_10_1002_hed_26700
crossref_primary_10_1016_j_metrad_2023_100044
crossref_primary_10_1080_14737140_2019_1626234
crossref_primary_10_1016_j_oooo_2023_04_012
crossref_primary_10_1038_s41598_023_34162_3
crossref_primary_10_1016_j_neurad_2021_07_006
crossref_primary_10_3390_cancers13153723
crossref_primary_10_1007_s00261_020_02802_1
crossref_primary_10_1007_s00330_020_06962_y
crossref_primary_10_1111_vru_13175
crossref_primary_10_2217_fon_2021_1125
crossref_primary_10_18229_kocatepetip_1034928
crossref_primary_10_1007_s00330_024_10854_w
crossref_primary_10_1016_j_jtcvs_2020_05_009
crossref_primary_10_1155_2021_7538984
crossref_primary_10_1259_bjr_20190827
crossref_primary_10_1016_j_ejrad_2021_109532
crossref_primary_10_18786_2072_0505_2019_47_071
crossref_primary_10_1016_j_oooo_2021_12_122
crossref_primary_10_1016_j_otc_2024_05_001
crossref_primary_10_1186_s41747_021_00212_6
crossref_primary_10_3390_en17236153
crossref_primary_10_2147_IJGM_S347425
crossref_primary_10_1016_j_nic_2020_04_004
crossref_primary_10_1007_s00330_020_06866_x
crossref_primary_10_1016_j_nic_2020_04_005
crossref_primary_10_1371_journal_pone_0277168
crossref_primary_10_1186_s41747_023_00371_8
crossref_primary_10_1016_j_nic_2020_04_003
crossref_primary_10_1186_s12880_024_01427_w
crossref_primary_10_1093_dmfr_twae051
crossref_primary_10_1002_lary_31756
crossref_primary_10_1007_s00330_021_07832_x
crossref_primary_10_1093_pcmedi_pbae002
crossref_primary_10_1186_s12885_023_10572_4
crossref_primary_10_1007_s00261_024_04516_0
crossref_primary_10_1186_s13550_023_01038_6
crossref_primary_10_1155_2020_3959236
crossref_primary_10_18229_kocatepetip_1034913
crossref_primary_10_3389_fendo_2022_1093508
crossref_primary_10_3389_fonc_2022_742701
crossref_primary_10_1007_s00330_021_07731_1
crossref_primary_10_1016_j_ijrobp_2021_02_004
crossref_primary_10_1053_j_sult_2022_02_006
crossref_primary_10_1177_02841851221095237
crossref_primary_10_1016_j_eclinm_2023_102385
crossref_primary_10_1007_s00259_021_05573_z
crossref_primary_10_3390_cancers15102850
crossref_primary_10_1007_s40520_021_01985_x
crossref_primary_10_1186_s12931_019_1197_5
crossref_primary_10_1016_j_aprim_2020_04_014
crossref_primary_10_1177_19714009251313507
crossref_primary_10_1007_s11547_023_01750_2
crossref_primary_10_1016_j_csbj_2019_07_001
crossref_primary_10_1016_j_csbj_2019_07_004
crossref_primary_10_3389_fonc_2022_881910
crossref_primary_10_1016_j_jtcvs_2020_12_092
crossref_primary_10_1007_s00330_022_09355_5
crossref_primary_10_1177_00034894211041222
crossref_primary_10_3390_diagnostics14010071
crossref_primary_10_1177_0284185120946711
crossref_primary_10_1016_j_nic_2020_08_004
crossref_primary_10_1007_s00234_024_03485_x
crossref_primary_10_1016_j_oraloncology_2021_105434
crossref_primary_10_1016_j_semcancer_2023_07_002
crossref_primary_10_3390_diagnostics12123072
crossref_primary_10_1016_j_heliyon_2024_e29578
crossref_primary_10_3390_cancers13184710
crossref_primary_10_3390_jpm13121626
crossref_primary_10_1016_j_ijmedinf_2024_105464
crossref_primary_10_17816_DD62572
crossref_primary_10_54005_geneltip_1311577
crossref_primary_10_1007_s11547_021_01367_3
crossref_primary_10_1007_s11604_023_01460_9
crossref_primary_10_1016_j_nic_2020_08_003
crossref_primary_10_1186_s13244_021_01153_9
crossref_primary_10_1016_j_crad_2021_03_009
crossref_primary_10_3174_ajnr_A7265
Cites_doi 10.1007/s00330-015-3627-1
10.1148/radiol.14130569
10.1097/RLI.0000000000000116
10.1148/radiol.13130110
10.1007/s00330-014-3420-6
10.1097/RCT.0000000000000571
10.3174/ajnr.A4314
10.1016/j.nic.2017.04.007
10.3174/ajnr.A4110
10.1038/ncomms5006
10.1007/s10278-014-9707-y
10.1007/s00330-013-3035-3
10.1177/0284185115598808
10.1007/s00330-017-5214-0
10.1002/jmri.25156
10.1056/NEJMoa1506007
10.1016/j.clinimag.2017.09.015
10.2214/AJR.15.14896
10.1148/radiol.11100978
10.1007/s00330-017-5015-5
10.1023/A:1010933404324
10.1088/0031-9155/60/14/5471
10.3390/cancers7040886
10.1097/RLI.0000000000000077
10.1016/j.nic.2017.03.003
10.1097/RCT.0b013e3182976365
10.3109/0284186X.2015.1061214
10.1001/jamaoto.2016.1281
10.1002/hed.23945
10.3174/ajnr.A4285
10.3174/ajnr.A4253
10.1038/srep31020
10.1017/S002221511600058X
10.1038/srep13087
10.1586/14737140.2015.978862:1-18
10.18632/oncotarget.12446
10.1007/978-0-387-84858-7
10.1109/ISBI.2013.6556433
10.1145/1390156.1390169
10.1016/B978-0-323-05355-6.00045-8
10.1586/14737140.2015.1108193:1-13
10.1148/radiol.2017161950:161950
ContentType Journal Article
Copyright European Society of Radiology 2019
European Radiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: European Society of Radiology 2019
– notice: European Radiology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-019-06159-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 6181
ExternalDocumentID 30980127
10_1007_s00330_019_06159_y
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Fonds de Recherche du Québec - Santé
  grantid: NA
  funderid: http://dx.doi.org/10.13039/501100000156
– fundername: Rossy Cancer Network
  grantid: NA
– fundername: Fonds de Recherche du Québec - Santé
  grantid: NA
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-bc8cd5b69291f1dd03e517feaa936e448a7f4180ed65d8a93a14397be96045103
IEDL.DBID BENPR
ISSN 0938-7994
1432-1084
IngestDate Wed Oct 01 13:19:43 EDT 2025
Tue Oct 07 06:06:43 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Wed Oct 01 03:47:28 EDT 2025
Thu Apr 24 22:56:39 EDT 2025
Fri Feb 21 02:33:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Computer-assisted diagnosis
Head and neck neoplasms
Artificial intelligence
Machine learning
Multidetector computed tomography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-bc8cd5b69291f1dd03e517feaa936e448a7f4180ed65d8a93a14397be96045103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-8572-1864
PMID 30980127
PQID 2208514739
PQPubID 54162
PageCount 10
ParticipantIDs proquest_miscellaneous_2209611478
proquest_journals_2208514739
pubmed_primary_30980127
crossref_primary_10_1007_s00330_019_06159_y
crossref_citationtrail_10_1007_s00330_019_06159_y
springer_journals_10_1007_s00330_019_06159_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191100
2019-11-00
2019-Nov
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References D’Cruz, Vaish, Kapre (CR4) 2015; 373
Paleri, Urbano, Mehanna (CR6) 2016; 130
Breiman (CR42) 2001; 45
Forghani, Kelly, Yu (CR33) 2017; 41
Srinivasan, Parker, Manjunathan, Ibrahim, Shah, Mukherji (CR23) 2013; 37
Forghani, Levental, Gupta, Lam, Dadfar, Curtin (CR26) 2015; 36
Foncubierta-Rodriguez, Jimenez del Toro, Platon, Poletti, Muller, Depeursinge (CR19) 2013; 2013
Vallieres, Freeman, Skamene, El Naqa (CR16) 2015; 60
CR39
Leijenaar, Carvalho, Hoebers (CR14) 2015; 54
CR34
Dang, Lysack, Wu (CR12) 2015; 36
De Cecco, Ganeshan, Ciolina (CR41) 2015; 50
Liu, Mao, Li (CR15) 2016; 44
Abu-Ghanem, Yehuda, Carmel (CR5) 2016; 142
Yang, Wu, Li (CR46) 2017; 8
Bayanati, Thornhill, Souza (CR17) 2015; 25
Aerts, Velazquez, Leijenaar (CR10) 2014; 5
Yang, Luo, Li (CR30) 2016; 6
Kraft, Ibrahim, Spector, Forghani, Srinivasan (CR38) 2018; 48
Andersen, Harders, Ganeshan, Thygesen, Torp Madsen, Rasmussen (CR18) 2016; 57
Buch, Fujita, Li, Kawashima, Qureshi, Sakai (CR13) 2015; 36
Albrecht, Scholtz, Kraft (CR27) 2015; 25
Rizzo, Radice, Femia (CR29) 2018; 28
Parmar, Grossmann, Bussink, Lambin, Aerts (CR11) 2015; 5
Tawfik, Razek, Kerl, Nour-Eldin, Bauer, Vogl (CR28) 2014; 24
CR2
Som, Brandwein-Gensler, Som, Curtin (CR1) 2011
Medina, Myers, Hanna, Myers (CR8) 2017
Yamauchi, Buehler, Goodsitt, Keshavarzi, Srinivasan (CR31) 2016; 206
Matsumoto, Jinzaki, Tanami, Ueno, Yamada, Kuribayashi (CR32) 2011; 259
CR3
Forghani, De Man, Gupta (CR37) 2017; 27
Wichmann, Noske, Kraft (CR25) 2014; 49
Zhang, Graham, Elci (CR9) 2013; 269
Oldan, He, Wu (CR20) 2014; 27
Parikh, Selmi, Charles-Edwards (CR40) 2014; 272
CR44
CR21
Lam, Gupta, Levental, Yu, Curtin, Forghani (CR24) 2015; 36
CR43
Liaw, Wiener (CR45) 2002; 2
Liao, Hsu, Wang, Lo, Lai (CR7) 2016; 38
Lam, Gupta, Kelly, Curtin, Forghani (CR35) 2015; 7
Forghani, Srinivasan, Forghani (CR36) 2017; 27
Al Ajmi, Forghani, Reinhold, Bayat, Forghani (CR22) 2018; 28
S Lam (6159_CR35) 2015; 7
K Buch (6159_CR13) 2015; 36
RT Leijenaar (6159_CR14) 2015; 54
V Paleri (6159_CR6) 2016; 130
X Yang (6159_CR46) 2017; 8
R Forghani (6159_CR33) 2017; 41
K Matsumoto (6159_CR32) 2011; 259
E Ajmi Al (6159_CR22) 2018; 28
6159_CR2
S Lam (6159_CR24) 2015; 36
L Breiman (6159_CR42) 2001; 45
A Srinivasan (6159_CR23) 2013; 37
6159_CR3
LJ Liao (6159_CR7) 2016; 38
M Dang (6159_CR12) 2015; 36
PM Som (6159_CR1) 2011
JE Medina (6159_CR8) 2017
CN Cecco De (6159_CR41) 2015; 50
C Parmar (6159_CR11) 2015; 5
L Yang (6159_CR30) 2016; 6
S Abu-Ghanem (6159_CR5) 2016; 142
H Yamauchi (6159_CR31) 2016; 206
M Vallieres (6159_CR16) 2015; 60
6159_CR44
6159_CR21
6159_CR43
H Bayanati (6159_CR17) 2015; 25
6159_CR34
AK D’Cruz (6159_CR4) 2015; 373
R Forghani (6159_CR26) 2015; 36
S Rizzo (6159_CR29) 2018; 28
6159_CR39
HJ Aerts (6159_CR10) 2014; 5
JL Wichmann (6159_CR25) 2014; 49
MH Albrecht (6159_CR27) 2015; 25
MB Andersen (6159_CR18) 2016; 57
J Liu (6159_CR15) 2016; 44
H Zhang (6159_CR9) 2013; 269
A Foncubierta-Rodriguez (6159_CR19) 2013; 2013
M Kraft (6159_CR38) 2018; 48
R Forghani (6159_CR37) 2017; 27
R Forghani (6159_CR36) 2017; 27
J Parikh (6159_CR40) 2014; 272
AM Tawfik (6159_CR28) 2014; 24
A Liaw (6159_CR45) 2002; 2
J Oldan (6159_CR20) 2014; 27
References_xml – volume: 25
  start-page: 2493
  year: 2015
  end-page: 2501
  ident: CR27
  article-title: Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3627-1
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: CR45
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: CR43
– volume: 272
  start-page: 100
  year: 2014
  end-page: 112
  ident: CR40
  article-title: Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy
  publication-title: Radiology
  doi: 10.1148/radiol.14130569
– volume: 2013
  start-page: 3973
  year: 2013
  end-page: 3976
  ident: CR19
  article-title: Benefits of texture analysis of dual energy CT for computer-aided pulmonary embolism detection
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: CR39
– ident: CR2
– volume: 50
  start-page: 239
  year: 2015
  end-page: 245
  ident: CR41
  article-title: Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000116
– volume: 269
  start-page: 801
  year: 2013
  end-page: 809
  ident: CR9
  article-title: Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent prediction of overall survival in patients treated with induction chemotherapy
  publication-title: Radiology
  doi: 10.1148/radiol.13130110
– volume: 25
  start-page: 480
  year: 2015
  end-page: 487
  ident: CR17
  article-title: Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer?
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3420-6
– volume: 41
  start-page: 565
  year: 2017
  end-page: 571
  ident: CR33
  article-title: Low-energy virtual monochromatic dual-energy computed tomography images for the evaluation of head and neck squamous cell carcinoma: a study of tumor visibility compared with single-energy computed tomography and user acceptance
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000571
– volume: 36
  start-page: 1518
  year: 2015
  end-page: 1524
  ident: CR24
  article-title: Optimal virtual monochromatic images for evaluation of normal tissues and head and neck cancer using dual-energy CT
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4314
– volume: 27
  start-page: 533
  year: 2017
  end-page: 546
  ident: CR36
  article-title: Advanced tissue characterization and texture analysis using dual-energy computed tomography: horizons and emerging applications
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2017.04.007
– volume: 36
  start-page: 166
  year: 2015
  end-page: 170
  ident: CR12
  article-title: MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4110
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR10
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 27
  start-page: 824
  year: 2014
  end-page: 832
  ident: CR20
  article-title: Pilot study: evaluation of dual-energy computed tomography measurement strategies for positron emission tomography correlation in pancreatic adenocarcinoma
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9707-y
– volume: 24
  start-page: 574
  year: 2014
  end-page: 580
  ident: CR28
  article-title: Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes
  publication-title: Eur Radiol
  doi: 10.1007/s00330-013-3035-3
– volume: 57
  start-page: 669
  year: 2016
  end-page: 676
  ident: CR18
  article-title: CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer
  publication-title: Acta Radiol
  doi: 10.1177/0284185115598808
– volume: 28
  start-page: 2604
  year: 2018
  end-page: 2611
  ident: CR22
  article-title: Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5214-0
– volume: 44
  start-page: 445
  year: 2016
  end-page: 455
  ident: CR15
  article-title: Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25156
– volume: 373
  start-page: 521
  year: 2015
  end-page: 529
  ident: CR4
  article-title: Elective versus therapeutic neck dissection in node-negative oral cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1506007
– ident: CR21
– volume: 48
  start-page: 26
  year: 2018
  end-page: 31
  ident: CR38
  article-title: Comparison of virtual monochromatic series, iodine overlay maps, and single energy CT equivalent images in head and neck cancer conspicuity
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2017.09.015
– volume: 206
  start-page: 580
  year: 2016
  end-page: 587
  ident: CR31
  article-title: Dual-energy CT-based differentiation of benign posttreatment changes from primary or recurrent malignancy of the head and neck: comparison of spectral Hounsfield units at 40 and 70 keV and iodine concentration
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.15.14896
– ident: CR44
– volume: 259
  start-page: 257
  year: 2011
  end-page: 262
  ident: CR32
  article-title: Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT
  publication-title: Radiology
  doi: 10.1148/radiol.11100978
– volume: 28
  start-page: 760
  year: 2018
  end-page: 769
  ident: CR29
  article-title: Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5015-5
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR42
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: CR3
– start-page: 427
  year: 2017
  end-page: 453
  ident: CR8
  article-title: Cancer of the neck
  publication-title: Cancer of the head and neck
– volume: 60
  start-page: 5471
  year: 2015
  end-page: 5496
  ident: CR16
  article-title: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/14/5471
– volume: 7
  start-page: 2201
  year: 2015
  end-page: 2216
  ident: CR35
  article-title: Multiparametric evaluation of head and neck squamous cell carcinoma using a single-source dual-energy CT with fast kVp switching: state of the art
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers7040886
– volume: 49
  start-page: 735
  year: 2014
  end-page: 741
  ident: CR25
  article-title: Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000077
– volume: 27
  start-page: 385
  year: 2017
  end-page: 400
  ident: CR37
  article-title: Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 2
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2017.03.003
– volume: 37
  start-page: 666
  year: 2013
  end-page: 672
  ident: CR23
  article-title: Differentiation of benign and malignant neck pathologies: preliminary experience using spectral computed tomography
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e3182976365
– volume: 54
  start-page: 1423
  year: 2015
  end-page: 1429
  ident: CR14
  article-title: External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2015.1061214
– volume: 142
  start-page: 857
  year: 2016
  end-page: 865
  ident: CR5
  article-title: Elective neck dissection vs observation in early-stage squamous cell carcinoma of the oral tongue with no clinically apparent lymph node metastasis in the neck: a systematic review and meta-analysis
  publication-title: JAMA Otolaryngol Head Neck Surg
  doi: 10.1001/jamaoto.2016.1281
– ident: CR34
– volume: 8
  start-page: 2525
  year: 2017
  end-page: 2535
  ident: CR46
  article-title: MFAP5 and TNNC1: potential markers for predicting occult cervical lymphatic metastasis and prognosis in early stage tongue cancer
  publication-title: Oncotarget
– volume: 38
  start-page: 628
  year: 2016
  end-page: 634
  ident: CR7
  article-title: Analysis of sentinel node biopsy combined with other diagnostic tools in staging cN0 head and neck cancer: a diagnostic meta-analysis
  publication-title: Head Neck
  doi: 10.1002/hed.23945
– year: 2011
  ident: CR1
  article-title: Lymph nodes of the neck
  publication-title: Head and neck imaging
– volume: 36
  start-page: 1343
  year: 2015
  end-page: 1348
  ident: CR13
  article-title: Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinomas on CT
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4285
– volume: 36
  start-page: 1194
  year: 2015
  end-page: 1200
  ident: CR26
  article-title: Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4253
– volume: 6
  start-page: 31020
  year: 2016
  ident: CR30
  article-title: Differentiation of malignant cervical lymphadenopathy by dual-energy CT: a preliminary analysis
  publication-title: Sci Rep
  doi: 10.1038/srep31020
– volume: 130
  start-page: S161
  year: 2016
  end-page: S169
  ident: CR6
  article-title: Management of neck metastases in head and neck cancer: United Kingdom National Multidisciplinary Guidelines
  publication-title: J Laryngol Otol
  doi: 10.1017/S002221511600058X
– volume: 5
  start-page: 13087
  year: 2015
  ident: CR11
  article-title: Machine learning methods for quantitative radiomic biomarkers
  publication-title: Sci Rep
  doi: 10.1038/srep13087
– volume: 60
  start-page: 5471
  year: 2015
  ident: 6159_CR16
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/14/5471
– volume: 2
  start-page: 18
  year: 2002
  ident: 6159_CR45
  publication-title: R News
– start-page: 427
  volume-title: Cancer of the head and neck
  year: 2017
  ident: 6159_CR8
– volume: 38
  start-page: 628
  year: 2016
  ident: 6159_CR7
  publication-title: Head Neck
  doi: 10.1002/hed.23945
– volume: 7
  start-page: 2201
  year: 2015
  ident: 6159_CR35
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers7040886
– ident: 6159_CR2
  doi: 10.1586/14737140.2015.978862:1-18
– volume: 36
  start-page: 166
  year: 2015
  ident: 6159_CR12
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4110
– volume: 206
  start-page: 580
  year: 2016
  ident: 6159_CR31
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.15.14896
– volume: 6
  start-page: 31020
  year: 2016
  ident: 6159_CR30
  publication-title: Sci Rep
  doi: 10.1038/srep31020
– volume: 130
  start-page: S161
  year: 2016
  ident: 6159_CR6
  publication-title: J Laryngol Otol
  doi: 10.1017/S002221511600058X
– volume: 28
  start-page: 2604
  year: 2018
  ident: 6159_CR22
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5214-0
– volume: 28
  start-page: 760
  year: 2018
  ident: 6159_CR29
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5015-5
– volume: 8
  start-page: 2525
  year: 2017
  ident: 6159_CR46
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12446
– volume: 36
  start-page: 1194
  year: 2015
  ident: 6159_CR26
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4253
– ident: 6159_CR44
  doi: 10.1007/978-0-387-84858-7
– volume: 50
  start-page: 239
  year: 2015
  ident: 6159_CR41
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000116
– volume: 45
  start-page: 5
  year: 2001
  ident: 6159_CR42
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 57
  start-page: 669
  year: 2016
  ident: 6159_CR18
  publication-title: Acta Radiol
  doi: 10.1177/0284185115598808
– volume: 37
  start-page: 666
  year: 2013
  ident: 6159_CR23
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e3182976365
– volume: 48
  start-page: 26
  year: 2018
  ident: 6159_CR38
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2017.09.015
– volume: 269
  start-page: 801
  year: 2013
  ident: 6159_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.13130110
– volume: 27
  start-page: 385
  year: 2017
  ident: 6159_CR37
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2017.03.003
– volume: 5
  start-page: 13087
  year: 2015
  ident: 6159_CR11
  publication-title: Sci Rep
  doi: 10.1038/srep13087
– volume: 44
  start-page: 445
  year: 2016
  ident: 6159_CR15
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25156
– volume: 142
  start-page: 857
  year: 2016
  ident: 6159_CR5
  publication-title: JAMA Otolaryngol Head Neck Surg
  doi: 10.1001/jamaoto.2016.1281
– volume: 36
  start-page: 1343
  year: 2015
  ident: 6159_CR13
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4285
– volume: 36
  start-page: 1518
  year: 2015
  ident: 6159_CR24
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4314
– volume: 25
  start-page: 2493
  year: 2015
  ident: 6159_CR27
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3627-1
– volume: 373
  start-page: 521
  year: 2015
  ident: 6159_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1506007
– ident: 6159_CR21
  doi: 10.1109/ISBI.2013.6556433
– volume: 24
  start-page: 574
  year: 2014
  ident: 6159_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-013-3035-3
– volume: 25
  start-page: 480
  year: 2015
  ident: 6159_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3420-6
– volume: 259
  start-page: 257
  year: 2011
  ident: 6159_CR32
  publication-title: Radiology
  doi: 10.1148/radiol.11100978
– volume: 54
  start-page: 1423
  year: 2015
  ident: 6159_CR14
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2015.1061214
– volume: 5
  start-page: 4006
  year: 2014
  ident: 6159_CR10
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 49
  start-page: 735
  year: 2014
  ident: 6159_CR25
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000077
– volume: 2013
  start-page: 3973
  year: 2013
  ident: 6159_CR19
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 272
  start-page: 100
  year: 2014
  ident: 6159_CR40
  publication-title: Radiology
  doi: 10.1148/radiol.14130569
– ident: 6159_CR43
  doi: 10.1145/1390156.1390169
– volume: 27
  start-page: 824
  year: 2014
  ident: 6159_CR20
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9707-y
– volume: 41
  start-page: 565
  year: 2017
  ident: 6159_CR33
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000571
– ident: 6159_CR3
  doi: 10.1016/B978-0-323-05355-6.00045-8
– ident: 6159_CR34
  doi: 10.1586/14737140.2015.1108193:1-13
– volume: 27
  start-page: 533
  year: 2017
  ident: 6159_CR36
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2017.04.007
– volume-title: Head and neck imaging
  year: 2011
  ident: 6159_CR1
– ident: 6159_CR39
  doi: 10.1148/radiol.2017161950:161950
SSID ssj0009147
Score 2.5667121
Snippet Objectives This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck...
This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell...
ObjectivesThis study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6172
SubjectTerms Accuracy
Artificial intelligence
Diagnostic Radiology
Diagnostic systems
Energy
Evaluation
Feature extraction
Female
Head & neck cancer
Head and Neck Neoplasms - diagnosis
Head and Neck Neoplasms - secondary
Humans
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Iodine
Learning algorithms
Lymph nodes
Lymph Nodes - diagnostic imaging
Lymphadenopathy
Lymphatic Metastasis
Machine Learning
Male
Mathematical models
Medical diagnosis
Medicine
Medicine & Public Health
Metastases
Multidetector Computed Tomography - methods
Neck
Neoplasm Staging - methods
Neuroradiology
Patients
Predictions
Radiology
Sensitivity
Sensitivity analysis
Squamous cell carcinoma
Squamous Cell Carcinoma of Head and Neck - diagnosis
Squamous Cell Carcinoma of Head and Neck - secondary
Texture
Tumors
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVkJcaHmHFmQkbuAqbpxXb1XVsgKVU1cqp8ivoKrdbNlkD9vf0B_NjOOkggJSr_EznrFnxp75BuCDQZnpcpdzlB6Sy1rUvEx1xh0ycyGE0qmkeOeTb9l0Jr-cpWchKKwdvN2HJ0l_Uo_BbpR2jJyoKGoehTBfP4QNj7c1gY2Dz9-_Ht2C7QqfWAyN9YLnZSlDsMzfe_ldIN3RMu-8kHrBc7wJs2HKvb_Jxe6q07vm-g80x_v-0xY8CZooO-hZ5yk8cM0zeHQS3tqfw80Uyc9UY1njzAVrf64UXRMwuupnhlIQNYu52mdXS2pC9GWLGkvp7MF-L9fIJ6xZWMfmrlOohLbnLdNrRsFf3PmQQ3Z4ysjzZLV0OFCPjsLoZpjNvY-nYyGpxY8XMDs-Oj2c8pC7gZskTzuuTWEsEh21L1ELa-PEIa1qp1SZZA5tQpXXUhSxs1lqC_yoBKlG2hFYDKH8vYRJs2jca2BS69SkuYmlLqRN6xIt0jrRss60UMrGEYiBgJUJwOaUX-OyGiGZ_TJXuMyVX-ZqHcHHsc1VD-vx39o7A19UYYu31R5lN0VGS8oI3o_FuDmJDKpxSBGqU2ZoceZFBK96fhqHS-KStIM8gk8Db9x2_u-5vLlf9W14vEfs5aMnd2DSLVfuLapRnX4Xds0vu28Tng
  priority: 102
  providerName: Springer Nature
Title Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning
URI https://link.springer.com/article/10.1007/s00330-019-06159-y
https://www.ncbi.nlm.nih.gov/pubmed/30980127
https://www.proquest.com/docview/2208514739
https://www.proquest.com/docview/2209611478
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bitswEB12Eyh9Kb3X7Tao0LdW1Iplyy6UkizJhpYNpWwgfTKSJZfSjZ3N5SH_0I_ujGInlKX7YoPlGz5jzYykOQfgbYE-0ymnOHoPyWUpSp7FJuEOjTkVQptYUr3z5TSZzOSXeTw_gWlbC0PLKts-0XfUti5ojPxDn8QkhVRR9nl5w0k1imZXWwkN3Ugr2E-eYuwUun1ixupAdziafvt-pOEVXnIM0_iUqyyTTRmNL6YjWTNapEVV-ejk-e5fV3Ur_rw1d-pd0vghPGhiSTbYg_8ITlz1GO5dNrPlT-DPBAFkurKscsVvtr7Zakr0GQ3Ws4JEhKp6oT-y5YouIYRYXWIr9R543-sdIs2q2jq2cBuNYeT615qZHaPyLe580SA7v2K0dmS7cvigPb8Jo7FdtvCrNB1rZCl-PoXZeHR1PuGN-gIvIhVvuCnSwiJsGD-JUlgbRi4WqnRaZ1HiMKvTqpQiDZ1NYpviQS0ouDGO6F6Ip-8ZdKq6ci-ASWPiIlZFKE0qbVxmmFOWkZFlYoTWNgxAtB86LxpqclLIuM4PpMoenBzByT04-S6Ad4drlntijjvPPmvxy5ufdJ0fTSqAN4dm_L0IBl05RITOyRLMGVUawPM97ofHRWFG_l0F8L41hOPN__8uL-9-l1dwv09G6Osdz6CzWW3dawx8NqYHp2qucJuOL3rQHYyHwyntL358HfUaS8fWWX_wF_0zBTk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEviDuBAUaCJ7CIGydOkCYEY1PH1gqhTtpb8C1o2pp2TSuU_8Bv4rdxjuu0QhN722uTOFa_k3Oxfb6PkNcGYqaTTjKIHoKJilesSHXGHBhzzrnSqcB-58Ew6x-LryfpyQb50_XC4LHKzid6R20nBtfI3_dQTJILmRQfpxcMVaNwd7WT0FBBWsHueIqx0Nhx6NpfUMI1OwdfAO83vd7-3mi3z4LKADOJTOdMm9xYmB7kCbzi1saJS7msnFJFkjmoXpSsBM9jZ7PU5vCj4hjEtUNaE-Sjg3FvkC2RiAKKv63Pe8Nv39e0v9xLnMUFuBVZFCK07fjmPZRRw0NhyAIASQVr_w2Nl_LdS3u1PgTu3yV3Qu5KPy2N7R7ZcPV9cnMQducfkN99MBiqaktrZ85oc7FQuLBAcXOAGhQtqidj9YFOZ_gIWgSdVHAVvRWMe96CZdF6Yh0du7mCtLU5bahuKbaLMeebFOnuiOJZlcXMwYuWfCoU15Lp2J8KdTTIYPx8SI6vBYdHZLOe1O4JoULr1KTSxELnwqZVATVslWhRZZorZeOI8O6PLk2gQkdFjvNyReLswSkBnNKDU7YRebt6ZrokArny7u0OvzI4haZcm3BEXq0uw-eMMKjaASJ4T5FBjSrziDxe4r56XRIXmE_IiLzrDGE9-P_n8vTqubwkt_qjwVF5dDA8fEZu99Agfa_lNtmczxbuOSRdc_0iWDYlP677Y_oLHwQ76w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBAkaCE0SNN04cIyGEWlZbSisOrbS34CdCdJPtZlco_4FfxK9jxkl2hSp66zVxbCvf55mxPQ9CXhnQmU44EYP24DH3zMcy03nsgMwFY0pnHOOdj0_yyRn_PM2mW-TPEAuDbpWDTAyC2tYGz8j3RlhMknGRyj3fu0V8PRh_mF_EWEEKb1qHchodRY5c-wu2b837wwPA-vVoNP50uj-J-woDsUlFtoy1KYyFqYGNwDyzNkldxoR3Ssk0d7BzUcJzViTO5pkt4KFiqMC1w5QmmIsO-r1Bboo0lehOKKZik_CXheJmiQSBIqTkfcBOCNvDAmroDobx_2BOxO2_SvGSpXvpljYov_Edcru3WunHjmZ3yZar7pGd4_5e_j75PQGqUFVZWjnzkzYXK4VHChSvBajBckVVPVPv6HyBnyAXaO3hLcop6Pe8BU7RqraOztxSgcHa_GiobikGisUuhCfS_VOKcKwWDgbqMqlQPEWms-AP6mhfAOP7A3J2LSg8JNtVXbnHhHKtM5MJk3BdcJt5CbtXn2ruc82UsklE2PCjS9MnQcdaHOflOn1zAKcEcMoATtlG5M36m3mXAuTK1rsDfmUvDppyQ96IvFy_hoWMMKjKASLYRuawOxVFRB51uK-HSxOJloSIyNuBCJvO_z-XJ1fP5QXZgSVUfjk8OXpKbo2QjyHIcpdsLxcr9wysraV-HmhNybfrXkd_AW6eOYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+and+neck+squamous+cell+carcinoma%3A+prediction+of+cervical+lymph+node+metastasis+by+dual-energy+CT+texture+analysis+with+machine+learning&rft.jtitle=European+radiology&rft.au=ghani%2C+Reza&rft.au=Chatterjee%2C+Avishek&rft.au=Reinhold%2C+Caroline&rft.au=P%C3%A9rez-Lara%2C+Almudena&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=11&rft.spage=6172&rft.epage=6181&rft_id=info:doi/10.1007%2Fs00330-019-06159-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon