Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning
Objectives This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral v...
Saved in:
| Published in | European radiology Vol. 29; no. 11; pp. 6172 - 6181 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0938-7994 1432-1084 1432-1084 |
| DOI | 10.1007/s00330-019-06159-y |
Cover
| Abstract | Objectives
This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.
Methods
Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.
Results
Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.
Conclusions
Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.
Key Points
• Texture features of HNSCC tumor are predictive of nodal status.
• Multi-energy texture analysis is superior to analysis of datasets at a single energy.
• Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation. |
|---|---|
| AbstractList | ObjectivesThis study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.MethodsEighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.ResultsDepending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.ConclusionsMulti-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.Key Points• Texture features of HNSCC tumor are predictive of nodal status.• Multi-energy texture analysis is superior to analysis of datasets at a single energy.• Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation. This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.OBJECTIVESThis study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction.Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.METHODSEighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck.Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.RESULTSDepending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy.Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.CONCLUSIONSMulti-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone.• Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation.KEY POINTS• Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation. Objectives This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction. Methods Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck. Results Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy. Conclusions Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone. Key Points • Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation. This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell carcinoma (HNSCC) with machine learning to (1) predict associated cervical lymphadenopathy and (2) compare the accuracy of spectral versus single-energy (65 keV) texture evaluation for endpoint prediction. Eighty-seven patients with HNSCC were evaluated. Texture feature extraction was performed on virtual monochromatic images (VMIs) at 65 keV alone or different sets of multi-energy VMIs ranging from 40 to 140 keV, in addition to iodine material decomposition maps and other clinical information. Random forests (RF) models were constructed for outcome prediction with internal cross-validation in addition to the use of separate randomly selected training (70%) and testing (30%) sets. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for predicting positive versus negative nodal status in the neck. Depending on the model used and subset of patients evaluated, an accuracy, sensitivity, specificity, PPV, and NPV of up to 88, 100, 67, 83, and 100%, respectively, could be achieved using multi-energy texture analysis. Texture evaluation of VMIs at 65 keV alone or in combination with only iodine maps had a much lower accuracy. Multi-energy DECT texture analysis of HNSCC is superior to texture analysis of 65 keV VMIs and iodine maps alone and can be used to predict cervical nodal metastases with relatively high accuracy, providing information not currently available by expert evaluation of the primary tumor alone. • Texture features of HNSCC tumor are predictive of nodal status. • Multi-energy texture analysis is superior to analysis of datasets at a single energy. • Dual-energy CT texture analysis with machine learning can enhance noninvasive diagnostic tumor evaluation. |
| Author | Kadi, Lynda Reinhold, Caroline Forghani, Behzad Chankowsky, Jeffrey Seuntjens, Jan Alexander, James W. M. Forghani, Reza Romero-Sanchez, Griselda Chatterjee, Avishek Bayat, Maryam Ueno, Yoshiko Pérez-Lara, Almudena |
| Author_xml | – sequence: 1 givenname: Reza orcidid: 0000-0002-8572-1864 surname: Forghani fullname: Forghani, Reza email: reza.forghani@mcgill.ca organization: Department of Radiology and Research Institute of the McGill University Health Centre, McGill University, Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Radiology, Royal Victoria Hospital, McGill University Health Centre, Gerald Bronfman Department of Oncology, McGill University – sequence: 2 givenname: Avishek surname: Chatterjee fullname: Chatterjee, Avishek organization: Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre – sequence: 3 givenname: Caroline surname: Reinhold fullname: Reinhold, Caroline organization: Department of Radiology and Research Institute of the McGill University Health Centre, McGill University, Department of Radiology, Royal Victoria Hospital, McGill University Health Centre – sequence: 4 givenname: Almudena surname: Pérez-Lara fullname: Pérez-Lara, Almudena organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Radiology, Hospital Regional Universitario de Málaga – sequence: 5 givenname: Griselda surname: Romero-Sanchez fullname: Romero-Sanchez, Griselda organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital – sequence: 6 givenname: Yoshiko surname: Ueno fullname: Ueno, Yoshiko organization: Department of Radiology, Royal Victoria Hospital, McGill University Health Centre, Department of Radiology, Kobe University Graduate School of Medicine – sequence: 7 givenname: Maryam surname: Bayat fullname: Bayat, Maryam organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital – sequence: 8 givenname: James W. M. surname: Alexander fullname: Alexander, James W. M. organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital – sequence: 9 givenname: Lynda surname: Kadi fullname: Kadi, Lynda organization: Segal Cancer Centre and Lady Davis Institute for Medical Research, Jewish General Hospital, Faculty of Medicine, Université de Montréal – sequence: 10 givenname: Jeffrey surname: Chankowsky fullname: Chankowsky, Jeffrey organization: Department of Radiology, Royal Victoria Hospital, McGill University Health Centre – sequence: 11 givenname: Jan surname: Seuntjens fullname: Seuntjens, Jan organization: Gerald Bronfman Department of Oncology, McGill University, Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre – sequence: 12 givenname: Behzad surname: Forghani fullname: Forghani, Behzad organization: Department of Radiology and Research Institute of the McGill University Health Centre, McGill University, Gerald Bronfman Department of Oncology, McGill University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30980127$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS3Uik5_XoAFssSGTeA6zo_NDo0oRarEpl1HN_bNjEviTO0EyDvw0PV0CkhdVLJkyf6Or885p-zIj54YeyPggwCoP0YAKSEDoTOoRKmz5RVbiULmmQBVHLEVaKmyWuvihJ3GeAcAWhT1a3YiQSsQeb1if64ILUdvuSfzg8f7GYdxjtxQ33ODwTg_DviJ7wJZZyY3ej526Tb8dAZ73i_Dbsv9aIkPNGFMy0XeLtzO2GfkKWwWvr7hE_2e5kBpEPbLHvnlpi0f0GydJ94TBu_85pwdd9hHunjaz9jt5Zeb9VV2_f3rt_Xn68zIupyy1ihjy7bSuRadsBYklaLuCFHLiopCYd0VQgHZqrQqHWIKRdct6QqKUoA8Y-8P7-7CeD9TnJrBxb1j9JTMN3kOuhIpKpXQd8_Qu3EOycUjpcoESZ2ot0_U3A5km11wA4al-ZtzAvIDYMIYY6DuHyKg2ZfZHMpsUpnNY5nNkkTqmci4CfcdTAFd_7JUHqQxzfEbCv-__YLqAZqYtSQ |
| CitedBy_id | crossref_primary_10_1038_s41598_022_06884_3 crossref_primary_10_1016_j_ejmp_2021_07_023 crossref_primary_10_1007_s00261_024_04459_6 crossref_primary_10_1016_j_crad_2021_02_033 crossref_primary_10_3390_diagnostics14040377 crossref_primary_10_1007_s10278_024_01114_w crossref_primary_10_2478_acm_2021_0008 crossref_primary_10_1002_hed_26700 crossref_primary_10_1016_j_metrad_2023_100044 crossref_primary_10_1080_14737140_2019_1626234 crossref_primary_10_1016_j_oooo_2023_04_012 crossref_primary_10_1038_s41598_023_34162_3 crossref_primary_10_1016_j_neurad_2021_07_006 crossref_primary_10_3390_cancers13153723 crossref_primary_10_1007_s00261_020_02802_1 crossref_primary_10_1007_s00330_020_06962_y crossref_primary_10_1111_vru_13175 crossref_primary_10_2217_fon_2021_1125 crossref_primary_10_18229_kocatepetip_1034928 crossref_primary_10_1007_s00330_024_10854_w crossref_primary_10_1016_j_jtcvs_2020_05_009 crossref_primary_10_1155_2021_7538984 crossref_primary_10_1259_bjr_20190827 crossref_primary_10_1016_j_ejrad_2021_109532 crossref_primary_10_18786_2072_0505_2019_47_071 crossref_primary_10_1016_j_oooo_2021_12_122 crossref_primary_10_1016_j_otc_2024_05_001 crossref_primary_10_1186_s41747_021_00212_6 crossref_primary_10_3390_en17236153 crossref_primary_10_2147_IJGM_S347425 crossref_primary_10_1016_j_nic_2020_04_004 crossref_primary_10_1007_s00330_020_06866_x crossref_primary_10_1016_j_nic_2020_04_005 crossref_primary_10_1371_journal_pone_0277168 crossref_primary_10_1186_s41747_023_00371_8 crossref_primary_10_1016_j_nic_2020_04_003 crossref_primary_10_1186_s12880_024_01427_w crossref_primary_10_1093_dmfr_twae051 crossref_primary_10_1002_lary_31756 crossref_primary_10_1007_s00330_021_07832_x crossref_primary_10_1093_pcmedi_pbae002 crossref_primary_10_1186_s12885_023_10572_4 crossref_primary_10_1007_s00261_024_04516_0 crossref_primary_10_1186_s13550_023_01038_6 crossref_primary_10_1155_2020_3959236 crossref_primary_10_18229_kocatepetip_1034913 crossref_primary_10_3389_fendo_2022_1093508 crossref_primary_10_3389_fonc_2022_742701 crossref_primary_10_1007_s00330_021_07731_1 crossref_primary_10_1016_j_ijrobp_2021_02_004 crossref_primary_10_1053_j_sult_2022_02_006 crossref_primary_10_1177_02841851221095237 crossref_primary_10_1016_j_eclinm_2023_102385 crossref_primary_10_1007_s00259_021_05573_z crossref_primary_10_3390_cancers15102850 crossref_primary_10_1007_s40520_021_01985_x crossref_primary_10_1186_s12931_019_1197_5 crossref_primary_10_1016_j_aprim_2020_04_014 crossref_primary_10_1177_19714009251313507 crossref_primary_10_1007_s11547_023_01750_2 crossref_primary_10_1016_j_csbj_2019_07_001 crossref_primary_10_1016_j_csbj_2019_07_004 crossref_primary_10_3389_fonc_2022_881910 crossref_primary_10_1016_j_jtcvs_2020_12_092 crossref_primary_10_1007_s00330_022_09355_5 crossref_primary_10_1177_00034894211041222 crossref_primary_10_3390_diagnostics14010071 crossref_primary_10_1177_0284185120946711 crossref_primary_10_1016_j_nic_2020_08_004 crossref_primary_10_1007_s00234_024_03485_x crossref_primary_10_1016_j_oraloncology_2021_105434 crossref_primary_10_1016_j_semcancer_2023_07_002 crossref_primary_10_3390_diagnostics12123072 crossref_primary_10_1016_j_heliyon_2024_e29578 crossref_primary_10_3390_cancers13184710 crossref_primary_10_3390_jpm13121626 crossref_primary_10_1016_j_ijmedinf_2024_105464 crossref_primary_10_17816_DD62572 crossref_primary_10_54005_geneltip_1311577 crossref_primary_10_1007_s11547_021_01367_3 crossref_primary_10_1007_s11604_023_01460_9 crossref_primary_10_1016_j_nic_2020_08_003 crossref_primary_10_1186_s13244_021_01153_9 crossref_primary_10_1016_j_crad_2021_03_009 crossref_primary_10_3174_ajnr_A7265 |
| Cites_doi | 10.1007/s00330-015-3627-1 10.1148/radiol.14130569 10.1097/RLI.0000000000000116 10.1148/radiol.13130110 10.1007/s00330-014-3420-6 10.1097/RCT.0000000000000571 10.3174/ajnr.A4314 10.1016/j.nic.2017.04.007 10.3174/ajnr.A4110 10.1038/ncomms5006 10.1007/s10278-014-9707-y 10.1007/s00330-013-3035-3 10.1177/0284185115598808 10.1007/s00330-017-5214-0 10.1002/jmri.25156 10.1056/NEJMoa1506007 10.1016/j.clinimag.2017.09.015 10.2214/AJR.15.14896 10.1148/radiol.11100978 10.1007/s00330-017-5015-5 10.1023/A:1010933404324 10.1088/0031-9155/60/14/5471 10.3390/cancers7040886 10.1097/RLI.0000000000000077 10.1016/j.nic.2017.03.003 10.1097/RCT.0b013e3182976365 10.3109/0284186X.2015.1061214 10.1001/jamaoto.2016.1281 10.1002/hed.23945 10.3174/ajnr.A4285 10.3174/ajnr.A4253 10.1038/srep31020 10.1017/S002221511600058X 10.1038/srep13087 10.1586/14737140.2015.978862:1-18 10.18632/oncotarget.12446 10.1007/978-0-387-84858-7 10.1109/ISBI.2013.6556433 10.1145/1390156.1390169 10.1016/B978-0-323-05355-6.00045-8 10.1586/14737140.2015.1108193:1-13 10.1148/radiol.2017161950:161950 |
| ContentType | Journal Article |
| Copyright | European Society of Radiology 2019 European Radiology is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: European Society of Radiology 2019 – notice: European Radiology is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00330-019-06159-y |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 6181 |
| ExternalDocumentID | 30980127 10_1007_s00330_019_06159_y |
| Genre | Journal Article Comparative Study |
| GrantInformation_xml | – fundername: Fonds de Recherche du Québec - Santé grantid: NA funderid: http://dx.doi.org/10.13039/501100000156 – fundername: Rossy Cancer Network grantid: NA – fundername: Fonds de Recherche du Québec - Santé grantid: NA |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c375t-bc8cd5b69291f1dd03e517feaa936e448a7f4180ed65d8a93a14397be96045103 |
| IEDL.DBID | BENPR |
| ISSN | 0938-7994 1432-1084 |
| IngestDate | Wed Oct 01 13:19:43 EDT 2025 Tue Oct 07 06:06:43 EDT 2025 Wed Feb 19 02:30:41 EST 2025 Wed Oct 01 03:47:28 EDT 2025 Thu Apr 24 22:56:39 EDT 2025 Fri Feb 21 02:33:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Computer-assisted diagnosis Head and neck neoplasms Artificial intelligence Machine learning Multidetector computed tomography |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-bc8cd5b69291f1dd03e517feaa936e448a7f4180ed65d8a93a14397be96045103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-8572-1864 |
| PMID | 30980127 |
| PQID | 2208514739 |
| PQPubID | 54162 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2209611478 proquest_journals_2208514739 pubmed_primary_30980127 crossref_primary_10_1007_s00330_019_06159_y crossref_citationtrail_10_1007_s00330_019_06159_y springer_journals_10_1007_s00330_019_06159_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191100 2019-11-00 2019-Nov 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | D’Cruz, Vaish, Kapre (CR4) 2015; 373 Paleri, Urbano, Mehanna (CR6) 2016; 130 Breiman (CR42) 2001; 45 Forghani, Kelly, Yu (CR33) 2017; 41 Srinivasan, Parker, Manjunathan, Ibrahim, Shah, Mukherji (CR23) 2013; 37 Forghani, Levental, Gupta, Lam, Dadfar, Curtin (CR26) 2015; 36 Foncubierta-Rodriguez, Jimenez del Toro, Platon, Poletti, Muller, Depeursinge (CR19) 2013; 2013 Vallieres, Freeman, Skamene, El Naqa (CR16) 2015; 60 CR39 Leijenaar, Carvalho, Hoebers (CR14) 2015; 54 CR34 Dang, Lysack, Wu (CR12) 2015; 36 De Cecco, Ganeshan, Ciolina (CR41) 2015; 50 Liu, Mao, Li (CR15) 2016; 44 Abu-Ghanem, Yehuda, Carmel (CR5) 2016; 142 Yang, Wu, Li (CR46) 2017; 8 Bayanati, Thornhill, Souza (CR17) 2015; 25 Aerts, Velazquez, Leijenaar (CR10) 2014; 5 Yang, Luo, Li (CR30) 2016; 6 Kraft, Ibrahim, Spector, Forghani, Srinivasan (CR38) 2018; 48 Andersen, Harders, Ganeshan, Thygesen, Torp Madsen, Rasmussen (CR18) 2016; 57 Buch, Fujita, Li, Kawashima, Qureshi, Sakai (CR13) 2015; 36 Albrecht, Scholtz, Kraft (CR27) 2015; 25 Rizzo, Radice, Femia (CR29) 2018; 28 Parmar, Grossmann, Bussink, Lambin, Aerts (CR11) 2015; 5 Tawfik, Razek, Kerl, Nour-Eldin, Bauer, Vogl (CR28) 2014; 24 CR2 Som, Brandwein-Gensler, Som, Curtin (CR1) 2011 Medina, Myers, Hanna, Myers (CR8) 2017 Yamauchi, Buehler, Goodsitt, Keshavarzi, Srinivasan (CR31) 2016; 206 Matsumoto, Jinzaki, Tanami, Ueno, Yamada, Kuribayashi (CR32) 2011; 259 CR3 Forghani, De Man, Gupta (CR37) 2017; 27 Wichmann, Noske, Kraft (CR25) 2014; 49 Zhang, Graham, Elci (CR9) 2013; 269 Oldan, He, Wu (CR20) 2014; 27 Parikh, Selmi, Charles-Edwards (CR40) 2014; 272 CR44 CR21 Lam, Gupta, Levental, Yu, Curtin, Forghani (CR24) 2015; 36 CR43 Liaw, Wiener (CR45) 2002; 2 Liao, Hsu, Wang, Lo, Lai (CR7) 2016; 38 Lam, Gupta, Kelly, Curtin, Forghani (CR35) 2015; 7 Forghani, Srinivasan, Forghani (CR36) 2017; 27 Al Ajmi, Forghani, Reinhold, Bayat, Forghani (CR22) 2018; 28 S Lam (6159_CR35) 2015; 7 K Buch (6159_CR13) 2015; 36 RT Leijenaar (6159_CR14) 2015; 54 V Paleri (6159_CR6) 2016; 130 X Yang (6159_CR46) 2017; 8 R Forghani (6159_CR33) 2017; 41 K Matsumoto (6159_CR32) 2011; 259 E Ajmi Al (6159_CR22) 2018; 28 6159_CR2 S Lam (6159_CR24) 2015; 36 L Breiman (6159_CR42) 2001; 45 A Srinivasan (6159_CR23) 2013; 37 6159_CR3 LJ Liao (6159_CR7) 2016; 38 M Dang (6159_CR12) 2015; 36 PM Som (6159_CR1) 2011 JE Medina (6159_CR8) 2017 CN Cecco De (6159_CR41) 2015; 50 C Parmar (6159_CR11) 2015; 5 L Yang (6159_CR30) 2016; 6 S Abu-Ghanem (6159_CR5) 2016; 142 H Yamauchi (6159_CR31) 2016; 206 M Vallieres (6159_CR16) 2015; 60 6159_CR44 6159_CR21 6159_CR43 H Bayanati (6159_CR17) 2015; 25 6159_CR34 AK D’Cruz (6159_CR4) 2015; 373 R Forghani (6159_CR26) 2015; 36 S Rizzo (6159_CR29) 2018; 28 6159_CR39 HJ Aerts (6159_CR10) 2014; 5 JL Wichmann (6159_CR25) 2014; 49 MH Albrecht (6159_CR27) 2015; 25 MB Andersen (6159_CR18) 2016; 57 J Liu (6159_CR15) 2016; 44 H Zhang (6159_CR9) 2013; 269 A Foncubierta-Rodriguez (6159_CR19) 2013; 2013 M Kraft (6159_CR38) 2018; 48 R Forghani (6159_CR37) 2017; 27 R Forghani (6159_CR36) 2017; 27 J Parikh (6159_CR40) 2014; 272 AM Tawfik (6159_CR28) 2014; 24 A Liaw (6159_CR45) 2002; 2 J Oldan (6159_CR20) 2014; 27 |
| References_xml | – volume: 25 start-page: 2493 year: 2015 end-page: 2501 ident: CR27 article-title: Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer publication-title: Eur Radiol doi: 10.1007/s00330-015-3627-1 – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: CR45 article-title: Classification and regression by randomForest publication-title: R News – ident: CR43 – volume: 272 start-page: 100 year: 2014 end-page: 112 ident: CR40 article-title: Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy publication-title: Radiology doi: 10.1148/radiol.14130569 – volume: 2013 start-page: 3973 year: 2013 end-page: 3976 ident: CR19 article-title: Benefits of texture analysis of dual energy CT for computer-aided pulmonary embolism detection publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: CR39 – ident: CR2 – volume: 50 start-page: 239 year: 2015 end-page: 245 ident: CR41 article-title: Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000116 – volume: 269 start-page: 801 year: 2013 end-page: 809 ident: CR9 article-title: Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent prediction of overall survival in patients treated with induction chemotherapy publication-title: Radiology doi: 10.1148/radiol.13130110 – volume: 25 start-page: 480 year: 2015 end-page: 487 ident: CR17 article-title: Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? publication-title: Eur Radiol doi: 10.1007/s00330-014-3420-6 – volume: 41 start-page: 565 year: 2017 end-page: 571 ident: CR33 article-title: Low-energy virtual monochromatic dual-energy computed tomography images for the evaluation of head and neck squamous cell carcinoma: a study of tumor visibility compared with single-energy computed tomography and user acceptance publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000571 – volume: 36 start-page: 1518 year: 2015 end-page: 1524 ident: CR24 article-title: Optimal virtual monochromatic images for evaluation of normal tissues and head and neck cancer using dual-energy CT publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4314 – volume: 27 start-page: 533 year: 2017 end-page: 546 ident: CR36 article-title: Advanced tissue characterization and texture analysis using dual-energy computed tomography: horizons and emerging applications publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2017.04.007 – volume: 36 start-page: 166 year: 2015 end-page: 170 ident: CR12 article-title: MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4110 – volume: 5 start-page: 4006 year: 2014 ident: CR10 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 27 start-page: 824 year: 2014 end-page: 832 ident: CR20 article-title: Pilot study: evaluation of dual-energy computed tomography measurement strategies for positron emission tomography correlation in pancreatic adenocarcinoma publication-title: J Digit Imaging doi: 10.1007/s10278-014-9707-y – volume: 24 start-page: 574 year: 2014 end-page: 580 ident: CR28 article-title: Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes publication-title: Eur Radiol doi: 10.1007/s00330-013-3035-3 – volume: 57 start-page: 669 year: 2016 end-page: 676 ident: CR18 article-title: CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer publication-title: Acta Radiol doi: 10.1177/0284185115598808 – volume: 28 start-page: 2604 year: 2018 end-page: 2611 ident: CR22 article-title: Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm publication-title: Eur Radiol doi: 10.1007/s00330-017-5214-0 – volume: 44 start-page: 445 year: 2016 end-page: 455 ident: CR15 article-title: Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25156 – volume: 373 start-page: 521 year: 2015 end-page: 529 ident: CR4 article-title: Elective versus therapeutic neck dissection in node-negative oral cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1506007 – ident: CR21 – volume: 48 start-page: 26 year: 2018 end-page: 31 ident: CR38 article-title: Comparison of virtual monochromatic series, iodine overlay maps, and single energy CT equivalent images in head and neck cancer conspicuity publication-title: Clin Imaging doi: 10.1016/j.clinimag.2017.09.015 – volume: 206 start-page: 580 year: 2016 end-page: 587 ident: CR31 article-title: Dual-energy CT-based differentiation of benign posttreatment changes from primary or recurrent malignancy of the head and neck: comparison of spectral Hounsfield units at 40 and 70 keV and iodine concentration publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.15.14896 – ident: CR44 – volume: 259 start-page: 257 year: 2011 end-page: 262 ident: CR32 article-title: Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT publication-title: Radiology doi: 10.1148/radiol.11100978 – volume: 28 start-page: 760 year: 2018 end-page: 769 ident: CR29 article-title: Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT publication-title: Eur Radiol doi: 10.1007/s00330-017-5015-5 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR42 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: CR3 – start-page: 427 year: 2017 end-page: 453 ident: CR8 article-title: Cancer of the neck publication-title: Cancer of the head and neck – volume: 60 start-page: 5471 year: 2015 end-page: 5496 ident: CR16 article-title: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/14/5471 – volume: 7 start-page: 2201 year: 2015 end-page: 2216 ident: CR35 article-title: Multiparametric evaluation of head and neck squamous cell carcinoma using a single-source dual-energy CT with fast kVp switching: state of the art publication-title: Cancers (Basel) doi: 10.3390/cancers7040886 – volume: 49 start-page: 735 year: 2014 end-page: 741 ident: CR25 article-title: Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000077 – volume: 27 start-page: 385 year: 2017 end-page: 400 ident: CR37 article-title: Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 2 publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2017.03.003 – volume: 37 start-page: 666 year: 2013 end-page: 672 ident: CR23 article-title: Differentiation of benign and malignant neck pathologies: preliminary experience using spectral computed tomography publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e3182976365 – volume: 54 start-page: 1423 year: 2015 end-page: 1429 ident: CR14 article-title: External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma publication-title: Acta Oncol doi: 10.3109/0284186X.2015.1061214 – volume: 142 start-page: 857 year: 2016 end-page: 865 ident: CR5 article-title: Elective neck dissection vs observation in early-stage squamous cell carcinoma of the oral tongue with no clinically apparent lymph node metastasis in the neck: a systematic review and meta-analysis publication-title: JAMA Otolaryngol Head Neck Surg doi: 10.1001/jamaoto.2016.1281 – ident: CR34 – volume: 8 start-page: 2525 year: 2017 end-page: 2535 ident: CR46 article-title: MFAP5 and TNNC1: potential markers for predicting occult cervical lymphatic metastasis and prognosis in early stage tongue cancer publication-title: Oncotarget – volume: 38 start-page: 628 year: 2016 end-page: 634 ident: CR7 article-title: Analysis of sentinel node biopsy combined with other diagnostic tools in staging cN0 head and neck cancer: a diagnostic meta-analysis publication-title: Head Neck doi: 10.1002/hed.23945 – year: 2011 ident: CR1 article-title: Lymph nodes of the neck publication-title: Head and neck imaging – volume: 36 start-page: 1343 year: 2015 end-page: 1348 ident: CR13 article-title: Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinomas on CT publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4285 – volume: 36 start-page: 1194 year: 2015 end-page: 1200 ident: CR26 article-title: Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4253 – volume: 6 start-page: 31020 year: 2016 ident: CR30 article-title: Differentiation of malignant cervical lymphadenopathy by dual-energy CT: a preliminary analysis publication-title: Sci Rep doi: 10.1038/srep31020 – volume: 130 start-page: S161 year: 2016 end-page: S169 ident: CR6 article-title: Management of neck metastases in head and neck cancer: United Kingdom National Multidisciplinary Guidelines publication-title: J Laryngol Otol doi: 10.1017/S002221511600058X – volume: 5 start-page: 13087 year: 2015 ident: CR11 article-title: Machine learning methods for quantitative radiomic biomarkers publication-title: Sci Rep doi: 10.1038/srep13087 – volume: 60 start-page: 5471 year: 2015 ident: 6159_CR16 publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/14/5471 – volume: 2 start-page: 18 year: 2002 ident: 6159_CR45 publication-title: R News – start-page: 427 volume-title: Cancer of the head and neck year: 2017 ident: 6159_CR8 – volume: 38 start-page: 628 year: 2016 ident: 6159_CR7 publication-title: Head Neck doi: 10.1002/hed.23945 – volume: 7 start-page: 2201 year: 2015 ident: 6159_CR35 publication-title: Cancers (Basel) doi: 10.3390/cancers7040886 – ident: 6159_CR2 doi: 10.1586/14737140.2015.978862:1-18 – volume: 36 start-page: 166 year: 2015 ident: 6159_CR12 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4110 – volume: 206 start-page: 580 year: 2016 ident: 6159_CR31 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.15.14896 – volume: 6 start-page: 31020 year: 2016 ident: 6159_CR30 publication-title: Sci Rep doi: 10.1038/srep31020 – volume: 130 start-page: S161 year: 2016 ident: 6159_CR6 publication-title: J Laryngol Otol doi: 10.1017/S002221511600058X – volume: 28 start-page: 2604 year: 2018 ident: 6159_CR22 publication-title: Eur Radiol doi: 10.1007/s00330-017-5214-0 – volume: 28 start-page: 760 year: 2018 ident: 6159_CR29 publication-title: Eur Radiol doi: 10.1007/s00330-017-5015-5 – volume: 8 start-page: 2525 year: 2017 ident: 6159_CR46 publication-title: Oncotarget doi: 10.18632/oncotarget.12446 – volume: 36 start-page: 1194 year: 2015 ident: 6159_CR26 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4253 – ident: 6159_CR44 doi: 10.1007/978-0-387-84858-7 – volume: 50 start-page: 239 year: 2015 ident: 6159_CR41 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000116 – volume: 45 start-page: 5 year: 2001 ident: 6159_CR42 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 57 start-page: 669 year: 2016 ident: 6159_CR18 publication-title: Acta Radiol doi: 10.1177/0284185115598808 – volume: 37 start-page: 666 year: 2013 ident: 6159_CR23 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e3182976365 – volume: 48 start-page: 26 year: 2018 ident: 6159_CR38 publication-title: Clin Imaging doi: 10.1016/j.clinimag.2017.09.015 – volume: 269 start-page: 801 year: 2013 ident: 6159_CR9 publication-title: Radiology doi: 10.1148/radiol.13130110 – volume: 27 start-page: 385 year: 2017 ident: 6159_CR37 publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2017.03.003 – volume: 5 start-page: 13087 year: 2015 ident: 6159_CR11 publication-title: Sci Rep doi: 10.1038/srep13087 – volume: 44 start-page: 445 year: 2016 ident: 6159_CR15 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25156 – volume: 142 start-page: 857 year: 2016 ident: 6159_CR5 publication-title: JAMA Otolaryngol Head Neck Surg doi: 10.1001/jamaoto.2016.1281 – volume: 36 start-page: 1343 year: 2015 ident: 6159_CR13 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4285 – volume: 36 start-page: 1518 year: 2015 ident: 6159_CR24 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4314 – volume: 25 start-page: 2493 year: 2015 ident: 6159_CR27 publication-title: Eur Radiol doi: 10.1007/s00330-015-3627-1 – volume: 373 start-page: 521 year: 2015 ident: 6159_CR4 publication-title: N Engl J Med doi: 10.1056/NEJMoa1506007 – ident: 6159_CR21 doi: 10.1109/ISBI.2013.6556433 – volume: 24 start-page: 574 year: 2014 ident: 6159_CR28 publication-title: Eur Radiol doi: 10.1007/s00330-013-3035-3 – volume: 25 start-page: 480 year: 2015 ident: 6159_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-014-3420-6 – volume: 259 start-page: 257 year: 2011 ident: 6159_CR32 publication-title: Radiology doi: 10.1148/radiol.11100978 – volume: 54 start-page: 1423 year: 2015 ident: 6159_CR14 publication-title: Acta Oncol doi: 10.3109/0284186X.2015.1061214 – volume: 5 start-page: 4006 year: 2014 ident: 6159_CR10 publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 49 start-page: 735 year: 2014 ident: 6159_CR25 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000077 – volume: 2013 start-page: 3973 year: 2013 ident: 6159_CR19 publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 272 start-page: 100 year: 2014 ident: 6159_CR40 publication-title: Radiology doi: 10.1148/radiol.14130569 – ident: 6159_CR43 doi: 10.1145/1390156.1390169 – volume: 27 start-page: 824 year: 2014 ident: 6159_CR20 publication-title: J Digit Imaging doi: 10.1007/s10278-014-9707-y – volume: 41 start-page: 565 year: 2017 ident: 6159_CR33 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000571 – ident: 6159_CR3 doi: 10.1016/B978-0-323-05355-6.00045-8 – ident: 6159_CR34 doi: 10.1586/14737140.2015.1108193:1-13 – volume: 27 start-page: 533 year: 2017 ident: 6159_CR36 publication-title: Neuroimaging Clin N Am doi: 10.1016/j.nic.2017.04.007 – volume-title: Head and neck imaging year: 2011 ident: 6159_CR1 – ident: 6159_CR39 doi: 10.1148/radiol.2017161950:161950 |
| SSID | ssj0009147 |
| Score | 2.5667121 |
| Snippet | Objectives
This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck... This study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck squamous cell... ObjectivesThis study was conducted in order to evaluate a novel risk stratification model using dual-energy CT (DECT) texture analysis of head and neck... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6172 |
| SubjectTerms | Accuracy Artificial intelligence Diagnostic Radiology Diagnostic systems Energy Evaluation Feature extraction Female Head & neck cancer Head and Neck Neoplasms - diagnosis Head and Neck Neoplasms - secondary Humans Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Iodine Learning algorithms Lymph nodes Lymph Nodes - diagnostic imaging Lymphadenopathy Lymphatic Metastasis Machine Learning Male Mathematical models Medical diagnosis Medicine Medicine & Public Health Metastases Multidetector Computed Tomography - methods Neck Neoplasm Staging - methods Neuroradiology Patients Predictions Radiology Sensitivity Sensitivity analysis Squamous cell carcinoma Squamous Cell Carcinoma of Head and Neck - diagnosis Squamous Cell Carcinoma of Head and Neck - secondary Texture Tumors Ultrasound |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVkJcaHmHFmQkbuAqbpxXb1XVsgKVU1cqp8ivoKrdbNlkD9vf0B_NjOOkggJSr_EznrFnxp75BuCDQZnpcpdzlB6Sy1rUvEx1xh0ycyGE0qmkeOeTb9l0Jr-cpWchKKwdvN2HJ0l_Uo_BbpR2jJyoKGoehTBfP4QNj7c1gY2Dz9-_Ht2C7QqfWAyN9YLnZSlDsMzfe_ldIN3RMu-8kHrBc7wJs2HKvb_Jxe6q07vm-g80x_v-0xY8CZooO-hZ5yk8cM0zeHQS3tqfw80Uyc9UY1njzAVrf64UXRMwuupnhlIQNYu52mdXS2pC9GWLGkvp7MF-L9fIJ6xZWMfmrlOohLbnLdNrRsFf3PmQQ3Z4ysjzZLV0OFCPjsLoZpjNvY-nYyGpxY8XMDs-Oj2c8pC7gZskTzuuTWEsEh21L1ELa-PEIa1qp1SZZA5tQpXXUhSxs1lqC_yoBKlG2hFYDKH8vYRJs2jca2BS69SkuYmlLqRN6xIt0jrRss60UMrGEYiBgJUJwOaUX-OyGiGZ_TJXuMyVX-ZqHcHHsc1VD-vx39o7A19UYYu31R5lN0VGS8oI3o_FuDmJDKpxSBGqU2ZoceZFBK96fhqHS-KStIM8gk8Db9x2_u-5vLlf9W14vEfs5aMnd2DSLVfuLapRnX4Xds0vu28Tng priority: 102 providerName: Springer Nature |
| Title | Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning |
| URI | https://link.springer.com/article/10.1007/s00330-019-06159-y https://www.ncbi.nlm.nih.gov/pubmed/30980127 https://www.proquest.com/docview/2208514739 https://www.proquest.com/docview/2209611478 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bitswEB12Eyh9Kb3X7Tao0LdW1Iplyy6UkizJhpYNpWwgfTKSJZfSjZ3N5SH_0I_ujGInlKX7YoPlGz5jzYykOQfgbYE-0ymnOHoPyWUpSp7FJuEOjTkVQptYUr3z5TSZzOSXeTw_gWlbC0PLKts-0XfUti5ojPxDn8QkhVRR9nl5w0k1imZXWwkN3Ugr2E-eYuwUun1ixupAdziafvt-pOEVXnIM0_iUqyyTTRmNL6YjWTNapEVV-ejk-e5fV3Ur_rw1d-pd0vghPGhiSTbYg_8ITlz1GO5dNrPlT-DPBAFkurKscsVvtr7Zakr0GQ3Ws4JEhKp6oT-y5YouIYRYXWIr9R543-sdIs2q2jq2cBuNYeT615qZHaPyLe580SA7v2K0dmS7cvigPb8Jo7FdtvCrNB1rZCl-PoXZeHR1PuGN-gIvIhVvuCnSwiJsGD-JUlgbRi4WqnRaZ1HiMKvTqpQiDZ1NYpviQS0ouDGO6F6Ip-8ZdKq6ci-ASWPiIlZFKE0qbVxmmFOWkZFlYoTWNgxAtB86LxpqclLIuM4PpMoenBzByT04-S6Ad4drlntijjvPPmvxy5ufdJ0fTSqAN4dm_L0IBl05RITOyRLMGVUawPM97ofHRWFG_l0F8L41hOPN__8uL-9-l1dwv09G6Osdz6CzWW3dawx8NqYHp2qucJuOL3rQHYyHwyntL358HfUaS8fWWX_wF_0zBTk |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEviDuBAUaCJ7CIGydOkCYEY1PH1gqhTtpb8C1o2pp2TSuU_8Bv4rdxjuu0QhN722uTOFa_k3Oxfb6PkNcGYqaTTjKIHoKJilesSHXGHBhzzrnSqcB-58Ew6x-LryfpyQb50_XC4LHKzid6R20nBtfI3_dQTJILmRQfpxcMVaNwd7WT0FBBWsHueIqx0Nhx6NpfUMI1OwdfAO83vd7-3mi3z4LKADOJTOdMm9xYmB7kCbzi1saJS7msnFJFkjmoXpSsBM9jZ7PU5vCj4hjEtUNaE-Sjg3FvkC2RiAKKv63Pe8Nv39e0v9xLnMUFuBVZFCK07fjmPZRRw0NhyAIASQVr_w2Nl_LdS3u1PgTu3yV3Qu5KPy2N7R7ZcPV9cnMQducfkN99MBiqaktrZ85oc7FQuLBAcXOAGhQtqidj9YFOZ_gIWgSdVHAVvRWMe96CZdF6Yh0du7mCtLU5bahuKbaLMeebFOnuiOJZlcXMwYuWfCoU15Lp2J8KdTTIYPx8SI6vBYdHZLOe1O4JoULr1KTSxELnwqZVATVslWhRZZorZeOI8O6PLk2gQkdFjvNyReLswSkBnNKDU7YRebt6ZrokArny7u0OvzI4haZcm3BEXq0uw-eMMKjaASJ4T5FBjSrziDxe4r56XRIXmE_IiLzrDGE9-P_n8vTqubwkt_qjwVF5dDA8fEZu99Agfa_lNtmczxbuOSRdc_0iWDYlP677Y_oLHwQ76w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBAkaCE0SNN04cIyGEWlZbSisOrbS34CdCdJPtZlco_4FfxK9jxkl2hSp66zVxbCvf55mxPQ9CXhnQmU44EYP24DH3zMcy03nsgMwFY0pnHOOdj0_yyRn_PM2mW-TPEAuDbpWDTAyC2tYGz8j3RlhMknGRyj3fu0V8PRh_mF_EWEEKb1qHchodRY5c-wu2b837wwPA-vVoNP50uj-J-woDsUlFtoy1KYyFqYGNwDyzNkldxoR3Ssk0d7BzUcJzViTO5pkt4KFiqMC1w5QmmIsO-r1Bboo0lehOKKZik_CXheJmiQSBIqTkfcBOCNvDAmroDobx_2BOxO2_SvGSpXvpljYov_Edcru3WunHjmZ3yZar7pGd4_5e_j75PQGqUFVZWjnzkzYXK4VHChSvBajBckVVPVPv6HyBnyAXaO3hLcop6Pe8BU7RqraOztxSgcHa_GiobikGisUuhCfS_VOKcKwWDgbqMqlQPEWms-AP6mhfAOP7A3J2LSg8JNtVXbnHhHKtM5MJk3BdcJt5CbtXn2ruc82UsklE2PCjS9MnQcdaHOflOn1zAKcEcMoATtlG5M36m3mXAuTK1rsDfmUvDppyQ96IvFy_hoWMMKjKASLYRuawOxVFRB51uK-HSxOJloSIyNuBCJvO_z-XJ1fP5QXZgSVUfjk8OXpKbo2QjyHIcpdsLxcr9wysraV-HmhNybfrXkd_AW6eOYU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+and+neck+squamous+cell+carcinoma%3A+prediction+of+cervical+lymph+node+metastasis+by+dual-energy+CT+texture+analysis+with+machine+learning&rft.jtitle=European+radiology&rft.au=ghani%2C+Reza&rft.au=Chatterjee%2C+Avishek&rft.au=Reinhold%2C+Caroline&rft.au=P%C3%A9rez-Lara%2C+Almudena&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=11&rft.spage=6172&rft.epage=6181&rft_id=info:doi/10.1007%2Fs00330-019-06159-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |