Unsupervised interpretable learning of phases from many-qubit systems
Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze quantum data. We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems using data of local measurements. The method successfully...
        Saved in:
      
    
          | Published in | Physical review research Vol. 5; no. 1; p. 013082 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            American Physical Society
    
        01.02.2023
     | 
| Online Access | Get full text | 
| ISSN | 2643-1564 2643-1564  | 
| DOI | 10.1103/PhysRevResearch.5.013082 | 
Cover
| Abstract | Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze quantum data. We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems using data of local measurements. The method successfully constructs the phase diagram of a cluster-state model and detects the respective order parameters of its phases, including string order parameters. For the toric code subject to external magnetic fields, the machine identifies the explicit forms of its two stabilizers. Prior information of the underlying Hamiltonian or the quantum states is not needed; instead, the machine outputs their characteristic observables. Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision. | 
    
|---|---|
| AbstractList | Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze quantum data. We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems using data of local measurements. The method successfully constructs the phase diagram of a cluster-state model and detects the respective order parameters of its phases, including string order parameters. For the toric code subject to external magnetic fields, the machine identifies the explicit forms of its two stabilizers. Prior information of the underlying Hamiltonian or the quantum states is not needed; instead, the machine outputs their characteristic observables. Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision. | 
    
| ArticleNumber | 013082 | 
    
| Author | Sadoune, Nicolas Pollet, Lode Liu, Ke Giudici, Giuliano  | 
    
| Author_xml | – sequence: 1 givenname: Nicolas surname: Sadoune fullname: Sadoune, Nicolas – sequence: 2 givenname: Giuliano surname: Giudici fullname: Giudici, Giuliano – sequence: 3 givenname: Ke orcidid: 0000-0002-5768-1631 surname: Liu fullname: Liu, Ke – sequence: 4 givenname: Lode orcidid: 0000-0002-7274-2842 surname: Pollet fullname: Pollet, Lode  | 
    
| BookMark | eNqFkdlKAzEUhoMouPUd5gWmZpnMciOIuBQERfQ6ZDlpI9PMmKSVeXujFRG98OYk_OT7CP85Rvt-8IBQQfCcEMzOHlZTfITtI0SQQa_mfI4Jwy3dQ0e0rlhJeF3t_7gfolmMLxhjygmpWn6Erp593IwQti6CKZxPEMYASaoeij5LvfPLYrDFuJIRYmHDsC7W0k_l60a5VMQpJljHU3RgZR9h9nWeoKfrq6fL2_Lu_mZxeXFXatbwVKqu4RqobTutK9tCzU3OjepoUzGVf96opmkMUGV4rRRohamktCaq7jCx7AQtdlozyBcxBreWYRKDdOIzGMJSyJCc7kHYTHZG4ZaZujKUytpqTTVjpiF5quzqdq6NH-X0Jvv-W0iw-GhXjLndANvw1a7gYtduZtsdq8MQ8xP7B_21mJ_o-S9UuySTG3wK0vX_C94B856fDw | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevB_108_205152 crossref_primary_10_1103_PhysRevLett_130_220603 crossref_primary_10_1103_PhysRevLett_132_207301 crossref_primary_10_1103_PhysRevB_110_214415  | 
    
| Cites_doi | 10.1038/s41567-019-0512-x 10.1126/science.aau4963 10.1016/j.aop.2005.10.005 10.1103/PhysRevB.87.155114 10.1103/PhysRevLett.127.030503 10.1016/S0034-4877(06)80014-5 10.1162/089976600300015565 10.1103/PhysRevX.9.021005 10.1103/PhysRevLett.125.170603 10.1103/PhysRevResearch.2.043308 10.1038/s41567-018-0048-5 10.1038/s41567-020-0932-7 10.21136/CMJ.1973.101168 10.1103/PhysRevLett.93.040503 10.1126/sciadv.aaz3666 10.1103/PhysRevB.99.060404 10.1103/PhysRevA.70.060302 10.1038/nphys4244 10.21468/SciPostPhysCodeb.4-r0.3 10.1038/s41567-019-0565-x 10.1038/ncomms1147 10.1103/PhysRevLett.124.226401 10.1103/PhysRevB.94.235157 10.1103/PhysRevX.8.021074 10.1103/PhysRevB.99.104410 10.1103/PhysRevLett.86.5188 10.1016/j.aop.2010.09.012 10.21136/CMJ.1975.101357 10.1145/1961189.1961199 10.1103/PhysRevX.9.021061 10.1038/s41567-019-0648-8 10.1016/S0003-4916(02)00018-0 10.1162/089976601750399335 10.1103/RevModPhys.51.659 10.1103/PhysRevB.85.195104 10.1103/PhysRevLett.119.180511 10.1088/1367-2630/15/12/125020 10.1103/PhysRevB.100.174408 10.1103/PhysRevResearch.4.L022020 10.1103/PhysRevB.96.245119 10.1126/science.abk3333 10.1038/s42256-019-0028-1 10.1103/PhysRevB.106.085111  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1103/PhysRevResearch.5.013082 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 2643-1564 | 
    
| ExternalDocumentID | oai_doaj_org_article_f02a9db083d64d22a6fcc2c33d71c33b 10.1103/physrevresearch.5.013082 10_1103_PhysRevResearch_5_013082  | 
    
| GroupedDBID | 3MX AAFWJ AAYXX AFGMR AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c375t-b975ce2f89cc4f8e65d375db92743b1307b777de2bd56bbecb02a2261b6901f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2643-1564 | 
    
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Aug 19 23:36:59 EDT 2025 Wed Oct 01 02:46:15 EDT 2025 Thu Apr 24 23:11:01 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c375t-b975ce2f89cc4f8e65d375db92743b1307b777de2bd56bbecb02a2261b6901f3 | 
    
| ORCID | 0000-0002-5768-1631 0000-0002-7274-2842  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://link.aps.org/pdf/10.1103/PhysRevResearch.5.013082 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f02a9db083d64d22a6fcc2c33d71c33b unpaywall_primary_10_1103_physrevresearch_5_013082 crossref_primary_10_1103_PhysRevResearch_5_013082 crossref_citationtrail_10_1103_PhysRevResearch_5_013082  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-02-01 | 
    
| PublicationDateYYYYMMDD | 2023-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Physical review research | 
    
| PublicationYear | 2023 | 
    
| Publisher | American Physical Society | 
    
| Publisher_xml | – name: American Physical Society | 
    
| References | PhysRevResearch.5.013082Cc29R1 PhysRevResearch.5.013082Cc28R1 PhysRevResearch.5.013082Cc44R1 PhysRevResearch.5.013082Cc3R1 PhysRevResearch.5.013082Cc20R1 PhysRevResearch.5.013082Cc45R1 PhysRevResearch.5.013082Cc23R1 PhysRevResearch.5.013082Cc42R1 PhysRevResearch.5.013082Cc1R1 PhysRevResearch.5.013082Cc22R1 PhysRevResearch.5.013082Cc43R1 PhysRevResearch.5.013082Cc25R1 PhysRevResearch.5.013082Cc48R1 PhysRevResearch.5.013082Cc24R1 PhysRevResearch.5.013082Cc49R1 PhysRevResearch.5.013082Cc27R1 PhysRevResearch.5.013082Cc46R1 PhysRevResearch.5.013082Cc26R1 PhysRevResearch.5.013082Cc47R1 PhysRevResearch.5.013082Cc40R1 PhysRevResearch.5.013082Cc41R1 PhysRevResearch.5.013082Cc18R1 PhysRevResearch.5.013082Cc17R1 PhysRevResearch.5.013082Cc39R1 PhysRevResearch.5.013082Cc19R1 PhysRevResearch.5.013082Cc10R1 PhysRevResearch.5.013082Cc33R1 PhysRevResearch.5.013082Cc34R1 J. Haah (PhysRevResearch.5.013082Cc2R1) 2016 PhysRevResearch.5.013082Cc31R1 S. Aaronson (PhysRevResearch.5.013082Cc12R1) 2019 PhysRevResearch.5.013082Cc32R1 S. Aaronson (PhysRevResearch.5.013082Cc11R1) 2018 PhysRevResearch.5.013082Cc14R1 PhysRevResearch.5.013082Cc13R1 PhysRevResearch.5.013082Cc38R1 PhysRevResearch.5.013082Cc35R1 PhysRevResearch.5.013082Cc15R1 PhysRevResearch.5.013082Cc36R1 PhysRevResearch.5.013082Cc8R1 PhysRevResearch.5.013082Cc9R1 PhysRevResearch.5.013082Cc6R1 PhysRevResearch.5.013082Cc7R1 PhysRevResearch.5.013082Cc30R1 PhysRevResearch.5.013082Cc4R1 PhysRevResearch.5.013082Cc5R1  | 
    
| References_xml | – ident: PhysRevResearch.5.013082Cc41R1 doi: 10.1038/s41567-019-0512-x – ident: PhysRevResearch.5.013082Cc9R1 doi: 10.1126/science.aau4963 – ident: PhysRevResearch.5.013082Cc34R1 doi: 10.1016/j.aop.2005.10.005 – ident: PhysRevResearch.5.013082Cc43R1 doi: 10.1103/PhysRevB.87.155114 – ident: PhysRevResearch.5.013082Cc14R1 doi: 10.1103/PhysRevLett.127.030503 – ident: PhysRevResearch.5.013082Cc28R1 doi: 10.1016/S0034-4877(06)80014-5 – ident: PhysRevResearch.5.013082Cc46R1 doi: 10.1162/089976600300015565 – ident: PhysRevResearch.5.013082Cc36R1 doi: 10.1103/PhysRevX.9.021005 – ident: PhysRevResearch.5.013082Cc33R1 doi: 10.1103/PhysRevLett.125.170603 – ident: PhysRevResearch.5.013082Cc24R1 doi: 10.1103/PhysRevResearch.2.043308 – ident: PhysRevResearch.5.013082Cc6R1 doi: 10.1038/s41567-018-0048-5 – ident: PhysRevResearch.5.013082Cc13R1 doi: 10.1038/s41567-020-0932-7 – ident: PhysRevResearch.5.013082Cc22R1 doi: 10.21136/CMJ.1973.101168 – ident: PhysRevResearch.5.013082Cc26R1 doi: 10.1103/PhysRevLett.93.040503 – ident: PhysRevResearch.5.013082Cc10R1 doi: 10.1126/sciadv.aaz3666 – ident: PhysRevResearch.5.013082Cc17R1 doi: 10.1103/PhysRevB.99.060404 – ident: PhysRevResearch.5.013082Cc27R1 doi: 10.1103/PhysRevA.70.060302 – ident: PhysRevResearch.5.013082Cc5R1 doi: 10.1038/nphys4244 – ident: PhysRevResearch.5.013082Cc49R1 doi: 10.21468/SciPostPhysCodeb.4-r0.3 – ident: PhysRevResearch.5.013082Cc32R1 doi: 10.1038/s41567-019-0565-x – ident: PhysRevResearch.5.013082Cc4R1 doi: 10.1038/ncomms1147 – ident: PhysRevResearch.5.013082Cc42R1 doi: 10.1103/PhysRevLett.124.226401 – ident: PhysRevResearch.5.013082Cc45R1 doi: 10.1103/PhysRevB.94.235157 – ident: PhysRevResearch.5.013082Cc35R1 doi: 10.1103/PhysRevX.8.021074 – ident: PhysRevResearch.5.013082Cc18R1 doi: 10.1103/PhysRevB.99.104410 – ident: PhysRevResearch.5.013082Cc25R1 doi: 10.1103/PhysRevLett.86.5188 – ident: PhysRevResearch.5.013082Cc29R1 doi: 10.1016/j.aop.2010.09.012 – ident: PhysRevResearch.5.013082Cc23R1 doi: 10.21136/CMJ.1975.101357 – ident: PhysRevResearch.5.013082Cc48R1 doi: 10.1145/1961189.1961199 – ident: PhysRevResearch.5.013082Cc8R1 doi: 10.1103/PhysRevX.9.021061 – volume-title: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing year: 2018 ident: PhysRevResearch.5.013082Cc11R1 – ident: PhysRevResearch.5.013082Cc31R1 doi: 10.1038/s41567-019-0648-8 – volume-title: Sample-Optimal Tomography of Quantum States year: 2016 ident: PhysRevResearch.5.013082Cc2R1 – ident: PhysRevResearch.5.013082Cc20R1 doi: 10.1016/S0003-4916(02)00018-0 – ident: PhysRevResearch.5.013082Cc47R1 doi: 10.1162/089976601750399335 – ident: PhysRevResearch.5.013082Cc44R1 doi: 10.1103/RevModPhys.51.659 – volume-title: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing year: 2019 ident: PhysRevResearch.5.013082Cc12R1 – ident: PhysRevResearch.5.013082Cc38R1 doi: 10.1103/PhysRevB.85.195104 – ident: PhysRevResearch.5.013082Cc3R1 doi: 10.1103/PhysRevLett.119.180511 – ident: PhysRevResearch.5.013082Cc1R1 doi: 10.1088/1367-2630/15/12/125020 – ident: PhysRevResearch.5.013082Cc19R1 doi: 10.1103/PhysRevB.100.174408 – ident: PhysRevResearch.5.013082Cc30R1 doi: 10.1103/PhysRevResearch.4.L022020 – ident: PhysRevResearch.5.013082Cc39R1 doi: 10.1103/PhysRevB.96.245119 – ident: PhysRevResearch.5.013082Cc15R1 doi: 10.1126/science.abk3333 – ident: PhysRevResearch.5.013082Cc7R1 doi: 10.1038/s42256-019-0028-1 – ident: PhysRevResearch.5.013082Cc40R1 doi: 10.1103/PhysRevB.106.085111  | 
    
| SSID | ssj0002511485 | 
    
| Score | 2.2716255 | 
    
| Snippet | Experimental progress in qubit manufacturing calls for the development of new theoretical tools to analyze quantum data. We show how an unsupervised... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 013082 | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJQQMiKcoL3lgDc3Djp0RUKuKgQG1UrcofkGlkJYmKeLvuU7SqJQBBpYMViwn19e-x9HJOQjdUG5cIjzqQC1RDuB_40Rca8cwCeUSarzSFcv3KRyOyeOETtasviwnrJYHrgPXM66fREoAUlAhUb6fhEZKXwaBYh5chd19XR6tHabsHmyBM-F0Rd1xg54lVD7r5YrPdmvVOq1Uy7d6VMn276GdMpsnnx9Jmq7VmsEB2m9AIr6rH-4QbensCG1XZE2ZH6P-OMvLuV3kuVZ42tIGRapx4wLxgmcGz1-hROXY_kGC32DRO--lmBa4Fm_OT9Bo0B89DJ3GDsGRAaOFIyJGpfYNj6QkhuuQKmhXIoKDZSDgZZhgjCntC0VDAXMjIHSArjxhTadMcIo62SzTZwhr7hJFZOJbQz4eAkaMJDNKeka6RHtJF7FVTGLZSIVbx4o0ro4MbhBvRDOmcR3NLvLanvNaLuMPfe5t2Nv7reB11QBpEDdpEP-WBl3kt5P2Y2T7kWihl4vNkc__Y-QLtGst6Gsm9yXqFItSXwFQKcR1lZNf8dvq0Q priority: 102 providerName: Directory of Open Access Journals  | 
    
| Title | Unsupervised interpretable learning of phases from many-qubit systems | 
    
| URI | http://link.aps.org/pdf/10.1103/PhysRevResearch.5.013082 https://doaj.org/article/f02a9db083d64d22a6fcc2c33d71c33b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Bogo4lJaHWAorH3rNkpft5AjVIoTUVVWxEpyi-AUrlhA2CVU59Ld3nGSjslygFx-sjJzYY89n5_M3AF9pZNxQeNTBWKIcxP_GiSOtHcMlhkuM8UrXLN8xO5-EF1f0agWi7ugiuxumeVH_w8-VaSa1GxxbPuRP_bSgow2t2KZVWlmFNUYRhfdgbTL-cXJtc8kxq7pJWbgg7qC5PSaY66f5svmLaFSL9m_CepXl6e9f6Wz2T6Q524LrxX2dhmByN6xKMZTPr-Ub3_0Rn-BjCz_JSeMvn2FFZ9vwoaaBymIHRpOsqHK7fBRakWlHSBQzTdr8EjfkwZD8FoNfQezdFHKPy4nzWIlpSRpZ6GIXLs9Gl9_OnTbRgiMDTktHxJxK7ZsoljI0kWZUYb0SMW5ZA4GvyAXnXGlfKMoEjrpw_RRxmydsOisT7EEve8j0PhAduaEKZerbVH8RQ_QZS26U9Ix0Q-2lfeCL_k5kK0Juc2HMknoz4gbJUh8lNGn6qA9eZ5k3QhxvsDm1Q9o9b6W06wocmKSdmYnBb4mVQCiqWKh8P2VGSl8GgeIelqIPfucQr1pe8quu5YP_MfoCGzaZfcMJP4ReOa_0EUKeUgzqowIsv_8ZDVpP_wtcawae | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED44Noq0Q19JEfcFDl3l6kVSGt0ihtEhKIoYsCdBfDWGHVmxJAftr-9RkoXGXtIuGggdKJJH3pH6-H0An2hk3FB41MFYohzM_40TR1o7hksMlxjjla5RvldsOgu_zem8B1F3dJGtRmle1P_wc2WaSe0Gny0e8ofe7eFoI0u2aZlWTmDAKGbhfRjMrr6PF1ZLjlnWTcrCPXAHze0xwVbvtofmD6JRTdr_DE6rLE9_3afr9V-RZvICFvv7Og3AZDWqSjGSv4_pG_-5ES_heZt-knHjL6-gp7PX8KSGgcriDC5nWVHldvkotCLLDpAo1pq0-hI_ycaQ_AaDX0Hs3RRyi8uJc1eJZUkaWujiHK4nl9dfp04rtODIgNPSETGnUvsmiqUMTaQZVViuRIxb1kDgJ3LBOVfaF4oygaMuXD_FvM0TVs7KBG-gn20yfQFER26oQpn6VuovYph9xpIbJT0j3VB76RD4vr8T2ZKQWy2MdVJvRtwgOeijhCZNHw3B6yzzhojjETZf7JB271sq7boAByZpZ2ZisC2xEpiKKhYq30-ZkdKXQaC4h08xBL9ziKOaD_yqq_nt_xi9g6dWzL7BhL-Hfrmt9AdMeUrxsfXuPx7KBHg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+interpretable+learning+of+phases+from+many-qubit+systems&rft.jtitle=Physical+review+research&rft.au=Sadoune%2C+Nicolas&rft.au=Giudici%2C+Giuliano&rft.au=Liu%2C+Ke&rft.au=Pollet%2C+Lode&rft.date=2023-02-01&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1103%2FPhysRevResearch.5.013082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_5_013082 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |