Optimizing Gene Selection and Cancer Classification with Hybrid Sine Cosine and Cuckoo Search Algorithm
Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been...
Saved in:
| Published in | Journal of medical systems Vol. 48; no. 1; p. 10 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
09.01.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-689X 0148-5598 1573-689X |
| DOI | 10.1007/s10916-023-02031-1 |
Cover
| Abstract | Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.
Graphical Abstract |
|---|---|
| AbstractList | Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.
Graphical Abstract Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data. Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data. Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data. |
| ArticleNumber | 10 |
| Author | Verma, Navneet Kumar Aziz, Rabia Musheer Yaqoob, Abrar |
| Author_xml | – sequence: 1 givenname: Abrar surname: Yaqoob fullname: Yaqoob, Abrar email: abrar.yaqoob2022@vitbhopal.ac.in organization: School of Advanced Sciences and Languages, VIT Bhopal University – sequence: 2 givenname: Navneet Kumar surname: Verma fullname: Verma, Navneet Kumar organization: School of Advanced Sciences and Languages, VIT Bhopal University – sequence: 3 givenname: Rabia Musheer surname: Aziz fullname: Aziz, Rabia Musheer organization: School of Advanced Sciences and Languages, VIT Bhopal University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38193948$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1KxDAYRYMo_r-ACym4cVNNmjY_SynqCAMuVHAX0jSdibbJmLTI-DQ-i09mpqMoLlyEBHLO5eO7e2DTOqsBOELwDEFIzwOCHJEUZjgeiFGKNsAuKihOCeOPm7_eO2AvhCcIISeEboMdzBDHPGe7YH676E1n3oydJdfa6uROt1r1xtlE2joppVXaJ2UrQzCNUXL8eTX9PJksK2_q5M5EqXRhdY3GoJ6dizHSq_nH-0U7cz7i3QHYamQb9OHXvQ8eri7vy0k6vb2-KS-mqcK06FPe0BrnlGJWZDljlEtUN1TTXPEio5AWDcGNrAiElVRVRepcVrxCFHLGa6wJ3gen69yFdy-DDr3oTFC6baXVbggi4yiL0XnBInryB31yg7dxupFCmBGOInX8RQ1Vp2ux8KaTfim-dxgBtgaUdyF43Qhl-nFRvZemFQiKVV1iXZeIdYmxLrHKzv6o3-n_SngthQjbmfY_Y_9jfQLSJaby |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126404 crossref_primary_10_1007_s41870_024_02290_2 crossref_primary_10_1016_j_eswa_2024_124882 crossref_primary_10_3390_computers14030086 crossref_primary_10_1016_j_prime_2024_100449 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_1371_journal_pone_0316281 crossref_primary_10_1109_ACCESS_2024_3371887 crossref_primary_10_1109_ACCESS_2024_3402652 crossref_primary_10_1007_s41870_024_01849_3 crossref_primary_10_1155_2024_9382390 crossref_primary_10_1007_s13042_024_02509_5 crossref_primary_10_1016_j_ijcce_2024_09_005 crossref_primary_10_1109_ACCESS_2024_3403506 crossref_primary_10_3390_computers13040093 crossref_primary_10_1109_ACCESS_2024_3390684 crossref_primary_10_1038_s41598_024_73559_6 crossref_primary_10_3390_math12111620 crossref_primary_10_1016_j_heliyon_2024_e38547 crossref_primary_10_1109_ACCESS_2024_3411633 crossref_primary_10_1371_journal_pone_0306987 crossref_primary_10_1007_s42235_025_00656_1 crossref_primary_10_1002_ima_23179 crossref_primary_10_1007_s11042_024_20146_6 crossref_primary_10_1080_00051144_2024_2423430 crossref_primary_10_1080_00949655_2024_2416228 crossref_primary_10_3390_a17080342 crossref_primary_10_1109_ACCESS_2024_3418669 crossref_primary_10_1007_s11831_024_10218_z crossref_primary_10_1038_s41598_024_67135_1 crossref_primary_10_1371_journal_pone_0312313 crossref_primary_10_1007_s00262_024_03843_x crossref_primary_10_1016_j_microc_2024_111280 crossref_primary_10_1007_s00432_024_05968_z |
| Cites_doi | 10.1016/j.compbiomed.2015.10.008 10.1007/s40745-022-00424-6 10.1504/ijguc.2022.10046091 10.1016/j.asoc.2017.09.038 10.1007/978-3-319-02141-6_3 10.1016/S1672-0229(08)60050-9 10.4108/eai.19-12-2018.156086 10.1016/j.measurement.2021.109442 10.1155/2012/320698 10.1016/j.bea.2022.100069 10.1016/j.compbiolchem.2017.10.009 10.1016/j.artmed.2022.102349 10.1016/j.artmed.2019.07.008 10.1007/s44230-023-00041-3 10.1007/s00500-019-03879-7 10.1109/ACCESS.2018.2879848 10.1016/j.icte.2020.06.007 10.1016/j.sigpro.2016.07.035 10.1007/s11517-022-02555-7 10.1016/j.jbi.2020.103591 10.1007/s10916-019-1372-8 10.11591/ijeecs.v26.i2.pp1050-1059 10.1016/j.artmed.2017.12.004 10.1155/2015/604910 10.1016/j.chemolab.2019.103912 10.1109/ACCESS.2020.2980942 10.1016/j.artmed.2017.06.008 10.1109/ICECA.2018.8474912 10.1007/s12652-020-02359-3 10.1016/j.imu.2021.100572 10.1016/j.jbi.2017.01.016 10.3390/math11051081 10.3390/app10093134 10.1016/j.artmed.2022.102427 10.1016/S0014-5793(03)01275-4 10.1007/s00607-021-00955-5 10.1016/j.compbiolchem.2015.03.001 10.1016/j.talanta.2006.07.047 10.1016/j.artmed.2017.09.004 10.1016/j.compeleceng.2020.106958 10.1002/cncr.24440 10.1016/j.swevo.2017.04.002 10.1109/ACCESS.2020.3009125 10.1080/13506280444000102 10.1016/j.eswa.2016.04.020 10.1016/j.neucom.2016.07.080 10.1007/s00500-022-07032-9 10.1007/s00521-021-05997-6 10.32604/cmc.2023.037363 10.1007/s11042-022-13437-3 10.1016/j.chemolab.2018.10.009 10.1016/j.jbi.2021.103957 10.1016/j.artmed.2019.01.001 10.1016/j.eswa.2017.08.026 10.1038/415530a 10.1504/IJDMB.2017.084026 10.1016/j.cie.2012.07.011 10.1016/j.compbiomed.2013.04.018 10.1371/journal.pone.0212333 10.1016/j.csbj.2014.11.005 10.1016/j.artmed.2019.101746 10.21275/ART20203995 10.1007/s00170-012-4013-7 10.1007/s11045-020-00756-7 10.1016/j.imu.2017.10.004 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. Copyright Springer Nature B.V. Dec 2024 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: Copyright Springer Nature B.V. Dec 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1007/s10916-023-02031-1 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| ExternalDocumentID | 38193948 10_1007_s10916_023_02031_1 |
| Genre | Journal Article |
| GroupedDBID | --- -~C .86 .VR 04C 06C 06D 0R~ 0VY 199 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40E 53G 5GY 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 8FE 8FG 8FH 8FI 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBNVY BENPR BGLVJ BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EMB EMOBN EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KPH LAK LK8 LLZTM M0T M1P M2P M7P MA- MK0 NAPCQ NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 WOW YLTOR Z45 ZMTXR ~A9 ~EX 77I AAYXX CITATION PUEGO -53 -5D -5G -BR -EM 88E 88I 8AO 8FJ ADINQ CCPQU CGR CUY CVF ECM EIF GNUQQ GQ6 HMCUK NPM Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c375t-9f7d3477385248879a1df7e74c9527075f63fab600bacbb6d4ab9b170989d3e63 |
| IEDL.DBID | U2A |
| ISSN | 1573-689X 0148-5598 |
| IngestDate | Thu Sep 04 18:42:33 EDT 2025 Tue Oct 07 05:32:02 EDT 2025 Wed Feb 19 02:00:22 EST 2025 Wed Oct 01 04:08:40 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Mon Jul 21 06:08:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Minimum Redundancy Maximum Relevance (mRMR) Sine Cosine Algorithm (SCA) Cuckoo Search Algorithm (CSA) Cancer Classification Support Vector Machine (SVM) Feature Selection (FS) |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-9f7d3477385248879a1df7e74c9527075f63fab600bacbb6d4ab9b170989d3e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 38193948 |
| PQID | 2912138691 |
| PQPubID | 54050 |
| ParticipantIDs | proquest_miscellaneous_2912524458 proquest_journals_2912138691 pubmed_primary_38193948 crossref_citationtrail_10_1007_s10916_023_02031_1 crossref_primary_10_1007_s10916_023_02031_1 springer_journals_10_1007_s10916_023_02031_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-09 |
| PublicationDateYYYYMMDD | 2024-01-09 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | The Home of Clinical Informatics Research |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | H Motieghader (2031_CR25) 2017; 9 2031_CR41 I Lorencin (2031_CR44) 2019; 102 LJP Van Der Maaten (2031_CR2) 2009; 10 2031_CR5 2031_CR9 2031_CR8 2031_CR7 2031_CR6 H Lu (2031_CR31) 2017; 256 F Soares (2031_CR45) 2017; 82 HM Alshamlan (2031_CR64) 2015; 56 MP Hosseini (2031_CR47) 2018; 84 S Nakariyakul (2031_CR13) 2019; 14 R Aziz (2031_CR12) 2017; 71 I Jain (2031_CR29) 2018; 62 RM Aziz (2031_CR14) 2022; 60 2031_CR43 2031_CR49 K Kourou (2031_CR4) 2015; 13 2031_CR48 2031_CR46 E Valian (2031_CR20) 2013; 64 JB Lamy (2031_CR52) 2019; 94 GT Reddy (2031_CR59) 2020; 8 R Aziz (2031_CR11) 2017; 17 M Alzaqebah (2031_CR21) 2021; 24 RM Aziz (2031_CR3) 2022; 26 2031_CR39 S Peng (2031_CR66) 2003; 555 AR Yildiz (2031_CR22) 2013; 64 S Akbar (2031_CR42) 2020; 8 2031_CR33 2031_CR32 P Nanglia (2031_CR23) 2021; 7 H Yu (2031_CR62) 2009; 7 A Khamparia (2031_CR36) 2021; 32 2031_CR38 J Lv (2031_CR56) 2016; 59 I Fister (2031_CR55) 2014; 516 2031_CR63 Q Shen (2031_CR65) 2007; 71 2031_CR60 ZY Algamal (2031_CR67) 2015; 67 P Stephan (2031_CR35) 2021; 33 P Shunmugapriya (2031_CR26) 2017; 36 RA Musheer (2031_CR10) 2019; 23 S Shahbeig (2031_CR30) 2017; 131 2031_CR27 2031_CR24 Y Zheng (2031_CR34) 2019; 7 2031_CR68 2031_CR51 2031_CR50 S Akbar (2031_CR40) 2017; 79 Y Cui (2031_CR61) 2013; 43 2031_CR19 2031_CR17 PT Endo (2031_CR18) 2022; 1 V Elyasigomari (2031_CR28) 2017; 67 A Tefferi (2031_CR1) 2009; 115 AK Shukla (2031_CR37) 2018; 183 2031_CR54 2031_CR53 2031_CR16 2031_CR15 2031_CR58 2031_CR57 |
| References_xml | – ident: 2031_CR17 – volume: 67 start-page: 136 year: 2015 ident: 2031_CR67 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.10.008 – ident: 2031_CR9 doi: 10.1007/s40745-022-00424-6 – volume: 1 start-page: 1 issue: 1 year: 2022 ident: 2031_CR18 publication-title: Int. J. Grid Util. Comput. doi: 10.1504/ijguc.2022.10046091 – volume: 62 start-page: 203 year: 2018 ident: 2031_CR29 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.038 – ident: 2031_CR19 doi: 10.1007/978-3-319-02141-6_3 – ident: 2031_CR33 – volume: 516 start-page: 49 year: 2014 ident: 2031_CR55 publication-title: Stud. Comput. Intell. doi: 10.1007/978-3-319-02141-6_3 – volume: 7 start-page: 200 issue: 4 year: 2009 ident: 2031_CR62 publication-title: Genomics, Proteomics Bioinforma. doi: 10.1016/S1672-0229(08)60050-9 – ident: 2031_CR24 doi: 10.4108/eai.19-12-2018.156086 – ident: 2031_CR49 doi: 10.1016/j.measurement.2021.109442 – ident: 2031_CR63 doi: 10.1155/2012/320698 – ident: 2031_CR39 doi: 10.1016/j.bea.2022.100069 – volume: 71 start-page: 161 year: 2017 ident: 2031_CR12 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2017.10.009 – ident: 2031_CR43 doi: 10.1016/j.artmed.2022.102349 – ident: 2031_CR46 doi: 10.1016/j.artmed.2019.07.008 – ident: 2031_CR7 doi: 10.1007/s44230-023-00041-3 – volume: 23 start-page: 13409 issue: 24 year: 2019 ident: 2031_CR10 publication-title: Soft Comput. doi: 10.1007/s00500-019-03879-7 – volume: 7 start-page: 14908 year: 2019 ident: 2031_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879848 – volume: 7 start-page: 335 issue: 3 year: 2021 ident: 2031_CR23 publication-title: ICT Express doi: 10.1016/j.icte.2020.06.007 – volume: 131 start-page: 58 year: 2017 ident: 2031_CR30 publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.035 – volume: 60 start-page: 1627 issue: 6 year: 2022 ident: 2031_CR14 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02555-7 – ident: 2031_CR48 doi: 10.1016/j.jbi.2020.103591 – ident: 2031_CR27 doi: 10.1007/s10916-019-1372-8 – ident: 2031_CR16 doi: 10.11591/ijeecs.v26.i2.pp1050-1059 – volume: 84 start-page: 146 year: 2018 ident: 2031_CR47 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.12.004 – ident: 2031_CR57 doi: 10.1155/2015/604910 – ident: 2031_CR41 doi: 10.1016/j.chemolab.2019.103912 – volume: 8 start-page: 54776 year: 2020 ident: 2031_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980942 – volume: 79 start-page: 62 year: 2017 ident: 2031_CR40 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.06.008 – ident: 2031_CR54 doi: 10.1109/ICECA.2018.8474912 – ident: 2031_CR38 doi: 10.1007/s12652-020-02359-3 – volume: 24 year: 2021 ident: 2031_CR21 publication-title: Informatics Med. Unlocked doi: 10.1016/j.imu.2021.100572 – volume: 67 start-page: 11 year: 2017 ident: 2031_CR28 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2017.01.016 – ident: 2031_CR5 doi: 10.3390/math11051081 – ident: 2031_CR32 doi: 10.3390/app10093134 – ident: 2031_CR53 doi: 10.1016/j.artmed.2022.102427 – volume: 555 start-page: 358 issue: 2 year: 2003 ident: 2031_CR66 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)01275-4 – ident: 2031_CR15 doi: 10.1007/s00607-021-00955-5 – volume: 56 start-page: 49 year: 2015 ident: 2031_CR64 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2015.03.001 – volume: 71 start-page: 1679 issue: 4 year: 2007 ident: 2031_CR65 publication-title: Talanta doi: 10.1016/j.talanta.2006.07.047 – volume: 82 start-page: 1 year: 2017 ident: 2031_CR45 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.09.004 – ident: 2031_CR50 doi: 10.1016/j.compeleceng.2020.106958 – volume: 115 start-page: 3842 issue: 17 year: 2009 ident: 2031_CR1 publication-title: Cancer doi: 10.1002/cncr.24440 – volume: 36 start-page: 27 issue: January year: 2017 ident: 2031_CR26 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.04.002 – volume: 8 start-page: 131939 year: 2020 ident: 2031_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009125 – volume: 10 start-page: 1 year: 2009 ident: 2031_CR2 publication-title: J. Mach. Learn. Res. doi: 10.1080/13506280444000102 – volume: 59 start-page: 13 year: 2016 ident: 2031_CR56 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.020 – volume: 256 start-page: 56 year: 2017 ident: 2031_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – volume: 26 start-page: 12179 issue: 22 year: 2022 ident: 2031_CR3 publication-title: Soft Comput. doi: 10.1007/s00500-022-07032-9 – volume: 33 start-page: 13667 issue: 20 year: 2021 ident: 2031_CR35 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05997-6 – ident: 2031_CR68 doi: 10.32604/cmc.2023.037363 – ident: 2031_CR6 doi: 10.1007/s11042-022-13437-3 – volume: 183 start-page: 47 issue: July year: 2018 ident: 2031_CR37 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.10.009 – ident: 2031_CR51 doi: 10.1016/j.jbi.2021.103957 – volume: 94 start-page: 42 issue: January year: 2019 ident: 2031_CR52 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.01.001 – ident: 2031_CR58 doi: 10.1016/j.eswa.2017.08.026 – ident: 2031_CR60 doi: 10.1038/415530a – volume: 17 start-page: 42 issue: 1 year: 2017 ident: 2031_CR11 publication-title: Int. J. Data Min. Bioinform. doi: 10.1504/IJDMB.2017.084026 – volume: 64 start-page: 459 issue: 1 year: 2013 ident: 2031_CR20 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2012.07.011 – volume: 43 start-page: 933 issue: 7 year: 2013 ident: 2031_CR61 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.04.018 – volume: 14 start-page: 1 issue: 2 year: 2019 ident: 2031_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0212333 – volume: 13 start-page: 8 year: 2015 ident: 2031_CR4 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – volume: 102 start-page: 2020 issue: May year: 2019 ident: 2031_CR44 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101746 – ident: 2031_CR8 doi: 10.21275/ART20203995 – volume: 64 start-page: 55 issue: 1–4 year: 2013 ident: 2031_CR22 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4013-7 – volume: 32 start-page: 747 issue: 2 year: 2021 ident: 2031_CR36 publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-020-00756-7 – volume: 9 start-page: 246 issue: August year: 2017 ident: 2031_CR25 publication-title: Informatics Med. Unlocked doi: 10.1016/j.imu.2017.10.004 |
| SSID | ssj0009667 |
| Score | 2.5479212 |
| Snippet | Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10 |
| SubjectTerms | Algorithms Biological activity Breast cancer Breast Neoplasms - genetics Cancer Classification Classifiers Datasets Feature selection Female Gene expression Genes Health Informatics Health Personnel Health Sciences Humans Machine Learning Medicine Medicine & Public Health Optimization Original Paper Redundancy Search algorithms Statistics for Life Sciences Support Vector Machine Support vector machines Trigonometric functions |
| Title | Optimizing Gene Selection and Cancer Classification with Hybrid Sine Cosine and Cuckoo Search Algorithm |
| URI | https://link.springer.com/article/10.1007/s10916-023-02031-1 https://www.ncbi.nlm.nih.gov/pubmed/38193948 https://www.proquest.com/docview/2912138691 https://www.proquest.com/docview/2912524458 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 1573-689X databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-689X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0009667 issn: 1573-689X databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 1573-689X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009667 issn: 1573-689X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5BKyGkCpXyl7ZERuIGlrq2146PUdQ0AhUOJVI5rWyvDYh2F6XJoTwNz9InY2Z_ElABibPH3l1_nvXYM_MNwEujfNLJGe4UuRlHNnB7VCbuXYgy5MT5TdnIp-_0bK7enOfnXVLYVR_t3rskmz_1L8luaMpw3GM4ec8yjmee7ZzovHAVz8V4Q7WrtenSY_7c7_ct6JZdecsn2mw101140NmIbNyC-hDuxGoP7p12XvA92Gnv2libQvQIPr9Hvb_88h0HY0Qjzc6a4jY448xVJZsQsAvWlL-kwKAGC0YXsGx2TQlb7AyHZZOaQuDbHqvwta5ZG4p882N88aleoPjlY5hPjz9MZryroMCDNPmS22RKqQwx1gjUVGNdViYTjQo2FwathaRlch6NHsTGe10q563PzBFCVMqo5RPYquoqPgPmbUy5SFG6MijaxPBgKJQPeZRKCysGkPWTWoSOXpyqXFwUG2JkAqJAIIoGiCIbwKt1n28tucY_pQ97rIpO0a4KYYmTbqQtNr9YN6OKkN_DVbFetTL4_SofDeBpi_H6cXRglVZhy-se9M3gf3-X_f8TP4D7Ao2h5urGHsLWcrGKz9GYWfoh3B1NT4awPT75-PZ42Kzkn_8z7Ok |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB6hVAKkip8CJVDASNzAVdf22vExiloCbcqhjVROK9trA2q7i9LkQJ-GZ-HJGK93E6CA1LPHXq9n7Bl7Zr4BeKWEDTIYRY2IbsaBdlTvlIFa4zx3ecT8jtnIk0M5nor3J_lJmxR20UW7dy7J5qT-JdkNTRmKOoZG71lG8c6zJvCCwnqwNnz7cX93BbYrpWoTZP7e83cldMWyvOIVbZTN3l2YdtNMMSan24u53XaXfyA4Xvc_7sGd1vokwyQu9-GGrzbg5qT1r2_AenrFIyk56QF8_oAnyvmXSxyfRIBqctSUzUFeElOVZBRFZkaawpox5KjhMolPu2T8LaaCkSMclozqGFyfeizcaV2TFOT84_vw7FM9Q_LzhzDd2z0ejWlbm4E6rvI51UGVXKiIhcPwDFDaZGVQXgmnc6bQDgmSB2PRnEKuWytLYay2mdpB5pfcS_4IelVd-cdArPYhZ8FzUzoR1SNeOZmwLvdcSKZZH7KOWYVrgctj_YyzYgW5HJe0wCUtmiUtsj68Xvb5mmA7_ku91clA0W7hi4LpiHY3kBqbXy6bcfNFj4qpfL1INPj_Ih_0YTPJzvJz8SrMtcCWN50crAb_91yeXI_8BdwaH08OioN3h_tP4TZDk6t5INJb0JvPFv4Zmkxz-7zdIT8BFOsKTw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYqkBBShQr9CwXqSr0VC9b22vExSonSH2gliMRtZXttWhV2UUgO8DQ8C0_WmfUmoaJU6tlj764_e2fsmfmGkPdauqii1cxKdDN2jWdmv4zMWR-Ez5HzG7ORD4_UcCQ_n-an97L4m2j3mUsy5TQgS1M12bss4969xDcwaxjoG4aetIzB-WdZIlECrOgR7y1od5XSbarM3_v9qY4e2JgP_KON2hk8I2utvUh7CeB18iRUG2TlsPWIb5Cn6d6NpnSi5-THN_gHXPy8gcEoUkrT46bQDcw-tVVJ-wjymDalMDFIqMGF4mUsHV5j8hY9hmFpv8Zw-NRj6n_VNU1hyXe3vfOzegziFy_IaHBw0h-ytpoC80LnE2aiLoXUyF7DYddqY7My6qClNznXYDlEJaJ1YAABTs6pUlpnXKb3Aa5SBCVekqWqrsJrQp0JMecxCFt6iQoNDolcOp8HIRU3vEOy2aQWvqUax4oX58WCJBmBKACIogGiyDrkw7zPZSLa-Kf01gyrot10VwU3yE_XVQaa382bYbugD8RWoZ4mGfh-mXc75FXCeP44PLwKI6Fldwb6YvDH32Xz_8TfkpXvHwfF109HX96QVQ42UnOjY7bI0mQ8Ddtg40zcTrOMfwP8TPGX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Gene+Selection+and+Cancer+Classification+with+Hybrid+Sine+Cosine+and+Cuckoo+Search%C2%A0Algorithm&rft.jtitle=Journal+of+medical+systems&rft.au=Yaqoob%2C+Abrar&rft.au=Verma%2C+Navneet+Kumar&rft.au=Aziz%2C+Rabia+Musheer&rft.date=2024-01-09&rft.pub=Springer+US&rft.eissn=1573-689X&rft.volume=48&rft.issue=1&rft_id=info:doi/10.1007%2Fs10916-023-02031-1&rft.externalDocID=10_1007_s10916_023_02031_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-689X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-689X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-689X&client=summon |