Optimizing Gene Selection and Cancer Classification with Hybrid Sine Cosine and Cuckoo Search Algorithm

Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 48; no. 1; p. 10
Main Authors Yaqoob, Abrar, Verma, Navneet Kumar, Aziz, Rabia Musheer
Format Journal Article
LanguageEnglish
Published New York Springer US 09.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-689X
0148-5598
1573-689X
DOI10.1007/s10916-023-02031-1

Cover

Abstract Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data. Graphical Abstract
AbstractList Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data. Graphical Abstract
Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.
Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.
Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.
ArticleNumber 10
Author Verma, Navneet Kumar
Aziz, Rabia Musheer
Yaqoob, Abrar
Author_xml – sequence: 1
  givenname: Abrar
  surname: Yaqoob
  fullname: Yaqoob, Abrar
  email: abrar.yaqoob2022@vitbhopal.ac.in
  organization: School of Advanced Sciences and Languages, VIT Bhopal University
– sequence: 2
  givenname: Navneet Kumar
  surname: Verma
  fullname: Verma, Navneet Kumar
  organization: School of Advanced Sciences and Languages, VIT Bhopal University
– sequence: 3
  givenname: Rabia Musheer
  surname: Aziz
  fullname: Aziz, Rabia Musheer
  organization: School of Advanced Sciences and Languages, VIT Bhopal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38193948$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1KxDAYRYMo_r-ACym4cVNNmjY_SynqCAMuVHAX0jSdibbJmLTI-DQ-i09mpqMoLlyEBHLO5eO7e2DTOqsBOELwDEFIzwOCHJEUZjgeiFGKNsAuKihOCeOPm7_eO2AvhCcIISeEboMdzBDHPGe7YH676E1n3oydJdfa6uROt1r1xtlE2joppVXaJ2UrQzCNUXL8eTX9PJksK2_q5M5EqXRhdY3GoJ6dizHSq_nH-0U7cz7i3QHYamQb9OHXvQ8eri7vy0k6vb2-KS-mqcK06FPe0BrnlGJWZDljlEtUN1TTXPEio5AWDcGNrAiElVRVRepcVrxCFHLGa6wJ3gen69yFdy-DDr3oTFC6baXVbggi4yiL0XnBInryB31yg7dxupFCmBGOInX8RQ1Vp2ux8KaTfim-dxgBtgaUdyF43Qhl-nFRvZemFQiKVV1iXZeIdYmxLrHKzv6o3-n_SngthQjbmfY_Y_9jfQLSJaby
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126404
crossref_primary_10_1007_s41870_024_02290_2
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_3390_computers14030086
crossref_primary_10_1016_j_prime_2024_100449
crossref_primary_10_1007_s10115_024_02225_0
crossref_primary_10_1371_journal_pone_0316281
crossref_primary_10_1109_ACCESS_2024_3371887
crossref_primary_10_1109_ACCESS_2024_3402652
crossref_primary_10_1007_s41870_024_01849_3
crossref_primary_10_1155_2024_9382390
crossref_primary_10_1007_s13042_024_02509_5
crossref_primary_10_1016_j_ijcce_2024_09_005
crossref_primary_10_1109_ACCESS_2024_3403506
crossref_primary_10_3390_computers13040093
crossref_primary_10_1109_ACCESS_2024_3390684
crossref_primary_10_1038_s41598_024_73559_6
crossref_primary_10_3390_math12111620
crossref_primary_10_1016_j_heliyon_2024_e38547
crossref_primary_10_1109_ACCESS_2024_3411633
crossref_primary_10_1371_journal_pone_0306987
crossref_primary_10_1007_s42235_025_00656_1
crossref_primary_10_1002_ima_23179
crossref_primary_10_1007_s11042_024_20146_6
crossref_primary_10_1080_00051144_2024_2423430
crossref_primary_10_1080_00949655_2024_2416228
crossref_primary_10_3390_a17080342
crossref_primary_10_1109_ACCESS_2024_3418669
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1038_s41598_024_67135_1
crossref_primary_10_1371_journal_pone_0312313
crossref_primary_10_1007_s00262_024_03843_x
crossref_primary_10_1016_j_microc_2024_111280
crossref_primary_10_1007_s00432_024_05968_z
Cites_doi 10.1016/j.compbiomed.2015.10.008
10.1007/s40745-022-00424-6
10.1504/ijguc.2022.10046091
10.1016/j.asoc.2017.09.038
10.1007/978-3-319-02141-6_3
10.1016/S1672-0229(08)60050-9
10.4108/eai.19-12-2018.156086
10.1016/j.measurement.2021.109442
10.1155/2012/320698
10.1016/j.bea.2022.100069
10.1016/j.compbiolchem.2017.10.009
10.1016/j.artmed.2022.102349
10.1016/j.artmed.2019.07.008
10.1007/s44230-023-00041-3
10.1007/s00500-019-03879-7
10.1109/ACCESS.2018.2879848
10.1016/j.icte.2020.06.007
10.1016/j.sigpro.2016.07.035
10.1007/s11517-022-02555-7
10.1016/j.jbi.2020.103591
10.1007/s10916-019-1372-8
10.11591/ijeecs.v26.i2.pp1050-1059
10.1016/j.artmed.2017.12.004
10.1155/2015/604910
10.1016/j.chemolab.2019.103912
10.1109/ACCESS.2020.2980942
10.1016/j.artmed.2017.06.008
10.1109/ICECA.2018.8474912
10.1007/s12652-020-02359-3
10.1016/j.imu.2021.100572
10.1016/j.jbi.2017.01.016
10.3390/math11051081
10.3390/app10093134
10.1016/j.artmed.2022.102427
10.1016/S0014-5793(03)01275-4
10.1007/s00607-021-00955-5
10.1016/j.compbiolchem.2015.03.001
10.1016/j.talanta.2006.07.047
10.1016/j.artmed.2017.09.004
10.1016/j.compeleceng.2020.106958
10.1002/cncr.24440
10.1016/j.swevo.2017.04.002
10.1109/ACCESS.2020.3009125
10.1080/13506280444000102
10.1016/j.eswa.2016.04.020
10.1016/j.neucom.2016.07.080
10.1007/s00500-022-07032-9
10.1007/s00521-021-05997-6
10.32604/cmc.2023.037363
10.1007/s11042-022-13437-3
10.1016/j.chemolab.2018.10.009
10.1016/j.jbi.2021.103957
10.1016/j.artmed.2019.01.001
10.1016/j.eswa.2017.08.026
10.1038/415530a
10.1504/IJDMB.2017.084026
10.1016/j.cie.2012.07.011
10.1016/j.compbiomed.2013.04.018
10.1371/journal.pone.0212333
10.1016/j.csbj.2014.11.005
10.1016/j.artmed.2019.101746
10.21275/ART20203995
10.1007/s00170-012-4013-7
10.1007/s11045-020-00756-7
10.1016/j.imu.2017.10.004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: Copyright Springer Nature B.V. Dec 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1007/s10916-023-02031-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
ExternalDocumentID 38193948
10_1007_s10916_023_02031_1
Genre Journal Article
GroupedDBID ---
-~C
.86
.VR
04C
06C
06D
0R~
0VY
199
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40E
53G
5GY
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
8FE
8FG
8FH
8FI
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EMB
EMOBN
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KPH
LAK
LK8
LLZTM
M0T
M1P
M2P
M7P
MA-
MK0
NAPCQ
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
~A9
~EX
77I
AAYXX
CITATION
PUEGO
-53
-5D
-5G
-BR
-EM
88E
88I
8AO
8FJ
ADINQ
CCPQU
CGR
CUY
CVF
ECM
EIF
GNUQQ
GQ6
HMCUK
NPM
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c375t-9f7d3477385248879a1df7e74c9527075f63fab600bacbb6d4ab9b170989d3e63
IEDL.DBID U2A
ISSN 1573-689X
0148-5598
IngestDate Thu Sep 04 18:42:33 EDT 2025
Tue Oct 07 05:32:02 EDT 2025
Wed Feb 19 02:00:22 EST 2025
Wed Oct 01 04:08:40 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Mon Jul 21 06:08:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Minimum Redundancy Maximum Relevance (mRMR)
Sine Cosine Algorithm (SCA)
Cuckoo Search Algorithm (CSA)
Cancer Classification
Support Vector Machine (SVM)
Feature Selection (FS)
Language English
License 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-9f7d3477385248879a1df7e74c9527075f63fab600bacbb6d4ab9b170989d3e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 38193948
PQID 2912138691
PQPubID 54050
ParticipantIDs proquest_miscellaneous_2912524458
proquest_journals_2912138691
pubmed_primary_38193948
crossref_citationtrail_10_1007_s10916_023_02031_1
crossref_primary_10_1007_s10916_023_02031_1
springer_journals_10_1007_s10916_023_02031_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Home of Clinical Informatics Research
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References H Motieghader (2031_CR25) 2017; 9
2031_CR41
I Lorencin (2031_CR44) 2019; 102
LJP Van Der Maaten (2031_CR2) 2009; 10
2031_CR5
2031_CR9
2031_CR8
2031_CR7
2031_CR6
H Lu (2031_CR31) 2017; 256
F Soares (2031_CR45) 2017; 82
HM Alshamlan (2031_CR64) 2015; 56
MP Hosseini (2031_CR47) 2018; 84
S Nakariyakul (2031_CR13) 2019; 14
R Aziz (2031_CR12) 2017; 71
I Jain (2031_CR29) 2018; 62
RM Aziz (2031_CR14) 2022; 60
2031_CR43
2031_CR49
K Kourou (2031_CR4) 2015; 13
2031_CR48
2031_CR46
E Valian (2031_CR20) 2013; 64
JB Lamy (2031_CR52) 2019; 94
GT Reddy (2031_CR59) 2020; 8
R Aziz (2031_CR11) 2017; 17
M Alzaqebah (2031_CR21) 2021; 24
RM Aziz (2031_CR3) 2022; 26
2031_CR39
S Peng (2031_CR66) 2003; 555
AR Yildiz (2031_CR22) 2013; 64
S Akbar (2031_CR42) 2020; 8
2031_CR33
2031_CR32
P Nanglia (2031_CR23) 2021; 7
H Yu (2031_CR62) 2009; 7
A Khamparia (2031_CR36) 2021; 32
2031_CR38
J Lv (2031_CR56) 2016; 59
I Fister (2031_CR55) 2014; 516
2031_CR63
Q Shen (2031_CR65) 2007; 71
2031_CR60
ZY Algamal (2031_CR67) 2015; 67
P Stephan (2031_CR35) 2021; 33
P Shunmugapriya (2031_CR26) 2017; 36
RA Musheer (2031_CR10) 2019; 23
S Shahbeig (2031_CR30) 2017; 131
2031_CR27
2031_CR24
Y Zheng (2031_CR34) 2019; 7
2031_CR68
2031_CR51
2031_CR50
S Akbar (2031_CR40) 2017; 79
Y Cui (2031_CR61) 2013; 43
2031_CR19
2031_CR17
PT Endo (2031_CR18) 2022; 1
V Elyasigomari (2031_CR28) 2017; 67
A Tefferi (2031_CR1) 2009; 115
AK Shukla (2031_CR37) 2018; 183
2031_CR54
2031_CR53
2031_CR16
2031_CR15
2031_CR58
2031_CR57
References_xml – ident: 2031_CR17
– volume: 67
  start-page: 136
  year: 2015
  ident: 2031_CR67
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.10.008
– ident: 2031_CR9
  doi: 10.1007/s40745-022-00424-6
– volume: 1
  start-page: 1
  issue: 1
  year: 2022
  ident: 2031_CR18
  publication-title: Int. J. Grid Util. Comput.
  doi: 10.1504/ijguc.2022.10046091
– volume: 62
  start-page: 203
  year: 2018
  ident: 2031_CR29
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.038
– ident: 2031_CR19
  doi: 10.1007/978-3-319-02141-6_3
– ident: 2031_CR33
– volume: 516
  start-page: 49
  year: 2014
  ident: 2031_CR55
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-319-02141-6_3
– volume: 7
  start-page: 200
  issue: 4
  year: 2009
  ident: 2031_CR62
  publication-title: Genomics, Proteomics Bioinforma.
  doi: 10.1016/S1672-0229(08)60050-9
– ident: 2031_CR24
  doi: 10.4108/eai.19-12-2018.156086
– ident: 2031_CR49
  doi: 10.1016/j.measurement.2021.109442
– ident: 2031_CR63
  doi: 10.1155/2012/320698
– ident: 2031_CR39
  doi: 10.1016/j.bea.2022.100069
– volume: 71
  start-page: 161
  year: 2017
  ident: 2031_CR12
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2017.10.009
– ident: 2031_CR43
  doi: 10.1016/j.artmed.2022.102349
– ident: 2031_CR46
  doi: 10.1016/j.artmed.2019.07.008
– ident: 2031_CR7
  doi: 10.1007/s44230-023-00041-3
– volume: 23
  start-page: 13409
  issue: 24
  year: 2019
  ident: 2031_CR10
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03879-7
– volume: 7
  start-page: 14908
  year: 2019
  ident: 2031_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879848
– volume: 7
  start-page: 335
  issue: 3
  year: 2021
  ident: 2031_CR23
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.06.007
– volume: 131
  start-page: 58
  year: 2017
  ident: 2031_CR30
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.07.035
– volume: 60
  start-page: 1627
  issue: 6
  year: 2022
  ident: 2031_CR14
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02555-7
– ident: 2031_CR48
  doi: 10.1016/j.jbi.2020.103591
– ident: 2031_CR27
  doi: 10.1007/s10916-019-1372-8
– ident: 2031_CR16
  doi: 10.11591/ijeecs.v26.i2.pp1050-1059
– volume: 84
  start-page: 146
  year: 2018
  ident: 2031_CR47
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.12.004
– ident: 2031_CR57
  doi: 10.1155/2015/604910
– ident: 2031_CR41
  doi: 10.1016/j.chemolab.2019.103912
– volume: 8
  start-page: 54776
  year: 2020
  ident: 2031_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980942
– volume: 79
  start-page: 62
  year: 2017
  ident: 2031_CR40
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.06.008
– ident: 2031_CR54
  doi: 10.1109/ICECA.2018.8474912
– ident: 2031_CR38
  doi: 10.1007/s12652-020-02359-3
– volume: 24
  year: 2021
  ident: 2031_CR21
  publication-title: Informatics Med. Unlocked
  doi: 10.1016/j.imu.2021.100572
– volume: 67
  start-page: 11
  year: 2017
  ident: 2031_CR28
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.01.016
– ident: 2031_CR5
  doi: 10.3390/math11051081
– ident: 2031_CR32
  doi: 10.3390/app10093134
– ident: 2031_CR53
  doi: 10.1016/j.artmed.2022.102427
– volume: 555
  start-page: 358
  issue: 2
  year: 2003
  ident: 2031_CR66
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)01275-4
– ident: 2031_CR15
  doi: 10.1007/s00607-021-00955-5
– volume: 56
  start-page: 49
  year: 2015
  ident: 2031_CR64
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2015.03.001
– volume: 71
  start-page: 1679
  issue: 4
  year: 2007
  ident: 2031_CR65
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.07.047
– volume: 82
  start-page: 1
  year: 2017
  ident: 2031_CR45
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.09.004
– ident: 2031_CR50
  doi: 10.1016/j.compeleceng.2020.106958
– volume: 115
  start-page: 3842
  issue: 17
  year: 2009
  ident: 2031_CR1
  publication-title: Cancer
  doi: 10.1002/cncr.24440
– volume: 36
  start-page: 27
  issue: January
  year: 2017
  ident: 2031_CR26
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.04.002
– volume: 8
  start-page: 131939
  year: 2020
  ident: 2031_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009125
– volume: 10
  start-page: 1
  year: 2009
  ident: 2031_CR2
  publication-title: J. Mach. Learn. Res.
  doi: 10.1080/13506280444000102
– volume: 59
  start-page: 13
  year: 2016
  ident: 2031_CR56
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.020
– volume: 256
  start-page: 56
  year: 2017
  ident: 2031_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– volume: 26
  start-page: 12179
  issue: 22
  year: 2022
  ident: 2031_CR3
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07032-9
– volume: 33
  start-page: 13667
  issue: 20
  year: 2021
  ident: 2031_CR35
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05997-6
– ident: 2031_CR68
  doi: 10.32604/cmc.2023.037363
– ident: 2031_CR6
  doi: 10.1007/s11042-022-13437-3
– volume: 183
  start-page: 47
  issue: July
  year: 2018
  ident: 2031_CR37
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.10.009
– ident: 2031_CR51
  doi: 10.1016/j.jbi.2021.103957
– volume: 94
  start-page: 42
  issue: January
  year: 2019
  ident: 2031_CR52
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.01.001
– ident: 2031_CR58
  doi: 10.1016/j.eswa.2017.08.026
– ident: 2031_CR60
  doi: 10.1038/415530a
– volume: 17
  start-page: 42
  issue: 1
  year: 2017
  ident: 2031_CR11
  publication-title: Int. J. Data Min. Bioinform.
  doi: 10.1504/IJDMB.2017.084026
– volume: 64
  start-page: 459
  issue: 1
  year: 2013
  ident: 2031_CR20
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2012.07.011
– volume: 43
  start-page: 933
  issue: 7
  year: 2013
  ident: 2031_CR61
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.04.018
– volume: 14
  start-page: 1
  issue: 2
  year: 2019
  ident: 2031_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212333
– volume: 13
  start-page: 8
  year: 2015
  ident: 2031_CR4
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 102
  start-page: 2020
  issue: May
  year: 2019
  ident: 2031_CR44
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101746
– ident: 2031_CR8
  doi: 10.21275/ART20203995
– volume: 64
  start-page: 55
  issue: 1–4
  year: 2013
  ident: 2031_CR22
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4013-7
– volume: 32
  start-page: 747
  issue: 2
  year: 2021
  ident: 2031_CR36
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-020-00756-7
– volume: 9
  start-page: 246
  issue: August
  year: 2017
  ident: 2031_CR25
  publication-title: Informatics Med. Unlocked
  doi: 10.1016/j.imu.2017.10.004
SSID ssj0009667
Score 2.5479212
Snippet Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms Algorithms
Biological activity
Breast cancer
Breast Neoplasms - genetics
Cancer
Classification
Classifiers
Datasets
Feature selection
Female
Gene expression
Genes
Health Informatics
Health Personnel
Health Sciences
Humans
Machine Learning
Medicine
Medicine & Public Health
Optimization
Original Paper
Redundancy
Search algorithms
Statistics for Life Sciences
Support Vector Machine
Support vector machines
Trigonometric functions
Title Optimizing Gene Selection and Cancer Classification with Hybrid Sine Cosine and Cuckoo Search Algorithm
URI https://link.springer.com/article/10.1007/s10916-023-02031-1
https://www.ncbi.nlm.nih.gov/pubmed/38193948
https://www.proquest.com/docview/2912138691
https://www.proquest.com/docview/2912524458
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 1573-689X
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 1573-689X
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 1573-689X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 1573-689X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5BKyGkCpXyl7ZERuIGlrq2146PUdQ0AhUOJVI5rWyvDYh2F6XJoTwNz9InY2Z_ElABibPH3l1_nvXYM_MNwEujfNLJGe4UuRlHNnB7VCbuXYgy5MT5TdnIp-_0bK7enOfnXVLYVR_t3rskmz_1L8luaMpw3GM4ec8yjmee7ZzovHAVz8V4Q7WrtenSY_7c7_ct6JZdecsn2mw101140NmIbNyC-hDuxGoP7p12XvA92Gnv2libQvQIPr9Hvb_88h0HY0Qjzc6a4jY448xVJZsQsAvWlL-kwKAGC0YXsGx2TQlb7AyHZZOaQuDbHqvwta5ZG4p882N88aleoPjlY5hPjz9MZryroMCDNPmS22RKqQwx1gjUVGNdViYTjQo2FwathaRlch6NHsTGe10q563PzBFCVMqo5RPYquoqPgPmbUy5SFG6MijaxPBgKJQPeZRKCysGkPWTWoSOXpyqXFwUG2JkAqJAIIoGiCIbwKt1n28tucY_pQ97rIpO0a4KYYmTbqQtNr9YN6OKkN_DVbFetTL4_SofDeBpi_H6cXRglVZhy-se9M3gf3-X_f8TP4D7Ao2h5urGHsLWcrGKz9GYWfoh3B1NT4awPT75-PZ42Kzkn_8z7Ok
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB6hVAKkip8CJVDASNzAVdf22vExiloCbcqhjVROK9trA2q7i9LkQJ-GZ-HJGK93E6CA1LPHXq9n7Bl7Zr4BeKWEDTIYRY2IbsaBdlTvlIFa4zx3ecT8jtnIk0M5nor3J_lJmxR20UW7dy7J5qT-JdkNTRmKOoZG71lG8c6zJvCCwnqwNnz7cX93BbYrpWoTZP7e83cldMWyvOIVbZTN3l2YdtNMMSan24u53XaXfyA4Xvc_7sGd1vokwyQu9-GGrzbg5qT1r2_AenrFIyk56QF8_oAnyvmXSxyfRIBqctSUzUFeElOVZBRFZkaawpox5KjhMolPu2T8LaaCkSMclozqGFyfeizcaV2TFOT84_vw7FM9Q_LzhzDd2z0ejWlbm4E6rvI51UGVXKiIhcPwDFDaZGVQXgmnc6bQDgmSB2PRnEKuWytLYay2mdpB5pfcS_4IelVd-cdArPYhZ8FzUzoR1SNeOZmwLvdcSKZZH7KOWYVrgctj_YyzYgW5HJe0wCUtmiUtsj68Xvb5mmA7_ku91clA0W7hi4LpiHY3kBqbXy6bcfNFj4qpfL1INPj_Ih_0YTPJzvJz8SrMtcCWN50crAb_91yeXI_8BdwaH08OioN3h_tP4TZDk6t5INJb0JvPFv4Zmkxz-7zdIT8BFOsKTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYqkBBShQr9CwXqSr0VC9b22vExSonSH2gliMRtZXttWhV2UUgO8DQ8C0_WmfUmoaJU6tlj764_e2fsmfmGkPdauqii1cxKdDN2jWdmv4zMWR-Ez5HzG7ORD4_UcCQ_n-an97L4m2j3mUsy5TQgS1M12bss4969xDcwaxjoG4aetIzB-WdZIlECrOgR7y1od5XSbarM3_v9qY4e2JgP_KON2hk8I2utvUh7CeB18iRUG2TlsPWIb5Cn6d6NpnSi5-THN_gHXPy8gcEoUkrT46bQDcw-tVVJ-wjymDalMDFIqMGF4mUsHV5j8hY9hmFpv8Zw-NRj6n_VNU1hyXe3vfOzegziFy_IaHBw0h-ytpoC80LnE2aiLoXUyF7DYddqY7My6qClNznXYDlEJaJ1YAABTs6pUlpnXKb3Aa5SBCVekqWqrsJrQp0JMecxCFt6iQoNDolcOp8HIRU3vEOy2aQWvqUax4oX58WCJBmBKACIogGiyDrkw7zPZSLa-Kf01gyrot10VwU3yE_XVQaa382bYbugD8RWoZ4mGfh-mXc75FXCeP44PLwKI6Fldwb6YvDH32Xz_8TfkpXvHwfF109HX96QVQ42UnOjY7bI0mQ8Ddtg40zcTrOMfwP8TPGX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Gene+Selection+and+Cancer+Classification+with+Hybrid+Sine+Cosine+and+Cuckoo+Search%C2%A0Algorithm&rft.jtitle=Journal+of+medical+systems&rft.au=Yaqoob%2C+Abrar&rft.au=Verma%2C+Navneet+Kumar&rft.au=Aziz%2C+Rabia+Musheer&rft.date=2024-01-09&rft.pub=Springer+US&rft.eissn=1573-689X&rft.volume=48&rft.issue=1&rft_id=info:doi/10.1007%2Fs10916-023-02031-1&rft.externalDocID=10_1007_s10916_023_02031_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-689X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-689X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-689X&client=summon