Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks
Purpose Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clini...
Saved in:
| Published in | International journal for computer assisted radiology and surgery Vol. 15; no. 8; pp. 1303 - 1312 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.08.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1861-6410 1861-6429 1861-6429 |
| DOI | 10.1007/s11548-020-02182-3 |
Cover
| Abstract | Purpose
Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.
Methods
We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.
Results
We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.
Conclusion
We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities. |
|---|---|
| AbstractList | Purpose
Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.
Methods
We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.
Results
We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.
Conclusion
We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities. PurposeFetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.MethodsWe applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.ResultsWe evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.ConclusionWe present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities. Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.PURPOSEFetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.METHODSWe applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.RESULTSWe evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.CONCLUSIONWe present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities. Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment. We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping. We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization. We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities. |
| Author | Zhang, Lihe Wang, Nan Cai, Hongmin Lei, Ting Xie, Hongning Xie, Baihong Xian, Jianbo He, Miao |
| Author_xml | – sequence: 1 givenname: Baihong surname: Xie fullname: Xie, Baihong organization: South China University of Technology – sequence: 2 givenname: Ting surname: Lei fullname: Lei, Ting organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University – sequence: 3 givenname: Nan surname: Wang fullname: Wang, Nan organization: Guangzhou Aiyunji Information Technology Co., Ltd – sequence: 4 givenname: Hongmin surname: Cai fullname: Cai, Hongmin organization: South China University of Technology – sequence: 5 givenname: Jianbo surname: Xian fullname: Xian, Jianbo organization: South China University of Technology, Guangzhou Aiyunji Information Technology Co., Ltd – sequence: 6 givenname: Miao surname: He fullname: He, Miao organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University – sequence: 7 givenname: Lihe surname: Zhang fullname: Zhang, Lihe organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University – sequence: 8 givenname: Hongning orcidid: 0000-0002-1705-1328 surname: Xie fullname: Xie, Hongning email: hongning_x@126.com organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32488568$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1vFDEQhi0URHIHf4ACWaKhWfD3esvoFCBSJBqoLa93fHLYsy_2Oij_Pr5cQqQUKaxx8Tzj8bwrdBJTBIQ-UvKVEtJ_K5RKoTvCSDtUs46_QWdUK9opwYaT_3dKTtGqlGtChOy5fIdOORNaS6XPkNuk3b4ukDsbJpjwFOw2phIK9iljD4ud8ZhtiLjOS7Yl1TjhsLNbKLiWELd4Athjl-JtmusSUmxChJofyvIv5b_lPXrr7Vzgw2Ndoz_fL35vfnZXv35cbs6vOsd7uXR6GrWVlnAy9kr7YVBOi8mClMxrzYVyihKvlIZe-JHoQQ7jaLlyrPejJpSv0Zdj331ONxXKYnahOJhnGyHVYpggAx24FAf08wv0OtXcZj9QjAkqh_bkGn16pOq4g8nsc_t5vjNP62uAPgIup1IyeOPCYg9baLsKs6HEHJIyx6RMS8o8JGV4U9kL9an7qxI_SqXBcQv5eexXrHvmR6W2 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105283 crossref_primary_10_3389_fmed_2021_729978 crossref_primary_10_1515_jpm_2023_0041 crossref_primary_10_1002_jum_16594 crossref_primary_10_1007_s00521_023_09148_x crossref_primary_10_1002_uog_29172 crossref_primary_10_1088_1361_6560_ad4086 crossref_primary_10_3389_fmed_2023_1330218 crossref_primary_10_1002_uog_26130 crossref_primary_10_3390_s23177374 crossref_primary_10_1016_j_media_2022_102470 crossref_primary_10_1080_1448837X_2025_2457810 crossref_primary_10_3390_life14020166 crossref_primary_10_3390_biomimetics8070519 crossref_primary_10_3390_jimaging10100239 crossref_primary_10_3390_bioengineering12030288 crossref_primary_10_3390_jcm13185626 crossref_primary_10_1016_j_imavis_2023_104725 crossref_primary_10_1038_s41598_022_07210_7 crossref_primary_10_1016_j_cmpb_2022_106821 crossref_primary_10_1109_JSEN_2024_3485216 crossref_primary_10_3233_THC_231482 crossref_primary_10_3390_jcm12093298 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_1016_j_isci_2022_104713 crossref_primary_10_1038_s41598_025_85798_2 crossref_primary_10_3389_fmed_2021_733468 crossref_primary_10_3390_jcm12216833 crossref_primary_10_1111_coin_12660 crossref_primary_10_1007_s13721_023_00437_y crossref_primary_10_3389_fphy_2024_1398393 crossref_primary_10_1007_s11831_024_10067_w crossref_primary_10_1016_j_eswa_2023_122153 |
| Cites_doi | 10.1016/j.ultrasmedbio.2004.11.003 10.1016/j.ultrasmedbio.2005.04.002 10.1109/TCYB.2017.2685080 10.1109/TMI.2016.2535302 10.1002/uog.8831 10.1016/j.ultrasmedbio.2014.06.006 10.1002/uog.3909 10.1109/JBHI.2017.2705031 10.1117/1.JMI.4.2.024001 10.1109/TMI.2017.2712367 10.1088/0031-9155/61/3/1095 10.1109/tkde.2008.239 10.1109/TPAMI.2016.2577031 10.1145/3065386 10.1148/radiology.172.2.2664864 10.1118/1.4736415 10.1109/JBHI.2015.2425041 10.1016/j.ultrasmedbio.2018.09.015 10.1016/j.ultrasmedbio.2017.07.013 10.1002/uog.21967 10.1007/978-3-642-33712-3_25 10.1007/978-3-319-24574-4_28 10.1007/978-3-319-24574-4_82 10.1109/CVPR.2014.222 10.1109/CVPR.2015.7298877 10.1109/CVPR.2016.319 10.1109/CVPR.2017.690 10.1007/978-3-319-24553-9_62 10.1109/ISBI.2013.6556576 10.1109/EMBC.2015.7318481 10.1109/ICCV.2017.74 |
| ContentType | Journal Article |
| Copyright | CARS 2020 CARS 2020. |
| Copyright_xml | – notice: CARS 2020 – notice: CARS 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1007/s11548-020-02182-3 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1861-6429 |
| EndPage | 1312 |
| ExternalDocumentID | 32488568 10_1007_s11548_020_02182_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Science and Technology Development Plan of Guangdong Province grantid: 2017A020214013; 2017B020226004 – fundername: Health and Medical Collaborative Innovation Project of Guangzhou City grantid: 201803010021 – fundername: National Natural Science Foundation of China grantid: 81571687; 61771007 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 81571687 – fundername: National Natural Science Foundation of China grantid: 61771007 – fundername: Science and Technology Development Plan of Guangdong Province grantid: 2017A020214013 – fundername: Science and Technology Development Plan of Guangdong Province grantid: 2017B020226004 |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c375t-8db8a5a030b768f996c84dae552f88346c610f668e74fb08959bba36c27fb8013 |
| IEDL.DBID | U2A |
| ISSN | 1861-6410 1861-6429 |
| IngestDate | Fri Sep 05 06:55:21 EDT 2025 Tue Oct 07 06:56:24 EDT 2025 Wed Feb 19 02:29:58 EST 2025 Wed Oct 01 00:20:35 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 Fri Feb 21 02:42:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Prenatal ultrasound images Deep convolutional neural network Fetal brain abnormalities Craniocerebral segmentation Computer-aided diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-8db8a5a030b768f996c84dae552f88346c610f668e74fb08959bba36c27fb8013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1705-1328 |
| PMID | 32488568 |
| PQID | 2422415988 |
| PQPubID | 2043910 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2409193541 proquest_journals_2422415988 pubmed_primary_32488568 crossref_citationtrail_10_1007_s11548_020_02182_3 crossref_primary_10_1007_s11548_020_02182_3 springer_journals_10_1007_s11548_020_02182_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
| PublicationTitle | International journal for computer assisted radiology and surgery |
| PublicationTitleAbbrev | Int J CARS |
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Chen, Wu, Dou, Qin, Li, Cheng, Ni, Heng (CR8) 2017; 47 Salomon, Alfirevic, Berghella, Bilardo, Hernandez-Andrade, Johnsen, Kalache, L, Malinger, Munoz (CR4) 2011; 37 (CR1) 2007; 29 Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (CR31) 2016; 35 CR18 CR17 CR16 CR11 CR33 Yaqub, Kelly, Papageorghiou, Noble (CR6) 2017; 43 Zhang, Ye, Lambrou, Duan, Allinson, Dudley (CR15) 2016; 61 Yu, Tan, Ni, Qin, Chen, Li, Lei, Wang (CR5) 2018; 22 Lu, Tan, Floyd (CR13) 2005; 31 Zhang, Dudley, Lambrou, Allinson, Ye (CR12) 2017; 4 Krizhevsky, Sutskever, Hinton (CR26) 2012; 2 Baumgartner, Kamnitsas, Matthew, Fletcher, Smith, Koch, Kainz, Rueckert (CR3) 2017; 36 He, Garcia (CR27) 2009; 21 CR7 CR29 CR28 Chen, Ni, Qin, Li, Yang, Wang, Heng (CR30) 2015; 19 CR24 CR23 Xie, Wang, He, Zhang, Cai, Xian, Lin, Zheng, Yang (CR25) 2020 CR22 CR21 CR20 van den Heuvel, Hezkiel, Stefano, Chris, Bram (CR19) 2019; 45 Ren, He, Girshick, Sun (CR32) 2016; 39 Ni, Yang, Chen, Chin, Chen, Heng, Li, Qin, Wang (CR10) 2014; 40 Zhang, Chen, Chin, Wang, Li (CR9) 2012; 39 Filly, Cardoza, Goldstein, Barkovich (CR2) 1989; 172 Jardim, Figueiredo (CR14) 2005; 31 SMGVB Jardim (2182_CR14) 2005; 31 Z Yu (2182_CR5) 2018; 22 N Tajbakhsh (2182_CR31) 2016; 35 RA Filly (2182_CR2) 1989; 172 L Zhang (2182_CR15) 2016; 61 H Xie (2182_CR25) 2020 A Krizhevsky (2182_CR26) 2012; 2 2182_CR11 2182_CR33 L Zhang (2182_CR9) 2012; 39 2182_CR16 2182_CR17 2182_CR18 H He (2182_CR27) 2009; 21 W Lu (2182_CR13) 2005; 31 H Chen (2182_CR8) 2017; 47 2182_CR7 LJ Salomon (2182_CR4) 2011; 37 International Society of Ultrasound in Obstetrics & Gynecology Education Committee (2182_CR1) 2007; 29 D Ni (2182_CR10) 2014; 40 2182_CR20 S Ren (2182_CR32) 2016; 39 2182_CR21 2182_CR22 2182_CR23 L Zhang (2182_CR12) 2017; 4 2182_CR24 P van den Heuvel (2182_CR19) 2019; 45 M Yaqub (2182_CR6) 2017; 43 2182_CR28 2182_CR29 H Chen (2182_CR30) 2015; 19 CF Baumgartner (2182_CR3) 2017; 36 |
| References_xml | – ident: CR22 – ident: CR18 – volume: 31 start-page: 243 issue: 2 year: 2005 end-page: 250 ident: CR14 article-title: Segmentation of fetal ultrasound images publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2004.11.003 – ident: CR16 – volume: 31 start-page: 929 issue: 7 year: 2005 end-page: 936 ident: CR13 article-title: Automated fetal head detection and measurement in ultrasound images by iterative randomized Hough transform publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2005.04.002 – volume: 47 start-page: 1576 issue: 6 year: 2017 end-page: 1586 ident: CR8 article-title: Ultrasound standard plane detection using a composite neural network framework publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2685080 – ident: CR33 – ident: CR29 – volume: 35 start-page: 1299 issue: 5 year: 2016 end-page: 1312 ident: CR31 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning? publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – ident: CR23 – volume: 37 start-page: 116 year: 2011 end-page: 126 ident: CR4 article-title: Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.8831 – volume: 40 start-page: 2728 issue: 11 year: 2014 end-page: 2742 ident: CR10 article-title: Standard plane localization in ultrasound by radial component model and selective search publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2014.06.006 – ident: CR21 – volume: 29 start-page: 109 issue: 1 year: 2007 end-page: 116 ident: CR1 article-title: Sonographic examination of the fetal central nervous system: guidelines for performing the ’basic examination’ and the ’fetal neurosonogram’ publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.3909 – volume: 22 start-page: 874 issue: 3 year: 2018 end-page: 885 ident: CR5 article-title: A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2705031 – volume: 4 start-page: 024001 issue: 2 year: 2017 ident: CR12 article-title: Automatic image quality assessment and measurement of fetal head in two-dimensional ultrasound image publication-title: J Med Imaging doi: 10.1117/1.JMI.4.2.024001 – volume: 36 start-page: 2204 issue: 11 year: 2017 end-page: 2215 ident: CR3 article-title: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2712367 – volume: 61 start-page: 1095 issue: 3 year: 2016 end-page: 1115 ident: CR15 article-title: A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/3/1095 – volume: 21 start-page: 1263 issue: 9 year: 2009 end-page: 1284 ident: CR27 article-title: Learning from imbalanced data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/tkde.2008.239 – ident: CR17 – ident: CR11 – volume: 39 start-page: 1137 year: 2016 end-page: 1149 ident: CR32 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 2 start-page: 1097 year: 2012 end-page: 1105 ident: CR26 article-title: Imagenet classification with deep convolutional neural networks publication-title: Int Conf Neural Inf Process Syst doi: 10.1145/3065386 – volume: 172 start-page: 403 issue: 2 year: 1989 end-page: 408 ident: CR2 article-title: Detection of fetal central nervous system anomalies: a practical level of effort for a routine sonogram publication-title: Radiology doi: 10.1148/radiology.172.2.2664864 – volume: 39 start-page: 5015 issue: 8 year: 2012 end-page: 5027 ident: CR9 article-title: Intelligent scanning: automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination publication-title: Med Phys doi: 10.1118/1.4736415 – volume: 19 start-page: 1627 issue: 5 year: 2015 end-page: 1636 ident: CR30 article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2425041 – ident: CR7 – volume: 45 start-page: 773 issue: 3 year: 2019 end-page: 785 ident: CR19 article-title: Automated fetal head detection and circumference estimation from free-hand ultrasound sweeps using deep learning in resource-limited countries publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2018.09.015 – volume: 43 start-page: 2925 issue: 12 year: 2017 end-page: 2933 ident: CR6 article-title: A deep learning solution for automatic fetal neurosonographic diagnostic plane verification using clinical standard constraints publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2017.07.013 – year: 2020 ident: CR25 article-title: Using deep learning algorithms to classify fetal brain ultrasound images as normal or abnormal publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.21967 – ident: CR28 – ident: CR24 – ident: CR20 – ident: 2182_CR22 doi: 10.1007/978-3-642-33712-3_25 – volume: 40 start-page: 2728 issue: 11 year: 2014 ident: 2182_CR10 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2014.06.006 – volume: 4 start-page: 024001 issue: 2 year: 2017 ident: 2182_CR12 publication-title: J Med Imaging doi: 10.1117/1.JMI.4.2.024001 – volume: 45 start-page: 773 issue: 3 year: 2019 ident: 2182_CR19 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2018.09.015 – ident: 2182_CR20 doi: 10.1007/978-3-319-24574-4_28 – volume: 172 start-page: 403 issue: 2 year: 1989 ident: 2182_CR2 publication-title: Radiology doi: 10.1148/radiology.172.2.2664864 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 2182_CR27 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/tkde.2008.239 – ident: 2182_CR16 doi: 10.1007/978-3-319-24574-4_82 – volume: 37 start-page: 116 year: 2011 ident: 2182_CR4 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.8831 – volume: 29 start-page: 109 issue: 1 year: 2007 ident: 2182_CR1 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.3909 – volume: 31 start-page: 243 issue: 2 year: 2005 ident: 2182_CR14 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2004.11.003 – ident: 2182_CR28 doi: 10.1109/CVPR.2014.222 – volume: 39 start-page: 1137 year: 2016 ident: 2182_CR32 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 2182_CR23 doi: 10.1109/CVPR.2015.7298877 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 2182_CR31 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – volume: 2 start-page: 1097 year: 2012 ident: 2182_CR26 publication-title: Int Conf Neural Inf Process Syst doi: 10.1145/3065386 – volume: 36 start-page: 2204 issue: 11 year: 2017 ident: 2182_CR3 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2712367 – volume: 31 start-page: 929 issue: 7 year: 2005 ident: 2182_CR13 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2005.04.002 – ident: 2182_CR24 doi: 10.1109/CVPR.2016.319 – ident: 2182_CR33 doi: 10.1109/CVPR.2017.690 – volume: 39 start-page: 5015 issue: 8 year: 2012 ident: 2182_CR9 publication-title: Med Phys doi: 10.1118/1.4736415 – volume: 19 start-page: 1627 issue: 5 year: 2015 ident: 2182_CR30 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2425041 – volume: 47 start-page: 1576 issue: 6 year: 2017 ident: 2182_CR8 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2685080 – volume: 61 start-page: 1095 issue: 3 year: 2016 ident: 2182_CR15 publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/3/1095 – ident: 2182_CR11 – ident: 2182_CR7 doi: 10.1007/978-3-319-24553-9_62 – volume: 43 start-page: 2925 issue: 12 year: 2017 ident: 2182_CR6 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2017.07.013 – ident: 2182_CR18 doi: 10.1109/ISBI.2013.6556576 – volume: 22 start-page: 874 issue: 3 year: 2018 ident: 2182_CR5 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2705031 – year: 2020 ident: 2182_CR25 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.21967 – ident: 2182_CR29 – ident: 2182_CR17 doi: 10.1109/EMBC.2015.7318481 – ident: 2182_CR21 doi: 10.1109/ICCV.2017.74 |
| SSID | ssj0045735 |
| Score | 2.4031823 |
| Snippet | Purpose
Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and... Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead... PurposeFetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1303 |
| SubjectTerms | Abnormalities Algorithms Artificial neural networks Brain Brain - diagnostic imaging Brain Diseases - diagnostic imaging Classifiers Computer Imaging Computer Science Diagnosis Diagnosis, Computer-Assisted - methods Female Health Informatics Humans Image classification Image Processing, Computer-Assisted - methods Image segmentation Imaging Mapping Medical imaging Medicine Medicine & Public Health Neural networks Neural Networks, Computer Original Article Pattern Recognition and Graphics Physicians Pregnancy Radiology Surgery Ultrasonic imaging Ultrasonography, Prenatal - methods Ultrasound Vision |
| Title | Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks |
| URI | https://link.springer.com/article/10.1007/s11548-020-02182-3 https://www.ncbi.nlm.nih.gov/pubmed/32488568 https://www.proquest.com/docview/2422415988 https://www.proquest.com/docview/2409193541 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: U2A dateStart: 20060625 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64gHhxX8aNCN40MG2WpsdBXFD05ICeStMmIuiM2Jn_73uZdAZxAU8tNElL3_Y93gZwkmU5RXc09044LmVNetA7rp2hQkeV2BAxvbvX131586geY1FY02a7tyHJoKlnxW6Erjm5O6HtOBfzsKionRdycT_ttfpXqiyM1UyMTriWSTeWyvx8xldz9A1jfouPBrNzuQYrES-y3oTA6zDnBhuw2s5iYFE0N2DpLgbJN6Fqn3Jq_1izepJN99IwBKjMO4TbzNJkCDZ-HX2UDQ1WYi9vqFgaRmnwz6x27p1RPnrkS9xAfS_DJWSNN1vQv7x4OL_mcZYCr0SmRtzU1pSqRJG26GB49HIqI-vSKZV6Y4TUFeIor7VxmfS2a3KVW1sKXaWZt2jFxDYsDIYDtwsMLb5GP8sh1CulkDKnNFSN95mXZVelHUjaX1pUsdE4zbt4LWYtkokMBZKhCGQoRAdOp3veJ202_lx90FKqiCLXFIg1CI3kxnTgePoYhYUiIOXADce0BuFRLpRMOrAzofD0dYgsjVEad5-1JJ8d_vu37P1v-T4sp4H9KIXwABZGH2N3iLBmZI9gsXf1dHtxFLj5E1CX7BE |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoJeKJRHFwoYiRu42sSPOMcKtSy021NXKqcoTuyqomyrJnvh1zPj2LuCAlJPiRTbcZyZ8TeazzMA74uipOiO5t4Jx6VsyQ56x7UzdNBRZTZETGcnejqXX8_UWTwU1iW2ewpJBku9PuxG6JqTuxPSjnNxHzYkOij5CDb2P387OkgWWKoiFNbMjM64ltkkHpb5-yi_b0i3UOatCGnYeA63YJ6mPPBNvu8te7vX_Pwjm-Ndv-kxPIpIlO0PovME7rnFNmylKg8sKv02PJjF8PtTaNJTToklW9YOPL2LjiH0Zd4hkGeWak6w5WV_U3dUsold_ECT1TEi2J-z1rlrRkz3KPHYgTJqhkvgo3fPYH54cPppymOVBt6IQvXctNbUqkZjYdF18eg_NUa2tVMq98YIqRtEaF5r4wrp7cSUqrS2FrrJC29xfxTPYbS4WrgdYIglNHpwDkFkLYWUJRFcNd4XXtYTlY8hS7-qamIKc6qkcVmtky_Tgla4oFVY0EqM4cOqz_WQwOO_rXeTBFRRmbsKUQzhnNKYMbxbPUY1pNhKvXBXS2qDwKsUSmZjeDFIzup1iFmNURp7f0xSsB7833N5ebfmb-Hh9HR2XB1_OTl6BZt5ECoiKu7CqL9ZutcInnr7JurKLxW4CmU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VEJcoNACSym4Um9gsYkfcY6IdsWjIA6sxC2KExutBGFFsv-fGSfZLaIg9ZRIsZ0oM2N_o5n5BuBnkqQU3dHcO-G4lCXtg95x7QwVOqrIhojp5ZU-HcvzW3X7VxV_yHbvQ5JtTQOxNFXN0bT0R4vCN0LanFyfQEHOxUf4JIkoATV6HB_3e7FUSWixGRkdcS2jYVc28-81Xh5Nr_Dmq1hpOIJGn2G1w47suBX2Onxw1Qas9X0ZWGemG7B82QXMv0DRP-VEBVmyss2sm9QMwSrzDqE3s9Qlgs3um6e8piZLbPKAm0zNKCX-jpXOTRnlpnc6ihOIAzNcQgZ5_RXGo983J6e866vAC5GohpvSmlzlaN4WnQ2PHk9hZJk7pWJvjJC6QEzltTYukd4OTapSa3OhizjxFk80sQlL1WPltoHh6a_R53II-3IppEwpJVXjfeJlPlTxAKL-l2ZFRzpOvS_uswVdMokhQzFkQQyZGMDBfM60pdx4d_RuL6msM786Q9xByCQ1ZgA_5o_RcCgaklfucUZjECqlQsloAFuthOevQ5RpjNI4-7AX-WLxt79l5_-G78Py9a9R9ufs6uIbrMRBEymzcBeWmqeZ-45op7F7QaGfAfcz8aU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+for+fetal+brain+ultrasound+images+using+deep+convolutional+neural+networks&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Xie%2C+Baihong&rft.au=Lei%2C+Ting&rft.au=Wang%2C+Nan&rft.au=Cai%2C+Hongmin&rft.date=2020-08-01&rft.issn=1861-6429&rft.eissn=1861-6429&rft.volume=15&rft.issue=8&rft.spage=1303&rft_id=info:doi/10.1007%2Fs11548-020-02182-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |