Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks

Purpose Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clini...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 15; no. 8; pp. 1303 - 1312
Main Authors Xie, Baihong, Lei, Ting, Wang, Nan, Cai, Hongmin, Xian, Jianbo, He, Miao, Zhang, Lihe, Xie, Hongning
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-020-02182-3

Cover

Abstract Purpose Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment. Methods We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping. Results We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization. Conclusion We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.
AbstractList Purpose Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment. Methods We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping. Results We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization. Conclusion We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.
PurposeFetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.MethodsWe applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.ResultsWe evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.ConclusionWe present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.
Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.PURPOSEFetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment.We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.METHODSWe applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping.We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.RESULTSWe evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization.We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.CONCLUSIONWe present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.
Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead to neurodevelopmental delay and mental retardation. Early prenatal detection of brain abnormalities is essential for informing clinical management pathways and consulting for parents. The purpose of this research is to develop computer-aided diagnosis algorithms for five common fetal brain abnormalities, which may provide assistance to doctors for brain abnormalities detection in antenatal neurosonographic assessment. We applied a classifier to classify images of fetal brain standard planes (transventricular and transcerebellar) as normal or abnormal. The classifier was trained by image-level labeled images. In the first step, craniocerebral regions were segmented from the ultrasound images. Then, these segmentations were classified into four categories. Last, the lesions in the abnormal images were localized by class activation mapping. We evaluated our algorithms on real-world clinical datasets of fetal brain ultrasound images. We observed that the proposed method achieved a Dice score of 0.942 on craniocerebral region segmentation, an average F1-score of 0.96 on classification and an average mean IOU of 0.497 on lesion localization. We present computer-aided diagnosis algorithms for fetal brain ultrasound images based on deep convolutional neural networks. Our algorithms could be potentially applied in diagnosis assistance and are expected to help junior doctors in making clinical decision and reducing false negatives of fetal brain abnormalities.
Author Zhang, Lihe
Wang, Nan
Cai, Hongmin
Lei, Ting
Xie, Hongning
Xie, Baihong
Xian, Jianbo
He, Miao
Author_xml – sequence: 1
  givenname: Baihong
  surname: Xie
  fullname: Xie, Baihong
  organization: South China University of Technology
– sequence: 2
  givenname: Ting
  surname: Lei
  fullname: Lei, Ting
  organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University
– sequence: 3
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: Guangzhou Aiyunji Information Technology Co., Ltd
– sequence: 4
  givenname: Hongmin
  surname: Cai
  fullname: Cai, Hongmin
  organization: South China University of Technology
– sequence: 5
  givenname: Jianbo
  surname: Xian
  fullname: Xian, Jianbo
  organization: South China University of Technology, Guangzhou Aiyunji Information Technology Co., Ltd
– sequence: 6
  givenname: Miao
  surname: He
  fullname: He, Miao
  organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University
– sequence: 7
  givenname: Lihe
  surname: Zhang
  fullname: Zhang, Lihe
  organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University
– sequence: 8
  givenname: Hongning
  orcidid: 0000-0002-1705-1328
  surname: Xie
  fullname: Xie, Hongning
  email: hongning_x@126.com
  organization: Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated Hospital of Sun Yat-sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32488568$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi0URHIHf4ACWaKhWfD3esvoFCBSJBqoLa93fHLYsy_2Oij_Pr5cQqQUKaxx8Tzj8bwrdBJTBIQ-UvKVEtJ_K5RKoTvCSDtUs46_QWdUK9opwYaT_3dKTtGqlGtChOy5fIdOORNaS6XPkNuk3b4ukDsbJpjwFOw2phIK9iljD4ud8ZhtiLjOS7Yl1TjhsLNbKLiWELd4Athjl-JtmusSUmxChJofyvIv5b_lPXrr7Vzgw2Ndoz_fL35vfnZXv35cbs6vOsd7uXR6GrWVlnAy9kr7YVBOi8mClMxrzYVyihKvlIZe-JHoQQ7jaLlyrPejJpSv0Zdj331ONxXKYnahOJhnGyHVYpggAx24FAf08wv0OtXcZj9QjAkqh_bkGn16pOq4g8nsc_t5vjNP62uAPgIup1IyeOPCYg9baLsKs6HEHJIyx6RMS8o8JGV4U9kL9an7qxI_SqXBcQv5eexXrHvmR6W2
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105283
crossref_primary_10_3389_fmed_2021_729978
crossref_primary_10_1515_jpm_2023_0041
crossref_primary_10_1002_jum_16594
crossref_primary_10_1007_s00521_023_09148_x
crossref_primary_10_1002_uog_29172
crossref_primary_10_1088_1361_6560_ad4086
crossref_primary_10_3389_fmed_2023_1330218
crossref_primary_10_1002_uog_26130
crossref_primary_10_3390_s23177374
crossref_primary_10_1016_j_media_2022_102470
crossref_primary_10_1080_1448837X_2025_2457810
crossref_primary_10_3390_life14020166
crossref_primary_10_3390_biomimetics8070519
crossref_primary_10_3390_jimaging10100239
crossref_primary_10_3390_bioengineering12030288
crossref_primary_10_3390_jcm13185626
crossref_primary_10_1016_j_imavis_2023_104725
crossref_primary_10_1038_s41598_022_07210_7
crossref_primary_10_1016_j_cmpb_2022_106821
crossref_primary_10_1109_JSEN_2024_3485216
crossref_primary_10_3233_THC_231482
crossref_primary_10_3390_jcm12093298
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_1016_j_isci_2022_104713
crossref_primary_10_1038_s41598_025_85798_2
crossref_primary_10_3389_fmed_2021_733468
crossref_primary_10_3390_jcm12216833
crossref_primary_10_1111_coin_12660
crossref_primary_10_1007_s13721_023_00437_y
crossref_primary_10_3389_fphy_2024_1398393
crossref_primary_10_1007_s11831_024_10067_w
crossref_primary_10_1016_j_eswa_2023_122153
Cites_doi 10.1016/j.ultrasmedbio.2004.11.003
10.1016/j.ultrasmedbio.2005.04.002
10.1109/TCYB.2017.2685080
10.1109/TMI.2016.2535302
10.1002/uog.8831
10.1016/j.ultrasmedbio.2014.06.006
10.1002/uog.3909
10.1109/JBHI.2017.2705031
10.1117/1.JMI.4.2.024001
10.1109/TMI.2017.2712367
10.1088/0031-9155/61/3/1095
10.1109/tkde.2008.239
10.1109/TPAMI.2016.2577031
10.1145/3065386
10.1148/radiology.172.2.2664864
10.1118/1.4736415
10.1109/JBHI.2015.2425041
10.1016/j.ultrasmedbio.2018.09.015
10.1016/j.ultrasmedbio.2017.07.013
10.1002/uog.21967
10.1007/978-3-642-33712-3_25
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-24574-4_82
10.1109/CVPR.2014.222
10.1109/CVPR.2015.7298877
10.1109/CVPR.2016.319
10.1109/CVPR.2017.690
10.1007/978-3-319-24553-9_62
10.1109/ISBI.2013.6556576
10.1109/EMBC.2015.7318481
10.1109/ICCV.2017.74
ContentType Journal Article
Copyright CARS 2020
CARS 2020.
Copyright_xml – notice: CARS 2020
– notice: CARS 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-020-02182-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 1312
ExternalDocumentID 32488568
10_1007_s11548_020_02182_3
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Development Plan of Guangdong Province
  grantid: 2017A020214013; 2017B020226004
– fundername: Health and Medical Collaborative Innovation Project of Guangzhou City
  grantid: 201803010021
– fundername: National Natural Science Foundation of China
  grantid: 81571687; 61771007
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 81571687
– fundername: National Natural Science Foundation of China
  grantid: 61771007
– fundername: Science and Technology Development Plan of Guangdong Province
  grantid: 2017A020214013
– fundername: Science and Technology Development Plan of Guangdong Province
  grantid: 2017B020226004
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c375t-8db8a5a030b768f996c84dae552f88346c610f668e74fb08959bba36c27fb8013
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Fri Sep 05 06:55:21 EDT 2025
Tue Oct 07 06:56:24 EDT 2025
Wed Feb 19 02:29:58 EST 2025
Wed Oct 01 00:20:35 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
Fri Feb 21 02:42:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Prenatal ultrasound images
Deep convolutional neural network
Fetal brain abnormalities
Craniocerebral segmentation
Computer-aided diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-8db8a5a030b768f996c84dae552f88346c610f668e74fb08959bba36c27fb8013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1705-1328
PMID 32488568
PQID 2422415988
PQPubID 2043910
PageCount 10
ParticipantIDs proquest_miscellaneous_2409193541
proquest_journals_2422415988
pubmed_primary_32488568
crossref_citationtrail_10_1007_s11548_020_02182_3
crossref_primary_10_1007_s11548_020_02182_3
springer_journals_10_1007_s11548_020_02182_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Chen, Wu, Dou, Qin, Li, Cheng, Ni, Heng (CR8) 2017; 47
Salomon, Alfirevic, Berghella, Bilardo, Hernandez-Andrade, Johnsen, Kalache, L, Malinger, Munoz (CR4) 2011; 37
(CR1) 2007; 29
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (CR31) 2016; 35
CR18
CR17
CR16
CR11
CR33
Yaqub, Kelly, Papageorghiou, Noble (CR6) 2017; 43
Zhang, Ye, Lambrou, Duan, Allinson, Dudley (CR15) 2016; 61
Yu, Tan, Ni, Qin, Chen, Li, Lei, Wang (CR5) 2018; 22
Lu, Tan, Floyd (CR13) 2005; 31
Zhang, Dudley, Lambrou, Allinson, Ye (CR12) 2017; 4
Krizhevsky, Sutskever, Hinton (CR26) 2012; 2
Baumgartner, Kamnitsas, Matthew, Fletcher, Smith, Koch, Kainz, Rueckert (CR3) 2017; 36
He, Garcia (CR27) 2009; 21
CR7
CR29
CR28
Chen, Ni, Qin, Li, Yang, Wang, Heng (CR30) 2015; 19
CR24
CR23
Xie, Wang, He, Zhang, Cai, Xian, Lin, Zheng, Yang (CR25) 2020
CR22
CR21
CR20
van den Heuvel, Hezkiel, Stefano, Chris, Bram (CR19) 2019; 45
Ren, He, Girshick, Sun (CR32) 2016; 39
Ni, Yang, Chen, Chin, Chen, Heng, Li, Qin, Wang (CR10) 2014; 40
Zhang, Chen, Chin, Wang, Li (CR9) 2012; 39
Filly, Cardoza, Goldstein, Barkovich (CR2) 1989; 172
Jardim, Figueiredo (CR14) 2005; 31
SMGVB Jardim (2182_CR14) 2005; 31
Z Yu (2182_CR5) 2018; 22
N Tajbakhsh (2182_CR31) 2016; 35
RA Filly (2182_CR2) 1989; 172
L Zhang (2182_CR15) 2016; 61
H Xie (2182_CR25) 2020
A Krizhevsky (2182_CR26) 2012; 2
2182_CR11
2182_CR33
L Zhang (2182_CR9) 2012; 39
2182_CR16
2182_CR17
2182_CR18
H He (2182_CR27) 2009; 21
W Lu (2182_CR13) 2005; 31
H Chen (2182_CR8) 2017; 47
2182_CR7
LJ Salomon (2182_CR4) 2011; 37
International Society of Ultrasound in Obstetrics & Gynecology Education Committee (2182_CR1) 2007; 29
D Ni (2182_CR10) 2014; 40
2182_CR20
S Ren (2182_CR32) 2016; 39
2182_CR21
2182_CR22
2182_CR23
L Zhang (2182_CR12) 2017; 4
2182_CR24
P van den Heuvel (2182_CR19) 2019; 45
M Yaqub (2182_CR6) 2017; 43
2182_CR28
2182_CR29
H Chen (2182_CR30) 2015; 19
CF Baumgartner (2182_CR3) 2017; 36
References_xml – ident: CR22
– ident: CR18
– volume: 31
  start-page: 243
  issue: 2
  year: 2005
  end-page: 250
  ident: CR14
  article-title: Segmentation of fetal ultrasound images
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2004.11.003
– ident: CR16
– volume: 31
  start-page: 929
  issue: 7
  year: 2005
  end-page: 936
  ident: CR13
  article-title: Automated fetal head detection and measurement in ultrasound images by iterative randomized Hough transform
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2005.04.002
– volume: 47
  start-page: 1576
  issue: 6
  year: 2017
  end-page: 1586
  ident: CR8
  article-title: Ultrasound standard plane detection using a composite neural network framework
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2685080
– ident: CR33
– ident: CR29
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  end-page: 1312
  ident: CR31
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: CR23
– volume: 37
  start-page: 116
  year: 2011
  end-page: 126
  ident: CR4
  article-title: Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.8831
– volume: 40
  start-page: 2728
  issue: 11
  year: 2014
  end-page: 2742
  ident: CR10
  article-title: Standard plane localization in ultrasound by radial component model and selective search
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.06.006
– ident: CR21
– volume: 29
  start-page: 109
  issue: 1
  year: 2007
  end-page: 116
  ident: CR1
  article-title: Sonographic examination of the fetal central nervous system: guidelines for performing the ’basic examination’ and the ’fetal neurosonogram’
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.3909
– volume: 22
  start-page: 874
  issue: 3
  year: 2018
  end-page: 885
  ident: CR5
  article-title: A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2705031
– volume: 4
  start-page: 024001
  issue: 2
  year: 2017
  ident: CR12
  article-title: Automatic image quality assessment and measurement of fetal head in two-dimensional ultrasound image
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.4.2.024001
– volume: 36
  start-page: 2204
  issue: 11
  year: 2017
  end-page: 2215
  ident: CR3
  article-title: Sononet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2712367
– volume: 61
  start-page: 1095
  issue: 3
  year: 2016
  end-page: 1115
  ident: CR15
  article-title: A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/3/1095
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  end-page: 1284
  ident: CR27
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/tkde.2008.239
– ident: CR17
– ident: CR11
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: CR32
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 2
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR26
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Int Conf Neural Inf Process Syst
  doi: 10.1145/3065386
– volume: 172
  start-page: 403
  issue: 2
  year: 1989
  end-page: 408
  ident: CR2
  article-title: Detection of fetal central nervous system anomalies: a practical level of effort for a routine sonogram
  publication-title: Radiology
  doi: 10.1148/radiology.172.2.2664864
– volume: 39
  start-page: 5015
  issue: 8
  year: 2012
  end-page: 5027
  ident: CR9
  article-title: Intelligent scanning: automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination
  publication-title: Med Phys
  doi: 10.1118/1.4736415
– volume: 19
  start-page: 1627
  issue: 5
  year: 2015
  end-page: 1636
  ident: CR30
  article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2425041
– ident: CR7
– volume: 45
  start-page: 773
  issue: 3
  year: 2019
  end-page: 785
  ident: CR19
  article-title: Automated fetal head detection and circumference estimation from free-hand ultrasound sweeps using deep learning in resource-limited countries
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2018.09.015
– volume: 43
  start-page: 2925
  issue: 12
  year: 2017
  end-page: 2933
  ident: CR6
  article-title: A deep learning solution for automatic fetal neurosonographic diagnostic plane verification using clinical standard constraints
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.07.013
– year: 2020
  ident: CR25
  article-title: Using deep learning algorithms to classify fetal brain ultrasound images as normal or abnormal
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.21967
– ident: CR28
– ident: CR24
– ident: CR20
– ident: 2182_CR22
  doi: 10.1007/978-3-642-33712-3_25
– volume: 40
  start-page: 2728
  issue: 11
  year: 2014
  ident: 2182_CR10
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.06.006
– volume: 4
  start-page: 024001
  issue: 2
  year: 2017
  ident: 2182_CR12
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.4.2.024001
– volume: 45
  start-page: 773
  issue: 3
  year: 2019
  ident: 2182_CR19
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2018.09.015
– ident: 2182_CR20
  doi: 10.1007/978-3-319-24574-4_28
– volume: 172
  start-page: 403
  issue: 2
  year: 1989
  ident: 2182_CR2
  publication-title: Radiology
  doi: 10.1148/radiology.172.2.2664864
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 2182_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/tkde.2008.239
– ident: 2182_CR16
  doi: 10.1007/978-3-319-24574-4_82
– volume: 37
  start-page: 116
  year: 2011
  ident: 2182_CR4
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.8831
– volume: 29
  start-page: 109
  issue: 1
  year: 2007
  ident: 2182_CR1
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.3909
– volume: 31
  start-page: 243
  issue: 2
  year: 2005
  ident: 2182_CR14
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2004.11.003
– ident: 2182_CR28
  doi: 10.1109/CVPR.2014.222
– volume: 39
  start-page: 1137
  year: 2016
  ident: 2182_CR32
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 2182_CR23
  doi: 10.1109/CVPR.2015.7298877
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 2182_CR31
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 2
  start-page: 1097
  year: 2012
  ident: 2182_CR26
  publication-title: Int Conf Neural Inf Process Syst
  doi: 10.1145/3065386
– volume: 36
  start-page: 2204
  issue: 11
  year: 2017
  ident: 2182_CR3
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2712367
– volume: 31
  start-page: 929
  issue: 7
  year: 2005
  ident: 2182_CR13
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2005.04.002
– ident: 2182_CR24
  doi: 10.1109/CVPR.2016.319
– ident: 2182_CR33
  doi: 10.1109/CVPR.2017.690
– volume: 39
  start-page: 5015
  issue: 8
  year: 2012
  ident: 2182_CR9
  publication-title: Med Phys
  doi: 10.1118/1.4736415
– volume: 19
  start-page: 1627
  issue: 5
  year: 2015
  ident: 2182_CR30
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2425041
– volume: 47
  start-page: 1576
  issue: 6
  year: 2017
  ident: 2182_CR8
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2685080
– volume: 61
  start-page: 1095
  issue: 3
  year: 2016
  ident: 2182_CR15
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/3/1095
– ident: 2182_CR11
– ident: 2182_CR7
  doi: 10.1007/978-3-319-24553-9_62
– volume: 43
  start-page: 2925
  issue: 12
  year: 2017
  ident: 2182_CR6
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.07.013
– ident: 2182_CR18
  doi: 10.1109/ISBI.2013.6556576
– volume: 22
  start-page: 874
  issue: 3
  year: 2018
  ident: 2182_CR5
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2705031
– year: 2020
  ident: 2182_CR25
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.21967
– ident: 2182_CR29
– ident: 2182_CR17
  doi: 10.1109/EMBC.2015.7318481
– ident: 2182_CR21
  doi: 10.1109/ICCV.2017.74
SSID ssj0045735
Score 2.4031823
Snippet Purpose Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and...
Fetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and could lead...
PurposeFetal brain abnormalities are some of the most common congenital malformations that may associated with syndromic and chromosomal malformations, and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1303
SubjectTerms Abnormalities
Algorithms
Artificial neural networks
Brain
Brain - diagnostic imaging
Brain Diseases - diagnostic imaging
Classifiers
Computer Imaging
Computer Science
Diagnosis
Diagnosis, Computer-Assisted - methods
Female
Health Informatics
Humans
Image classification
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Mapping
Medical imaging
Medicine
Medicine & Public Health
Neural networks
Neural Networks, Computer
Original Article
Pattern Recognition and Graphics
Physicians
Pregnancy
Radiology
Surgery
Ultrasonic imaging
Ultrasonography, Prenatal - methods
Ultrasound
Vision
Title Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks
URI https://link.springer.com/article/10.1007/s11548-020-02182-3
https://www.ncbi.nlm.nih.gov/pubmed/32488568
https://www.proquest.com/docview/2422415988
https://www.proquest.com/docview/2409193541
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: U2A
  dateStart: 20060625
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64gHhxX8aNCN40MG2WpsdBXFD05ICeStMmIuiM2Jn_73uZdAZxAU8tNElL3_Y93gZwkmU5RXc09044LmVNetA7rp2hQkeV2BAxvbvX131586geY1FY02a7tyHJoKlnxW6Erjm5O6HtOBfzsKionRdycT_ttfpXqiyM1UyMTriWSTeWyvx8xldz9A1jfouPBrNzuQYrES-y3oTA6zDnBhuw2s5iYFE0N2DpLgbJN6Fqn3Jq_1izepJN99IwBKjMO4TbzNJkCDZ-HX2UDQ1WYi9vqFgaRmnwz6x27p1RPnrkS9xAfS_DJWSNN1vQv7x4OL_mcZYCr0SmRtzU1pSqRJG26GB49HIqI-vSKZV6Y4TUFeIor7VxmfS2a3KVW1sKXaWZt2jFxDYsDIYDtwsMLb5GP8sh1CulkDKnNFSN95mXZVelHUjaX1pUsdE4zbt4LWYtkokMBZKhCGQoRAdOp3veJ202_lx90FKqiCLXFIg1CI3kxnTgePoYhYUiIOXADce0BuFRLpRMOrAzofD0dYgsjVEad5-1JJ8d_vu37P1v-T4sp4H9KIXwABZGH2N3iLBmZI9gsXf1dHtxFLj5E1CX7BE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoJeKJRHFwoYiRu42sSPOMcKtSy021NXKqcoTuyqomyrJnvh1zPj2LuCAlJPiRTbcZyZ8TeazzMA74uipOiO5t4Jx6VsyQ56x7UzdNBRZTZETGcnejqXX8_UWTwU1iW2ewpJBku9PuxG6JqTuxPSjnNxHzYkOij5CDb2P387OkgWWKoiFNbMjM64ltkkHpb5-yi_b0i3UOatCGnYeA63YJ6mPPBNvu8te7vX_Pwjm-Ndv-kxPIpIlO0PovME7rnFNmylKg8sKv02PJjF8PtTaNJTToklW9YOPL2LjiH0Zd4hkGeWak6w5WV_U3dUsold_ECT1TEi2J-z1rlrRkz3KPHYgTJqhkvgo3fPYH54cPppymOVBt6IQvXctNbUqkZjYdF18eg_NUa2tVMq98YIqRtEaF5r4wrp7cSUqrS2FrrJC29xfxTPYbS4WrgdYIglNHpwDkFkLYWUJRFcNd4XXtYTlY8hS7-qamIKc6qkcVmtky_Tgla4oFVY0EqM4cOqz_WQwOO_rXeTBFRRmbsKUQzhnNKYMbxbPUY1pNhKvXBXS2qDwKsUSmZjeDFIzup1iFmNURp7f0xSsB7833N5ebfmb-Hh9HR2XB1_OTl6BZt5ECoiKu7CqL9ZutcInnr7JurKLxW4CmU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VEJcoNACSym4Um9gsYkfcY6IdsWjIA6sxC2KExutBGFFsv-fGSfZLaIg9ZRIsZ0oM2N_o5n5BuBnkqQU3dHcO-G4lCXtg95x7QwVOqrIhojp5ZU-HcvzW3X7VxV_yHbvQ5JtTQOxNFXN0bT0R4vCN0LanFyfQEHOxUf4JIkoATV6HB_3e7FUSWixGRkdcS2jYVc28-81Xh5Nr_Dmq1hpOIJGn2G1w47suBX2Onxw1Qas9X0ZWGemG7B82QXMv0DRP-VEBVmyss2sm9QMwSrzDqE3s9Qlgs3um6e8piZLbPKAm0zNKCX-jpXOTRnlpnc6ihOIAzNcQgZ5_RXGo983J6e866vAC5GohpvSmlzlaN4WnQ2PHk9hZJk7pWJvjJC6QEzltTYukd4OTapSa3OhizjxFk80sQlL1WPltoHh6a_R53II-3IppEwpJVXjfeJlPlTxAKL-l2ZFRzpOvS_uswVdMokhQzFkQQyZGMDBfM60pdx4d_RuL6msM786Q9xByCQ1ZgA_5o_RcCgaklfucUZjECqlQsloAFuthOevQ5RpjNI4-7AX-WLxt79l5_-G78Py9a9R9ufs6uIbrMRBEymzcBeWmqeZ-45op7F7QaGfAfcz8aU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+for+fetal+brain+ultrasound+images+using+deep+convolutional+neural+networks&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Xie%2C+Baihong&rft.au=Lei%2C+Ting&rft.au=Wang%2C+Nan&rft.au=Cai%2C+Hongmin&rft.date=2020-08-01&rft.issn=1861-6429&rft.eissn=1861-6429&rft.volume=15&rft.issue=8&rft.spage=1303&rft_id=info:doi/10.1007%2Fs11548-020-02182-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon