Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates

In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and empl...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 406; p. 124728
Main Authors Vigneshwaran, Sivakumar, Sirajudheen, Palliyalil, Karthikeyan, Perumal, Nikitha, Manuvelraja, Ramkumar, Krishnapillai, Meenakshi, Sankaran
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2021
Subjects
Online AccessGet full text
ISSN0304-3894
1873-3336
1873-3336
DOI10.1016/j.jhazmat.2020.124728

Cover

Abstract In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e−) and holes (h+), respectively and thus limits the charge recombination of e−s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2− etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants. [Display omitted] ●A rational TCS@MOF was fabricated through solvothermal method.●TCS@MOF was used to degrade MCP via visible light irradiation.●Investigation of various influencing parameters and batch studies were carried out.●TCS@MOF exhibited excellent photo-stability over five regeneration cycles.●A possible mechanism for MCP degradation by the photocatalyst was proposed.
AbstractList In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.
In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO₂/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO₂ on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e⁻) and holes (h⁺), respectively and thus limits the charge recombination of e⁻s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O₂⁻ etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H₂O, CO₂, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.
In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e−) and holes (h+), respectively and thus limits the charge recombination of e−s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2− etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants. [Display omitted] ●A rational TCS@MOF was fabricated through solvothermal method.●TCS@MOF was used to degrade MCP via visible light irradiation.●Investigation of various influencing parameters and batch studies were carried out.●TCS@MOF exhibited excellent photo-stability over five regeneration cycles.●A possible mechanism for MCP degradation by the photocatalyst was proposed.
ArticleNumber 124728
Author Sirajudheen, Palliyalil
Vigneshwaran, Sivakumar
Meenakshi, Sankaran
Karthikeyan, Perumal
Nikitha, Manuvelraja
Ramkumar, Krishnapillai
Author_xml – sequence: 1
  givenname: Sivakumar
  orcidid: 0000-0002-4422-1150
  surname: Vigneshwaran
  fullname: Vigneshwaran, Sivakumar
  email: vigneshwarangri@gmail.com
  organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India
– sequence: 2
  givenname: Palliyalil
  orcidid: 0000-0002-8988-9613
  surname: Sirajudheen
  fullname: Sirajudheen, Palliyalil
  email: sirajpalliyalil@gmail.com
  organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India
– sequence: 3
  givenname: Perumal
  surname: Karthikeyan
  fullname: Karthikeyan, Perumal
  email: karthi2011chemistry@gmail.com
  organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India
– sequence: 4
  givenname: Manuvelraja
  surname: Nikitha
  fullname: Nikitha, Manuvelraja
  email: nikitharose284@gmail.com
  organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India
– sequence: 5
  givenname: Krishnapillai
  surname: Ramkumar
  fullname: Ramkumar, Krishnapillai
  email: ramkumarkrishnanls@gmail.com
  organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India
– sequence: 6
  givenname: Sankaran
  orcidid: 0000-0003-3350-2325
  surname: Meenakshi
  fullname: Meenakshi, Sankaran
  email: sankaranmeenakshi2014@gmail.com
  organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India
BookMark eNqFkc1qGzEUhUVJoY7bRyho6UDH0c_8aNpFKU7SGlyySddCI93JyMxIU0kpJK_Wl6sSm0K78Upw-c7h6JxzdOa8A4TeU7KmhNaX-_V-UE-TSmtGWL6xsmHiFVpQ0fCCc16foQXhpCy4aMs36DzGPSGENlW5QL-30-Q7O9onlax32Pf4-3ZXCLG6gQusnB58AIPv7C0r9GCTj8qt2NUlu7rAw2MXrMFOOa_9NPtoE-DeB5wGwAbugzJ_TX24z9g8-DgPKmMzxGS1NfARbwYVlE4Qjhk-4An0oJyNUw5g_nGyLnMTGJs94lv0uldjhHfHd4l-3Fzfbb4Vu9uv282XXaF5U6VCNB3UlDDeCapbISjTrK17ImhnGO11J3re6bampQDTcd4C7ytWl6JWqmmJ5ku0OvjOwf98yMHlZKOGcVQO_EOUrGJl7pwIcRrNGGF1m9Ms0acDqoOPMUAvtU0vv0xB2VFSIp_XlXt5XFc-rysP62Z19Z96DnZS4fGk7vNBB7mwXxaCjNqC07nSADpJ4-0Jhz9SMcaz
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_128865
crossref_primary_10_1016_j_pnsc_2024_02_005
crossref_primary_10_1016_j_jece_2022_108077
crossref_primary_10_3390_su15097336
crossref_primary_10_1016_j_cej_2023_141668
crossref_primary_10_1016_j_cej_2023_147805
crossref_primary_10_1155_2023_9387016
crossref_primary_10_1016_j_pmatsci_2025_101460
crossref_primary_10_1007_s13204_022_02627_y
crossref_primary_10_1080_03067319_2023_2229738
crossref_primary_10_1016_j_pmatsci_2024_101387
crossref_primary_10_1016_j_seppur_2023_123175
crossref_primary_10_1016_j_seppur_2023_126126
crossref_primary_10_1016_S1872_2067_22_64115_9
crossref_primary_10_1016_j_est_2024_110946
crossref_primary_10_1016_j_nanoso_2024_101366
crossref_primary_10_1016_j_jece_2023_110125
crossref_primary_10_1016_j_jwpe_2023_103572
crossref_primary_10_1016_j_chemosphere_2025_144122
crossref_primary_10_2174_0122106812306532240607105242
crossref_primary_10_1016_j_ijhydene_2023_06_130
crossref_primary_10_1016_j_jiec_2023_01_031
crossref_primary_10_1016_j_chemosphere_2021_131171
crossref_primary_10_1016_j_jwpe_2022_103469
crossref_primary_10_1021_acs_jafc_4c00764
crossref_primary_10_1016_j_apcatb_2023_123605
crossref_primary_10_1016_j_seppur_2024_127921
crossref_primary_10_1016_j_envres_2024_119024
crossref_primary_10_1007_s10498_024_09422_x
crossref_primary_10_1016_j_matpr_2021_05_054
crossref_primary_10_1007_s10904_023_02604_0
crossref_primary_10_1039_D3MA00413A
crossref_primary_10_1016_j_ijbiomac_2024_133043
crossref_primary_10_1016_j_envpol_2021_118076
crossref_primary_10_1021_acs_langmuir_3c02148
crossref_primary_10_1016_j_cclet_2021_04_001
crossref_primary_10_1016_j_jiec_2022_12_012
crossref_primary_10_1016_j_ccr_2023_215214
crossref_primary_10_1016_j_jechem_2024_12_012
crossref_primary_10_1016_j_ica_2024_122180
crossref_primary_10_1039_D2EW00784C
crossref_primary_10_1002_asia_202100881
crossref_primary_10_1016_j_enmm_2022_100654
crossref_primary_10_1021_acsanm_2c03906
crossref_primary_10_3390_molecules27196261
crossref_primary_10_1016_j_scitotenv_2023_161525
crossref_primary_10_2139_ssrn_4185792
crossref_primary_10_1016_j_jhazmat_2022_130478
crossref_primary_10_1016_j_colsurfa_2022_129550
crossref_primary_10_1016_j_envres_2022_113955
crossref_primary_10_1016_j_micromeso_2023_112543
Cites_doi 10.1039/C4TA04622F
10.1007/s10847-019-00973-z
10.1016/j.jhazmat.2010.01.009
10.1016/j.jhazmat.2019.121098
10.1016/j.inoche.2016.03.003
10.1016/j.aca.2005.04.027
10.1039/C9NJ05659A
10.1016/j.ijbiomac.2019.02.101
10.1039/D0CY00592D
10.1016/j.ijhydene.2019.02.144
10.1016/j.apcatb.2019.01.066
10.1007/s13762-020-02802-0
10.1021/am403079n
10.1016/j.apsusc.2019.144445
10.1016/j.envres.2019.108990
10.1016/j.ijbiomac.2019.03.071
10.1016/j.jcis.2020.06.014
10.1016/j.ecoenv.2020.110812
10.1039/C9QI01120J
10.1021/ie402347g
10.1016/j.jenvman.2020.111125
10.1007/s11356-019-06811-6
10.1039/C9TA02935D
10.1016/j.jenvman.2018.05.090
10.1021/cs501169t
10.1021/acsami.0c06601
10.1016/j.seppur.2019.116057
10.1002/slct.202001670
10.1039/C7RA12898C
10.1039/C6RA13423H
10.1016/j.psep.2020.02.030
10.1016/j.cej.2018.10.031
10.1016/j.ijbiomac.2019.09.183
10.1016/j.apcatb.2019.02.001
10.1016/j.cej.2019.01.178
10.1016/j.cclet.2019.11.038
10.1007/s13204-020-01479-8
10.1039/C9RA08660A
10.1016/j.apcatb.2020.118653
10.1016/j.molcata.2004.03.059
10.1016/j.seppur.2020.118003
10.1016/j.matlet.2019.127271
10.1007/s13762-018-1941-2
10.1007/s11051-020-04891-x
10.1016/j.chempr.2018.03.002
10.1021/acs.jpca.0c00269
10.1016/j.ultsonch.2019.104815
10.1016/j.jiec.2017.12.051
10.1016/j.apcatb.2019.01.091
10.1016/j.apcatb.2018.09.088
10.1007/s10311-019-00884-y
10.1016/j.ijbiomac.2020.04.268
10.1021/acs.iecr.6b02814
10.1039/C9QI01163C
10.1016/j.ijbiomac.2020.05.204
10.1016/j.jenvman.2016.12.068
10.1016/j.colsurfa.2020.124875
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2020.124728
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 10_1016_j_jhazmat_2020_124728
S0304389420327187
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c375t-87be61023b81c98812c296f081bd21fcb8f3bc96148edb339e3f526486aa790c3
IEDL.DBID AIKHN
ISSN 0304-3894
1873-3336
IngestDate Sat Sep 27 20:07:59 EDT 2025
Sun Sep 28 12:22:15 EDT 2025
Tue Jul 01 00:49:37 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Fri Feb 23 02:44:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TCS@MOF
2D/2D hybrid photocatalyst
MCP
Mineralization
Degradation pathway
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-87be61023b81c98812c296f081bd21fcb8f3bc96148edb339e3f526486aa790c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3350-2325
0000-0002-8988-9613
0000-0002-4422-1150
PQID 2470026902
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524247088
proquest_miscellaneous_2470026902
crossref_citationtrail_10_1016_j_jhazmat_2020_124728
crossref_primary_10_1016_j_jhazmat_2020_124728
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_124728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of hazardous materials
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vigneshwaran, Preethi, Meenakshi (bib40) 2019; 132
Zhu, Sun, Xu, Li, Lin, Qin (bib65) 2020; 382
Zhang, Ai, Jiang (bib60) 2015; 3
Shankar, Arabindoo, Palanichamy, Murugesan (bib34) 2004; 223
Reddy, Reddy, Harish, Shim, Shankar, Shetti, Aminabhavi (bib32) 2020; 45
Mkhalid, Fierro, Mohamed, Alshahri (bib21) 2020; 10
Xin Huang, Shi, Shi (bib51) 2020; 238
Sarafraz, Sadeghi, Yazdanbakhsh, Amini, Sadani, Eslami (bib33) 2020; 137
Pang, Lu, Cheng, Liu, Ma, Yang, Zhang (bib27) 2020; 10
Ravneet Kaur (bib31) 2019; 17
Zhu, Liu, Ling, Jiang, Wu, Li (bib64) 2019; 242
Vigneshwaran, Karthikeyan, Park, Meenakshi (bib42) 2020; 273
Jeyaprabha Balasubramanian, Periakaruppan, Kamaraj (bib11) 2020; 27
Kurisingal, Rachuri, Gu, Choe, Park (bib15) 2019; 6
Yang, Yuan, Hu, Liu, Zhang (bib56) 2020; 504
Suo, Xie, Zhang, Li, Li, Liu, Zhang, Ma, Ji (bib39) 2018; 8
Zango, Jumbri, Sambudi, Hanif Abu Bakar, Fathihah Abdullah, Basheer, Saad (bib57) 2019; 9
Sharma, Shukla, Attri, Kumar, Kumar, Suttee, Singh, Barnwal, Singla (bib35) 2020; 201
Wang, Gao, Al-Enizi, Nafady, Ma (bib49) 2020; 7
Sun, Tao, Du, Wang (bib38) 2019; 366
Zhu, Cheng, Qin, Ma, Kong, Komarneni (bib63) 2020; 233
Sharma, Joshi, Nigam, Shree, Avasthi, Adelung, Srivastava, Kumar Mishra (bib36) 2019; 358
Xu, Wang, Xu, Liu, Wang, Wang, Sun (bib54) 2020; 61
Sraw, Kaur, Pandey, Verma, Sobti, Wanchoo, Toor (bib37) 2020; 17
Wang, Qin, Qin, Liu, Li (bib48) 2020; 44
Jagannathan Madhavan, Anandan, Grieser, Ashokkumar (bib8) 2010; 177
Wang, Huang, Liu, Sun, Li (bib47) 2014; 4
Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bib52) 2018; 4
Li, Xia, Liu, Ye, Wang, Zhang, Huang, Liu (bib17) 2020; 12
Khodkar, Khezri, Pendashteh, Khoramnejadian, Mamani (bib13) 2018; 16
Zhai, Dai, Guo, Zhou, Chen, Yang, Peng (bib59) 2019
Vigneshwaran, Park, Meenakshi (bib43) 2021; 258
Preethi, Vigneshwaran, Meenakshi (bib28) 2019; 130
Wang, Yi, Wang (bib46) 2019; 247
Deng, Chen, Wen, Xu, Zhu, Bian (bib5) 2019
Ahamad, Naushad, Al-Saeedi, Almotairi, Alshehri (bib1) 2020; 263
Zhang, Fan, Wang, Deng, Liu, Chen (bib61) 2020; 599
Balakrishnan, Appunni, Gopalram (bib3) 2020; 161
Ngamsakpasert, Suriyawong, Supothina, Chuaybamroong (bib25) 2020; 22
Vigneshwaran, Preethi, Meenakshi (bib41) 2019; 132
Moreira, Sampaio, Ribeiro, Silva, Faria, Silva (bib24) 2019; 248
Xu, Wang, Cong, Jiang, Zhang, Zhu, Li, Li (bib55) 2020; 31
Jean-Baptiste Tarkwa, Jiang, Oturan, Kamgang, Laminsi, Oturan (bib10) 2019; 246
Kumar, Bansal, Kim, Kwon (bib14) 2018; 62
Mohan (bib23) 2018; 6
Vigneshwaran, Preethi, Park, Meenakshi (bib44) 2020
Zarei, Farhadian, Akbarzadeh, Pirsaheb, Asadi, Safaei (bib58) 2020; 145
Mohammadzadeh Kakhki, Karimian, Saadati Rad (bib22) 2020
Farzana, Meenakshi (bib6) 2013; 53
Liu, Zhou, Gu, Zhang, Chen, Li, Xu, Lu (bib19) 2020; 578
Jiang, Yang, Yan (bib12) 2013; 5
Preethi, Vigneshwaran, Karthikeyan, Park, Meenakshi (bib29) 2020; 159
Wang, Wang, Xu, Li, Duan, Zhang, Hu, Wang, Zhang (bib50) 2020; 266
García-Ruiz, Álvarez-Llamas, Puerta, Blanco, Sanz-Medel, Marina (bib7) 2005; 543
Lingling Zheng, Pi, Zhang, Sun (bib18) 2016; 6
Rani, Shanker, Jassal (bib30) 2017; 190
Bresolin, Ben Hammouda, Sillanpaa (bib4) 2020; 10
Zhao, Jian, Zhang, Xu, Liu, Zhang, Liu (bib62) 2019; 7
Li, Xu, Zhong (bib16) 2020; 124
Jang, Shahzad, Woo, Lee (bib9) 2020; 182
Nguyen Thi Hanh, Van Thuan, Hung Thanh Tung, Pham, Dinh Minh, Thu Trang, Thien Binh, Viet Nguyen (bib26) 2019; 382
Xu, Yang, Cai, Yang, Li (bib53) 2016; 67
Viswanathan, Mathew, Dubal, Adarsh, Mathew (bib45) 2020; 5
Alqadami, Naushad, Alothman, Ahamad (bib2) 2018; 223
Mahaninia, Wilson (bib20) 2016; 55
Ngamsakpasert (10.1016/j.jhazmat.2020.124728_bib25) 2020; 22
Lingling Zheng (10.1016/j.jhazmat.2020.124728_bib18) 2016; 6
Jang (10.1016/j.jhazmat.2020.124728_bib9) 2020; 182
Shankar (10.1016/j.jhazmat.2020.124728_bib34) 2004; 223
Xing (10.1016/j.jhazmat.2020.124728_bib52) 2018; 4
Ahamad (10.1016/j.jhazmat.2020.124728_bib1) 2020; 263
Xu (10.1016/j.jhazmat.2020.124728_bib54) 2020; 61
Xu (10.1016/j.jhazmat.2020.124728_bib55) 2020; 31
Zhang (10.1016/j.jhazmat.2020.124728_bib60) 2015; 3
Sarafraz (10.1016/j.jhazmat.2020.124728_bib33) 2020; 137
Zango (10.1016/j.jhazmat.2020.124728_bib57) 2019; 9
Rani (10.1016/j.jhazmat.2020.124728_bib30) 2017; 190
Zhu (10.1016/j.jhazmat.2020.124728_bib64) 2019; 242
Li (10.1016/j.jhazmat.2020.124728_bib17) 2020; 12
Jagannathan Madhavan (10.1016/j.jhazmat.2020.124728_bib8) 2010; 177
Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib40) 2019; 132
Ravneet Kaur (10.1016/j.jhazmat.2020.124728_bib31) 2019; 17
García-Ruiz (10.1016/j.jhazmat.2020.124728_bib7) 2005; 543
Reddy (10.1016/j.jhazmat.2020.124728_bib32) 2020; 45
Mohan (10.1016/j.jhazmat.2020.124728_bib23) 2018; 6
Zarei (10.1016/j.jhazmat.2020.124728_bib58) 2020; 145
Sharma (10.1016/j.jhazmat.2020.124728_bib36) 2019; 358
Khodkar (10.1016/j.jhazmat.2020.124728_bib13) 2018; 16
Zhu (10.1016/j.jhazmat.2020.124728_bib65) 2020; 382
Sun (10.1016/j.jhazmat.2020.124728_bib38) 2019; 366
Nguyen Thi Hanh (10.1016/j.jhazmat.2020.124728_bib26) 2019; 382
Wang (10.1016/j.jhazmat.2020.124728_bib47) 2014; 4
Zhao (10.1016/j.jhazmat.2020.124728_bib62) 2019; 7
Zhu (10.1016/j.jhazmat.2020.124728_bib63) 2020; 233
Wang (10.1016/j.jhazmat.2020.124728_bib49) 2020; 7
Farzana (10.1016/j.jhazmat.2020.124728_bib6) 2013; 53
Mkhalid (10.1016/j.jhazmat.2020.124728_bib21) 2020; 10
Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib44) 2020
Li (10.1016/j.jhazmat.2020.124728_bib16) 2020; 124
Bresolin (10.1016/j.jhazmat.2020.124728_bib4) 2020; 10
Pang (10.1016/j.jhazmat.2020.124728_bib27) 2020; 10
Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib43) 2021; 258
Mahaninia (10.1016/j.jhazmat.2020.124728_bib20) 2016; 55
Yang (10.1016/j.jhazmat.2020.124728_bib56) 2020; 504
Zhai (10.1016/j.jhazmat.2020.124728_bib59) 2019
Suo (10.1016/j.jhazmat.2020.124728_bib39) 2018; 8
Kumar (10.1016/j.jhazmat.2020.124728_bib14) 2018; 62
Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib41) 2019; 132
Moreira (10.1016/j.jhazmat.2020.124728_bib24) 2019; 248
Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib42) 2020; 273
Wang (10.1016/j.jhazmat.2020.124728_bib46) 2019; 247
Preethi (10.1016/j.jhazmat.2020.124728_bib28) 2019; 130
Wang (10.1016/j.jhazmat.2020.124728_bib48) 2020; 44
Zhang (10.1016/j.jhazmat.2020.124728_bib61) 2020; 599
Kurisingal (10.1016/j.jhazmat.2020.124728_bib15) 2019; 6
Mohammadzadeh Kakhki (10.1016/j.jhazmat.2020.124728_bib22) 2020
Viswanathan (10.1016/j.jhazmat.2020.124728_bib45) 2020; 5
Balakrishnan (10.1016/j.jhazmat.2020.124728_bib3) 2020; 161
Liu (10.1016/j.jhazmat.2020.124728_bib19) 2020; 578
Sraw (10.1016/j.jhazmat.2020.124728_bib37) 2020; 17
Jiang (10.1016/j.jhazmat.2020.124728_bib12) 2013; 5
Deng (10.1016/j.jhazmat.2020.124728_bib5) 2019
Alqadami (10.1016/j.jhazmat.2020.124728_bib2) 2018; 223
Preethi (10.1016/j.jhazmat.2020.124728_bib29) 2020; 159
Sharma (10.1016/j.jhazmat.2020.124728_bib35) 2020; 201
Xu (10.1016/j.jhazmat.2020.124728_bib53) 2016; 67
Wang (10.1016/j.jhazmat.2020.124728_bib50) 2020; 266
Xin Huang (10.1016/j.jhazmat.2020.124728_bib51) 2020; 238
Jeyaprabha Balasubramanian (10.1016/j.jhazmat.2020.124728_bib11) 2020; 27
Jean-Baptiste Tarkwa (10.1016/j.jhazmat.2020.124728_bib10) 2019; 246
References_xml – volume: 161
  start-page: 282
  year: 2020
  end-page: 291
  ident: bib3
  article-title: Immobilized TiO
  publication-title: Int. J. Biol. Macromol.
– volume: 238
  year: 2020
  ident: bib51
  article-title: Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment
  publication-title: Chemosphere
– volume: 17
  start-page: 1299
  year: 2019
  end-page: 1324
  ident: bib31
  article-title: Toxicity and degradation of the insecticide monocrotophos
  publication-title: Environ. Chem. Lett.
– volume: 130
  start-page: 491
  year: 2019
  end-page: 498
  ident: bib28
  article-title: Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium
  publication-title: Int J. Biol. Macromol.
– volume: 182
  year: 2020
  ident: bib9
  article-title: Magnetic Ti
  publication-title: Environ. Res.
– volume: 223
  start-page: 195
  year: 2004
  end-page: 200
  ident: bib34
  article-title: Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO
  publication-title: J. Mol. Catal. A Chem.
– volume: 273
  year: 2020
  ident: bib42
  article-title: Boosted insights of novel accordion-like (2D/2D) hybrid photocatalyst for the removal of cationic dyes: mechanistic and degradation pathways
  publication-title: J. Environ. Manag.
– year: 2019
  ident: bib5
  article-title: Polyaniline-TiO
  publication-title: Sci. Bull.
– volume: 382
  year: 2019
  ident: bib26
  article-title: Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 6
  start-page: 87273
  year: 2016
  end-page: 87281
  ident: bib18
  article-title: Synthesis of Fe
  publication-title: RSC Adv.
– volume: 55
  start-page: 11706
  year: 2016
  end-page: 11715
  ident: bib20
  article-title: Modular cross-linked chitosan beads with calcium doping for enhanced adsorptive uptake of organophosphate anions
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 174
  year: 2020
  ident: bib25
  article-title: Post-harvest treatment of carbendazim in Chinese chives using TiO2 nanofiber photocatalysis with different anatase/rutile ratios
  publication-title: J. Nanopart. Res.
– volume: 266
  year: 2020
  ident: bib50
  article-title: Visible-light-driven photo-Fenton reactions using Zn
  publication-title: Appl. Catal. B: Environ.
– volume: 177
  start-page: 944
  year: 2010
  end-page: 949
  ident: bib8
  article-title: Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 4254
  year: 2014
  end-page: 4260
  ident: bib47
  article-title: Fe-based MOFs for photocatalytic CO
  publication-title: ACS Catal.
– volume: 263
  year: 2020
  ident: bib1
  article-title: Fabrication of MoS
  publication-title: Mater. Lett.
– volume: 5
  start-page: 9837
  year: 2013
  end-page: 9842
  ident: bib12
  article-title: Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 543
  start-page: 77
  year: 2005
  end-page: 83
  ident: bib7
  article-title: Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis
  publication-title: Anal. Chim. Acta
– volume: 578
  start-page: 402
  year: 2020
  end-page: 411
  ident: bib19
  article-title: Conjugate polymer-clothed TiO
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 7735
  year: 2018
  end-page: 7743
  ident: bib39
  article-title: A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal
  publication-title: RSC Adv.
– volume: 6
  year: 2018
  ident: bib23
  article-title: Photocatalytic degradation of simulated monocrotophos waste water using synthesized zinc oxide nanocatalyst under UV radiation
  publication-title: Int. J. Eng. Res. Technol.
– volume: 132
  start-page: 289
  year: 2019
  end-page: 299
  ident: bib41
  article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C
  publication-title: Int J. Biol. Macromol.
– volume: 132
  start-page: 289
  year: 2019
  end-page: 299
  ident: bib40
  article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C
  publication-title: Int. J. Biol. Macromol.
– volume: 358
  start-page: 540
  year: 2019
  end-page: 551
  ident: bib36
  article-title: ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution
  publication-title: Chem. Eng. J.
– volume: 248
  start-page: 184
  year: 2019
  end-page: 192
  ident: bib24
  article-title: Metal-free g-C
  publication-title: Appl. Catal. B Environ.
– volume: 201
  year: 2020
  ident: bib35
  article-title: Global trends in pesticides: a looming threat and viable alternatives
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 599
  year: 2020
  ident: bib61
  article-title: Facile fabrication of Co
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 7
  start-page: 300
  year: 2020
  end-page: 339
  ident: bib49
  article-title: Recent advances in MOF-based photocatalysis: environmental remediation under visible light
  publication-title: Inorg. Chem. Front.
– volume: 233
  year: 2020
  ident: bib63
  article-title: Copper sulfide as an excellent co-catalyst with K
  publication-title: Sep. Purif. Technol.
– volume: 62
  start-page: 130
  year: 2018
  end-page: 145
  ident: bib14
  article-title: Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment
  publication-title: J. Ind. Eng. Chem.
– volume: 6
  start-page: 3613
  year: 2019
  end-page: 3620
  ident: bib15
  article-title: Fabrication of hierarchically porous MIL-88-NH
  publication-title: Inorg. Chem. Front.
– volume: 61
  year: 2020
  ident: bib54
  article-title: Preparation of zinc tungstate nanomaterial and its sonocatalytic degradation of meloxicam as a novel sonocatalyst in aqueous solution
  publication-title: Ultrason. Sonochem.
– volume: 258
  year: 2021
  ident: bib43
  article-title: Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal
  publication-title: Sep. Purif. Technol.
– year: 2020
  ident: bib44
  article-title: In-situ fabrication of ternary (3D/2D/2D) prism‒like structures with dramatically enhancement on degradation of profenofos: A systemic study
  publication-title: Journal of Water Process Engineering
– volume: 242
  start-page: 238
  year: 2019
  end-page: 248
  ident: bib64
  article-title: Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol A degradation
  publication-title: Appl. Catal. B Environ.
– volume: 10
  year: 2020
  ident: bib4
  article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications
  publication-title: Nanomaterials
– year: 2019
  ident: bib59
  article-title: Novel Biochar@CoFe
  publication-title: J. Colloid Interface Sci.
– volume: 223
  start-page: 29
  year: 2018
  end-page: 36
  ident: bib2
  article-title: Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism
  publication-title: J. Environ. Manag.
– volume: 382
  year: 2020
  ident: bib65
  article-title: Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 55
  year: 2013
  end-page: 63
  ident: bib6
  article-title: Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 3074
  year: 2015
  end-page: 3081
  ident: bib60
  article-title: Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light
  publication-title: J. Mater. Chem. A
– volume: 145
  start-page: 926
  year: 2020
  end-page: 935
  ident: bib58
  article-title: Fabrication of novel 2D Ag-TiO
  publication-title: Int J. Biol. Macromol.
– volume: 44
  start-page: 2733
  year: 2020
  end-page: 2740
  ident: bib48
  article-title: Theoretical study on degradation mechanism of ornidazole on anatase TiO
  publication-title: N. J. Chem.
– volume: 67
  start-page: 29
  year: 2016
  end-page: 31
  ident: bib53
  article-title: Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles
  publication-title: Inorg. Chem. Commun.
– volume: 137
  start-page: 261
  year: 2020
  end-page: 272
  ident: bib33
  article-title: Enhanced photocatalytic degradation of ciprofloxacin by black Ti
  publication-title: Process Saf. Environ. Prot.
– volume: 366
  start-page: 622
  year: 2019
  end-page: 630
  ident: bib38
  article-title: Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances
  publication-title: Chem. Eng. J.
– volume: 247
  start-page: 24
  year: 2019
  end-page: 48
  ident: bib46
  article-title: Powerful combination of MOFs and C
  publication-title: Appl. Catal. B Environ.
– volume: 124
  start-page: 2854
  year: 2020
  end-page: 2862
  ident: bib16
  article-title: Highly efficient adsorption and reduction of Cr(VI) ions by a core-shell Fe
  publication-title: J. Phys. Chem. A
– volume: 5
  start-page: 7534
  year: 2020
  end-page: 7542
  ident: bib45
  article-title: Exploring the effect of morphologies of Fe(III) metal‐organic framework MIL‐88A(Fe) on the photocatalytic degradation of Rhodamine B
  publication-title: ChemistrySelect
– volume: 27
  start-page: 2328
  year: 2020
  end-page: 2339
  ident: bib11
  article-title: Accelerated photodeterioration of class I toxic monocrotophos in the presence of one-pot constructed Ag
  publication-title: Environ. Sci. Pollut. Res.
– volume: 17
  start-page: 4895
  year: 2020
  end-page: 4908
  ident: bib37
  article-title: Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO
  publication-title: Int. J. Environ. Sci. Technol.
– year: 2020
  ident: bib22
  article-title: Highly efficient removal of paraquat pesticide from aqueous solutions using a novel nano Kaolin modified with sulfuric acid via host–guest interactions
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
– volume: 159
  start-page: 324
  year: 2020
  end-page: 332
  ident: bib29
  article-title: Chitosan modified zirconium/zinc oxide as a visible light driven photocatalyst for the efficient reduction of hexavalent chromium
  publication-title: Int. J. Biol. Macromol.
– volume: 190
  start-page: 208
  year: 2017
  end-page: 222
  ident: bib30
  article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review
  publication-title: J. Environ. Manag.
– volume: 16
  start-page: 5741
  year: 2018
  end-page: 5756
  ident: bib13
  article-title: A designed experimental approach for photocatalytic degradation of paraquat using α-Fe
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 12
  start-page: 25494
  year: 2020
  end-page: 25502
  ident: bib17
  article-title: Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1359
  year: 2018
  end-page: 1372
  ident: bib52
  article-title: Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes
  publication-title: Chem
– volume: 9
  start-page: 41490
  year: 2019
  end-page: 41501
  ident: bib57
  article-title: Removal of anthracene in water by MIL-88(Fe), NH
  publication-title: RSC Adv.
– volume: 10
  start-page: 3773
  year: 2020
  end-page: 3786
  ident: bib21
  article-title: Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO
  publication-title: Appl. Nanosci.
– volume: 504
  year: 2020
  ident: bib56
  article-title: Synthesis of mesoporous C/MoS
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 7656
  year: 2020
  end-page: 7679
  ident: bib32
  article-title: Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO
  publication-title: Int. J. Hydrog. Energy
– volume: 10
  start-page: 3875
  year: 2020
  end-page: 3889
  ident: bib27
  article-title: Facile synthesis of oxygen-deficient nano-TiO
  publication-title: Catal. Sci. Technol.
– volume: 246
  start-page: 211
  year: 2019
  end-page: 220
  ident: bib10
  article-title: Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma
  publication-title: Appl. Catal. B Environ.
– volume: 31
  start-page: 1022
  year: 2020
  end-page: 1025
  ident: bib55
  article-title: Ternary BiOBr/TiO
  publication-title: Chin. Chem. Lett.
– volume: 7
  start-page: 16598
  year: 2019
  end-page: 16621
  ident: bib62
  article-title: A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 3074
  year: 2015
  ident: 10.1016/j.jhazmat.2020.124728_bib60
  article-title: Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04622F
– year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib22
  article-title: Highly efficient removal of paraquat pesticide from aqueous solutions using a novel nano Kaolin modified with sulfuric acid via host–guest interactions
  publication-title: J. Incl. Phenom. Macrocycl. Chem.
  doi: 10.1007/s10847-019-00973-z
– volume: 177
  start-page: 944
  year: 2010
  ident: 10.1016/j.jhazmat.2020.124728_bib8
  article-title: Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.009
– volume: 382
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib65
  article-title: Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121098
– volume: 67
  start-page: 29
  year: 2016
  ident: 10.1016/j.jhazmat.2020.124728_bib53
  article-title: Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2016.03.003
– volume: 543
  start-page: 77
  year: 2005
  ident: 10.1016/j.jhazmat.2020.124728_bib7
  article-title: Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.04.027
– year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib5
  article-title: Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction
  publication-title: Sci. Bull.
– volume: 44
  start-page: 2733
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib48
  article-title: Theoretical study on degradation mechanism of ornidazole on anatase TiO2(101) and (001) surfaces
  publication-title: N. J. Chem.
  doi: 10.1039/C9NJ05659A
– volume: 130
  start-page: 491
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib28
  article-title: Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium
  publication-title: Int J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.02.101
– volume: 10
  start-page: 3875
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib27
  article-title: Facile synthesis of oxygen-deficient nano-TiO2 coordinated by acetate ligands for enhanced visible-light photocatalytic performance
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00592D
– volume: 45
  start-page: 7656
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib32
  article-title: Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.02.144
– volume: 246
  start-page: 211
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib10
  article-title: Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.066
– volume: 17
  start-page: 4895
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib37
  article-title: Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO2
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-020-02802-0
– volume: 5
  start-page: 9837
  year: 2013
  ident: 10.1016/j.jhazmat.2020.124728_bib12
  article-title: Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am403079n
– volume: 504
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib56
  article-title: Synthesis of mesoporous C/MoS2 for adsorption of methyl orange and photo-catalytic sterilization
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144445
– volume: 182
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib9
  article-title: Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.108990
– volume: 132
  start-page: 289
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib41
  article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies
  publication-title: Int J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.03.071
– volume: 578
  start-page: 402
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib19
  article-title: Conjugate polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.06.014
– volume: 201
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib35
  article-title: Global trends in pesticides: a looming threat and viable alternatives
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110812
– volume: 7
  start-page: 300
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib49
  article-title: Recent advances in MOF-based photocatalysis: environmental remediation under visible light
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01120J
– volume: 53
  start-page: 55
  year: 2013
  ident: 10.1016/j.jhazmat.2020.124728_bib6
  article-title: Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402347g
– volume: 273
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib42
  article-title: Boosted insights of novel accordion-like (2D/2D) hybrid photocatalyst for the removal of cationic dyes: mechanistic and degradation pathways
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111125
– volume: 27
  start-page: 2328
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib11
  article-title: Accelerated photodeterioration of class I toxic monocrotophos in the presence of one-pot constructed Ag3PO4/polyaniline@g-C3N4 nanocomposite: efficacy in light harvesting
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-06811-6
– volume: 7
  start-page: 16598
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib62
  article-title: A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS2, MXenes, and 2D MOFs
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02935D
– volume: 223
  start-page: 29
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124728_bib2
  article-title: Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.05.090
– volume: 4
  start-page: 4254
  year: 2014
  ident: 10.1016/j.jhazmat.2020.124728_bib47
  article-title: Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways
  publication-title: ACS Catal.
  doi: 10.1021/cs501169t
– volume: 12
  start-page: 25494
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib17
  article-title: Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c06601
– volume: 233
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib63
  article-title: Copper sulfide as an excellent co-catalyst with K2S2O8 for dye decomposition in advanced oxidation process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116057
– volume: 5
  start-page: 7534
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib45
  article-title: Exploring the effect of morphologies of Fe(III) metal‐organic framework MIL‐88A(Fe) on the photocatalytic degradation of Rhodamine B
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202001670
– volume: 8
  start-page: 7735
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124728_bib39
  article-title: A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal
  publication-title: RSC Adv.
  doi: 10.1039/C7RA12898C
– volume: 6
  start-page: 87273
  year: 2016
  ident: 10.1016/j.jhazmat.2020.124728_bib18
  article-title: Synthesis of Fe3O4@mTiO2 nanocomposites for the photocatalytic degradation of Monocrotophos under UV illumination
  publication-title: RSC Adv.
  doi: 10.1039/C6RA13423H
– volume: 382
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib26
  article-title: Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 137
  start-page: 261
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib33
  article-title: Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: kinetic, energy consumption, degradation pathway, and toxicity assessment
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.02.030
– volume: 358
  start-page: 540
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib36
  article-title: ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.031
– volume: 145
  start-page: 926
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib58
  article-title: Fabrication of novel 2D Ag-TiO2/gamma-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate
  publication-title: Int J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.09.183
– volume: 248
  start-page: 184
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib24
  article-title: Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.02.001
– volume: 6
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124728_bib23
  article-title: Photocatalytic degradation of simulated monocrotophos waste water using synthesized zinc oxide nanocatalyst under UV radiation
  publication-title: Int. J. Eng. Res. Technol.
– volume: 366
  start-page: 622
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib38
  article-title: Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.178
– volume: 31
  start-page: 1022
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib55
  article-title: Ternary BiOBr/TiO2/Ti3C2T MXene nanocomposites with heterojunction structure and improved photocatalysis performance
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.11.038
– volume: 10
  start-page: 3773
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib21
  article-title: Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO2 modified with Gd2O3
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01479-8
– volume: 9
  start-page: 41490
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib57
  article-title: Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal–organic frameworks
  publication-title: RSC Adv.
  doi: 10.1039/C9RA08660A
– volume: 266
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib50
  article-title: Visible-light-driven photo-Fenton reactions using Zn1-1.5Fe S/g-C3N4 photocatalyst: degradation kinetics and mechanisms analysis
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.118653
– volume: 223
  start-page: 195
  year: 2004
  ident: 10.1016/j.jhazmat.2020.124728_bib34
  article-title: Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO2/Hβ
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2004.03.059
– year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib59
  article-title: Novel Biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation
  publication-title: J. Colloid Interface Sci.
– volume: 258
  year: 2021
  ident: 10.1016/j.jhazmat.2020.124728_bib43
  article-title: Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.118003
– volume: 263
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib1
  article-title: Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127271
– volume: 238
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib51
  article-title: Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment
  publication-title: Chemosphere
– volume: 16
  start-page: 5741
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124728_bib13
  article-title: A designed experimental approach for photocatalytic degradation of paraquat using α-Fe2O3@MIL-101(Cr)@TiO2 based on metal–organic framework
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-1941-2
– volume: 22
  start-page: 174
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib25
  article-title: Post-harvest treatment of carbendazim in Chinese chives using TiO2 nanofiber photocatalysis with different anatase/rutile ratios
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-020-04891-x
– volume: 132
  start-page: 289
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib40
  article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.03.071
– volume: 4
  start-page: 1359
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124728_bib52
  article-title: Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.03.002
– volume: 124
  start-page: 2854
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib16
  article-title: Highly efficient adsorption and reduction of Cr(VI) ions by a core-shell Fe3O4@UiO-66@PANI composite
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c00269
– volume: 61
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib54
  article-title: Preparation of zinc tungstate nanomaterial and its sonocatalytic degradation of meloxicam as a novel sonocatalyst in aqueous solution
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104815
– volume: 62
  start-page: 130
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124728_bib14
  article-title: Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.12.051
– volume: 247
  start-page: 24
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib46
  article-title: Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.091
– volume: 242
  start-page: 238
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib64
  article-title: Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol A degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.09.088
– volume: 17
  start-page: 1299
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib31
  article-title: Toxicity and degradation of the insecticide monocrotophos
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-019-00884-y
– volume: 159
  start-page: 324
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib29
  article-title: Chitosan modified zirconium/zinc oxide as a visible light driven photocatalyst for the efficient reduction of hexavalent chromium
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.04.268
– volume: 10
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib4
  article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications
– volume: 55
  start-page: 11706
  year: 2016
  ident: 10.1016/j.jhazmat.2020.124728_bib20
  article-title: Modular cross-linked chitosan beads with calcium doping for enhanced adsorptive uptake of organophosphate anions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b02814
– volume: 6
  start-page: 3613
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124728_bib15
  article-title: Fabrication of hierarchically porous MIL-88-NH2(Fe): a highly efficient catalyst for the chemical fixation of CO2 under ambient pressure
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01163C
– year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib44
  article-title: In-situ fabrication of ternary (3D/2D/2D) prism‒like structures with dramatically enhancement on degradation of profenofos: A systemic study
  publication-title: Journal of Water Process Engineering
– volume: 161
  start-page: 282
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib3
  article-title: Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.05.204
– volume: 190
  start-page: 208
  year: 2017
  ident: 10.1016/j.jhazmat.2020.124728_bib30
  article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.12.068
– volume: 599
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124728_bib61
  article-title: Facile fabrication of Co2P/TiO2 nanotube arrays photoelectrode for efficient methylene blue degradation
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2020.124875
SSID ssj0001754
Score 2.5646772
Snippet In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of...
In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO₂/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO₂ on the surface of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124728
SubjectTerms 2D/2D hybrid photocatalyst
carbon dioxide
catalytic activity
Degradation pathway
irradiation
light
MCP
Mineralization
monocrotophos
nanocomposites
nanosheets
oxidation
photocatalysts
pollutants
soil
TCS@MOF
Title Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates
URI https://dx.doi.org/10.1016/j.jhazmat.2020.124728
https://www.proquest.com/docview/2470026902
https://www.proquest.com/docview/2524247088
Volume 406
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa62wscEBQQ5VEZiUMrkc2u83DMrdqy2oVSDrRSb5Fjj5WsaBLtboXgwB_jzzGTx0IRohJXx7ZGGXvmG3nmG8ZeGSfxGGBYAhBigOKSsaclWC9zStrAqTHYhu3zLJ5fhO8uo8sdNu1rYSitsrP9rU1vrHU34nd_06-Lwv9Ej3robkPqAY4WVg7YrkBvnwzZ7vHi_fxsa5DRQ7YsUvQIgAt-FfL4y9Ey198QG2KkKIhqIZTUl_3vLuoPY914oNl9dq-Djvy4le4B24Fyj939jVBwjw1O9ZeH7McCDxclvbYllrxy_MPi1EuSwxkccVRzXq3A8vPio_DoGaFa6_JQnPji5IjnX6mEi5e6rCjbnFK6gCOw5QgUuSVmCbvdtOkIVdV5ta5zhKy8JsYOU1h4w6dbHuhWhtf8CqjGuFhfoQD2xk7EWLFqKlgQ9j5iF7O359O51zVp8Ewgow1a0wxi4n_IkolRCeIFI1TsEGlkVkycyRIXZEYR3yjYLAgUBC6itLpYa6nGJnjMhmVVwhPGcUasIbZWGQhVLLNE04ACiJ02Qu6zsNdLajoGc2qk8TntU9WWaafOlNSZturcZ6Ptsrql8LhtQdIrPb1xFlN0M7ctfdkfkhTvKT2-6BKq63WKnyneVWPxjzkRFetINPxP_1-EZ-yOoLwbyjmMnrPhZnUNLxA4bbIDNhh9nxx01-MnE-YbqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacgAOCAqo5WkkDq1ENtu8HHNDW1a7sC0HtlJvlmOPlaxoEu1uheDAH-PPMZPHliJEJa6JHVmZ8cxn-ZtvGHttnEA3wGMJQIQHFJcOPS3AepmTwoZODsE2ap-nyeQs-nAen2-xUV8LQ7TKLva3Mb2J1t0Tv_ubfl0U_me61MN0G1EPcIywYpvdiqjNATr14McVzwPzY6shRVcAOPyqjMdfDBa5_o7IEM-JAQktRIK6sv89Qf0Rqpv8M77P7nXAkb9r1_aAbUG5y-7-Jie4y7Zn-utD9nOKrkWU17bAkleOn0xnXpoejOGQo5HzagmWz4tPgUeXCNVKlwfBsR8cH_L8GxVw8VKXFXHNidAFHGEtR5jILelK2M1Hm35QVZ1XqzpHwMpr0uswhYW3fLRRgW7X8IZfAFUYF6sLXIC99iXSq1g29SsIeh-xs_H7-WjidS0aPBOKeI2xNIOE1B-y9MjIFNGCCWTiEGdkNjhyJktdmBlJaqNgszCUELqYSHWJ1kIOTfiY7ZRVCXuM44hEQ2KtNBDJRGSppgcSIHHaBGKfRb1dlOn0y6mNxhfVE9UWqjOnInOq1pz7bLCZVrcCHjdNSHujq2ueqDDJ3DT1Ve8kCncpXb3oEqrLlcLXdNqVw-AfY2Iq1REY9p_8_xJestuT-clMzaanH5-yOwExcIh9GD9jO-vlJTxHCLXOXjRb5BdooRxq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immobilization+of+MIL-88%28Fe%29+anchored+TiO2-chitosan%282D%2F2D%29+hybrid+nanocomposite+for+the+degradation+of+organophosphate+pesticide%3A+Characterization%2C+mechanism+and+degradation+intermediates&rft.jtitle=Journal+of+hazardous+materials&rft.au=Vigneshwaran%2C+Sivakumar&rft.au=Sirajudheen%2C+Palliyalil&rft.au=Karthikeyan%2C+Perumal&rft.au=Nikitha%2C+Manuvelraja&rft.date=2021-03-15&rft.issn=0304-3894&rft.volume=406+p.124728-&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.124728&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon