Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates
In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and empl...
Saved in:
Published in | Journal of hazardous materials Vol. 406; p. 124728 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2020.124728 |
Cover
Abstract | In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e−) and holes (h+), respectively and thus limits the charge recombination of e−s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2− etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.
[Display omitted]
●A rational TCS@MOF was fabricated through solvothermal method.●TCS@MOF was used to degrade MCP via visible light irradiation.●Investigation of various influencing parameters and batch studies were carried out.●TCS@MOF exhibited excellent photo-stability over five regeneration cycles.●A possible mechanism for MCP degradation by the photocatalyst was proposed. |
---|---|
AbstractList | In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants. In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO₂/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO₂ on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e⁻) and holes (h⁺), respectively and thus limits the charge recombination of e⁻s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O₂⁻ etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H₂O, CO₂, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants. In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e−) and holes (h+), respectively and thus limits the charge recombination of e−s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2− etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants. [Display omitted] ●A rational TCS@MOF was fabricated through solvothermal method.●TCS@MOF was used to degrade MCP via visible light irradiation.●Investigation of various influencing parameters and batch studies were carried out.●TCS@MOF exhibited excellent photo-stability over five regeneration cycles.●A possible mechanism for MCP degradation by the photocatalyst was proposed. |
ArticleNumber | 124728 |
Author | Sirajudheen, Palliyalil Vigneshwaran, Sivakumar Meenakshi, Sankaran Karthikeyan, Perumal Nikitha, Manuvelraja Ramkumar, Krishnapillai |
Author_xml | – sequence: 1 givenname: Sivakumar orcidid: 0000-0002-4422-1150 surname: Vigneshwaran fullname: Vigneshwaran, Sivakumar email: vigneshwarangri@gmail.com organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India – sequence: 2 givenname: Palliyalil orcidid: 0000-0002-8988-9613 surname: Sirajudheen fullname: Sirajudheen, Palliyalil email: sirajpalliyalil@gmail.com organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India – sequence: 3 givenname: Perumal surname: Karthikeyan fullname: Karthikeyan, Perumal email: karthi2011chemistry@gmail.com organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India – sequence: 4 givenname: Manuvelraja surname: Nikitha fullname: Nikitha, Manuvelraja email: nikitharose284@gmail.com organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India – sequence: 5 givenname: Krishnapillai surname: Ramkumar fullname: Ramkumar, Krishnapillai email: ramkumarkrishnanls@gmail.com organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India – sequence: 6 givenname: Sankaran orcidid: 0000-0003-3350-2325 surname: Meenakshi fullname: Meenakshi, Sankaran email: sankaranmeenakshi2014@gmail.com organization: Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India |
BookMark | eNqFkc1qGzEUhUVJoY7bRyho6UDH0c_8aNpFKU7SGlyySddCI93JyMxIU0kpJK_Wl6sSm0K78Upw-c7h6JxzdOa8A4TeU7KmhNaX-_V-UE-TSmtGWL6xsmHiFVpQ0fCCc16foQXhpCy4aMs36DzGPSGENlW5QL-30-Q7O9onlax32Pf4-3ZXCLG6gQusnB58AIPv7C0r9GCTj8qt2NUlu7rAw2MXrMFOOa_9NPtoE-DeB5wGwAbugzJ_TX24z9g8-DgPKmMzxGS1NfARbwYVlE4Qjhk-4An0oJyNUw5g_nGyLnMTGJs94lv0uldjhHfHd4l-3Fzfbb4Vu9uv282XXaF5U6VCNB3UlDDeCapbISjTrK17ImhnGO11J3re6bampQDTcd4C7ytWl6JWqmmJ5ku0OvjOwf98yMHlZKOGcVQO_EOUrGJl7pwIcRrNGGF1m9Ms0acDqoOPMUAvtU0vv0xB2VFSIp_XlXt5XFc-rysP62Z19Z96DnZS4fGk7vNBB7mwXxaCjNqC07nSADpJ4-0Jhz9SMcaz |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_128865 crossref_primary_10_1016_j_pnsc_2024_02_005 crossref_primary_10_1016_j_jece_2022_108077 crossref_primary_10_3390_su15097336 crossref_primary_10_1016_j_cej_2023_141668 crossref_primary_10_1016_j_cej_2023_147805 crossref_primary_10_1155_2023_9387016 crossref_primary_10_1016_j_pmatsci_2025_101460 crossref_primary_10_1007_s13204_022_02627_y crossref_primary_10_1080_03067319_2023_2229738 crossref_primary_10_1016_j_pmatsci_2024_101387 crossref_primary_10_1016_j_seppur_2023_123175 crossref_primary_10_1016_j_seppur_2023_126126 crossref_primary_10_1016_S1872_2067_22_64115_9 crossref_primary_10_1016_j_est_2024_110946 crossref_primary_10_1016_j_nanoso_2024_101366 crossref_primary_10_1016_j_jece_2023_110125 crossref_primary_10_1016_j_jwpe_2023_103572 crossref_primary_10_1016_j_chemosphere_2025_144122 crossref_primary_10_2174_0122106812306532240607105242 crossref_primary_10_1016_j_ijhydene_2023_06_130 crossref_primary_10_1016_j_jiec_2023_01_031 crossref_primary_10_1016_j_chemosphere_2021_131171 crossref_primary_10_1016_j_jwpe_2022_103469 crossref_primary_10_1021_acs_jafc_4c00764 crossref_primary_10_1016_j_apcatb_2023_123605 crossref_primary_10_1016_j_seppur_2024_127921 crossref_primary_10_1016_j_envres_2024_119024 crossref_primary_10_1007_s10498_024_09422_x crossref_primary_10_1016_j_matpr_2021_05_054 crossref_primary_10_1007_s10904_023_02604_0 crossref_primary_10_1039_D3MA00413A crossref_primary_10_1016_j_ijbiomac_2024_133043 crossref_primary_10_1016_j_envpol_2021_118076 crossref_primary_10_1021_acs_langmuir_3c02148 crossref_primary_10_1016_j_cclet_2021_04_001 crossref_primary_10_1016_j_jiec_2022_12_012 crossref_primary_10_1016_j_ccr_2023_215214 crossref_primary_10_1016_j_jechem_2024_12_012 crossref_primary_10_1016_j_ica_2024_122180 crossref_primary_10_1039_D2EW00784C crossref_primary_10_1002_asia_202100881 crossref_primary_10_1016_j_enmm_2022_100654 crossref_primary_10_1021_acsanm_2c03906 crossref_primary_10_3390_molecules27196261 crossref_primary_10_1016_j_scitotenv_2023_161525 crossref_primary_10_2139_ssrn_4185792 crossref_primary_10_1016_j_jhazmat_2022_130478 crossref_primary_10_1016_j_colsurfa_2022_129550 crossref_primary_10_1016_j_envres_2022_113955 crossref_primary_10_1016_j_micromeso_2023_112543 |
Cites_doi | 10.1039/C4TA04622F 10.1007/s10847-019-00973-z 10.1016/j.jhazmat.2010.01.009 10.1016/j.jhazmat.2019.121098 10.1016/j.inoche.2016.03.003 10.1016/j.aca.2005.04.027 10.1039/C9NJ05659A 10.1016/j.ijbiomac.2019.02.101 10.1039/D0CY00592D 10.1016/j.ijhydene.2019.02.144 10.1016/j.apcatb.2019.01.066 10.1007/s13762-020-02802-0 10.1021/am403079n 10.1016/j.apsusc.2019.144445 10.1016/j.envres.2019.108990 10.1016/j.ijbiomac.2019.03.071 10.1016/j.jcis.2020.06.014 10.1016/j.ecoenv.2020.110812 10.1039/C9QI01120J 10.1021/ie402347g 10.1016/j.jenvman.2020.111125 10.1007/s11356-019-06811-6 10.1039/C9TA02935D 10.1016/j.jenvman.2018.05.090 10.1021/cs501169t 10.1021/acsami.0c06601 10.1016/j.seppur.2019.116057 10.1002/slct.202001670 10.1039/C7RA12898C 10.1039/C6RA13423H 10.1016/j.psep.2020.02.030 10.1016/j.cej.2018.10.031 10.1016/j.ijbiomac.2019.09.183 10.1016/j.apcatb.2019.02.001 10.1016/j.cej.2019.01.178 10.1016/j.cclet.2019.11.038 10.1007/s13204-020-01479-8 10.1039/C9RA08660A 10.1016/j.apcatb.2020.118653 10.1016/j.molcata.2004.03.059 10.1016/j.seppur.2020.118003 10.1016/j.matlet.2019.127271 10.1007/s13762-018-1941-2 10.1007/s11051-020-04891-x 10.1016/j.chempr.2018.03.002 10.1021/acs.jpca.0c00269 10.1016/j.ultsonch.2019.104815 10.1016/j.jiec.2017.12.051 10.1016/j.apcatb.2019.01.091 10.1016/j.apcatb.2018.09.088 10.1007/s10311-019-00884-y 10.1016/j.ijbiomac.2020.04.268 10.1021/acs.iecr.6b02814 10.1039/C9QI01163C 10.1016/j.ijbiomac.2020.05.204 10.1016/j.jenvman.2016.12.068 10.1016/j.colsurfa.2020.124875 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2020.124728 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2020_124728 S0304389420327187 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c375t-87be61023b81c98812c296f081bd21fcb8f3bc96148edb339e3f526486aa790c3 |
IEDL.DBID | AIKHN |
ISSN | 0304-3894 1873-3336 |
IngestDate | Sat Sep 27 20:07:59 EDT 2025 Sun Sep 28 12:22:15 EDT 2025 Tue Jul 01 00:49:37 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Fri Feb 23 02:44:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TCS@MOF 2D/2D hybrid photocatalyst MCP Mineralization Degradation pathway |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-87be61023b81c98812c296f081bd21fcb8f3bc96148edb339e3f526486aa790c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3350-2325 0000-0002-8988-9613 0000-0002-4422-1150 |
PQID | 2470026902 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524247088 proquest_miscellaneous_2470026902 crossref_citationtrail_10_1016_j_jhazmat_2020_124728 crossref_primary_10_1016_j_jhazmat_2020_124728 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_124728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vigneshwaran, Preethi, Meenakshi (bib40) 2019; 132 Zhu, Sun, Xu, Li, Lin, Qin (bib65) 2020; 382 Zhang, Ai, Jiang (bib60) 2015; 3 Shankar, Arabindoo, Palanichamy, Murugesan (bib34) 2004; 223 Reddy, Reddy, Harish, Shim, Shankar, Shetti, Aminabhavi (bib32) 2020; 45 Mkhalid, Fierro, Mohamed, Alshahri (bib21) 2020; 10 Xin Huang, Shi, Shi (bib51) 2020; 238 Sarafraz, Sadeghi, Yazdanbakhsh, Amini, Sadani, Eslami (bib33) 2020; 137 Pang, Lu, Cheng, Liu, Ma, Yang, Zhang (bib27) 2020; 10 Ravneet Kaur (bib31) 2019; 17 Zhu, Liu, Ling, Jiang, Wu, Li (bib64) 2019; 242 Vigneshwaran, Karthikeyan, Park, Meenakshi (bib42) 2020; 273 Jeyaprabha Balasubramanian, Periakaruppan, Kamaraj (bib11) 2020; 27 Kurisingal, Rachuri, Gu, Choe, Park (bib15) 2019; 6 Yang, Yuan, Hu, Liu, Zhang (bib56) 2020; 504 Suo, Xie, Zhang, Li, Li, Liu, Zhang, Ma, Ji (bib39) 2018; 8 Zango, Jumbri, Sambudi, Hanif Abu Bakar, Fathihah Abdullah, Basheer, Saad (bib57) 2019; 9 Sharma, Shukla, Attri, Kumar, Kumar, Suttee, Singh, Barnwal, Singla (bib35) 2020; 201 Wang, Gao, Al-Enizi, Nafady, Ma (bib49) 2020; 7 Sun, Tao, Du, Wang (bib38) 2019; 366 Zhu, Cheng, Qin, Ma, Kong, Komarneni (bib63) 2020; 233 Sharma, Joshi, Nigam, Shree, Avasthi, Adelung, Srivastava, Kumar Mishra (bib36) 2019; 358 Xu, Wang, Xu, Liu, Wang, Wang, Sun (bib54) 2020; 61 Sraw, Kaur, Pandey, Verma, Sobti, Wanchoo, Toor (bib37) 2020; 17 Wang, Qin, Qin, Liu, Li (bib48) 2020; 44 Jagannathan Madhavan, Anandan, Grieser, Ashokkumar (bib8) 2010; 177 Wang, Huang, Liu, Sun, Li (bib47) 2014; 4 Xing, Xu, Dong, Bai, Zeng, Zhou, Zhang, Yin (bib52) 2018; 4 Li, Xia, Liu, Ye, Wang, Zhang, Huang, Liu (bib17) 2020; 12 Khodkar, Khezri, Pendashteh, Khoramnejadian, Mamani (bib13) 2018; 16 Zhai, Dai, Guo, Zhou, Chen, Yang, Peng (bib59) 2019 Vigneshwaran, Park, Meenakshi (bib43) 2021; 258 Preethi, Vigneshwaran, Meenakshi (bib28) 2019; 130 Wang, Yi, Wang (bib46) 2019; 247 Deng, Chen, Wen, Xu, Zhu, Bian (bib5) 2019 Ahamad, Naushad, Al-Saeedi, Almotairi, Alshehri (bib1) 2020; 263 Zhang, Fan, Wang, Deng, Liu, Chen (bib61) 2020; 599 Balakrishnan, Appunni, Gopalram (bib3) 2020; 161 Ngamsakpasert, Suriyawong, Supothina, Chuaybamroong (bib25) 2020; 22 Vigneshwaran, Preethi, Meenakshi (bib41) 2019; 132 Moreira, Sampaio, Ribeiro, Silva, Faria, Silva (bib24) 2019; 248 Xu, Wang, Cong, Jiang, Zhang, Zhu, Li, Li (bib55) 2020; 31 Jean-Baptiste Tarkwa, Jiang, Oturan, Kamgang, Laminsi, Oturan (bib10) 2019; 246 Kumar, Bansal, Kim, Kwon (bib14) 2018; 62 Mohan (bib23) 2018; 6 Vigneshwaran, Preethi, Park, Meenakshi (bib44) 2020 Zarei, Farhadian, Akbarzadeh, Pirsaheb, Asadi, Safaei (bib58) 2020; 145 Mohammadzadeh Kakhki, Karimian, Saadati Rad (bib22) 2020 Farzana, Meenakshi (bib6) 2013; 53 Liu, Zhou, Gu, Zhang, Chen, Li, Xu, Lu (bib19) 2020; 578 Jiang, Yang, Yan (bib12) 2013; 5 Preethi, Vigneshwaran, Karthikeyan, Park, Meenakshi (bib29) 2020; 159 Wang, Wang, Xu, Li, Duan, Zhang, Hu, Wang, Zhang (bib50) 2020; 266 García-Ruiz, Álvarez-Llamas, Puerta, Blanco, Sanz-Medel, Marina (bib7) 2005; 543 Lingling Zheng, Pi, Zhang, Sun (bib18) 2016; 6 Rani, Shanker, Jassal (bib30) 2017; 190 Bresolin, Ben Hammouda, Sillanpaa (bib4) 2020; 10 Zhao, Jian, Zhang, Xu, Liu, Zhang, Liu (bib62) 2019; 7 Li, Xu, Zhong (bib16) 2020; 124 Jang, Shahzad, Woo, Lee (bib9) 2020; 182 Nguyen Thi Hanh, Van Thuan, Hung Thanh Tung, Pham, Dinh Minh, Thu Trang, Thien Binh, Viet Nguyen (bib26) 2019; 382 Xu, Yang, Cai, Yang, Li (bib53) 2016; 67 Viswanathan, Mathew, Dubal, Adarsh, Mathew (bib45) 2020; 5 Alqadami, Naushad, Alothman, Ahamad (bib2) 2018; 223 Mahaninia, Wilson (bib20) 2016; 55 Ngamsakpasert (10.1016/j.jhazmat.2020.124728_bib25) 2020; 22 Lingling Zheng (10.1016/j.jhazmat.2020.124728_bib18) 2016; 6 Jang (10.1016/j.jhazmat.2020.124728_bib9) 2020; 182 Shankar (10.1016/j.jhazmat.2020.124728_bib34) 2004; 223 Xing (10.1016/j.jhazmat.2020.124728_bib52) 2018; 4 Ahamad (10.1016/j.jhazmat.2020.124728_bib1) 2020; 263 Xu (10.1016/j.jhazmat.2020.124728_bib54) 2020; 61 Xu (10.1016/j.jhazmat.2020.124728_bib55) 2020; 31 Zhang (10.1016/j.jhazmat.2020.124728_bib60) 2015; 3 Sarafraz (10.1016/j.jhazmat.2020.124728_bib33) 2020; 137 Zango (10.1016/j.jhazmat.2020.124728_bib57) 2019; 9 Rani (10.1016/j.jhazmat.2020.124728_bib30) 2017; 190 Zhu (10.1016/j.jhazmat.2020.124728_bib64) 2019; 242 Li (10.1016/j.jhazmat.2020.124728_bib17) 2020; 12 Jagannathan Madhavan (10.1016/j.jhazmat.2020.124728_bib8) 2010; 177 Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib40) 2019; 132 Ravneet Kaur (10.1016/j.jhazmat.2020.124728_bib31) 2019; 17 García-Ruiz (10.1016/j.jhazmat.2020.124728_bib7) 2005; 543 Reddy (10.1016/j.jhazmat.2020.124728_bib32) 2020; 45 Mohan (10.1016/j.jhazmat.2020.124728_bib23) 2018; 6 Zarei (10.1016/j.jhazmat.2020.124728_bib58) 2020; 145 Sharma (10.1016/j.jhazmat.2020.124728_bib36) 2019; 358 Khodkar (10.1016/j.jhazmat.2020.124728_bib13) 2018; 16 Zhu (10.1016/j.jhazmat.2020.124728_bib65) 2020; 382 Sun (10.1016/j.jhazmat.2020.124728_bib38) 2019; 366 Nguyen Thi Hanh (10.1016/j.jhazmat.2020.124728_bib26) 2019; 382 Wang (10.1016/j.jhazmat.2020.124728_bib47) 2014; 4 Zhao (10.1016/j.jhazmat.2020.124728_bib62) 2019; 7 Zhu (10.1016/j.jhazmat.2020.124728_bib63) 2020; 233 Wang (10.1016/j.jhazmat.2020.124728_bib49) 2020; 7 Farzana (10.1016/j.jhazmat.2020.124728_bib6) 2013; 53 Mkhalid (10.1016/j.jhazmat.2020.124728_bib21) 2020; 10 Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib44) 2020 Li (10.1016/j.jhazmat.2020.124728_bib16) 2020; 124 Bresolin (10.1016/j.jhazmat.2020.124728_bib4) 2020; 10 Pang (10.1016/j.jhazmat.2020.124728_bib27) 2020; 10 Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib43) 2021; 258 Mahaninia (10.1016/j.jhazmat.2020.124728_bib20) 2016; 55 Yang (10.1016/j.jhazmat.2020.124728_bib56) 2020; 504 Zhai (10.1016/j.jhazmat.2020.124728_bib59) 2019 Suo (10.1016/j.jhazmat.2020.124728_bib39) 2018; 8 Kumar (10.1016/j.jhazmat.2020.124728_bib14) 2018; 62 Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib41) 2019; 132 Moreira (10.1016/j.jhazmat.2020.124728_bib24) 2019; 248 Vigneshwaran (10.1016/j.jhazmat.2020.124728_bib42) 2020; 273 Wang (10.1016/j.jhazmat.2020.124728_bib46) 2019; 247 Preethi (10.1016/j.jhazmat.2020.124728_bib28) 2019; 130 Wang (10.1016/j.jhazmat.2020.124728_bib48) 2020; 44 Zhang (10.1016/j.jhazmat.2020.124728_bib61) 2020; 599 Kurisingal (10.1016/j.jhazmat.2020.124728_bib15) 2019; 6 Mohammadzadeh Kakhki (10.1016/j.jhazmat.2020.124728_bib22) 2020 Viswanathan (10.1016/j.jhazmat.2020.124728_bib45) 2020; 5 Balakrishnan (10.1016/j.jhazmat.2020.124728_bib3) 2020; 161 Liu (10.1016/j.jhazmat.2020.124728_bib19) 2020; 578 Sraw (10.1016/j.jhazmat.2020.124728_bib37) 2020; 17 Jiang (10.1016/j.jhazmat.2020.124728_bib12) 2013; 5 Deng (10.1016/j.jhazmat.2020.124728_bib5) 2019 Alqadami (10.1016/j.jhazmat.2020.124728_bib2) 2018; 223 Preethi (10.1016/j.jhazmat.2020.124728_bib29) 2020; 159 Sharma (10.1016/j.jhazmat.2020.124728_bib35) 2020; 201 Xu (10.1016/j.jhazmat.2020.124728_bib53) 2016; 67 Wang (10.1016/j.jhazmat.2020.124728_bib50) 2020; 266 Xin Huang (10.1016/j.jhazmat.2020.124728_bib51) 2020; 238 Jeyaprabha Balasubramanian (10.1016/j.jhazmat.2020.124728_bib11) 2020; 27 Jean-Baptiste Tarkwa (10.1016/j.jhazmat.2020.124728_bib10) 2019; 246 |
References_xml | – volume: 161 start-page: 282 year: 2020 end-page: 291 ident: bib3 article-title: Immobilized TiO publication-title: Int. J. Biol. Macromol. – volume: 238 year: 2020 ident: bib51 article-title: Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment publication-title: Chemosphere – volume: 17 start-page: 1299 year: 2019 end-page: 1324 ident: bib31 article-title: Toxicity and degradation of the insecticide monocrotophos publication-title: Environ. Chem. Lett. – volume: 130 start-page: 491 year: 2019 end-page: 498 ident: bib28 article-title: Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium publication-title: Int J. Biol. Macromol. – volume: 182 year: 2020 ident: bib9 article-title: Magnetic Ti publication-title: Environ. Res. – volume: 223 start-page: 195 year: 2004 end-page: 200 ident: bib34 article-title: Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO publication-title: J. Mol. Catal. A Chem. – volume: 273 year: 2020 ident: bib42 article-title: Boosted insights of novel accordion-like (2D/2D) hybrid photocatalyst for the removal of cationic dyes: mechanistic and degradation pathways publication-title: J. Environ. Manag. – year: 2019 ident: bib5 article-title: Polyaniline-TiO publication-title: Sci. Bull. – volume: 382 year: 2019 ident: bib26 article-title: Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst publication-title: J. Photochem. Photobiol. A Chem. – volume: 6 start-page: 87273 year: 2016 end-page: 87281 ident: bib18 article-title: Synthesis of Fe publication-title: RSC Adv. – volume: 55 start-page: 11706 year: 2016 end-page: 11715 ident: bib20 article-title: Modular cross-linked chitosan beads with calcium doping for enhanced adsorptive uptake of organophosphate anions publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 174 year: 2020 ident: bib25 article-title: Post-harvest treatment of carbendazim in Chinese chives using TiO2 nanofiber photocatalysis with different anatase/rutile ratios publication-title: J. Nanopart. Res. – volume: 266 year: 2020 ident: bib50 article-title: Visible-light-driven photo-Fenton reactions using Zn publication-title: Appl. Catal. B: Environ. – volume: 177 start-page: 944 year: 2010 end-page: 949 ident: bib8 article-title: Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3 publication-title: J. Hazard. Mater. – volume: 4 start-page: 4254 year: 2014 end-page: 4260 ident: bib47 article-title: Fe-based MOFs for photocatalytic CO publication-title: ACS Catal. – volume: 263 year: 2020 ident: bib1 article-title: Fabrication of MoS publication-title: Mater. Lett. – volume: 5 start-page: 9837 year: 2013 end-page: 9842 ident: bib12 article-title: Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution publication-title: ACS Appl. Mater. Interfaces – volume: 543 start-page: 77 year: 2005 end-page: 83 ident: bib7 article-title: Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis publication-title: Anal. Chim. Acta – volume: 578 start-page: 402 year: 2020 end-page: 411 ident: bib19 article-title: Conjugate polymer-clothed TiO publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 7735 year: 2018 end-page: 7743 ident: bib39 article-title: A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal publication-title: RSC Adv. – volume: 6 year: 2018 ident: bib23 article-title: Photocatalytic degradation of simulated monocrotophos waste water using synthesized zinc oxide nanocatalyst under UV radiation publication-title: Int. J. Eng. Res. Technol. – volume: 132 start-page: 289 year: 2019 end-page: 299 ident: bib41 article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C publication-title: Int J. Biol. Macromol. – volume: 132 start-page: 289 year: 2019 end-page: 299 ident: bib40 article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C publication-title: Int. J. Biol. Macromol. – volume: 358 start-page: 540 year: 2019 end-page: 551 ident: bib36 article-title: ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution publication-title: Chem. Eng. J. – volume: 248 start-page: 184 year: 2019 end-page: 192 ident: bib24 article-title: Metal-free g-C publication-title: Appl. Catal. B Environ. – volume: 201 year: 2020 ident: bib35 article-title: Global trends in pesticides: a looming threat and viable alternatives publication-title: Ecotoxicol. Environ. Saf. – volume: 599 year: 2020 ident: bib61 article-title: Facile fabrication of Co publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 7 start-page: 300 year: 2020 end-page: 339 ident: bib49 article-title: Recent advances in MOF-based photocatalysis: environmental remediation under visible light publication-title: Inorg. Chem. Front. – volume: 233 year: 2020 ident: bib63 article-title: Copper sulfide as an excellent co-catalyst with K publication-title: Sep. Purif. Technol. – volume: 62 start-page: 130 year: 2018 end-page: 145 ident: bib14 article-title: Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment publication-title: J. Ind. Eng. Chem. – volume: 6 start-page: 3613 year: 2019 end-page: 3620 ident: bib15 article-title: Fabrication of hierarchically porous MIL-88-NH publication-title: Inorg. Chem. Front. – volume: 61 year: 2020 ident: bib54 article-title: Preparation of zinc tungstate nanomaterial and its sonocatalytic degradation of meloxicam as a novel sonocatalyst in aqueous solution publication-title: Ultrason. Sonochem. – volume: 258 year: 2021 ident: bib43 article-title: Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal publication-title: Sep. Purif. Technol. – year: 2020 ident: bib44 article-title: In-situ fabrication of ternary (3D/2D/2D) prism‒like structures with dramatically enhancement on degradation of profenofos: A systemic study publication-title: Journal of Water Process Engineering – volume: 242 start-page: 238 year: 2019 end-page: 248 ident: bib64 article-title: Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol A degradation publication-title: Appl. Catal. B Environ. – volume: 10 year: 2020 ident: bib4 article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications publication-title: Nanomaterials – year: 2019 ident: bib59 article-title: Novel Biochar@CoFe publication-title: J. Colloid Interface Sci. – volume: 223 start-page: 29 year: 2018 end-page: 36 ident: bib2 article-title: Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism publication-title: J. Environ. Manag. – volume: 382 year: 2020 ident: bib65 article-title: Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light publication-title: J. Hazard. Mater. – volume: 53 start-page: 55 year: 2013 end-page: 63 ident: bib6 article-title: Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 3074 year: 2015 end-page: 3081 ident: bib60 article-title: Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light publication-title: J. Mater. Chem. A – volume: 145 start-page: 926 year: 2020 end-page: 935 ident: bib58 article-title: Fabrication of novel 2D Ag-TiO publication-title: Int J. Biol. Macromol. – volume: 44 start-page: 2733 year: 2020 end-page: 2740 ident: bib48 article-title: Theoretical study on degradation mechanism of ornidazole on anatase TiO publication-title: N. J. Chem. – volume: 67 start-page: 29 year: 2016 end-page: 31 ident: bib53 article-title: Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles publication-title: Inorg. Chem. Commun. – volume: 137 start-page: 261 year: 2020 end-page: 272 ident: bib33 article-title: Enhanced photocatalytic degradation of ciprofloxacin by black Ti publication-title: Process Saf. Environ. Prot. – volume: 366 start-page: 622 year: 2019 end-page: 630 ident: bib38 article-title: Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances publication-title: Chem. Eng. J. – volume: 247 start-page: 24 year: 2019 end-page: 48 ident: bib46 article-title: Powerful combination of MOFs and C publication-title: Appl. Catal. B Environ. – volume: 124 start-page: 2854 year: 2020 end-page: 2862 ident: bib16 article-title: Highly efficient adsorption and reduction of Cr(VI) ions by a core-shell Fe publication-title: J. Phys. Chem. A – volume: 5 start-page: 7534 year: 2020 end-page: 7542 ident: bib45 article-title: Exploring the effect of morphologies of Fe(III) metal‐organic framework MIL‐88A(Fe) on the photocatalytic degradation of Rhodamine B publication-title: ChemistrySelect – volume: 27 start-page: 2328 year: 2020 end-page: 2339 ident: bib11 article-title: Accelerated photodeterioration of class I toxic monocrotophos in the presence of one-pot constructed Ag publication-title: Environ. Sci. Pollut. Res. – volume: 17 start-page: 4895 year: 2020 end-page: 4908 ident: bib37 article-title: Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO publication-title: Int. J. Environ. Sci. Technol. – year: 2020 ident: bib22 article-title: Highly efficient removal of paraquat pesticide from aqueous solutions using a novel nano Kaolin modified with sulfuric acid via host–guest interactions publication-title: J. Incl. Phenom. Macrocycl. Chem. – volume: 159 start-page: 324 year: 2020 end-page: 332 ident: bib29 article-title: Chitosan modified zirconium/zinc oxide as a visible light driven photocatalyst for the efficient reduction of hexavalent chromium publication-title: Int. J. Biol. Macromol. – volume: 190 start-page: 208 year: 2017 end-page: 222 ident: bib30 article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review publication-title: J. Environ. Manag. – volume: 16 start-page: 5741 year: 2018 end-page: 5756 ident: bib13 article-title: A designed experimental approach for photocatalytic degradation of paraquat using α-Fe publication-title: Int. J. Environ. Sci. Technol. – volume: 12 start-page: 25494 year: 2020 end-page: 25502 ident: bib17 article-title: Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: bib52 article-title: Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes publication-title: Chem – volume: 9 start-page: 41490 year: 2019 end-page: 41501 ident: bib57 article-title: Removal of anthracene in water by MIL-88(Fe), NH publication-title: RSC Adv. – volume: 10 start-page: 3773 year: 2020 end-page: 3786 ident: bib21 article-title: Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO publication-title: Appl. Nanosci. – volume: 504 year: 2020 ident: bib56 article-title: Synthesis of mesoporous C/MoS publication-title: Appl. Surf. Sci. – volume: 45 start-page: 7656 year: 2020 end-page: 7679 ident: bib32 article-title: Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO publication-title: Int. J. Hydrog. Energy – volume: 10 start-page: 3875 year: 2020 end-page: 3889 ident: bib27 article-title: Facile synthesis of oxygen-deficient nano-TiO publication-title: Catal. Sci. Technol. – volume: 246 start-page: 211 year: 2019 end-page: 220 ident: bib10 article-title: Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma publication-title: Appl. Catal. B Environ. – volume: 31 start-page: 1022 year: 2020 end-page: 1025 ident: bib55 article-title: Ternary BiOBr/TiO publication-title: Chin. Chem. Lett. – volume: 7 start-page: 16598 year: 2019 end-page: 16621 ident: bib62 article-title: A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS publication-title: J. Mater. Chem. A – volume: 3 start-page: 3074 year: 2015 ident: 10.1016/j.jhazmat.2020.124728_bib60 article-title: Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04622F – year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib22 article-title: Highly efficient removal of paraquat pesticide from aqueous solutions using a novel nano Kaolin modified with sulfuric acid via host–guest interactions publication-title: J. Incl. Phenom. Macrocycl. Chem. doi: 10.1007/s10847-019-00973-z – volume: 177 start-page: 944 year: 2010 ident: 10.1016/j.jhazmat.2020.124728_bib8 article-title: Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.009 – volume: 382 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib65 article-title: Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121098 – volume: 67 start-page: 29 year: 2016 ident: 10.1016/j.jhazmat.2020.124728_bib53 article-title: Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2016.03.003 – volume: 543 start-page: 77 year: 2005 ident: 10.1016/j.jhazmat.2020.124728_bib7 article-title: Enantiomeric separation of organophosphorus pesticides by capillary electrophoresis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.04.027 – year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib5 article-title: Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction publication-title: Sci. Bull. – volume: 44 start-page: 2733 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib48 article-title: Theoretical study on degradation mechanism of ornidazole on anatase TiO2(101) and (001) surfaces publication-title: N. J. Chem. doi: 10.1039/C9NJ05659A – volume: 130 start-page: 491 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib28 article-title: Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium publication-title: Int J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.02.101 – volume: 10 start-page: 3875 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib27 article-title: Facile synthesis of oxygen-deficient nano-TiO2 coordinated by acetate ligands for enhanced visible-light photocatalytic performance publication-title: Catal. Sci. Technol. doi: 10.1039/D0CY00592D – volume: 45 start-page: 7656 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib32 article-title: Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.02.144 – volume: 246 start-page: 211 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib10 article-title: Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.066 – volume: 17 start-page: 4895 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib37 article-title: Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO2 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-020-02802-0 – volume: 5 start-page: 9837 year: 2013 ident: 10.1016/j.jhazmat.2020.124728_bib12 article-title: Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403079n – volume: 504 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib56 article-title: Synthesis of mesoporous C/MoS2 for adsorption of methyl orange and photo-catalytic sterilization publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144445 – volume: 182 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib9 article-title: Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process publication-title: Environ. Res. doi: 10.1016/j.envres.2019.108990 – volume: 132 start-page: 289 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib41 article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies publication-title: Int J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.03.071 – volume: 578 start-page: 402 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib19 article-title: Conjugate polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.014 – volume: 201 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib35 article-title: Global trends in pesticides: a looming threat and viable alternatives publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110812 – volume: 7 start-page: 300 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib49 article-title: Recent advances in MOF-based photocatalysis: environmental remediation under visible light publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01120J – volume: 53 start-page: 55 year: 2013 ident: 10.1016/j.jhazmat.2020.124728_bib6 article-title: Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402347g – volume: 273 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib42 article-title: Boosted insights of novel accordion-like (2D/2D) hybrid photocatalyst for the removal of cationic dyes: mechanistic and degradation pathways publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111125 – volume: 27 start-page: 2328 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib11 article-title: Accelerated photodeterioration of class I toxic monocrotophos in the presence of one-pot constructed Ag3PO4/polyaniline@g-C3N4 nanocomposite: efficacy in light harvesting publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-06811-6 – volume: 7 start-page: 16598 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib62 article-title: A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS2, MXenes, and 2D MOFs publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02935D – volume: 223 start-page: 29 year: 2018 ident: 10.1016/j.jhazmat.2020.124728_bib2 article-title: Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.05.090 – volume: 4 start-page: 4254 year: 2014 ident: 10.1016/j.jhazmat.2020.124728_bib47 article-title: Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways publication-title: ACS Catal. doi: 10.1021/cs501169t – volume: 12 start-page: 25494 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib17 article-title: Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06601 – volume: 233 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib63 article-title: Copper sulfide as an excellent co-catalyst with K2S2O8 for dye decomposition in advanced oxidation process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116057 – volume: 5 start-page: 7534 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib45 article-title: Exploring the effect of morphologies of Fe(III) metal‐organic framework MIL‐88A(Fe) on the photocatalytic degradation of Rhodamine B publication-title: ChemistrySelect doi: 10.1002/slct.202001670 – volume: 8 start-page: 7735 year: 2018 ident: 10.1016/j.jhazmat.2020.124728_bib39 article-title: A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal publication-title: RSC Adv. doi: 10.1039/C7RA12898C – volume: 6 start-page: 87273 year: 2016 ident: 10.1016/j.jhazmat.2020.124728_bib18 article-title: Synthesis of Fe3O4@mTiO2 nanocomposites for the photocatalytic degradation of Monocrotophos under UV illumination publication-title: RSC Adv. doi: 10.1039/C6RA13423H – volume: 382 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib26 article-title: Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst publication-title: J. Photochem. Photobiol. A Chem. – volume: 137 start-page: 261 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib33 article-title: Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: kinetic, energy consumption, degradation pathway, and toxicity assessment publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.02.030 – volume: 358 start-page: 540 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib36 article-title: ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.031 – volume: 145 start-page: 926 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib58 article-title: Fabrication of novel 2D Ag-TiO2/gamma-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate publication-title: Int J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.09.183 – volume: 248 start-page: 184 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib24 article-title: Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.02.001 – volume: 6 year: 2018 ident: 10.1016/j.jhazmat.2020.124728_bib23 article-title: Photocatalytic degradation of simulated monocrotophos waste water using synthesized zinc oxide nanocatalyst under UV radiation publication-title: Int. J. Eng. Res. Technol. – volume: 366 start-page: 622 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib38 article-title: Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.178 – volume: 31 start-page: 1022 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib55 article-title: Ternary BiOBr/TiO2/Ti3C2T MXene nanocomposites with heterojunction structure and improved photocatalysis performance publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.11.038 – volume: 10 start-page: 3773 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib21 article-title: Photocatalytic visible-light-driven removal of the herbicide imazapyer using nanocomposites based on mesoporous TiO2 modified with Gd2O3 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01479-8 – volume: 9 start-page: 41490 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib57 article-title: Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal–organic frameworks publication-title: RSC Adv. doi: 10.1039/C9RA08660A – volume: 266 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib50 article-title: Visible-light-driven photo-Fenton reactions using Zn1-1.5Fe S/g-C3N4 photocatalyst: degradation kinetics and mechanisms analysis publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.118653 – volume: 223 start-page: 195 year: 2004 ident: 10.1016/j.jhazmat.2020.124728_bib34 article-title: Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO2/Hβ publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2004.03.059 – year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib59 article-title: Novel Biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation publication-title: J. Colloid Interface Sci. – volume: 258 year: 2021 ident: 10.1016/j.jhazmat.2020.124728_bib43 article-title: Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118003 – volume: 263 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib1 article-title: Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127271 – volume: 238 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib51 article-title: Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment publication-title: Chemosphere – volume: 16 start-page: 5741 year: 2018 ident: 10.1016/j.jhazmat.2020.124728_bib13 article-title: A designed experimental approach for photocatalytic degradation of paraquat using α-Fe2O3@MIL-101(Cr)@TiO2 based on metal–organic framework publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-1941-2 – volume: 22 start-page: 174 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib25 article-title: Post-harvest treatment of carbendazim in Chinese chives using TiO2 nanofiber photocatalysis with different anatase/rutile ratios publication-title: J. Nanopart. Res. doi: 10.1007/s11051-020-04891-x – volume: 132 start-page: 289 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib40 article-title: Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: photocatalytic and adsorption studies publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.03.071 – volume: 4 start-page: 1359 year: 2018 ident: 10.1016/j.jhazmat.2020.124728_bib52 article-title: Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes publication-title: Chem doi: 10.1016/j.chempr.2018.03.002 – volume: 124 start-page: 2854 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib16 article-title: Highly efficient adsorption and reduction of Cr(VI) ions by a core-shell Fe3O4@UiO-66@PANI composite publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c00269 – volume: 61 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib54 article-title: Preparation of zinc tungstate nanomaterial and its sonocatalytic degradation of meloxicam as a novel sonocatalyst in aqueous solution publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104815 – volume: 62 start-page: 130 year: 2018 ident: 10.1016/j.jhazmat.2020.124728_bib14 article-title: Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.12.051 – volume: 247 start-page: 24 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib46 article-title: Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.091 – volume: 242 start-page: 238 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib64 article-title: Growth of graphene-supported hollow cobalt sulfide nanocrystals via MOF-templated ligand exchange as surface-bound radical sinks for highly efficient bisphenol A degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.09.088 – volume: 17 start-page: 1299 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib31 article-title: Toxicity and degradation of the insecticide monocrotophos publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-019-00884-y – volume: 159 start-page: 324 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib29 article-title: Chitosan modified zirconium/zinc oxide as a visible light driven photocatalyst for the efficient reduction of hexavalent chromium publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.04.268 – volume: 10 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib4 article-title: An emerging visible-light organic-inorganic hybrid perovskite for photocatalytic applications – volume: 55 start-page: 11706 year: 2016 ident: 10.1016/j.jhazmat.2020.124728_bib20 article-title: Modular cross-linked chitosan beads with calcium doping for enhanced adsorptive uptake of organophosphate anions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b02814 – volume: 6 start-page: 3613 year: 2019 ident: 10.1016/j.jhazmat.2020.124728_bib15 article-title: Fabrication of hierarchically porous MIL-88-NH2(Fe): a highly efficient catalyst for the chemical fixation of CO2 under ambient pressure publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01163C – year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib44 article-title: In-situ fabrication of ternary (3D/2D/2D) prism‒like structures with dramatically enhancement on degradation of profenofos: A systemic study publication-title: Journal of Water Process Engineering – volume: 161 start-page: 282 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib3 article-title: Immobilized TiO2/chitosan beads for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.05.204 – volume: 190 start-page: 208 year: 2017 ident: 10.1016/j.jhazmat.2020.124728_bib30 article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.12.068 – volume: 599 year: 2020 ident: 10.1016/j.jhazmat.2020.124728_bib61 article-title: Facile fabrication of Co2P/TiO2 nanotube arrays photoelectrode for efficient methylene blue degradation publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.124875 |
SSID | ssj0001754 |
Score | 2.5646772 |
Snippet | In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of... In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO₂/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO₂ on the surface of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124728 |
SubjectTerms | 2D/2D hybrid photocatalyst carbon dioxide catalytic activity Degradation pathway irradiation light MCP Mineralization monocrotophos nanocomposites nanosheets oxidation photocatalysts pollutants soil TCS@MOF |
Title | Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates |
URI | https://dx.doi.org/10.1016/j.jhazmat.2020.124728 https://www.proquest.com/docview/2470026902 https://www.proquest.com/docview/2524247088 |
Volume | 406 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa62wscEBQQ5VEZiUMrkc2u83DMrdqy2oVSDrRSb5Fjj5WsaBLtboXgwB_jzzGTx0IRohJXx7ZGGXvmG3nmG8ZeGSfxGGBYAhBigOKSsaclWC9zStrAqTHYhu3zLJ5fhO8uo8sdNu1rYSitsrP9rU1vrHU34nd_06-Lwv9Ej3robkPqAY4WVg7YrkBvnwzZ7vHi_fxsa5DRQ7YsUvQIgAt-FfL4y9Ey198QG2KkKIhqIZTUl_3vLuoPY914oNl9dq-Djvy4le4B24Fyj939jVBwjw1O9ZeH7McCDxclvbYllrxy_MPi1EuSwxkccVRzXq3A8vPio_DoGaFa6_JQnPji5IjnX6mEi5e6rCjbnFK6gCOw5QgUuSVmCbvdtOkIVdV5ta5zhKy8JsYOU1h4w6dbHuhWhtf8CqjGuFhfoQD2xk7EWLFqKlgQ9j5iF7O359O51zVp8Ewgow1a0wxi4n_IkolRCeIFI1TsEGlkVkycyRIXZEYR3yjYLAgUBC6itLpYa6nGJnjMhmVVwhPGcUasIbZWGQhVLLNE04ACiJ02Qu6zsNdLajoGc2qk8TntU9WWaafOlNSZturcZ6Ptsrql8LhtQdIrPb1xFlN0M7ctfdkfkhTvKT2-6BKq63WKnyneVWPxjzkRFetINPxP_1-EZ-yOoLwbyjmMnrPhZnUNLxA4bbIDNhh9nxx01-MnE-YbqA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacgAOCAqo5WkkDq1ENtu8HHNDW1a7sC0HtlJvlmOPlaxoEu1uheDAH-PPMZPHliJEJa6JHVmZ8cxn-ZtvGHttnEA3wGMJQIQHFJcOPS3AepmTwoZODsE2ap-nyeQs-nAen2-xUV8LQ7TKLva3Mb2J1t0Tv_ubfl0U_me61MN0G1EPcIywYpvdiqjNATr14McVzwPzY6shRVcAOPyqjMdfDBa5_o7IEM-JAQktRIK6sv89Qf0Rqpv8M77P7nXAkb9r1_aAbUG5y-7-Jie4y7Zn-utD9nOKrkWU17bAkleOn0xnXpoejOGQo5HzagmWz4tPgUeXCNVKlwfBsR8cH_L8GxVw8VKXFXHNidAFHGEtR5jILelK2M1Hm35QVZ1XqzpHwMpr0uswhYW3fLRRgW7X8IZfAFUYF6sLXIC99iXSq1g29SsIeh-xs_H7-WjidS0aPBOKeI2xNIOE1B-y9MjIFNGCCWTiEGdkNjhyJktdmBlJaqNgszCUELqYSHWJ1kIOTfiY7ZRVCXuM44hEQ2KtNBDJRGSppgcSIHHaBGKfRb1dlOn0y6mNxhfVE9UWqjOnInOq1pz7bLCZVrcCHjdNSHujq2ueqDDJ3DT1Ve8kCncpXb3oEqrLlcLXdNqVw-AfY2Iq1REY9p_8_xJestuT-clMzaanH5-yOwExcIh9GD9jO-vlJTxHCLXOXjRb5BdooRxq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immobilization+of+MIL-88%28Fe%29+anchored+TiO2-chitosan%282D%2F2D%29+hybrid+nanocomposite+for+the+degradation+of+organophosphate+pesticide%3A+Characterization%2C+mechanism+and+degradation+intermediates&rft.jtitle=Journal+of+hazardous+materials&rft.au=Vigneshwaran%2C+Sivakumar&rft.au=Sirajudheen%2C+Palliyalil&rft.au=Karthikeyan%2C+Perumal&rft.au=Nikitha%2C+Manuvelraja&rft.date=2021-03-15&rft.issn=0304-3894&rft.volume=406+p.124728-&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.124728&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |