Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction
Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Pois...
        Saved in:
      
    
          | Published in | Lifetime data analysis Vol. 28; no. 1; pp. 68 - 88 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.01.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7870 1572-9249 1572-9249  | 
| DOI | 10.1007/s10985-021-09536-2 | 
Cover
| Abstract | Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study. | 
    
|---|---|
| AbstractList | Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study. Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.  | 
    
| Author | Shen, Pao-sheng Chen, Chyong-Mei Peng, Yingwei Chen, Hsin-Jen  | 
    
| Author_xml | – sequence: 1 givenname: Pao-sheng surname: Shen fullname: Shen, Pao-sheng organization: Department of Statistics, Tunghai University, Xitun District – sequence: 2 givenname: Yingwei surname: Peng fullname: Peng, Yingwei organization: Departments of Public Health Sciences and Mathematics and Statistics, Queen’s University – sequence: 3 givenname: Hsin-Jen surname: Chen fullname: Chen, Hsin-Jen organization: Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University – sequence: 4 givenname: Chyong-Mei orcidid: 0000-0001-6824-4819 surname: Chen fullname: Chen, Chyong-Mei email: cmchen2@nycu.edu.tw organization: Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34623557$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kUtPXSEUhUljUx_tH-jAkDjphJbH5TU0prVNNE50TDgHjhfLgStwrP570atp4sARO-RbO2vttQ92Uk4egK8EfycYyx-VYK04wpQgrDkTiH4Ae4RLijRd6Z0-M4WRVBLvgv1ab3AXaaE_gV22EpRxLvdAOLf3YV5mGMNfH8M6Zwd9bWG2LeQEp1xg9Om6rdEQbPUO2uRgSM2XOxvR6FPNpf862yz8F9oaWthd1qWOftPCED2cih2fdn0GHycbq__y8h6Aq18_L09-o7OL0z8nx2doZJI3JAdB5eBdz-NGK_WAnVZscNwJTSnHQikmmegpuXNEK6sInTyRTkjNsF2xA_Btu3dT8u3Ss5g5dDcx2uTzUg3lCouOUt3RozfoTV5K6u4MFZQohleSd-rwhVqG2TuzKf065cG8HrEDaguMJdda_GTG0J7v14oN0RBsnvoy275M78s892Vol9I30tft74rYVlQ7nK59-W_7HdUjzZSnYA | 
    
| CitedBy_id | crossref_primary_10_29220_CSAM_2024_31_6_661 crossref_primary_10_1002_bimj_202100368 crossref_primary_10_1002_sim_9724 crossref_primary_10_3390_math11224576 crossref_primary_10_1111_biom_13898  | 
    
| Cites_doi | 10.1002/cjs.11197 10.1007/s10985-018-9445-4 10.1080/03610928708829561 10.1093/biomet/77.1.169 10.1080/01621459.1989.10478828 10.1111/j.0006-341X.2000.00237.x 10.1111/j.1541-0420.2006.00710.x 10.1111/j.0006-341X.2002.00064.x 10.1080/01621459.1991.10475011 10.1002/sim.5845 10.1177/2040622314548679 10.2307/2529885 10.1016/j.amjmed.2014.03.018 10.1093/biomet/76.4.751 10.1161/CIRCULATIONAHA.118.037885 10.1007/s10985-004-4770-1 10.1016/j.csda.2019.06.006 10.1016/S2213-8587(17)30186-9 10.1007/s10985-006-9012-2 10.1002/sim.2326 10.1214/17-STS638 10.1093/biostatistics/kxv012 10.1016/j.spl.2015.02.015 10.1007/s10985-020-09493-2 10.1080/01621459.1999.10474195 10.1093/biomet/79.3.531 10.1198/jasa.2011.tm10156 10.1093/biostatistics/kxx024 10.1007/s10985-016-9367-y 10.1111/1467-9469.00177 10.1111/j.1467-9574.1995.tb01462.x 10.2337/diacare.24.9.1522 10.1111/j.0006-341X.2000.00227.x 10.1038/srep46534 10.1198/016214502753479347 10.1111/j.2517-6161.1976.tb01597.x 10.1007/978-1-4684-6316-3_8 10.1111/j.2517-6161.1994.tb01960.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7WY 7WZ 7X7 7XB 87Z 88C 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L6V M0C M0S M0T M1P M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 7X8  | 
    
| DOI | 10.1007/s10985-021-09536-2 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Business Collection (Alumni Edition)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Economics Mathematics Statistics Public Health  | 
    
| EISSN | 1572-9249 | 
    
| EndPage | 88 | 
    
| ExternalDocumentID | 34623557 10_1007_s10985_021_09536_2  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 108-2118-M-010-001 funderid: http://dx.doi.org/10.13039/501100004663  | 
    
| GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 44B 53G 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EBU EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV KOW L6V LAK LLZTM M0C M0T M1P M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z81 Z83 Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. L.- PKEHL PQEST PQUKI Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c375t-7b627bed536dca79b0d983bd5d69225068837365725dd198a812fe17d67930a43 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1380-7870 1572-9249  | 
    
| IngestDate | Sat Sep 27 21:32:09 EDT 2025 Mon Oct 06 16:54:49 EDT 2025 Wed Feb 19 02:27:00 EST 2025 Wed Oct 01 02:24:33 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 21 02:46:15 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Left truncation Interval censoring Nonparametric maximum likelihood estimation Mixture cure model Length-biased sampling  | 
    
| Language | English | 
    
| License | 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c375t-7b627bed536dca79b0d983bd5d69225068837365725dd198a812fe17d67930a43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-6824-4819 | 
    
| PMID | 34623557 | 
    
| PQID | 2621830475 | 
    
| PQPubID | 26261 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | proquest_miscellaneous_2580693029 proquest_journals_2621830475 pubmed_primary_34623557 crossref_citationtrail_10_1007_s10985_021_09536_2 crossref_primary_10_1007_s10985_021_09536_2 springer_journals_10_1007_s10985_021_09536_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220100 2022-01-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States  | 
    
| PublicationSubtitle | An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data | 
    
| PublicationTitle | Lifetime data analysis | 
    
| PublicationTitleAbbrev | Lifetime Data Anal | 
    
| PublicationTitleAlternate | Lifetime Data Anal | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Kuk, Chen (CR14) 1992; 79 Qin (CR21) 2017 Wang (CR36) 1989; 84 Peng, Dear (CR19) 2000; 56 Sattar, Rawshani, Franzén, Rawshani, Svensson, Rosengren, McGuire, Eliasson, Gudbjornsdöttir (CR23) 2019; 139 Lascar, Brown, Pattison, Barnett, Bailey, Bellary (CR15) 2018; 6 Tsai (CR32) 1990; 77 Shen (CR26) 2020; 26 Shen (CR25) 2015; 100 Farewell (CR7) 1982; 38 CR13 CR12 Vardi (CR34) 1989; 76 Chan, Lau, Luk, Cheung, Kong, Yu, Choi, Chow, Ozaki, Brown, Yang, Bennett, Ma, So (CR4) 2014; 127 Zelen (CR41) 2004; 10 Chen, Tsay, Wu, Horng (CR5) 2013; 32 Qin, Ning, Liu, Shen (CR22) 2011; 106 Chen, Little (CR6) 1999; 94 Shen, Ning, Qin (CR28) 2017; 23 Turnbull (CR33) 1976; 38 Hillier, Pedula (CR9) 2001; 24 Mandel, Betensky (CR17) 2007; 63 Asgharian, Wolfson, Zhang (CR3) 2006; 25 Ma (CR16) 2010; 20 Sun, Qin, Huang (CR30) 2018; 33 Wang (CR35) 1987; 16 Huang, Wellner (CR11) 1995; 49 Shen, Chen, Pan, Chen (CR27) 2019; 140 Xu, Peng (CR40) 2014; 42 CR2 Sy, Taylor (CR31) 2000; 56 Frydman (CR8) 1994; 56 Pan, Chappell (CR18) 2002; 58 Piao, Ning, Chambers, Xu (CR20) 2018; 19 Wu, Chambers, Xu (CR39) 2019; 25 Schick, Yu (CR24) 2000; 27 CR29 Huang, Ning, Qin (CR10) 2015; 16 Wilmot, Idris (CR38) 2014; 5 Addona, Wolfson (CR1) 2006; 12 Wang (CR37) 1991; 86 Zou, Zhou, Ji, Yang, Lu, Weng, Jia, Shan, Liu, Tian, Ji, Zhu, Ge, Lin, Chen, Guo, Zhao, Li, Zhou (CR42) 2017; 7 A Schick (9536_CR24) 2000; 27 TA Hillier (9536_CR9) 2001; 24 J Qin (9536_CR21) 2017 CH Chen (9536_CR5) 2013; 32 VT Farewell (9536_CR7) 1982; 38 PS Shen (9536_CR27) 2019; 140 9536_CR29 N Sattar (9536_CR23) 2019; 139 CY Huang (9536_CR10) 2015; 16 M Zelen (9536_CR41) 2004; 10 J Huang (9536_CR11) 1995; 49 9536_CR2 H Frydman (9536_CR8) 1994; 56 BW Turnbull (9536_CR33) 1976; 38 J Piao (9536_CR20) 2018; 19 S Ma (9536_CR16) 2010; 20 M Mandel (9536_CR17) 2007; 63 W Pan (9536_CR18) 2002; 58 PS Shen (9536_CR26) 2020; 26 Y Peng (9536_CR19) 2000; 56 J Xu (9536_CR40) 2014; 42 MC Wang (9536_CR37) 1991; 86 X Zou (9536_CR42) 2017; 7 JP Sy (9536_CR31) 2000; 56 9536_CR12 M Asgharian (9536_CR3) 2006; 25 9536_CR13 MC Wang (9536_CR36) 1989; 84 E Wilmot (9536_CR38) 2014; 5 JC Chan (9536_CR4) 2014; 127 WY Tsai (9536_CR32) 1990; 77 MC Wang (9536_CR35) 1987; 16 Y Vardi (9536_CR34) 1989; 76 V Addona (9536_CR1) 2006; 12 AYC Kuk (9536_CR14) 1992; 79 N Lascar (9536_CR15) 2018; 6 PS Shen (9536_CR25) 2015; 100 Y Sun (9536_CR30) 2018; 33 J Qin (9536_CR22) 2011; 106 Y Shen (9536_CR28) 2017; 23 Y Wu (9536_CR39) 2019; 25 HY Chen (9536_CR6) 1999; 94  | 
    
| References_xml | – volume: 42 start-page: 1 year: 2014 end-page: 17 ident: CR40 article-title: Nonparametric cure rate estimation with covariates publication-title: Can J Stat doi: 10.1002/cjs.11197 – volume: 25 start-page: 507 year: 2019 end-page: 528 ident: CR39 article-title: Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion publication-title: Lifetime Data Anal doi: 10.1007/s10985-018-9445-4 – volume: 16 start-page: 3117 year: 1987 end-page: 3132 ident: CR35 article-title: Product limit estimates—a generalized maximum likelihood study publication-title: Commun Stat Theor Meth doi: 10.1080/03610928708829561 – ident: CR2 – volume: 77 start-page: 169 year: 1990 end-page: 177 ident: CR32 article-title: Testing the assumption of independence of truncation time and failure time publication-title: Biometrika doi: 10.1093/biomet/77.1.169 – ident: CR12 – volume: 84 start-page: 742 year: 1989 end-page: 748 ident: CR36 article-title: A semiparametric model for randomly truncated data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478828 – volume: 56 start-page: 237 year: 2000 end-page: 243 ident: CR19 article-title: A nonparametric mixture model for cure rate estimation publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00237.x – year: 2017 ident: CR21 publication-title: Biased Sampling – volume: 63 start-page: 405 year: 2007 end-page: 412 ident: CR17 article-title: Testing goodness of fit of a uniform truncation model publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00710.x – volume: 58 start-page: 64 year: 2002 end-page: 70 ident: CR18 article-title: Estimation in the Cox proportional hazard model with left-truncated and interval-censored data publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00064.x – ident: CR29 – volume: 86 start-page: 130 year: 1991 end-page: 143 ident: CR37 article-title: Nonparametric estimation from cross-sectional survival data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1991.10475011 – volume: 32 start-page: 4285 year: 2013 end-page: 4305 ident: CR5 article-title: Logistic-AFT location-scale mixture regression models with nonsusceptibility for left-truncated and general interval-censored data publication-title: Stat Med doi: 10.1002/sim.5845 – volume: 5 start-page: 234 year: 2014 end-page: 244 ident: CR38 article-title: Early onset type 2 diabetes: risk factors, clinical impact and management publication-title: Ther Adv Chronic Dis doi: 10.1177/2040622314548679 – volume: 38 start-page: 1041 year: 1982 end-page: 1046 ident: CR7 article-title: The use of mixture models for the analysis of survival data with long-term survivors publication-title: Biometrics doi: 10.2307/2529885 – volume: 127 start-page: 616 year: 2014 end-page: 624 ident: CR4 article-title: Premature mortality and comorbidities in young-onset diabetes: a 7-year prospective analysis publication-title: Am J Med doi: 10.1016/j.amjmed.2014.03.018 – volume: 20 start-page: 1165 year: 2010 end-page: 1181 ident: CR16 article-title: Mixed case interval censored data with a cured subgroup publication-title: Stat Sin – volume: 76 start-page: 751 year: 1989 end-page: 761 ident: CR34 article-title: Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation publication-title: Biometrika doi: 10.1093/biomet/76.4.751 – volume: 139 start-page: 2228 year: 2019 end-page: 2237 ident: CR23 article-title: Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037885 – volume: 10 start-page: 325 year: 2004 end-page: 334 ident: CR41 article-title: Forward and backward recurrence times and length biased sampling: Age specific models publication-title: Lifetime Data Anal doi: 10.1007/s10985-004-4770-1 – volume: 140 start-page: 74 year: 2019 end-page: 87 ident: CR27 article-title: Semiparametric regression analysis for left-truncated and interval-censored data without or with a cure fraction publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2019.06.006 – volume: 6 start-page: 69 year: 2018 end-page: 80 ident: CR15 article-title: Type 2 diabetes in adolescents and young adults publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(17)30186-9 – volume: 12 start-page: 267 year: 2006 end-page: 284 ident: CR1 article-title: A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up publication-title: Lifetime Data Anal doi: 10.1007/s10985-006-9012-2 – volume: 25 start-page: 1751 year: 2006 end-page: 1767 ident: CR3 article-title: Checking stationarity of the incidence rate using prevalent cohort survival data publication-title: Stat Med doi: 10.1002/sim.2326 – volume: 33 start-page: 261 year: 2018 end-page: 276 ident: CR30 article-title: Missing information principle: a unified approach for general truncated and censored survival data problems publication-title: Stat Sci doi: 10.1214/17-STS638 – volume: 16 start-page: 785 year: 2015 end-page: 798 ident: CR10 article-title: Semiparametric likelihood inference for left-truncated and right-censored data publication-title: Biostatistics doi: 10.1093/biostatistics/kxv012 – volume: 100 start-page: 164 year: 2015 end-page: 171 ident: CR25 article-title: Conditional MLE for the proportional hazards model with left-truncated and interval-censored data publication-title: Stat Probab Lett doi: 10.1016/j.spl.2015.02.015 – ident: CR13 – volume: 26 start-page: 624 year: 2020 end-page: 637 ident: CR26 article-title: Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation publication-title: Lifetime Data Anal doi: 10.1007/s10985-020-09493-2 – volume: 94 start-page: 896 year: 1999 end-page: 908 ident: CR6 article-title: Proportional hazards regression with missing covariates publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10474195 – volume: 79 start-page: 531 year: 1992 end-page: 541 ident: CR14 article-title: A mixture model combining logistic regression with proportional hazards regression publication-title: Biometrika doi: 10.1093/biomet/79.3.531 – volume: 106 start-page: 1434 year: 2011 end-page: 1449 ident: CR22 article-title: Maximum likelihood estimations and EM algorithms with length-biased data publication-title: J Am Stat Assoc doi: 10.1198/jasa.2011.tm10156 – volume: 38 start-page: 290 year: 1976 end-page: 295 ident: CR33 article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data publication-title: J R Stat Soc Ser B – volume: 19 start-page: 54 year: 2018 end-page: 70 ident: CR20 article-title: Semiparametric model and inference for spontaneous abortion data with a cured proportion and biased sampling publication-title: Biostatistics doi: 10.1093/biostatistics/kxx024 – volume: 23 start-page: 3 year: 2017 end-page: 24 ident: CR28 article-title: Nonparametric and semiparametric regression estimation for length-biased survival data publication-title: Lifetime Data Anal doi: 10.1007/s10985-016-9367-y – volume: 27 start-page: 45 year: 2000 end-page: 55 ident: CR24 article-title: Consistency of the GMLE with mixed case interval-censored data publication-title: Scand J Stat doi: 10.1111/1467-9469.00177 – volume: 56 start-page: 71 year: 1994 end-page: 74 ident: CR8 article-title: A note on nonparametric estimation of the distribution function from interval-censored and truncated observations publication-title: J R Stat Soc Ser B – volume: 49 start-page: 153 year: 1995 end-page: 163 ident: CR11 article-title: Asymptotic normality of the NPMLE of linear functionals for interval censored data, case I publication-title: Stat Neerl doi: 10.1111/j.1467-9574.1995.tb01462.x – volume: 24 start-page: 1522 year: 2001 end-page: 1527 ident: CR9 article-title: Characteristics of an adult population with newly diagnosed type 2 diabetes: the relation of obesity and age of onset publication-title: Diabetes Care doi: 10.2337/diacare.24.9.1522 – volume: 56 start-page: 227 year: 2000 end-page: 236 ident: CR31 article-title: Estimation in a Cox proportional hazards model cure model publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00227.x – volume: 7 start-page: 46534 year: 2017 ident: CR42 article-title: The characteristics of newly diagnosed adult early-onset diabetes: a population-based cross-sectional study publication-title: Sci Rep doi: 10.1038/srep46534 – volume: 10 start-page: 325 year: 2004 ident: 9536_CR41 publication-title: Lifetime Data Anal doi: 10.1007/s10985-004-4770-1 – ident: 9536_CR2 doi: 10.1198/016214502753479347 – ident: 9536_CR13 – volume: 56 start-page: 227 year: 2000 ident: 9536_CR31 publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00227.x – volume-title: Biased Sampling year: 2017 ident: 9536_CR21 – volume: 94 start-page: 896 year: 1999 ident: 9536_CR6 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10474195 – volume: 38 start-page: 290 year: 1976 ident: 9536_CR33 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1976.tb01597.x – volume: 100 start-page: 164 year: 2015 ident: 9536_CR25 publication-title: Stat Probab Lett doi: 10.1016/j.spl.2015.02.015 – volume: 49 start-page: 153 year: 1995 ident: 9536_CR11 publication-title: Stat Neerl doi: 10.1111/j.1467-9574.1995.tb01462.x – volume: 79 start-page: 531 year: 1992 ident: 9536_CR14 publication-title: Biometrika doi: 10.1093/biomet/79.3.531 – volume: 25 start-page: 507 year: 2019 ident: 9536_CR39 publication-title: Lifetime Data Anal doi: 10.1007/s10985-018-9445-4 – ident: 9536_CR12 doi: 10.1007/978-1-4684-6316-3_8 – volume: 23 start-page: 3 year: 2017 ident: 9536_CR28 publication-title: Lifetime Data Anal doi: 10.1007/s10985-016-9367-y – volume: 127 start-page: 616 year: 2014 ident: 9536_CR4 publication-title: Am J Med doi: 10.1016/j.amjmed.2014.03.018 – volume: 32 start-page: 4285 year: 2013 ident: 9536_CR5 publication-title: Stat Med doi: 10.1002/sim.5845 – volume: 77 start-page: 169 year: 1990 ident: 9536_CR32 publication-title: Biometrika doi: 10.1093/biomet/77.1.169 – volume: 56 start-page: 71 year: 1994 ident: 9536_CR8 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1994.tb01960.x – volume: 63 start-page: 405 year: 2007 ident: 9536_CR17 publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00710.x – volume: 33 start-page: 261 year: 2018 ident: 9536_CR30 publication-title: Stat Sci doi: 10.1214/17-STS638 – volume: 24 start-page: 1522 year: 2001 ident: 9536_CR9 publication-title: Diabetes Care doi: 10.2337/diacare.24.9.1522 – volume: 20 start-page: 1165 year: 2010 ident: 9536_CR16 publication-title: Stat Sin – volume: 38 start-page: 1041 year: 1982 ident: 9536_CR7 publication-title: Biometrics doi: 10.2307/2529885 – volume: 84 start-page: 742 year: 1989 ident: 9536_CR36 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478828 – volume: 12 start-page: 267 year: 2006 ident: 9536_CR1 publication-title: Lifetime Data Anal doi: 10.1007/s10985-006-9012-2 – volume: 6 start-page: 69 year: 2018 ident: 9536_CR15 publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(17)30186-9 – volume: 27 start-page: 45 year: 2000 ident: 9536_CR24 publication-title: Scand J Stat doi: 10.1111/1467-9469.00177 – volume: 16 start-page: 3117 year: 1987 ident: 9536_CR35 publication-title: Commun Stat Theor Meth doi: 10.1080/03610928708829561 – volume: 139 start-page: 2228 year: 2019 ident: 9536_CR23 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037885 – volume: 25 start-page: 1751 year: 2006 ident: 9536_CR3 publication-title: Stat Med doi: 10.1002/sim.2326 – volume: 58 start-page: 64 year: 2002 ident: 9536_CR18 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00064.x – volume: 106 start-page: 1434 year: 2011 ident: 9536_CR22 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2011.tm10156 – volume: 56 start-page: 237 year: 2000 ident: 9536_CR19 publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00237.x – ident: 9536_CR29 – volume: 42 start-page: 1 year: 2014 ident: 9536_CR40 publication-title: Can J Stat doi: 10.1002/cjs.11197 – volume: 16 start-page: 785 year: 2015 ident: 9536_CR10 publication-title: Biostatistics doi: 10.1093/biostatistics/kxv012 – volume: 26 start-page: 624 year: 2020 ident: 9536_CR26 publication-title: Lifetime Data Anal doi: 10.1007/s10985-020-09493-2 – volume: 140 start-page: 74 year: 2019 ident: 9536_CR27 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2019.06.006 – volume: 7 start-page: 46534 year: 2017 ident: 9536_CR42 publication-title: Sci Rep doi: 10.1038/srep46534 – volume: 5 start-page: 234 year: 2014 ident: 9536_CR38 publication-title: Ther Adv Chronic Dis doi: 10.1177/2040622314548679 – volume: 76 start-page: 751 year: 1989 ident: 9536_CR34 publication-title: Biometrika doi: 10.1093/biomet/76.4.751 – volume: 19 start-page: 54 year: 2018 ident: 9536_CR20 publication-title: Biostatistics doi: 10.1093/biostatistics/kxx024 – volume: 86 start-page: 130 year: 1991 ident: 9536_CR37 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1991.10475011  | 
    
| SSID | ssj0007969 | 
    
| Score | 2.288996 | 
    
| Snippet | Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 68 | 
    
| SubjectTerms | Age Algorithms Bias Cohort Studies Cross-Sectional Studies Design Diabetes Diabetes mellitus Disease Economics Epidemiology Estimates Failure times Finance Graphical methods Health Sciences Humans Insurance Likelihood Functions Management Mathematics and Statistics Maximum likelihood estimates Maximum likelihood estimation Medicine Nonparametric statistics Operations Research/Decision Theory Proportional Hazards Models Public health Quality Control Regression models Reliability Safety and Risk Sampling Statistical analysis Statistical models Statistics Statistics for Business Statistics for Life Sciences Survival Survival Analysis  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB7SzUtKCcmmx6ZpUSFvjahXsi3poYS0JIRAlhIayJuRLC01dXbTPaA_vzPysYTQvNqWr9Exo5nv-wCOS2W9lUnguZaWpzoLXDstuTbKuUSaVPnI9jnJL2_Tq7vsbgsmHRaGyiq7OTFO1H5e0h75F5HTYp6kKjt9-MNJNYqyq52Ehm2lFfzXSDH2ArYFMWMNYPvb-eTHTT83KxNF7sZSUx2dSloYTQumM5rQyhheU06Ti8dL1RP_80nuNC5JF3uw2_qS7Kwx_j5shdkQXl73RKzLIbxqtuVYgzYawg45lw038wFU1_Zvdb--Z3X1O9QVERwzIt1o0IwM3VlGOiurXxg-42LnmZ15VsUiSVvzEgPg-QKPUpEpo_1cZtmMEJ3LWCrj6sCmiwY38RpuL85_fr_krfQCL6XKVly5XCgXPP4HX1plXOKNls5nPjc4A5BSjVQyz5TIvB8bbdFPmIYxGhbHe2JT-QYG-MTwDpjwUjuV5iKxGI1oYzHG8qaclkJSDlCMYNz95aJseclJHqMuNozKZJkCLVNEyxTY5nPf5qFh5Xj26qPOeEU7QpfFpj-N4FN_GscWJUzsLMzXeE2mE5KKFGYEbxuj94-T-EXoq6kRnHS9YHPz_7_L4fPv8h52BOEr4h7PEQxWi3X4gF7Pyn1su_I_U7j7QQ priority: 102 providerName: ProQuest  | 
    
| Title | Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction | 
    
| URI | https://link.springer.com/article/10.1007/s10985-021-09536-2 https://www.ncbi.nlm.nih.gov/pubmed/34623557 https://www.proquest.com/docview/2621830475 https://www.proquest.com/docview/2580693029  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-9249 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: ADMLS dateStart: 20050301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: AFBBN dateStart: 19950301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1572-9249 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: 7X7 dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1572-9249 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-9249 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9249 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007969 issn: 1380-7870 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJsF4QFDYKIzKSLxBpMSOY_uxm9pNoE4IUak8RXbsioisQ_2Q9ufvLl8bGiDxkiiJ43xczr7L3e93AO8LZb0VcYgyLWyUahki7bSItFHOxcKkytdsnxfZ-Tz9tJCLFhS26bLdu5BkPVLfAbsZTWhidH8p5hjhwLsvic4Lv-I5H_fjrzJ1IbtEaMqVU3ELlflzH79PR_dszHvx0XramT6Dp629yMaNgJ_Dg7AawOMOTrwZwJNZT7yKW49mbax8AAdkRzY0zC-gnNnr8nJ3yaryZ6hK4jJmxK_RABcZWq6MSqpsf6CnjPOaZ3blWVnnQ9oqKtDXvVrjXsonZfTrllm2IvDmps6KcVVgy3UDkXgJ8-nk2-l51FZZiAqh5DZSLuPKBY-vwxdWGRd7o4Xz0mcGlZ2K0gglMqm49D4x2qJJsAwJyhBVO7apOIQ9vGJ4BYx7oZ1KMx5bdDy0sehOeVMsCy4o3MeHkHQvOy9aCnKqhFHlt-TJJKAcBZTXAsrxnA_9Ob8aAo5_tj7uZJi3yrjJeUZ2YJwqOYR3_WFUI4qN2FW42mEbqWOqCsnNEI4a2feXE_hEaJapIXzsPobbzv9-L6__r_kbOOAErah_7xzD3na9C2_R4Nm6ETxUC4VLfZrQcno2gv3x2ffPE1yfTC6-fB3VGnADVIf5gQ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAVQrBA2VLASHACi6ydxPYBIQRUW9rtqZX2FuzYq0ZNd8s-RPlT_EZm8lqhit56TfxKZuyZ8cw3A_AmV9ZbGQWeaml5rJPAtdOSa6Oci6SJla-yfR6nw9P4-zgZb8CfFgtDYZXtmVgd1H6W0x35B5GSMI9ilXy6_MmpahR5V9sSGjVbHIbfv9BkW3w8-Ir0fSvE_reTL0PeVBXguVTJkiuXCuWCT2Tqc6uMi7zR0vnEpwaZm4qwSCXTRInEezTJLYrASRjgmpGVIxtLHPcO3I0lniW4f9S4M_AiZaoSegOpKUpPRQ1Ip4HqGU1YaDTeyWPKxb-C8Jp2e80zWwm8_YfwoNFU2eeatR7BRpj2YHvUpXld9OB-fenHaixTD7ZIda0zPz-GYmSviovVBSuL81AWlD6ZUUqPGivJUFlmVMVleYbGOYpSz-zUs6IKwbQlz9G8ns3xKYWwMrotZpZNCS-6qAJxXBnYZF6jMp7A6a2Q4Cls4ozhGTDhpXYqTkVk0dbRxqIF500-yYUkD6Pow6D9y1neZD2n4htlts7XTJTJkDJZRZkM-7zr-lzWOT9ubL3XEi9r9v8iW3NrH153r3HnkjvGTsNshW0SHVEhSmH6sFMTvZtO4hehJqj68L7lgvXg_1_L7s1reQX3hiejo-zo4PjwOWwJQnJUt0l7sLmcr8IL1K-W7mXF1Ax-3PYu-gvr2y_D | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIqFWFYKFwtICRoITWM3aSWwfEEKUVUtpxYFKewt27BVR092yDxX-Gr-uM3mtUEVvvSZ-JTP2zHjmmwF4nSvrrYwCT7W0PNZJ4NppybVRzkXSxMpX2T5P0oPT-MsoGa3B3xYLQ2GV7ZlYHdR-mtMd-Z5ISZhHsUr2xk1YxLf94YeLX5wqSJGntS2nUbPIUfhziebb_P3hPtL6jRDDz98_HfCmwgDPpUoWXLlUKBd8IlOfW2Vc5I2Wzic-NcjoVJBFKpkmSiTeo3luURyOwwDXj2wd2VjiuHfgrpLSUDihGnXGXqRMVU5vIDVF7KmoAew0sD2jCReNhjx5T7n4Vyhe03SveWkr4Td8APcbrZV9rNnsIayFSQ82j7uUr_MebNUXgKzGNfVgg9TYOgv0IyiO7e_ifHnOyuIslAWlUmaU3qPGTTJUnBlVdFn8REMdxapnduJZUYVj2pLnaGpPZ_iUwlkZ3RwzyyaEHZ1XQTmuDGw8qxEaj-H0VkiwDes4Y3gKTHipnYpTEVm0e7SxaM15k49zIcnbKPowaP9yljcZ0KkQR5mtcjcTZTKkTFZRJsM-b7s-F3X-jxtb77bEy5qzYJ6tOLcPr7rXuIvJNWMnYbrENomOqCilMH14UhO9m07iF6FWqPrwruWC1eD_X8uzm9fyEu7h_sm-Hp4c7cCGIFBHdbG0C-uL2TI8R1Vr4V5UPM3gx21voiuJATQG | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+length-biased+and+interval-censored+data+with+a+nonsusceptible+fraction&rft.jtitle=Lifetime+data+analysis&rft.au=Shen%2C+Pao-sheng&rft.au=Peng%2C+Yingwei&rft.au=Chen%2C+Hsin-Jen&rft.au=Chen%2C+Chyong-Mei&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=1380-7870&rft.eissn=1572-9249&rft.volume=28&rft.issue=1&rft.spage=68&rft.epage=88&rft_id=info:doi/10.1007%2Fs10985-021-09536-2&rft.externalDocID=10_1007_s10985_021_09536_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon |