Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction

Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Pois...

Full description

Saved in:
Bibliographic Details
Published inLifetime data analysis Vol. 28; no. 1; pp. 68 - 88
Main Authors Shen, Pao-sheng, Peng, Yingwei, Chen, Hsin-Jen, Chen, Chyong-Mei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7870
1572-9249
1572-9249
DOI10.1007/s10985-021-09536-2

Cover

Abstract Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.
AbstractList Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.
Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion. Length-biased data, a special case of left-truncated data, assume that the incidence of the initial event follows a homogeneous Poisson process. In this article, we consider an analysis of length-biased and interval-censored data with a nonsusceptible fraction. We first point out the importance of a well-defined target population, which depends on the prior knowledge for the support of the failure times of susceptible individuals. Given the target population, we proceed with a length-biased sampling and draw valid inferences from a length-biased sample. When there is no covariate, we show that it suffices to consider a discrete version of the survival function for the susceptible individuals with jump points at the left endpoints of the censoring intervals when maximizing the full likelihood function, and propose an EM algorithm to obtain the nonparametric maximum likelihood estimates of nonsusceptible rate and the survival function of the susceptible individuals. We also develop a novel graphical method for assessing the stationarity assumption. When covariates are present, we consider the Cox proportional hazards model for the survival time of the susceptible individuals and the logistic regression model for the probability of being susceptible. We construct the full likelihood function and obtain the nonparametric maximum likelihood estimates of the regression parameters by employing the EM algorithm. The large sample properties of the estimates are established. The performance of the method is assessed by simulations. The proposed model and method are applied to data from an early-onset diabetes mellitus study.
Author Shen, Pao-sheng
Chen, Chyong-Mei
Peng, Yingwei
Chen, Hsin-Jen
Author_xml – sequence: 1
  givenname: Pao-sheng
  surname: Shen
  fullname: Shen, Pao-sheng
  organization: Department of Statistics, Tunghai University, Xitun District
– sequence: 2
  givenname: Yingwei
  surname: Peng
  fullname: Peng, Yingwei
  organization: Departments of Public Health Sciences and Mathematics and Statistics, Queen’s University
– sequence: 3
  givenname: Hsin-Jen
  surname: Chen
  fullname: Chen, Hsin-Jen
  organization: Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University
– sequence: 4
  givenname: Chyong-Mei
  orcidid: 0000-0001-6824-4819
  surname: Chen
  fullname: Chen, Chyong-Mei
  email: cmchen2@nycu.edu.tw
  organization: Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34623557$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPXSEUhUljUx_tH-jAkDjphJbH5TU0prVNNE50TDgHjhfLgStwrP570atp4sARO-RbO2vttQ92Uk4egK8EfycYyx-VYK04wpQgrDkTiH4Ae4RLijRd6Z0-M4WRVBLvgv1ab3AXaaE_gV22EpRxLvdAOLf3YV5mGMNfH8M6Zwd9bWG2LeQEp1xg9Om6rdEQbPUO2uRgSM2XOxvR6FPNpf862yz8F9oaWthd1qWOftPCED2cih2fdn0GHycbq__y8h6Aq18_L09-o7OL0z8nx2doZJI3JAdB5eBdz-NGK_WAnVZscNwJTSnHQikmmegpuXNEK6sInTyRTkjNsF2xA_Btu3dT8u3Ss5g5dDcx2uTzUg3lCouOUt3RozfoTV5K6u4MFZQohleSd-rwhVqG2TuzKf065cG8HrEDaguMJdda_GTG0J7v14oN0RBsnvoy275M78s892Vol9I30tft74rYVlQ7nK59-W_7HdUjzZSnYA
CitedBy_id crossref_primary_10_29220_CSAM_2024_31_6_661
crossref_primary_10_1002_bimj_202100368
crossref_primary_10_1002_sim_9724
crossref_primary_10_3390_math11224576
crossref_primary_10_1111_biom_13898
Cites_doi 10.1002/cjs.11197
10.1007/s10985-018-9445-4
10.1080/03610928708829561
10.1093/biomet/77.1.169
10.1080/01621459.1989.10478828
10.1111/j.0006-341X.2000.00237.x
10.1111/j.1541-0420.2006.00710.x
10.1111/j.0006-341X.2002.00064.x
10.1080/01621459.1991.10475011
10.1002/sim.5845
10.1177/2040622314548679
10.2307/2529885
10.1016/j.amjmed.2014.03.018
10.1093/biomet/76.4.751
10.1161/CIRCULATIONAHA.118.037885
10.1007/s10985-004-4770-1
10.1016/j.csda.2019.06.006
10.1016/S2213-8587(17)30186-9
10.1007/s10985-006-9012-2
10.1002/sim.2326
10.1214/17-STS638
10.1093/biostatistics/kxv012
10.1016/j.spl.2015.02.015
10.1007/s10985-020-09493-2
10.1080/01621459.1999.10474195
10.1093/biomet/79.3.531
10.1198/jasa.2011.tm10156
10.1093/biostatistics/kxx024
10.1007/s10985-016-9367-y
10.1111/1467-9469.00177
10.1111/j.1467-9574.1995.tb01462.x
10.2337/diacare.24.9.1522
10.1111/j.0006-341X.2000.00227.x
10.1038/srep46534
10.1198/016214502753479347
10.1111/j.2517-6161.1976.tb01597.x
10.1007/978-1-4684-6316-3_8
10.1111/j.2517-6161.1994.tb01960.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7WY
7WZ
7X7
7XB
87Z
88C
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
L6V
M0C
M0S
M0T
M1P
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
7X8
DOI 10.1007/s10985-021-09536-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Mathematics
Statistics
Public Health
EISSN 1572-9249
EndPage 88
ExternalDocumentID 34623557
10_1007_s10985_021_09536_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 108-2118-M-010-001
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
44B
53G
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EBU
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0T
M1P
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z81
Z83
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
L.-
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c375t-7b627bed536dca79b0d983bd5d69225068837365725dd198a812fe17d67930a43
IEDL.DBID U2A
ISSN 1380-7870
1572-9249
IngestDate Sat Sep 27 21:32:09 EDT 2025
Mon Oct 06 16:54:49 EDT 2025
Wed Feb 19 02:27:00 EST 2025
Wed Oct 01 02:24:33 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 21 02:46:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Left truncation
Interval censoring
Nonparametric maximum likelihood estimation
Mixture cure model
Length-biased sampling
Language English
License 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7b627bed536dca79b0d983bd5d69225068837365725dd198a812fe17d67930a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6824-4819
PMID 34623557
PQID 2621830475
PQPubID 26261
PageCount 21
ParticipantIDs proquest_miscellaneous_2580693029
proquest_journals_2621830475
pubmed_primary_34623557
crossref_citationtrail_10_1007_s10985_021_09536_2
crossref_primary_10_1007_s10985_021_09536_2
springer_journals_10_1007_s10985_021_09536_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data
PublicationTitle Lifetime data analysis
PublicationTitleAbbrev Lifetime Data Anal
PublicationTitleAlternate Lifetime Data Anal
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kuk, Chen (CR14) 1992; 79
Qin (CR21) 2017
Wang (CR36) 1989; 84
Peng, Dear (CR19) 2000; 56
Sattar, Rawshani, Franzén, Rawshani, Svensson, Rosengren, McGuire, Eliasson, Gudbjornsdöttir (CR23) 2019; 139
Lascar, Brown, Pattison, Barnett, Bailey, Bellary (CR15) 2018; 6
Tsai (CR32) 1990; 77
Shen (CR26) 2020; 26
Shen (CR25) 2015; 100
Farewell (CR7) 1982; 38
CR13
CR12
Vardi (CR34) 1989; 76
Chan, Lau, Luk, Cheung, Kong, Yu, Choi, Chow, Ozaki, Brown, Yang, Bennett, Ma, So (CR4) 2014; 127
Zelen (CR41) 2004; 10
Chen, Tsay, Wu, Horng (CR5) 2013; 32
Qin, Ning, Liu, Shen (CR22) 2011; 106
Chen, Little (CR6) 1999; 94
Shen, Ning, Qin (CR28) 2017; 23
Turnbull (CR33) 1976; 38
Hillier, Pedula (CR9) 2001; 24
Mandel, Betensky (CR17) 2007; 63
Asgharian, Wolfson, Zhang (CR3) 2006; 25
Ma (CR16) 2010; 20
Sun, Qin, Huang (CR30) 2018; 33
Wang (CR35) 1987; 16
Huang, Wellner (CR11) 1995; 49
Shen, Chen, Pan, Chen (CR27) 2019; 140
Xu, Peng (CR40) 2014; 42
CR2
Sy, Taylor (CR31) 2000; 56
Frydman (CR8) 1994; 56
Pan, Chappell (CR18) 2002; 58
Piao, Ning, Chambers, Xu (CR20) 2018; 19
Wu, Chambers, Xu (CR39) 2019; 25
Schick, Yu (CR24) 2000; 27
CR29
Huang, Ning, Qin (CR10) 2015; 16
Wilmot, Idris (CR38) 2014; 5
Addona, Wolfson (CR1) 2006; 12
Wang (CR37) 1991; 86
Zou, Zhou, Ji, Yang, Lu, Weng, Jia, Shan, Liu, Tian, Ji, Zhu, Ge, Lin, Chen, Guo, Zhao, Li, Zhou (CR42) 2017; 7
A Schick (9536_CR24) 2000; 27
TA Hillier (9536_CR9) 2001; 24
J Qin (9536_CR21) 2017
CH Chen (9536_CR5) 2013; 32
VT Farewell (9536_CR7) 1982; 38
PS Shen (9536_CR27) 2019; 140
9536_CR29
N Sattar (9536_CR23) 2019; 139
CY Huang (9536_CR10) 2015; 16
M Zelen (9536_CR41) 2004; 10
J Huang (9536_CR11) 1995; 49
9536_CR2
H Frydman (9536_CR8) 1994; 56
BW Turnbull (9536_CR33) 1976; 38
J Piao (9536_CR20) 2018; 19
S Ma (9536_CR16) 2010; 20
M Mandel (9536_CR17) 2007; 63
W Pan (9536_CR18) 2002; 58
PS Shen (9536_CR26) 2020; 26
Y Peng (9536_CR19) 2000; 56
J Xu (9536_CR40) 2014; 42
MC Wang (9536_CR37) 1991; 86
X Zou (9536_CR42) 2017; 7
JP Sy (9536_CR31) 2000; 56
9536_CR12
M Asgharian (9536_CR3) 2006; 25
9536_CR13
MC Wang (9536_CR36) 1989; 84
E Wilmot (9536_CR38) 2014; 5
JC Chan (9536_CR4) 2014; 127
WY Tsai (9536_CR32) 1990; 77
MC Wang (9536_CR35) 1987; 16
Y Vardi (9536_CR34) 1989; 76
V Addona (9536_CR1) 2006; 12
AYC Kuk (9536_CR14) 1992; 79
N Lascar (9536_CR15) 2018; 6
PS Shen (9536_CR25) 2015; 100
Y Sun (9536_CR30) 2018; 33
J Qin (9536_CR22) 2011; 106
Y Shen (9536_CR28) 2017; 23
Y Wu (9536_CR39) 2019; 25
HY Chen (9536_CR6) 1999; 94
References_xml – volume: 42
  start-page: 1
  year: 2014
  end-page: 17
  ident: CR40
  article-title: Nonparametric cure rate estimation with covariates
  publication-title: Can J Stat
  doi: 10.1002/cjs.11197
– volume: 25
  start-page: 507
  year: 2019
  end-page: 528
  ident: CR39
  article-title: Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-018-9445-4
– volume: 16
  start-page: 3117
  year: 1987
  end-page: 3132
  ident: CR35
  article-title: Product limit estimates—a generalized maximum likelihood study
  publication-title: Commun Stat Theor Meth
  doi: 10.1080/03610928708829561
– ident: CR2
– volume: 77
  start-page: 169
  year: 1990
  end-page: 177
  ident: CR32
  article-title: Testing the assumption of independence of truncation time and failure time
  publication-title: Biometrika
  doi: 10.1093/biomet/77.1.169
– ident: CR12
– volume: 84
  start-page: 742
  year: 1989
  end-page: 748
  ident: CR36
  article-title: A semiparametric model for randomly truncated data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478828
– volume: 56
  start-page: 237
  year: 2000
  end-page: 243
  ident: CR19
  article-title: A nonparametric mixture model for cure rate estimation
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00237.x
– year: 2017
  ident: CR21
  publication-title: Biased Sampling
– volume: 63
  start-page: 405
  year: 2007
  end-page: 412
  ident: CR17
  article-title: Testing goodness of fit of a uniform truncation model
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00710.x
– volume: 58
  start-page: 64
  year: 2002
  end-page: 70
  ident: CR18
  article-title: Estimation in the Cox proportional hazard model with left-truncated and interval-censored data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00064.x
– ident: CR29
– volume: 86
  start-page: 130
  year: 1991
  end-page: 143
  ident: CR37
  article-title: Nonparametric estimation from cross-sectional survival data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1991.10475011
– volume: 32
  start-page: 4285
  year: 2013
  end-page: 4305
  ident: CR5
  article-title: Logistic-AFT location-scale mixture regression models with nonsusceptibility for left-truncated and general interval-censored data
  publication-title: Stat Med
  doi: 10.1002/sim.5845
– volume: 5
  start-page: 234
  year: 2014
  end-page: 244
  ident: CR38
  article-title: Early onset type 2 diabetes: risk factors, clinical impact and management
  publication-title: Ther Adv Chronic Dis
  doi: 10.1177/2040622314548679
– volume: 38
  start-page: 1041
  year: 1982
  end-page: 1046
  ident: CR7
  article-title: The use of mixture models for the analysis of survival data with long-term survivors
  publication-title: Biometrics
  doi: 10.2307/2529885
– volume: 127
  start-page: 616
  year: 2014
  end-page: 624
  ident: CR4
  article-title: Premature mortality and comorbidities in young-onset diabetes: a 7-year prospective analysis
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2014.03.018
– volume: 20
  start-page: 1165
  year: 2010
  end-page: 1181
  ident: CR16
  article-title: Mixed case interval censored data with a cured subgroup
  publication-title: Stat Sin
– volume: 76
  start-page: 751
  year: 1989
  end-page: 761
  ident: CR34
  article-title: Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/76.4.751
– volume: 139
  start-page: 2228
  year: 2019
  end-page: 2237
  ident: CR23
  article-title: Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.037885
– volume: 10
  start-page: 325
  year: 2004
  end-page: 334
  ident: CR41
  article-title: Forward and backward recurrence times and length biased sampling: Age specific models
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-004-4770-1
– volume: 140
  start-page: 74
  year: 2019
  end-page: 87
  ident: CR27
  article-title: Semiparametric regression analysis for left-truncated and interval-censored data without or with a cure fraction
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2019.06.006
– volume: 6
  start-page: 69
  year: 2018
  end-page: 80
  ident: CR15
  article-title: Type 2 diabetes in adolescents and young adults
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(17)30186-9
– volume: 12
  start-page: 267
  year: 2006
  end-page: 284
  ident: CR1
  article-title: A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-006-9012-2
– volume: 25
  start-page: 1751
  year: 2006
  end-page: 1767
  ident: CR3
  article-title: Checking stationarity of the incidence rate using prevalent cohort survival data
  publication-title: Stat Med
  doi: 10.1002/sim.2326
– volume: 33
  start-page: 261
  year: 2018
  end-page: 276
  ident: CR30
  article-title: Missing information principle: a unified approach for general truncated and censored survival data problems
  publication-title: Stat Sci
  doi: 10.1214/17-STS638
– volume: 16
  start-page: 785
  year: 2015
  end-page: 798
  ident: CR10
  article-title: Semiparametric likelihood inference for left-truncated and right-censored data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxv012
– volume: 100
  start-page: 164
  year: 2015
  end-page: 171
  ident: CR25
  article-title: Conditional MLE for the proportional hazards model with left-truncated and interval-censored data
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2015.02.015
– ident: CR13
– volume: 26
  start-page: 624
  year: 2020
  end-page: 637
  ident: CR26
  article-title: Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-020-09493-2
– volume: 94
  start-page: 896
  year: 1999
  end-page: 908
  ident: CR6
  article-title: Proportional hazards regression with missing covariates
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474195
– volume: 79
  start-page: 531
  year: 1992
  end-page: 541
  ident: CR14
  article-title: A mixture model combining logistic regression with proportional hazards regression
  publication-title: Biometrika
  doi: 10.1093/biomet/79.3.531
– volume: 106
  start-page: 1434
  year: 2011
  end-page: 1449
  ident: CR22
  article-title: Maximum likelihood estimations and EM algorithms with length-biased data
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2011.tm10156
– volume: 38
  start-page: 290
  year: 1976
  end-page: 295
  ident: CR33
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: J R Stat Soc Ser B
– volume: 19
  start-page: 54
  year: 2018
  end-page: 70
  ident: CR20
  article-title: Semiparametric model and inference for spontaneous abortion data with a cured proportion and biased sampling
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx024
– volume: 23
  start-page: 3
  year: 2017
  end-page: 24
  ident: CR28
  article-title: Nonparametric and semiparametric regression estimation for length-biased survival data
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-016-9367-y
– volume: 27
  start-page: 45
  year: 2000
  end-page: 55
  ident: CR24
  article-title: Consistency of the GMLE with mixed case interval-censored data
  publication-title: Scand J Stat
  doi: 10.1111/1467-9469.00177
– volume: 56
  start-page: 71
  year: 1994
  end-page: 74
  ident: CR8
  article-title: A note on nonparametric estimation of the distribution function from interval-censored and truncated observations
  publication-title: J R Stat Soc Ser B
– volume: 49
  start-page: 153
  year: 1995
  end-page: 163
  ident: CR11
  article-title: Asymptotic normality of the NPMLE of linear functionals for interval censored data, case I
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.1995.tb01462.x
– volume: 24
  start-page: 1522
  year: 2001
  end-page: 1527
  ident: CR9
  article-title: Characteristics of an adult population with newly diagnosed type 2 diabetes: the relation of obesity and age of onset
  publication-title: Diabetes Care
  doi: 10.2337/diacare.24.9.1522
– volume: 56
  start-page: 227
  year: 2000
  end-page: 236
  ident: CR31
  article-title: Estimation in a Cox proportional hazards model cure model
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00227.x
– volume: 7
  start-page: 46534
  year: 2017
  ident: CR42
  article-title: The characteristics of newly diagnosed adult early-onset diabetes: a population-based cross-sectional study
  publication-title: Sci Rep
  doi: 10.1038/srep46534
– volume: 10
  start-page: 325
  year: 2004
  ident: 9536_CR41
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-004-4770-1
– ident: 9536_CR2
  doi: 10.1198/016214502753479347
– ident: 9536_CR13
– volume: 56
  start-page: 227
  year: 2000
  ident: 9536_CR31
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00227.x
– volume-title: Biased Sampling
  year: 2017
  ident: 9536_CR21
– volume: 94
  start-page: 896
  year: 1999
  ident: 9536_CR6
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474195
– volume: 38
  start-page: 290
  year: 1976
  ident: 9536_CR33
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1976.tb01597.x
– volume: 100
  start-page: 164
  year: 2015
  ident: 9536_CR25
  publication-title: Stat Probab Lett
  doi: 10.1016/j.spl.2015.02.015
– volume: 49
  start-page: 153
  year: 1995
  ident: 9536_CR11
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.1995.tb01462.x
– volume: 79
  start-page: 531
  year: 1992
  ident: 9536_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/79.3.531
– volume: 25
  start-page: 507
  year: 2019
  ident: 9536_CR39
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-018-9445-4
– ident: 9536_CR12
  doi: 10.1007/978-1-4684-6316-3_8
– volume: 23
  start-page: 3
  year: 2017
  ident: 9536_CR28
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-016-9367-y
– volume: 127
  start-page: 616
  year: 2014
  ident: 9536_CR4
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2014.03.018
– volume: 32
  start-page: 4285
  year: 2013
  ident: 9536_CR5
  publication-title: Stat Med
  doi: 10.1002/sim.5845
– volume: 77
  start-page: 169
  year: 1990
  ident: 9536_CR32
  publication-title: Biometrika
  doi: 10.1093/biomet/77.1.169
– volume: 56
  start-page: 71
  year: 1994
  ident: 9536_CR8
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1994.tb01960.x
– volume: 63
  start-page: 405
  year: 2007
  ident: 9536_CR17
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00710.x
– volume: 33
  start-page: 261
  year: 2018
  ident: 9536_CR30
  publication-title: Stat Sci
  doi: 10.1214/17-STS638
– volume: 24
  start-page: 1522
  year: 2001
  ident: 9536_CR9
  publication-title: Diabetes Care
  doi: 10.2337/diacare.24.9.1522
– volume: 20
  start-page: 1165
  year: 2010
  ident: 9536_CR16
  publication-title: Stat Sin
– volume: 38
  start-page: 1041
  year: 1982
  ident: 9536_CR7
  publication-title: Biometrics
  doi: 10.2307/2529885
– volume: 84
  start-page: 742
  year: 1989
  ident: 9536_CR36
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478828
– volume: 12
  start-page: 267
  year: 2006
  ident: 9536_CR1
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-006-9012-2
– volume: 6
  start-page: 69
  year: 2018
  ident: 9536_CR15
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(17)30186-9
– volume: 27
  start-page: 45
  year: 2000
  ident: 9536_CR24
  publication-title: Scand J Stat
  doi: 10.1111/1467-9469.00177
– volume: 16
  start-page: 3117
  year: 1987
  ident: 9536_CR35
  publication-title: Commun Stat Theor Meth
  doi: 10.1080/03610928708829561
– volume: 139
  start-page: 2228
  year: 2019
  ident: 9536_CR23
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.037885
– volume: 25
  start-page: 1751
  year: 2006
  ident: 9536_CR3
  publication-title: Stat Med
  doi: 10.1002/sim.2326
– volume: 58
  start-page: 64
  year: 2002
  ident: 9536_CR18
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00064.x
– volume: 106
  start-page: 1434
  year: 2011
  ident: 9536_CR22
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2011.tm10156
– volume: 56
  start-page: 237
  year: 2000
  ident: 9536_CR19
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00237.x
– ident: 9536_CR29
– volume: 42
  start-page: 1
  year: 2014
  ident: 9536_CR40
  publication-title: Can J Stat
  doi: 10.1002/cjs.11197
– volume: 16
  start-page: 785
  year: 2015
  ident: 9536_CR10
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxv012
– volume: 26
  start-page: 624
  year: 2020
  ident: 9536_CR26
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-020-09493-2
– volume: 140
  start-page: 74
  year: 2019
  ident: 9536_CR27
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2019.06.006
– volume: 7
  start-page: 46534
  year: 2017
  ident: 9536_CR42
  publication-title: Sci Rep
  doi: 10.1038/srep46534
– volume: 5
  start-page: 234
  year: 2014
  ident: 9536_CR38
  publication-title: Ther Adv Chronic Dis
  doi: 10.1177/2040622314548679
– volume: 76
  start-page: 751
  year: 1989
  ident: 9536_CR34
  publication-title: Biometrika
  doi: 10.1093/biomet/76.4.751
– volume: 19
  start-page: 54
  year: 2018
  ident: 9536_CR20
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx024
– volume: 86
  start-page: 130
  year: 1991
  ident: 9536_CR37
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1991.10475011
SSID ssj0007969
Score 2.288996
Snippet Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Age
Algorithms
Bias
Cohort Studies
Cross-Sectional Studies
Design
Diabetes
Diabetes mellitus
Disease
Economics
Epidemiology
Estimates
Failure times
Finance
Graphical methods
Health Sciences
Humans
Insurance
Likelihood Functions
Management
Mathematics and Statistics
Maximum likelihood estimates
Maximum likelihood estimation
Medicine
Nonparametric statistics
Operations Research/Decision Theory
Proportional Hazards Models
Public health
Quality Control
Regression models
Reliability
Safety and Risk
Sampling
Statistical analysis
Statistical models
Statistics
Statistics for Business
Statistics for Life Sciences
Survival
Survival Analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB7SzUtKCcmmx6ZpUSFvjahXsi3poYS0JIRAlhIayJuRLC01dXbTPaA_vzPysYTQvNqWr9Exo5nv-wCOS2W9lUnguZaWpzoLXDstuTbKuUSaVPnI9jnJL2_Tq7vsbgsmHRaGyiq7OTFO1H5e0h75F5HTYp6kKjt9-MNJNYqyq52Ehm2lFfzXSDH2ArYFMWMNYPvb-eTHTT83KxNF7sZSUx2dSloYTQumM5rQyhheU06Ti8dL1RP_80nuNC5JF3uw2_qS7Kwx_j5shdkQXl73RKzLIbxqtuVYgzYawg45lw038wFU1_Zvdb--Z3X1O9QVERwzIt1o0IwM3VlGOiurXxg-42LnmZ15VsUiSVvzEgPg-QKPUpEpo_1cZtmMEJ3LWCrj6sCmiwY38RpuL85_fr_krfQCL6XKVly5XCgXPP4HX1plXOKNls5nPjc4A5BSjVQyz5TIvB8bbdFPmIYxGhbHe2JT-QYG-MTwDpjwUjuV5iKxGI1oYzHG8qaclkJSDlCMYNz95aJseclJHqMuNozKZJkCLVNEyxTY5nPf5qFh5Xj26qPOeEU7QpfFpj-N4FN_GscWJUzsLMzXeE2mE5KKFGYEbxuj94-T-EXoq6kRnHS9YHPz_7_L4fPv8h52BOEr4h7PEQxWi3X4gF7Pyn1su_I_U7j7QQ
  priority: 102
  providerName: ProQuest
Title Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction
URI https://link.springer.com/article/10.1007/s10985-021-09536-2
https://www.ncbi.nlm.nih.gov/pubmed/34623557
https://www.proquest.com/docview/2621830475
https://www.proquest.com/docview/2580693029
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-9249
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: ADMLS
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: AFBBN
  dateStart: 19950301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1572-9249
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: 7X7
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-9249
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-9249
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9249
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007969
  issn: 1380-7870
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJsF4QFDYKIzKSLxBpMSOY_uxm9pNoE4IUak8RXbsioisQ_2Q9ufvLl8bGiDxkiiJ43xczr7L3e93AO8LZb0VcYgyLWyUahki7bSItFHOxcKkytdsnxfZ-Tz9tJCLFhS26bLdu5BkPVLfAbsZTWhidH8p5hjhwLsvic4Lv-I5H_fjrzJ1IbtEaMqVU3ELlflzH79PR_dszHvx0XramT6Dp629yMaNgJ_Dg7AawOMOTrwZwJNZT7yKW49mbax8AAdkRzY0zC-gnNnr8nJ3yaryZ6hK4jJmxK_RABcZWq6MSqpsf6CnjPOaZ3blWVnnQ9oqKtDXvVrjXsonZfTrllm2IvDmps6KcVVgy3UDkXgJ8-nk2-l51FZZiAqh5DZSLuPKBY-vwxdWGRd7o4Xz0mcGlZ2K0gglMqm49D4x2qJJsAwJyhBVO7apOIQ9vGJ4BYx7oZ1KMx5bdDy0sehOeVMsCy4o3MeHkHQvOy9aCnKqhFHlt-TJJKAcBZTXAsrxnA_9Ob8aAo5_tj7uZJi3yrjJeUZ2YJwqOYR3_WFUI4qN2FW42mEbqWOqCsnNEI4a2feXE_hEaJapIXzsPobbzv9-L6__r_kbOOAErah_7xzD3na9C2_R4Nm6ETxUC4VLfZrQcno2gv3x2ffPE1yfTC6-fB3VGnADVIf5gQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqAVQrBA2VLASHACi6ydxPYBIQRUW9rtqZX2FuzYq0ZNd8s-RPlT_EZm8lqhit56TfxKZuyZ8cw3A_AmV9ZbGQWeaml5rJPAtdOSa6Oci6SJla-yfR6nw9P4-zgZb8CfFgtDYZXtmVgd1H6W0x35B5GSMI9ilXy6_MmpahR5V9sSGjVbHIbfv9BkW3w8-Ir0fSvE_reTL0PeVBXguVTJkiuXCuWCT2Tqc6uMi7zR0vnEpwaZm4qwSCXTRInEezTJLYrASRjgmpGVIxtLHPcO3I0lniW4f9S4M_AiZaoSegOpKUpPRQ1Ip4HqGU1YaDTeyWPKxb-C8Jp2e80zWwm8_YfwoNFU2eeatR7BRpj2YHvUpXld9OB-fenHaixTD7ZIda0zPz-GYmSviovVBSuL81AWlD6ZUUqPGivJUFlmVMVleYbGOYpSz-zUs6IKwbQlz9G8ns3xKYWwMrotZpZNCS-6qAJxXBnYZF6jMp7A6a2Q4Cls4ozhGTDhpXYqTkVk0dbRxqIF500-yYUkD6Pow6D9y1neZD2n4htlts7XTJTJkDJZRZkM-7zr-lzWOT9ubL3XEi9r9v8iW3NrH153r3HnkjvGTsNshW0SHVEhSmH6sFMTvZtO4hehJqj68L7lgvXg_1_L7s1reQX3hiejo-zo4PjwOWwJQnJUt0l7sLmcr8IL1K-W7mXF1Ax-3PYu-gvr2y_D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIqFWFYKFwtICRoITWM3aSWwfEEKUVUtpxYFKewt27BVR092yDxX-Gr-uM3mtUEVvvSZ-JTP2zHjmmwF4nSvrrYwCT7W0PNZJ4NppybVRzkXSxMpX2T5P0oPT-MsoGa3B3xYLQ2GV7ZlYHdR-mtMd-Z5ISZhHsUr2xk1YxLf94YeLX5wqSJGntS2nUbPIUfhziebb_P3hPtL6jRDDz98_HfCmwgDPpUoWXLlUKBd8IlOfW2Vc5I2Wzic-NcjoVJBFKpkmSiTeo3luURyOwwDXj2wd2VjiuHfgrpLSUDihGnXGXqRMVU5vIDVF7KmoAew0sD2jCReNhjx5T7n4Vyhe03SveWkr4Td8APcbrZV9rNnsIayFSQ82j7uUr_MebNUXgKzGNfVgg9TYOgv0IyiO7e_ifHnOyuIslAWlUmaU3qPGTTJUnBlVdFn8REMdxapnduJZUYVj2pLnaGpPZ_iUwlkZ3RwzyyaEHZ1XQTmuDGw8qxEaj-H0VkiwDes4Y3gKTHipnYpTEVm0e7SxaM15k49zIcnbKPowaP9yljcZ0KkQR5mtcjcTZTKkTFZRJsM-b7s-F3X-jxtb77bEy5qzYJ6tOLcPr7rXuIvJNWMnYbrENomOqCilMH14UhO9m07iF6FWqPrwruWC1eD_X8uzm9fyEu7h_sm-Hp4c7cCGIFBHdbG0C-uL2TI8R1Vr4V5UPM3gx21voiuJATQG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+length-biased+and+interval-censored+data+with+a+nonsusceptible+fraction&rft.jtitle=Lifetime+data+analysis&rft.au=Shen%2C+Pao-sheng&rft.au=Peng%2C+Yingwei&rft.au=Chen%2C+Hsin-Jen&rft.au=Chen%2C+Chyong-Mei&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=1380-7870&rft.eissn=1572-9249&rft.volume=28&rft.issue=1&rft.spage=68&rft.epage=88&rft_id=info:doi/10.1007%2Fs10985-021-09536-2&rft.externalDocID=10_1007_s10985_021_09536_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon