Comparison of a Bayesian estimation algorithm and singular value decomposition algorithms for 80-detector row CT perfusion in patients with acute ischemic stroke

Purpose A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We a...

Full description

Saved in:
Bibliographic Details
Published inRadiologia medica Vol. 126; no. 6; pp. 795 - 803
Main Authors Ichikawa, Shota, Yamamoto, Hiroyuki, Morita, Takumi
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0033-8362
1826-6983
1826-6983
DOI10.1007/s11547-020-01316-6

Cover

Abstract Purpose A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion. Methods CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing–Bablok regression analysis. Results CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm ( ρ  = 0.78 and 0.80, p  < 0.001) than with the reformulated SVD algorithm ( ρ  = 0.59 and 0.39, p  < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm ( p  = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm ( y  = 2.42 x- 6.51; ρ  = 0.60, p  < 0.001) in comparison with the SVD algorithms. Conclusions The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.
AbstractList A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion. CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing-Bablok regression analysis. CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms. The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.
Purpose A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion. Methods CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing–Bablok regression analysis. Results CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm ( ρ  = 0.78 and 0.80, p  < 0.001) than with the reformulated SVD algorithm ( ρ  = 0.59 and 0.39, p  < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm ( p  = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm ( y  = 2.42 x- 6.51; ρ  = 0.60, p  < 0.001) in comparison with the SVD algorithms. Conclusions The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.
A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.PURPOSEA variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing-Bablok regression analysis.METHODSCT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing-Bablok regression analysis.CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.RESULTSCBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.CONCLUSIONSThe Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.
PurposeA variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.MethodsCT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing–Bablok regression analysis.ResultsCBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.ConclusionsThe Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.
Author Ichikawa, Shota
Yamamoto, Hiroyuki
Morita, Takumi
Author_xml – sequence: 1
  givenname: Shota
  orcidid: 0000-0002-4275-1422
  surname: Ichikawa
  fullname: Ichikawa, Shota
  email: s-ichikawa@frontier.hokudai.ac.jp
  organization: Department of Radiological Technology, Kurashiki Central Hospital
– sequence: 2
  givenname: Hiroyuki
  surname: Yamamoto
  fullname: Yamamoto, Hiroyuki
  organization: Department of Radiological Technology, Kurashiki Central Hospital
– sequence: 3
  givenname: Takumi
  surname: Morita
  fullname: Morita, Takumi
  organization: Department of Neurosurgery, Kurashiki Central Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33469818$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URG8LL8ACWWLDJjCO49hewhV_UiU2ZW05zuTWJbEvttOqj8Ob4vYWEF105ZH8nZkzc07IUYgBCXnJ4C0DkO8yY6KTDbTQAOOsb_onZMNUWwut-BHZAHDeKN63x-Qk50uADhjoZ-SY864iTG3Ir21c9jb5HAONE7X0g73B7G2gmItfbPH1w867mHy5WKgNI80-7NbZJnpl5xXpiK62iNn_j2Y6xUQVNCMWdKXWKV7T7TndY5rWfMv6QPd1AIaS6XXVUOvWgtRnd4GLdzSXFH_gc_J0snPGF_fvKfn-6eP59ktz9u3z1-37s8ZxKUojZQ9Dj4OFqeODZAzcoJ3mfOoEE0oPjEvZasdGray2HeAklJOCMes4aMZPyZtD332KP9e6vVmqE5xnGzCu2bSd1B1TSuuKvn6AXsY1herOtIK3QmsheKVe3VPrsOBo9qneM92YP8evQHsAXIo5J5z-IgzMbcLmkLCpCZu7hE1fReqByPlyF1NJ1s-PS_lBmuucsMP0z_Yjqt_lZLvs
CitedBy_id crossref_primary_10_3390_jcm12113755
crossref_primary_10_1097_RCT_0000000000001342
crossref_primary_10_3390_diagnostics12071655
crossref_primary_10_1007_s12194_024_00818_6
crossref_primary_10_1007_s00330_023_09557_5
crossref_primary_10_1007_s10072_023_06627_w
crossref_primary_10_3390_diagnostics12061323
crossref_primary_10_1016_j_artmed_2023_102607
crossref_primary_10_1111_jon_13090
crossref_primary_10_3390_risks10060111
crossref_primary_10_1186_s13027_022_00429_z
Cites_doi 10.3174/ajnr.A6170
10.2463/mrms.2013-0085
10.1148/radiol.12112618
10.3174/ajnr.A4184
10.1161/STROKEAHA.116.013147
10.1016/j.neurad.2013.11.006
10.1002/ana.25109
10.1177/0271678X17744453
10.1161/STROKEAHA.115.009250
10.1097/RCT.0b013e31828004bb
10.1109/TMI.2012.2189890
10.1002/mrm.10522
10.1161/STR.0000000000000158
10.3174/ajnr.A3110
10.1161/STROKEAHA.119.026281
10.1007/s00234-013-1237-7
10.1002/jmri.20460
10.1136/neurintsurg-2020-015966
10.1148/radiol.2511080983
10.1097/RCT.0000000000000498
10.1161/STROKEAHA.118.021952
10.1097/RCT.0000000000000366
10.1148/radiol.254082000
10.3174/ajnr.A6395
10.1002/mrm.1910360510
ContentType Journal Article
Copyright Italian Society of Medical Radiology 2021
Italian Society of Medical Radiology 2021.
Copyright_xml – notice: Italian Society of Medical Radiology 2021
– notice: Italian Society of Medical Radiology 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1007/s11547-020-01316-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1826-6983
EndPage 803
ExternalDocumentID 33469818
10_1007_s11547_020_01316_6
Genre Journal Article
Comparative Study
GroupedDBID -5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
P9S
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z87
ZMTXR
ZOVNA
~A9
~S-
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c375t-7760b6eba0f43b7110cb9c933f451589b137729c1d98a9a40ef58c7511ac30913
IEDL.DBID U2A
ISSN 0033-8362
1826-6983
IngestDate Wed Oct 01 14:44:53 EDT 2025
Tue Oct 07 06:51:12 EDT 2025
Wed Feb 19 02:23:33 EST 2025
Wed Oct 01 02:11:57 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Fri Feb 21 02:49:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Singular value decomposition algorithm
Infarction volume
Computed tomography perfusion
Acute ischemic stroke
Bayesian estimation algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7760b6eba0f43b7110cb9c933f451589b137729c1d98a9a40ef58c7511ac30913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-4275-1422
PMID 33469818
PQID 2532599553
PQPubID 2043526
PageCount 9
ParticipantIDs proquest_miscellaneous_2479418899
proquest_journals_2532599553
pubmed_primary_33469818
crossref_primary_10_1007_s11547_020_01316_6
crossref_citationtrail_10_1007_s11547_020_01316_6
springer_journals_10_1007_s11547_020_01316_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Italy
– name: Torino
PublicationSubtitle Official Journal of the Italian Society of Medical and Interventional Radiology
PublicationTitle Radiologia medica
PublicationTitleAbbrev Radiol med
PublicationTitleAlternate Radiol Med
PublicationYear 2021
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Chen, Bivard, Lin (CR23) 2019; 39
Fahmi, Marquering, Streekstra (CR3) 2012; 33
Ostergaard, Weisskoff, Chesler (CR14) 1996; 36
Bivard, Levi, Krishnamurthy (CR16) 2014; 41
Boutelier, Kudo, Pautot, Sasaki (CR9) 2012; 31
Sakai, Delman, Fifi (CR20) 2018; 49
Qiu, Kuang, Lee (CR26) 2019; 50
Sasaki, Kudo, Boutelier (CR12) 2013; 55
Kudo, Sasaki, Ogasawara (CR6) 2009; 251
Mayer, Hamann, Baranczyk (CR1) 2000; 21
Hanson, Roach, Day (CR15) 2013; 37
Rava, Snyder, Mokin (CR17) 2020; 41
Powers, Rabinstein, Ackerson (CR2) 2018; 49
Wu, Østergaard, Weisskoff (CR18) 2003; 50
Doucet, Roncarolo, Tampieri, Del Pilar (CR7) 2016; 40
Kudo, Sasaki, Yamada (CR21) 2010; 254
d’Esterre, Boesen, Ahn (CR24) 2015; 46
Nael, Mossadeghi, Boutelier (CR11) 2015; 36
Bivard, Kleinig, Miteff (CR25) 2017; 82
Østergaard (CR19) 2005; 22
Austein, Riedel, Kerby (CR4) 2016; 47
Kudo, Christensen, Sasaki (CR5) 2013; 267
Kudo, Boutelier, Pautot (CR10) 2014; 13
Nael, Tadayon, Wheelwright (CR22) 2019; 40
Rava, Snyder, Mokin (CR13) 2020
Murayama, Katada, Hayakawa, Toyama (CR8) 2017; 41
L Østergaard (1316_CR19) 2005; 22
L Ostergaard (1316_CR14) 1996; 36
Y Sakai (1316_CR20) 2018; 49
K Kudo (1316_CR21) 2010; 254
F Austein (1316_CR4) 2016; 47
A Bivard (1316_CR25) 2017; 82
WJ Powers (1316_CR2) 2018; 49
C Doucet (1316_CR7) 2016; 40
K Kudo (1316_CR10) 2014; 13
TE Mayer (1316_CR1) 2000; 21
EH Hanson (1316_CR15) 2013; 37
RA Rava (1316_CR13) 2020
T Boutelier (1316_CR9) 2012; 31
O Wu (1316_CR18) 2003; 50
A Bivard (1316_CR16) 2014; 41
W Qiu (1316_CR26) 2019; 50
K Kudo (1316_CR6) 2009; 251
RA Rava (1316_CR17) 2020; 41
C Chen (1316_CR23) 2019; 39
K Murayama (1316_CR8) 2017; 41
M Sasaki (1316_CR12) 2013; 55
K Nael (1316_CR11) 2015; 36
K Kudo (1316_CR5) 2013; 267
F Fahmi (1316_CR3) 2012; 33
K Nael (1316_CR22) 2019; 40
CD d’Esterre (1316_CR24) 2015; 46
References_xml – volume: 40
  start-page: 1491
  year: 2019
  end-page: 1497
  ident: CR22
  article-title: Defining ischemic core in acute ischemic stroke using CT perfusion: a multiparametric bayesian-based model
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6170
– volume: 13
  start-page: 45
  year: 2014
  end-page: 50
  ident: CR10
  article-title: Bayesian analysis of perfusion-weighted imaging to predict infarct volume: comparison with singular value decomposition
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.2013-0085
– volume: 267
  start-page: 201
  year: 2013
  end-page: 211
  ident: CR5
  article-title: Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom
  publication-title: Radiology
  doi: 10.1148/radiol.12112618
– volume: 36
  start-page: 710
  year: 2015
  end-page: 718
  ident: CR11
  article-title: Bayesian estimation of cerebral perfusion using reduced-contrast-dose dynamic susceptibility contrast perfusion at 3T
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4184
– volume: 47
  start-page: 2311
  year: 2016
  end-page: 2317
  ident: CR4
  article-title: Comparison of perfusion CT software to predict the final infarct volume after thrombectomy
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.013147
– volume: 41
  start-page: 307
  year: 2014
  end-page: 315
  ident: CR16
  article-title: Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion
  publication-title: J Neuroradiol
  doi: 10.1016/j.neurad.2013.11.006
– volume: 82
  start-page: 995
  year: 2017
  end-page: 1003
  ident: CR25
  article-title: Ischemic core thresholds change with time to reperfusion: a case control study
  publication-title: Ann Neurol
  doi: 10.1002/ana.25109
– volume: 39
  start-page: 536
  year: 2019
  end-page: 546
  ident: CR23
  article-title: Thresholds for infarction vary between gray matter and white matter in acute ischemic stroke: a CT perfusion study
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X17744453
– volume: 46
  start-page: 3390
  year: 2015
  end-page: 3397
  ident: CR24
  article-title: Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.009250
– volume: 37
  start-page: 212
  year: 2013
  end-page: 221
  ident: CR15
  article-title: Assessment of the tracer delay effect in whole-brain computed tomography perfusion: results in patients without known neuroanatomic abnormalities
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e31828004bb
– volume: 31
  start-page: 1381
  year: 2012
  end-page: 1395
  ident: CR9
  article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2189890
– volume: 50
  start-page: 164
  year: 2003
  end-page: 174
  ident: CR18
  article-title: Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10522
– volume: 21
  start-page: 1441
  year: 2000
  end-page: 1449
  ident: CR1
  article-title: Dynamic CT perfusion imaging of acute stroke
  publication-title: AJNR Am J Neuroradiol
  doi: 10.1161/STR.0000000000000158
– volume: 33
  start-page: 2074
  year: 2012
  end-page: 2080
  ident: CR3
  article-title: Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3110
– volume: 50
  start-page: 3269
  year: 2019
  end-page: 3273
  ident: CR26
  article-title: Confirmatory study of time-dependent computed tomographic perfusion thresholds for use in acute ischemic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.026281
– volume: 55
  start-page: 1197
  year: 2013
  end-page: 1203
  ident: CR12
  article-title: Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom
  publication-title: Neuroradiology
  doi: 10.1007/s00234-013-1237-7
– volume: 22
  start-page: 710
  year: 2005
  end-page: 717
  ident: CR19
  article-title: Principles of cerebral perfusion imaging by bolus tracking
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20460
– year: 2020
  ident: CR13
  article-title: Assessment of computed tomography perfusion software in predicting spatial location and volume of infarct in acute ischemic stroke patients: a comparison of sphere, vitrea, and RAPID
  publication-title: J Neurointerv Surg
  doi: 10.1136/neurintsurg-2020-015966
– volume: 251
  start-page: 241
  year: 2009
  end-page: 249
  ident: CR6
  article-title: Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms
  publication-title: Radiology
  doi: 10.1148/radiol.2511080983
– volume: 41
  start-page: 173
  year: 2017
  end-page: 180
  ident: CR8
  article-title: Shortened mean transit time in CT perfusion with singular value decomposition analysis in acute cerebral infarction: quantitative evaluation and comparison with various CT perfusion parameters
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000498
– volume: 49
  start-page: 2345
  year: 2018
  end-page: 2352
  ident: CR20
  article-title: Estimation of ischemic core volume using computed tomographic perfusion
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.118.021952
– volume: 40
  start-page: 409
  year: 2016
  end-page: 412
  ident: CR7
  article-title: Paradoxically decreased mean transit time in patients presenting with acute stroke
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000366
– volume: 254
  start-page: 200
  year: 2010
  end-page: 209
  ident: CR21
  article-title: Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients
  publication-title: Radiology
  doi: 10.1148/radiol.254082000
– volume: 41
  start-page: 206
  year: 2020
  end-page: 212
  ident: CR17
  article-title: Assessment of a bayesian vitrea CT perfusion analysis to predict final infarct and penumbra volumes in patients with acute ischemic stroke: a comparison with RAPID
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6395
– volume: 49
  start-page: e46
  issue: 3
  year: 2018
  end-page: e99
  ident: CR2
  article-title: Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000158
– volume: 36
  start-page: 715
  year: 1996
  end-page: 725
  ident: CR14
  article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. part I: mathematical approach and statistical analysis
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910360510
– volume: 13
  start-page: 45
  year: 2014
  ident: 1316_CR10
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.2013-0085
– volume: 267
  start-page: 201
  year: 2013
  ident: 1316_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.12112618
– volume: 254
  start-page: 200
  year: 2010
  ident: 1316_CR21
  publication-title: Radiology
  doi: 10.1148/radiol.254082000
– volume: 41
  start-page: 307
  year: 2014
  ident: 1316_CR16
  publication-title: J Neuroradiol
  doi: 10.1016/j.neurad.2013.11.006
– year: 2020
  ident: 1316_CR13
  publication-title: J Neurointerv Surg
  doi: 10.1136/neurintsurg-2020-015966
– volume: 46
  start-page: 3390
  year: 2015
  ident: 1316_CR24
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.009250
– volume: 40
  start-page: 1491
  year: 2019
  ident: 1316_CR22
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6170
– volume: 21
  start-page: 1441
  year: 2000
  ident: 1316_CR1
  publication-title: AJNR Am J Neuroradiol
  doi: 10.1161/STR.0000000000000158
– volume: 33
  start-page: 2074
  year: 2012
  ident: 1316_CR3
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3110
– volume: 22
  start-page: 710
  year: 2005
  ident: 1316_CR19
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20460
– volume: 55
  start-page: 1197
  year: 2013
  ident: 1316_CR12
  publication-title: Neuroradiology
  doi: 10.1007/s00234-013-1237-7
– volume: 41
  start-page: 173
  year: 2017
  ident: 1316_CR8
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000498
– volume: 49
  start-page: e46
  issue: 3
  year: 2018
  ident: 1316_CR2
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000158
– volume: 39
  start-page: 536
  year: 2019
  ident: 1316_CR23
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X17744453
– volume: 36
  start-page: 715
  year: 1996
  ident: 1316_CR14
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910360510
– volume: 50
  start-page: 3269
  year: 2019
  ident: 1316_CR26
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.026281
– volume: 50
  start-page: 164
  year: 2003
  ident: 1316_CR18
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10522
– volume: 47
  start-page: 2311
  year: 2016
  ident: 1316_CR4
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.013147
– volume: 40
  start-page: 409
  year: 2016
  ident: 1316_CR7
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000366
– volume: 251
  start-page: 241
  year: 2009
  ident: 1316_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2511080983
– volume: 37
  start-page: 212
  year: 2013
  ident: 1316_CR15
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e31828004bb
– volume: 82
  start-page: 995
  year: 2017
  ident: 1316_CR25
  publication-title: Ann Neurol
  doi: 10.1002/ana.25109
– volume: 36
  start-page: 710
  year: 2015
  ident: 1316_CR11
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4184
– volume: 41
  start-page: 206
  year: 2020
  ident: 1316_CR17
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6395
– volume: 49
  start-page: 2345
  year: 2018
  ident: 1316_CR20
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.118.021952
– volume: 31
  start-page: 1381
  year: 2012
  ident: 1316_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2189890
SSID ssj0040109
Score 2.3222613
Snippet Purpose A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential...
A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential...
PurposeA variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 795
SubjectTerms Acute Disease
Adult
Aged
Aged, 80 and over
Algorithms
Bayes Theorem
Bayesian analysis
Blood flow
Blood volume
Computed Tomography
Diagnostic Radiology
Female
Humans
Imaging
Interventional Radiology
Ischemic Stroke - diagnosis
Male
Medicine
Medicine & Public Health
Middle Aged
Multidetector Computed Tomography - methods
Neuroradiology
Radiology
Regression analysis
Retrospective Studies
Singular value decomposition
Statistical analysis
Stroke
Transit time
Ultrasound
Title Comparison of a Bayesian estimation algorithm and singular value decomposition algorithms for 80-detector row CT perfusion in patients with acute ischemic stroke
URI https://link.springer.com/article/10.1007/s11547-020-01316-6
https://www.ncbi.nlm.nih.gov/pubmed/33469818
https://www.proquest.com/docview/2532599553
https://www.proquest.com/docview/2479418899
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1826-6983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040109
  issn: 0033-8362
  databaseCode: AFBBN
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1826-6983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040109
  issn: 0033-8362
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1826-6983
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040109
  issn: 0033-8362
  databaseCode: U2A
  dateStart: 20060213
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglRAXxJuFUg0SN7CUje3EOS6rlgoEp65UTpGfsGpJqk32wM_hnzKTOLtCBSSOkR3HyozHn-fxmbHXVluflT7jLs8tl0EqbrMguYgqZAb3L3yibIvPxdlKfrhQF6korJuy3aeQ5GCp98VuuNuXnI47xBFT8OI2O1RE54VavMoXk_2VFOwZyRgF12ifU6nMn8f4fTu6gTFvxEeHbef0PruX8CIsRgE_YLdC85Dd-ZQi4o_Yz-XuIkFoIxh4Z34EKowEos8Y6xLBXH1tN-v-23cwjQfyDlDyKRDRdwAfKK085W7tu3aAcBZ0xn3oB88-4IEdludwHTZxSz42WDeQaFk7IH8uGLftA6zxwEwp99D1m_YyPGar05Pz5RlP1y5wJ0rVI94uMlsEa7IohS0RHzhbuUqIKBH86MoSSWFeubmvtKmMzEJU2pWI3IwTRDP6hB00bROeMXDWxxi0Cqry0pXY6NGC-KisV4jT9IzNp79fu8RJTldjXNV7NmWSWI0SqweJ1cWMvdm9cz0ycvyz99Ek1Dqtzq7OlciJaE2JGXu1a8Z1RcES04R2i32Ien-u8Tg6Y09HZdh9Tgi6d3OO0387acd-8L_P5fn_dX_B7uaUQDO4fI7YQb_ZhpeIgHp7zA4X7798PDkeFP8X8KT-sQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZgK0FfuI-FAoPEG6TKxnaOx7JqWejxtCuVp8hXYNU2qTaJEPwb_ikzibMrKCD1MYrjOI6Pb2a--czYG51qGyY2DEwU6UA4IQMdOhHwQrpQ4f6FV8S2OIlnC_HpVJ76pLB6YLsPIclupd4ku-FunwRk7pBGTBzEN9mWQAMlGrGtvQ-fD_eHFVhQuKeXY-RBiiu0T5b5ey2_b0hXUOaVCGm38RzcZYuhyT3f5Gy3bfSu-fGHmuN1v-keu-ORKOz1Q-c-u-HKB-zWsY-1P2Q_p-sjCqEqQMF79d1RyiWQMEef8Qjq_Eu1WjZfL0CVFsjvQLRWIAlxB9YRYd2zwjZFa0CgDGkYWNd0MQNYVd9gOodLtypa8t7BsgQv-FoDeYpBmbZxsERTnMj8UDer6sw9YouD_fl0FvgDHQLDE9kgko9DHTutwkJwnSDyMDozGeeFQFiVZprkD6PMTGyWqkyJ0BUyNQliQmU4CZg-ZqOyKt1TBkbbonCpdDKzwiR40-LaZAuprUQEmI7ZZPirufFq53Toxnm-0Wmmvs-x7_Ou7_N4zN6un7nstT7-W3pnGCy5n_d1HkkekYSb5GP2en0bZyyFYVTpqhbLkKj_JEVDd8ye9INs_TrO6UTPCTb_3TBgNpX_uy3Prlf8Fbs9mx8f5UcfTw6fs-2IaDqdY2mHjZpV614gzmr0Sz-tfgEzvx0F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXRHl1S4FB4gZWs7GdOMeyZVVeFYeu1FvkJ6xaktVu9tCfwz9lJo9dUAGJY2THsTK255vXZ8ZeWW19kvuEuzS1XAapuE2C5CKqkBjUX_hE2RZn2elMfrhQF79U8bfZ7kNIsqtpIJamqjla-Hi0LXxDzZ9zMn2ILybj2W12RxJRAq7oWXo8nMWSAj8dMaPgGs_qvmzmz2P8rppu4M0bsdJWBU3vs3s9doTjTth77FaoHrDdz310_CH7MdlcKgh1BANvzXWgIkkgKo2uRhHM1dd6OW--fQdTeSBPASWiApF-B_CBUsz7PK5t1xUgtAWdcB-a1ssPaLzD5BwWYRnX5G-DeQU9ResKyLcLxq2bAHM0nin9HlbNsr4Mj9hs-u58csr7Kxi4E7lqEHtnic2CNUmUwuaIFZwtXCFElAiEdGGJsDAt3NgX2hRGJiEq7XJEccYJohx9zHaqugr7DJz1MQatgiq8dDk2ejxNfFTWK8RsesTGw98vXc9PTtdkXJVbZmWSWIkSK1uJldmIvd68s-jYOf7Z-3AQatnv1FWZKpES6ZoSI_Zy04x7jAInpgr1GvsQDf9Yo2k6Yk-6xbD5nBB0B-cYp_9mWB3bwf8-l4P_6_6C7X45mZaf3p99fMruppRX03qCDtlOs1yHZwiMGvu8Xfs_AaArBFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+a+Bayesian+estimation+algorithm+and+singular+value+decomposition+algorithms+for+80-detector+row+CT+perfusion+in+patients+with+acute+ischemic+stroke&rft.jtitle=Radiologia+medica&rft.au=Ichikawa%2C+Shota&rft.au=Yamamoto%2C+Hiroyuki&rft.au=Morita%2C+Takumi&rft.date=2021-06-01&rft.pub=Springer+Milan&rft.issn=0033-8362&rft.eissn=1826-6983&rft.volume=126&rft.issue=6&rft.spage=795&rft.epage=803&rft_id=info:doi/10.1007%2Fs11547-020-01316-6&rft.externalDocID=10_1007_s11547_020_01316_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8362&client=summon