Comparison of a Bayesian estimation algorithm and singular value decomposition algorithms for 80-detector row CT perfusion in patients with acute ischemic stroke
Purpose A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We a...
Saved in:
| Published in | Radiologia medica Vol. 126; no. 6; pp. 795 - 803 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Milan
Springer Milan
01.06.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0033-8362 1826-6983 1826-6983 |
| DOI | 10.1007/s11547-020-01316-6 |
Cover
| Abstract | Purpose
A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.
Methods
CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing–Bablok regression analysis.
Results
CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (
ρ
= 0.78 and 0.80,
p
< 0.001) than with the reformulated SVD algorithm (
ρ
= 0.59 and 0.39,
p
< 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (
p
= 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (
y
= 2.42
x-
6.51;
ρ
= 0.60,
p
< 0.001) in comparison with the SVD algorithms.
Conclusions
The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume. |
|---|---|
| AbstractList | A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.
CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing-Bablok regression analysis.
CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.
The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume. Purpose A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion. Methods CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing–Bablok regression analysis. Results CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm ( ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm ( ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm ( p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm ( y = 2.42 x- 6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms. Conclusions The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume. A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.PURPOSEA variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.CT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing-Bablok regression analysis.METHODSCT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing-Bablok regression analysis.CBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.RESULTSCBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.The Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume.CONCLUSIONSThe Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume. PurposeA variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential advantages of a Bayesian estimation algorithm are suggested, direct comparison with other algorithms in clinical settings remains scarce. We aimed to compare performance of a Bayesian estimation algorithm and singular value decomposition (SVD) algorithms for the assessment of acute ischemic stroke using an 80-detector row CT perfusion.MethodsCT perfusion data of 36 patients with acute ischemic stroke were analyzed using the Vitrea implemented a standard SVD algorithm, a reformulated SVD algorithm and a Bayesian estimation algorithm. Correlations and statistical differences between affected and contralateral sides of quantitative parameters (cerebral blood volume [CBV], cerebral blood flow [CBF], mean transit time [MTT], time to peak [TTP] and delay) were analyzed. Agreement of the CT perfusion-estimated and the follow-up diffusion-weighted imaging-derived infarct volume were evaluated by nonparametric Passing–Bablok regression analysis.ResultsCBF and MTT of the Bayesian estimation algorithm were substantially different and showed a better correlation with the standard SVD algorithm (ρ = 0.78 and 0.80, p < 0.001) than with the reformulated SVD algorithm (ρ = 0.59 and 0.39, p < 0.001). There is no significant difference in MTT only when using the reformulated SVD algorithm (p = 0.217). Regarding the regression lines, the slope and intercept were nearly ideal with the Bayesian estimation algorithm (y = 2.42 x-6.51; ρ = 0.60, p < 0.001) in comparison with the SVD algorithms.ConclusionsThe Bayesian estimation algorithm can lead to a better performance compared with the SVD algorithms in the assessment of acute ischemic stroke because of better delineation of abnormal perfusion areas and accurate estimation of infarct volume. |
| Author | Ichikawa, Shota Yamamoto, Hiroyuki Morita, Takumi |
| Author_xml | – sequence: 1 givenname: Shota orcidid: 0000-0002-4275-1422 surname: Ichikawa fullname: Ichikawa, Shota email: s-ichikawa@frontier.hokudai.ac.jp organization: Department of Radiological Technology, Kurashiki Central Hospital – sequence: 2 givenname: Hiroyuki surname: Yamamoto fullname: Yamamoto, Hiroyuki organization: Department of Radiological Technology, Kurashiki Central Hospital – sequence: 3 givenname: Takumi surname: Morita fullname: Morita, Takumi organization: Department of Neurosurgery, Kurashiki Central Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33469818$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1TAQhS1URG8LL8ACWWLDJjCO49hewhV_UiU2ZW05zuTWJbEvttOqj8Ob4vYWEF105ZH8nZkzc07IUYgBCXnJ4C0DkO8yY6KTDbTQAOOsb_onZMNUWwut-BHZAHDeKN63x-Qk50uADhjoZ-SY864iTG3Ir21c9jb5HAONE7X0g73B7G2gmItfbPH1w867mHy5WKgNI80-7NbZJnpl5xXpiK62iNn_j2Y6xUQVNCMWdKXWKV7T7TndY5rWfMv6QPd1AIaS6XXVUOvWgtRnd4GLdzSXFH_gc_J0snPGF_fvKfn-6eP59ktz9u3z1-37s8ZxKUojZQ9Dj4OFqeODZAzcoJ3mfOoEE0oPjEvZasdGray2HeAklJOCMes4aMZPyZtD332KP9e6vVmqE5xnGzCu2bSd1B1TSuuKvn6AXsY1herOtIK3QmsheKVe3VPrsOBo9qneM92YP8evQHsAXIo5J5z-IgzMbcLmkLCpCZu7hE1fReqByPlyF1NJ1s-PS_lBmuucsMP0z_Yjqt_lZLvs |
| CitedBy_id | crossref_primary_10_3390_jcm12113755 crossref_primary_10_1097_RCT_0000000000001342 crossref_primary_10_3390_diagnostics12071655 crossref_primary_10_1007_s12194_024_00818_6 crossref_primary_10_1007_s00330_023_09557_5 crossref_primary_10_1007_s10072_023_06627_w crossref_primary_10_3390_diagnostics12061323 crossref_primary_10_1016_j_artmed_2023_102607 crossref_primary_10_1111_jon_13090 crossref_primary_10_3390_risks10060111 crossref_primary_10_1186_s13027_022_00429_z |
| Cites_doi | 10.3174/ajnr.A6170 10.2463/mrms.2013-0085 10.1148/radiol.12112618 10.3174/ajnr.A4184 10.1161/STROKEAHA.116.013147 10.1016/j.neurad.2013.11.006 10.1002/ana.25109 10.1177/0271678X17744453 10.1161/STROKEAHA.115.009250 10.1097/RCT.0b013e31828004bb 10.1109/TMI.2012.2189890 10.1002/mrm.10522 10.1161/STR.0000000000000158 10.3174/ajnr.A3110 10.1161/STROKEAHA.119.026281 10.1007/s00234-013-1237-7 10.1002/jmri.20460 10.1136/neurintsurg-2020-015966 10.1148/radiol.2511080983 10.1097/RCT.0000000000000498 10.1161/STROKEAHA.118.021952 10.1097/RCT.0000000000000366 10.1148/radiol.254082000 10.3174/ajnr.A6395 10.1002/mrm.1910360510 |
| ContentType | Journal Article |
| Copyright | Italian Society of Medical Radiology 2021 Italian Society of Medical Radiology 2021. |
| Copyright_xml | – notice: Italian Society of Medical Radiology 2021 – notice: Italian Society of Medical Radiology 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
| DOI | 10.1007/s11547-020-01316-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1826-6983 |
| EndPage | 803 |
| ExternalDocumentID | 33469818 10_1007_s11547_020_01316_6 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J P9S PF0 PT4 QOR QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z7X Z82 Z87 ZMTXR ZOVNA ~A9 ~S- AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
| ID | FETCH-LOGICAL-c375t-7760b6eba0f43b7110cb9c933f451589b137729c1d98a9a40ef58c7511ac30913 |
| IEDL.DBID | U2A |
| ISSN | 0033-8362 1826-6983 |
| IngestDate | Wed Oct 01 14:44:53 EDT 2025 Tue Oct 07 06:51:12 EDT 2025 Wed Feb 19 02:23:33 EST 2025 Wed Oct 01 02:11:57 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Fri Feb 21 02:49:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Singular value decomposition algorithm Infarction volume Computed tomography perfusion Acute ischemic stroke Bayesian estimation algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-7760b6eba0f43b7110cb9c933f451589b137729c1d98a9a40ef58c7511ac30913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-4275-1422 |
| PMID | 33469818 |
| PQID | 2532599553 |
| PQPubID | 2043526 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2479418899 proquest_journals_2532599553 pubmed_primary_33469818 crossref_primary_10_1007_s11547_020_01316_6 crossref_citationtrail_10_1007_s11547_020_01316_6 springer_journals_10_1007_s11547_020_01316_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Milan |
| PublicationPlace_xml | – name: Milan – name: Italy – name: Torino |
| PublicationSubtitle | Official Journal of the Italian Society of Medical and Interventional Radiology |
| PublicationTitle | Radiologia medica |
| PublicationTitleAbbrev | Radiol med |
| PublicationTitleAlternate | Radiol Med |
| PublicationYear | 2021 |
| Publisher | Springer Milan Springer Nature B.V |
| Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
| References | Chen, Bivard, Lin (CR23) 2019; 39 Fahmi, Marquering, Streekstra (CR3) 2012; 33 Ostergaard, Weisskoff, Chesler (CR14) 1996; 36 Bivard, Levi, Krishnamurthy (CR16) 2014; 41 Boutelier, Kudo, Pautot, Sasaki (CR9) 2012; 31 Sakai, Delman, Fifi (CR20) 2018; 49 Qiu, Kuang, Lee (CR26) 2019; 50 Sasaki, Kudo, Boutelier (CR12) 2013; 55 Kudo, Sasaki, Ogasawara (CR6) 2009; 251 Mayer, Hamann, Baranczyk (CR1) 2000; 21 Hanson, Roach, Day (CR15) 2013; 37 Rava, Snyder, Mokin (CR17) 2020; 41 Powers, Rabinstein, Ackerson (CR2) 2018; 49 Wu, Østergaard, Weisskoff (CR18) 2003; 50 Doucet, Roncarolo, Tampieri, Del Pilar (CR7) 2016; 40 Kudo, Sasaki, Yamada (CR21) 2010; 254 d’Esterre, Boesen, Ahn (CR24) 2015; 46 Nael, Mossadeghi, Boutelier (CR11) 2015; 36 Bivard, Kleinig, Miteff (CR25) 2017; 82 Østergaard (CR19) 2005; 22 Austein, Riedel, Kerby (CR4) 2016; 47 Kudo, Christensen, Sasaki (CR5) 2013; 267 Kudo, Boutelier, Pautot (CR10) 2014; 13 Nael, Tadayon, Wheelwright (CR22) 2019; 40 Rava, Snyder, Mokin (CR13) 2020 Murayama, Katada, Hayakawa, Toyama (CR8) 2017; 41 L Østergaard (1316_CR19) 2005; 22 L Ostergaard (1316_CR14) 1996; 36 Y Sakai (1316_CR20) 2018; 49 K Kudo (1316_CR21) 2010; 254 F Austein (1316_CR4) 2016; 47 A Bivard (1316_CR25) 2017; 82 WJ Powers (1316_CR2) 2018; 49 C Doucet (1316_CR7) 2016; 40 K Kudo (1316_CR10) 2014; 13 TE Mayer (1316_CR1) 2000; 21 EH Hanson (1316_CR15) 2013; 37 RA Rava (1316_CR13) 2020 T Boutelier (1316_CR9) 2012; 31 O Wu (1316_CR18) 2003; 50 A Bivard (1316_CR16) 2014; 41 W Qiu (1316_CR26) 2019; 50 K Kudo (1316_CR6) 2009; 251 RA Rava (1316_CR17) 2020; 41 C Chen (1316_CR23) 2019; 39 K Murayama (1316_CR8) 2017; 41 M Sasaki (1316_CR12) 2013; 55 K Nael (1316_CR11) 2015; 36 K Kudo (1316_CR5) 2013; 267 F Fahmi (1316_CR3) 2012; 33 K Nael (1316_CR22) 2019; 40 CD d’Esterre (1316_CR24) 2015; 46 |
| References_xml | – volume: 40 start-page: 1491 year: 2019 end-page: 1497 ident: CR22 article-title: Defining ischemic core in acute ischemic stroke using CT perfusion: a multiparametric bayesian-based model publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6170 – volume: 13 start-page: 45 year: 2014 end-page: 50 ident: CR10 article-title: Bayesian analysis of perfusion-weighted imaging to predict infarct volume: comparison with singular value decomposition publication-title: Magn Reson Med Sci doi: 10.2463/mrms.2013-0085 – volume: 267 start-page: 201 year: 2013 end-page: 211 ident: CR5 article-title: Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom publication-title: Radiology doi: 10.1148/radiol.12112618 – volume: 36 start-page: 710 year: 2015 end-page: 718 ident: CR11 article-title: Bayesian estimation of cerebral perfusion using reduced-contrast-dose dynamic susceptibility contrast perfusion at 3T publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4184 – volume: 47 start-page: 2311 year: 2016 end-page: 2317 ident: CR4 article-title: Comparison of perfusion CT software to predict the final infarct volume after thrombectomy publication-title: Stroke doi: 10.1161/STROKEAHA.116.013147 – volume: 41 start-page: 307 year: 2014 end-page: 315 ident: CR16 article-title: Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion publication-title: J Neuroradiol doi: 10.1016/j.neurad.2013.11.006 – volume: 82 start-page: 995 year: 2017 end-page: 1003 ident: CR25 article-title: Ischemic core thresholds change with time to reperfusion: a case control study publication-title: Ann Neurol doi: 10.1002/ana.25109 – volume: 39 start-page: 536 year: 2019 end-page: 546 ident: CR23 article-title: Thresholds for infarction vary between gray matter and white matter in acute ischemic stroke: a CT perfusion study publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X17744453 – volume: 46 start-page: 3390 year: 2015 end-page: 3397 ident: CR24 article-title: Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.115.009250 – volume: 37 start-page: 212 year: 2013 end-page: 221 ident: CR15 article-title: Assessment of the tracer delay effect in whole-brain computed tomography perfusion: results in patients without known neuroanatomic abnormalities publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e31828004bb – volume: 31 start-page: 1381 year: 2012 end-page: 1395 ident: CR9 article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2189890 – volume: 50 start-page: 164 year: 2003 end-page: 174 ident: CR18 article-title: Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix publication-title: Magn Reson Med doi: 10.1002/mrm.10522 – volume: 21 start-page: 1441 year: 2000 end-page: 1449 ident: CR1 article-title: Dynamic CT perfusion imaging of acute stroke publication-title: AJNR Am J Neuroradiol doi: 10.1161/STR.0000000000000158 – volume: 33 start-page: 2074 year: 2012 end-page: 2080 ident: CR3 article-title: Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3110 – volume: 50 start-page: 3269 year: 2019 end-page: 3273 ident: CR26 article-title: Confirmatory study of time-dependent computed tomographic perfusion thresholds for use in acute ischemic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.119.026281 – volume: 55 start-page: 1197 year: 2013 end-page: 1203 ident: CR12 article-title: Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom publication-title: Neuroradiology doi: 10.1007/s00234-013-1237-7 – volume: 22 start-page: 710 year: 2005 end-page: 717 ident: CR19 article-title: Principles of cerebral perfusion imaging by bolus tracking publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20460 – year: 2020 ident: CR13 article-title: Assessment of computed tomography perfusion software in predicting spatial location and volume of infarct in acute ischemic stroke patients: a comparison of sphere, vitrea, and RAPID publication-title: J Neurointerv Surg doi: 10.1136/neurintsurg-2020-015966 – volume: 251 start-page: 241 year: 2009 end-page: 249 ident: CR6 article-title: Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms publication-title: Radiology doi: 10.1148/radiol.2511080983 – volume: 41 start-page: 173 year: 2017 end-page: 180 ident: CR8 article-title: Shortened mean transit time in CT perfusion with singular value decomposition analysis in acute cerebral infarction: quantitative evaluation and comparison with various CT perfusion parameters publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000498 – volume: 49 start-page: 2345 year: 2018 end-page: 2352 ident: CR20 article-title: Estimation of ischemic core volume using computed tomographic perfusion publication-title: Stroke doi: 10.1161/STROKEAHA.118.021952 – volume: 40 start-page: 409 year: 2016 end-page: 412 ident: CR7 article-title: Paradoxically decreased mean transit time in patients presenting with acute stroke publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000366 – volume: 254 start-page: 200 year: 2010 end-page: 209 ident: CR21 article-title: Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients publication-title: Radiology doi: 10.1148/radiol.254082000 – volume: 41 start-page: 206 year: 2020 end-page: 212 ident: CR17 article-title: Assessment of a bayesian vitrea CT perfusion analysis to predict final infarct and penumbra volumes in patients with acute ischemic stroke: a comparison with RAPID publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6395 – volume: 49 start-page: e46 issue: 3 year: 2018 end-page: e99 ident: CR2 article-title: Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association publication-title: Stroke doi: 10.1161/STR.0000000000000158 – volume: 36 start-page: 715 year: 1996 end-page: 725 ident: CR14 article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. part I: mathematical approach and statistical analysis publication-title: Magn Reson Med doi: 10.1002/mrm.1910360510 – volume: 13 start-page: 45 year: 2014 ident: 1316_CR10 publication-title: Magn Reson Med Sci doi: 10.2463/mrms.2013-0085 – volume: 267 start-page: 201 year: 2013 ident: 1316_CR5 publication-title: Radiology doi: 10.1148/radiol.12112618 – volume: 254 start-page: 200 year: 2010 ident: 1316_CR21 publication-title: Radiology doi: 10.1148/radiol.254082000 – volume: 41 start-page: 307 year: 2014 ident: 1316_CR16 publication-title: J Neuroradiol doi: 10.1016/j.neurad.2013.11.006 – year: 2020 ident: 1316_CR13 publication-title: J Neurointerv Surg doi: 10.1136/neurintsurg-2020-015966 – volume: 46 start-page: 3390 year: 2015 ident: 1316_CR24 publication-title: Stroke doi: 10.1161/STROKEAHA.115.009250 – volume: 40 start-page: 1491 year: 2019 ident: 1316_CR22 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6170 – volume: 21 start-page: 1441 year: 2000 ident: 1316_CR1 publication-title: AJNR Am J Neuroradiol doi: 10.1161/STR.0000000000000158 – volume: 33 start-page: 2074 year: 2012 ident: 1316_CR3 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3110 – volume: 22 start-page: 710 year: 2005 ident: 1316_CR19 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20460 – volume: 55 start-page: 1197 year: 2013 ident: 1316_CR12 publication-title: Neuroradiology doi: 10.1007/s00234-013-1237-7 – volume: 41 start-page: 173 year: 2017 ident: 1316_CR8 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000498 – volume: 49 start-page: e46 issue: 3 year: 2018 ident: 1316_CR2 publication-title: Stroke doi: 10.1161/STR.0000000000000158 – volume: 39 start-page: 536 year: 2019 ident: 1316_CR23 publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X17744453 – volume: 36 start-page: 715 year: 1996 ident: 1316_CR14 publication-title: Magn Reson Med doi: 10.1002/mrm.1910360510 – volume: 50 start-page: 3269 year: 2019 ident: 1316_CR26 publication-title: Stroke doi: 10.1161/STROKEAHA.119.026281 – volume: 50 start-page: 164 year: 2003 ident: 1316_CR18 publication-title: Magn Reson Med doi: 10.1002/mrm.10522 – volume: 47 start-page: 2311 year: 2016 ident: 1316_CR4 publication-title: Stroke doi: 10.1161/STROKEAHA.116.013147 – volume: 40 start-page: 409 year: 2016 ident: 1316_CR7 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000366 – volume: 251 start-page: 241 year: 2009 ident: 1316_CR6 publication-title: Radiology doi: 10.1148/radiol.2511080983 – volume: 37 start-page: 212 year: 2013 ident: 1316_CR15 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e31828004bb – volume: 82 start-page: 995 year: 2017 ident: 1316_CR25 publication-title: Ann Neurol doi: 10.1002/ana.25109 – volume: 36 start-page: 710 year: 2015 ident: 1316_CR11 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4184 – volume: 41 start-page: 206 year: 2020 ident: 1316_CR17 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6395 – volume: 49 start-page: 2345 year: 2018 ident: 1316_CR20 publication-title: Stroke doi: 10.1161/STROKEAHA.118.021952 – volume: 31 start-page: 1381 year: 2012 ident: 1316_CR9 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2189890 |
| SSID | ssj0040109 |
| Score | 2.3222613 |
| Snippet | Purpose
A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential... A variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential... PurposeA variety of postprocessing algorithms for CT perfusion are available, with substantial differences in terms of quantitative maps. Although potential... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 795 |
| SubjectTerms | Acute Disease Adult Aged Aged, 80 and over Algorithms Bayes Theorem Bayesian analysis Blood flow Blood volume Computed Tomography Diagnostic Radiology Female Humans Imaging Interventional Radiology Ischemic Stroke - diagnosis Male Medicine Medicine & Public Health Middle Aged Multidetector Computed Tomography - methods Neuroradiology Radiology Regression analysis Retrospective Studies Singular value decomposition Statistical analysis Stroke Transit time Ultrasound |
| Title | Comparison of a Bayesian estimation algorithm and singular value decomposition algorithms for 80-detector row CT perfusion in patients with acute ischemic stroke |
| URI | https://link.springer.com/article/10.1007/s11547-020-01316-6 https://www.ncbi.nlm.nih.gov/pubmed/33469818 https://www.proquest.com/docview/2532599553 https://www.proquest.com/docview/2479418899 |
| Volume | 126 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1826-6983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040109 issn: 0033-8362 databaseCode: AFBBN dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1826-6983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040109 issn: 0033-8362 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1826-6983 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040109 issn: 0033-8362 databaseCode: U2A dateStart: 20060213 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglRAXxJuFUg0SN7CUje3EOS6rlgoEp65UTpGfsGpJqk32wM_hnzKTOLtCBSSOkR3HyozHn-fxmbHXVluflT7jLs8tl0EqbrMguYgqZAb3L3yibIvPxdlKfrhQF6korJuy3aeQ5GCp98VuuNuXnI47xBFT8OI2O1RE54VavMoXk_2VFOwZyRgF12ifU6nMn8f4fTu6gTFvxEeHbef0PruX8CIsRgE_YLdC85Dd-ZQi4o_Yz-XuIkFoIxh4Z34EKowEos8Y6xLBXH1tN-v-23cwjQfyDlDyKRDRdwAfKK085W7tu3aAcBZ0xn3oB88-4IEdludwHTZxSz42WDeQaFk7IH8uGLftA6zxwEwp99D1m_YyPGar05Pz5RlP1y5wJ0rVI94uMlsEa7IohS0RHzhbuUqIKBH86MoSSWFeubmvtKmMzEJU2pWI3IwTRDP6hB00bROeMXDWxxi0Cqry0pXY6NGC-KisV4jT9IzNp79fu8RJTldjXNV7NmWSWI0SqweJ1cWMvdm9cz0ycvyz99Ek1Dqtzq7OlciJaE2JGXu1a8Z1RcES04R2i32Ien-u8Tg6Y09HZdh9Tgi6d3OO0387acd-8L_P5fn_dX_B7uaUQDO4fI7YQb_ZhpeIgHp7zA4X7798PDkeFP8X8KT-sQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZgK0FfuI-FAoPEG6TKxnaOx7JqWejxtCuVp8hXYNU2qTaJEPwb_ikzibMrKCD1MYrjOI6Pb2a--czYG51qGyY2DEwU6UA4IQMdOhHwQrpQ4f6FV8S2OIlnC_HpVJ76pLB6YLsPIclupd4ku-FunwRk7pBGTBzEN9mWQAMlGrGtvQ-fD_eHFVhQuKeXY-RBiiu0T5b5ey2_b0hXUOaVCGm38RzcZYuhyT3f5Gy3bfSu-fGHmuN1v-keu-ORKOz1Q-c-u-HKB-zWsY-1P2Q_p-sjCqEqQMF79d1RyiWQMEef8Qjq_Eu1WjZfL0CVFsjvQLRWIAlxB9YRYd2zwjZFa0CgDGkYWNd0MQNYVd9gOodLtypa8t7BsgQv-FoDeYpBmbZxsERTnMj8UDer6sw9YouD_fl0FvgDHQLDE9kgko9DHTutwkJwnSDyMDozGeeFQFiVZprkD6PMTGyWqkyJ0BUyNQliQmU4CZg-ZqOyKt1TBkbbonCpdDKzwiR40-LaZAuprUQEmI7ZZPirufFq53Toxnm-0Wmmvs-x7_Ou7_N4zN6un7nstT7-W3pnGCy5n_d1HkkekYSb5GP2en0bZyyFYVTpqhbLkKj_JEVDd8ye9INs_TrO6UTPCTb_3TBgNpX_uy3Prlf8Fbs9mx8f5UcfTw6fs-2IaDqdY2mHjZpV614gzmr0Sz-tfgEzvx0F |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSBUXRHl1S4FB4gZWs7GdOMeyZVVeFYeu1FvkJ6xaktVu9tCfwz9lJo9dUAGJY2THsTK255vXZ8ZeWW19kvuEuzS1XAapuE2C5CKqkBjUX_hE2RZn2elMfrhQF79U8bfZ7kNIsqtpIJamqjla-Hi0LXxDzZ9zMn2ILybj2W12RxJRAq7oWXo8nMWSAj8dMaPgGs_qvmzmz2P8rppu4M0bsdJWBU3vs3s9doTjTth77FaoHrDdz310_CH7MdlcKgh1BANvzXWgIkkgKo2uRhHM1dd6OW--fQdTeSBPASWiApF-B_CBUsz7PK5t1xUgtAWdcB-a1ssPaLzD5BwWYRnX5G-DeQU9ResKyLcLxq2bAHM0nin9HlbNsr4Mj9hs-u58csr7Kxi4E7lqEHtnic2CNUmUwuaIFZwtXCFElAiEdGGJsDAt3NgX2hRGJiEq7XJEccYJohx9zHaqugr7DJz1MQatgiq8dDk2ejxNfFTWK8RsesTGw98vXc9PTtdkXJVbZmWSWIkSK1uJldmIvd68s-jYOf7Z-3AQatnv1FWZKpES6ZoSI_Zy04x7jAInpgr1GvsQDf9Yo2k6Yk-6xbD5nBB0B-cYp_9mWB3bwf8-l4P_6_6C7X45mZaf3p99fMruppRX03qCDtlOs1yHZwiMGvu8Xfs_AaArBFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+a+Bayesian+estimation+algorithm+and+singular+value+decomposition+algorithms+for+80-detector+row+CT+perfusion+in+patients+with+acute+ischemic+stroke&rft.jtitle=Radiologia+medica&rft.au=Ichikawa%2C+Shota&rft.au=Yamamoto%2C+Hiroyuki&rft.au=Morita%2C+Takumi&rft.date=2021-06-01&rft.pub=Springer+Milan&rft.issn=0033-8362&rft.eissn=1826-6983&rft.volume=126&rft.issue=6&rft.spage=795&rft.epage=803&rft_id=info:doi/10.1007%2Fs11547-020-01316-6&rft.externalDocID=10_1007_s11547_020_01316_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8362&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8362&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8362&client=summon |