Deep learning–based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC
Objectives To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). Methods A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) i...
Saved in:
| Published in | European radiology Vol. 31; no. 9; pp. 7047 - 7057 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0938-7994 1432-1084 1432-1084 |
| DOI | 10.1007/s00330-021-07803-2 |
Cover
| Abstract | Objectives
To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).
Methods
A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning–based model capable of detecting malignancies was developed using a mask region–based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.
Results
This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.
Conclusions
The proposed deep learning–based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.
Key Points
• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning–based model to detect primary hepatic malignancy.
• Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan. |
|---|---|
| AbstractList | ObjectivesTo develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).MethodsA total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning–based model capable of detecting malignancies was developed using a mask region–based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.ResultsThis model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.ConclusionsThe proposed deep learning–based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.Key Points• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning–based model to detect primary hepatic malignancy.• Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan. To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed. This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively. The proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set. • Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan. Objectives To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). Methods A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning–based model capable of detecting malignancies was developed using a mask region–based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed. Results This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively. Conclusions The proposed deep learning–based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set. Key Points • Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning–based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan. To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).OBJECTIVESTo develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.METHODSA total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.RESULTSThis model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.The proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.CONCLUSIONSThe proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.KEY POINTS• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan. |
| Author | Lee, June-Goo Lee, Gaeun Lee, Seung Soo Kim, Namkug Kim, Dong Wook Ahn, Geunhwi Lee, Yoon Jin Park, Seong Ho Kim, So Yeon Kim, Kyung Won |
| Author_xml | – sequence: 1 givenname: Dong Wook surname: Kim fullname: Kim, Dong Wook organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center – sequence: 2 givenname: Gaeun surname: Lee fullname: Lee, Gaeun organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine – sequence: 3 givenname: So Yeon surname: Kim fullname: Kim, So Yeon email: sykim.radiology@gmail.com organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center – sequence: 4 givenname: Geunhwi surname: Ahn fullname: Ahn, Geunhwi organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine – sequence: 5 givenname: June-Goo surname: Lee fullname: Lee, June-Goo organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center – sequence: 6 givenname: Seung Soo surname: Lee fullname: Lee, Seung Soo organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center – sequence: 7 givenname: Kyung Won surname: Kim fullname: Kim, Kyung Won organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center – sequence: 8 givenname: Seong Ho surname: Park fullname: Park, Seong Ho organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center – sequence: 9 givenname: Yoon Jin surname: Lee fullname: Lee, Yoon Jin organization: Department of Radiology, Seoul National University Bundang Hospital – sequence: 10 givenname: Namkug surname: Kim fullname: Kim, Namkug organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33738600$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctu1TAQhi1URE8LL8ACWWLDJjDx-OSyROFSpEpsyjpynEniktjBdpC64x14Q54EH84BpC66sTffNx7__wU7s84SY89zeJ0DlG8CACJkIPIMygowE4_YLpcoshwqecZ2UGOVlXUtz9lFCLcAUOeyfMLOEUusCoAd-_6OaOUzKW-NHX_9-NmpQD1X8-i8idPCo-M9RdKRr94syt_xiVYVjeaLms1oldV33Fi-bHM065Rs3txwN_ADRDYGriKfzDhxb8JXPjjPr5rmKXs8qDnQs9N9yb58eH_TXGXXnz9-at5eZxrLfcyKskC9F73oSA5S9bIf6nRohaABpOqgVrJQ6buEQHuR66GSQwFUdQkaCC_Zq-Pc1btvG4XYLiZommdlyW2hFXvAAkVei4S-vIfeus3btF2iCoQCUR6oFydq6xbq21Mo7d9EEyCOgPYuBE_DPySH9lBbe6ytTbW1f2prD1Ore5I2MeXnbPTKzA-reFRDeseO5P-v_YD1G9HVrO4 |
| CitedBy_id | crossref_primary_10_1002_kjm2_12901 crossref_primary_10_1136_egastro_2023_100002 crossref_primary_10_1109_TCBB_2023_3265394 crossref_primary_10_3748_wjg_v27_i40_6794 crossref_primary_10_1016_j_artmed_2023_102557 crossref_primary_10_3390_cancers15235701 crossref_primary_10_1142_S0219519424500349 crossref_primary_10_12677_ACM_2023_1391973 crossref_primary_10_3389_fonc_2024_1362737 crossref_primary_10_3389_fonc_2024_1374373 crossref_primary_10_1016_j_imed_2024_09_008 crossref_primary_10_1111_jgh_16663 crossref_primary_10_3390_cancers14246123 crossref_primary_10_26685_urncst_371 crossref_primary_10_1016_j_array_2024_100357 crossref_primary_10_1007_s12325_024_02781_5 crossref_primary_10_3390_diagnostics13091663 crossref_primary_10_1186_s12938_024_01297_x crossref_primary_10_34921_amj_2023_2_026 crossref_primary_10_1016_j_compbiomed_2024_108337 crossref_primary_10_1016_j_eclinm_2025_103098 crossref_primary_10_3389_fradi_2024_1460889 crossref_primary_10_1021_acs_nanolett_4c02823 crossref_primary_10_3389_fonc_2024_1415859 crossref_primary_10_1109_ACCESS_2024_3369491 crossref_primary_10_7759_cureus_21347 crossref_primary_10_1007_s00261_024_04597_x crossref_primary_10_3233_XST_221194 crossref_primary_10_1002_hep4_2029 crossref_primary_10_3389_fonc_2021_730282 crossref_primary_10_3390_jcm11216368 crossref_primary_10_1016_j_dld_2022_12_015 |
| Cites_doi | 10.1016/j.neucom.2017.10.001 10.1002/hep.29086 10.1016/j.jhep.2013.03.009 10.1097/RLI.0000000000000180 10.1109/TMI.2003.809072 10.1148/radiol.2017170706 10.1016/j.jacr.2018.09.010 10.1148/radiol.2019182587 10.1007/s11263-008-0168-y 10.1001/jamanetworkopen.2019.1095 10.1016/j.jhep.2012.02.022 10.1109/TMI.2009.2035616 10.1038/s41598-020-63285-0 10.1007/s11548-011-0562-8 10.1016/S2589-7500(19)30123-2 10.1007/s00261-020-02485-8 10.1016/j.neucom.2018.09.013 10.1007/s11548-013-0832-8 10.1016/j.media.2018.12.007 10.7326/M14-2509 10.1002/hep.29487 10.1007/s11548-013-0949-9 10.1016/j.cgh.2007.05.020 10.1109/TMI.2012.2211887 10.1109/JSEN.2011.2108281 10.1148/radiology.210.3.r99mr07601 10.3389/fcvm.2020.00105 10.1109/CVPR.2018.00964 10.1109/CVPR.2016.90 10.1007/978-3-319-46723-8_49 10.1109/ICPR.2010.618 10.1007/978-3-319-59397-5_15 10.1109/ISBI.2018.8363576 10.1001/jama.2019.16489 10.1109/WACV.2019.00020 10.1007/978-3-658-25326-4_7 10.1007/978-3-319-10602-1_48 10.1016/j.jhep.2018.03.019 10.1007/978-3-319-50835-1_22 10.1117/12.2008624 10.1109/CVPR.2017.106 10.1109/ICCV.2017.322 10.1109/ICCV.2019.01077 10.1007/978-3-030-32226-7_19 10.1109/ICCV.2017.74 10.1109/TPAMI.2016.2577031 |
| ContentType | Journal Article |
| Copyright | European Society of Radiology 2021 European Society of Radiology 2021. 2021. European Society of Radiology. |
| Copyright_xml | – notice: European Society of Radiology 2021 – notice: European Society of Radiology 2021. – notice: 2021. European Society of Radiology. |
| DBID | AAYXX CITATION NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00330-021-07803-2 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database ProQuest Biological Science Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 7057 |
| ExternalDocumentID | 33738600 10_1007_s00330_021_07803_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ministry of Trade, Industry and Energy grantid: 10072064 funderid: http://dx.doi.org/10.13039/501100003052 – fundername: Ministry of Trade, Industry and Energy grantid: 10072064 |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c375t-6763c52d2be4f4ad4df9d4dca30c004ab09a46a108e30e521cf84f60e8bdcafe3 |
| IEDL.DBID | BENPR |
| ISSN | 0938-7994 1432-1084 |
| IngestDate | Fri Sep 05 13:26:16 EDT 2025 Tue Oct 07 05:53:50 EDT 2025 Wed Feb 19 02:28:36 EST 2025 Wed Oct 01 03:47:38 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:47:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Deep learning Hepatocellular carcinoma Computer-assisted radiographic image interpretation X-ray computed tomography Artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-6763c52d2be4f4ad4df9d4dca30c004ab09a46a108e30e521cf84f60e8bdcafe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 33738600 |
| PQID | 2563063342 |
| PQPubID | 54162 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2503632192 proquest_journals_2563063342 pubmed_primary_33738600 crossref_primary_10_1007_s00330_021_07803_2 crossref_citationtrail_10_1007_s00330_021_07803_2 springer_journals_10_1007_s00330_021_07803_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Ben-Cohen, Klang, Kerpel, Konen, Amitai, Greenspan (CR17) 2018; 275 Palmer, Patel (CR38) 2012; 57 Pompili, Saviano, de Matthaeis (CR44) 2013; 59 Chou, Cuevas, Fu (CR4) 2015; 162 Klein, Staring, Murphy, Viergever, Pluim (CR26) 2010; 29 Yasaka, Akai, Abe, Kiryu (CR41) 2018; 286 CR19 CR16 Rusko, Perenyi (CR13) 2014; 9 CR36 Casciaro, Franchini, Massoptier (CR7) 2012; 12 Wu, Liu, Suehling, Tietjen, Soza, Zhou (CR10) 2012; 2012 CR35 CR12 Shi, Kuang, Cao (CR31) 2020; 45 CR34 CR33 CR32 Linguraru, Richbourg, Liu (CR9) 2012; 31 Liu, Faes, Kale (CR18) 2019; 1 Chen, Bai, Davies (CR46) 2020; 7 Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (CR39) 2018; 321 Hwang, Park, Jin (CR15) 2019; 2 Mackin, Fave, Zhang (CR45) 2015; 50 Heimbach, Kulik, Finn (CR2) 2018; 67 Schwier, Moltz, Peitgen (CR8) 2011; 6 CR3 Roberts, Sirlin, Zaiem (CR5) 2018; 67 CR6 CR29 Chi, Zhou, Venkatesh (CR11) 2013; 8 CR48 CR25 Scheirey, Fowler, Therrien (CR14) 2018; 15 CR24 Welzel, Graubard, El-Serag (CR37) 2007; 5 CR23 Pesce, Withey, Ypsilantis, Bakewell, Goh, Montana (CR47) 2019; 53 CR22 CR21 CR43 CR42 Mattes, Haynor, Vesselle, Lewellen, Eubank (CR28) 2003; 22 CR40 Klein, Pluim, Staring, Viergever (CR27) 2009; 81 Kim, Choi, Kim, Kim, Lee, Byun (CR1) 2019; 291 Kim, Jung, Kim (CR20) 2020; 10 Mayo-Smith, Gupta, Ridlen, Brody, Clements, Cronan (CR30) 1999; 210 EJ Hwang (7803_CR15) 2019; 2 D Wu (7803_CR10) 2012; 2012 C Chen (7803_CR46) 2020; 7 E Pesce (7803_CR47) 2019; 53 7803_CR33 7803_CR12 7803_CR34 7803_CR32 7803_CR16 7803_CR35 7803_CR36 7803_CR19 MG Linguraru (7803_CR9) 2012; 31 M Pompili (7803_CR44) 2013; 59 DH Kim (7803_CR1) 2019; 291 JK Heimbach (7803_CR2) 2018; 67 L Rusko (7803_CR13) 2014; 9 R Chou (7803_CR4) 2015; 162 M Schwier (7803_CR8) 2011; 6 CD Scheirey (7803_CR14) 2018; 15 WC Palmer (7803_CR38) 2012; 57 D Mattes (7803_CR28) 2003; 22 A Ben-Cohen (7803_CR17) 2018; 275 S Klein (7803_CR26) 2010; 29 7803_CR40 X Liu (7803_CR18) 2019; 1 7803_CR3 H Kim (7803_CR20) 2020; 10 7803_CR22 K Yasaka (7803_CR41) 2018; 286 7803_CR23 TM Welzel (7803_CR37) 2007; 5 7803_CR42 7803_CR21 7803_CR43 7803_CR48 7803_CR6 7803_CR24 7803_CR25 S Klein (7803_CR27) 2009; 81 W Shi (7803_CR31) 2020; 45 7803_CR29 WW Mayo-Smith (7803_CR30) 1999; 210 LR Roberts (7803_CR5) 2018; 67 M Frid-Adar (7803_CR39) 2018; 321 D Mackin (7803_CR45) 2015; 50 Y Chi (7803_CR11) 2013; 8 S Casciaro (7803_CR7) 2012; 12 |
| References_xml | – ident: CR22 – ident: CR43 – ident: CR16 – volume: 275 start-page: 1585 year: 2018 end-page: 1594 ident: CR17 article-title: Fully convolutional network and sparsity-based dictionary learning for liver lesion detection in CT examinations publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.001 – ident: CR12 – volume: 67 start-page: 358 year: 2018 end-page: 380 ident: CR2 article-title: AASLD guidelines for the treatment of hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.29086 – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 59 start-page: 89 year: 2013 end-page: 97 ident: CR44 article-title: Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma </=3 cm. Results of a multicenter Italian survey publication-title: J Hepatol doi: 10.1016/j.jhep.2013.03.009 – volume: 50 start-page: 757 year: 2015 end-page: 765 ident: CR45 article-title: Measuring computed tomography scanner variability of radiomics features publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000180 – volume: 22 start-page: 120 year: 2003 end-page: 128 ident: CR28 article-title: PET-CT image registration in the chest using free-form deformations publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.809072 – ident: CR40 – ident: CR25 – volume: 286 start-page: 887 year: 2018 end-page: 896 ident: CR41 article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study publication-title: Radiology doi: 10.1148/radiol.2017170706 – ident: CR42 – ident: CR23 – volume: 15 start-page: S217 year: 2018 end-page: s231 ident: CR14 article-title: ACR Appropriateness Criteria(®) acute nonlocalized abdominal pain publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2018.09.010 – volume: 291 start-page: 651 year: 2019 end-page: 657 ident: CR1 article-title: Gadoxetic acid-enhanced MRI of hepatocellular carcinoma: value of washout in transitional and hepatobiliary phases publication-title: Radiology doi: 10.1148/radiol.2019182587 – ident: CR21 – volume: 81 start-page: 227 year: 2009 ident: CR27 article-title: Adaptive stochastic gradient descent optimisation for image registration publication-title: Int J Comput Vis doi: 10.1007/s11263-008-0168-y – volume: 2 start-page: e191095 year: 2019 ident: CR15 article-title: Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.1095 – ident: CR19 – volume: 57 start-page: 69 year: 2012 end-page: 76 ident: CR38 article-title: Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2012.02.022 – ident: CR48 – volume: 2012 start-page: 31 year: 2012 end-page: 37 ident: CR10 article-title: Automatic detection of liver lesion from 3D computed tomography images publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: CR26 article-title: elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2035616 – volume: 10 start-page: 6204 year: 2020 ident: CR20 article-title: Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network publication-title: Sci Rep doi: 10.1038/s41598-020-63285-0 – ident: CR3 – volume: 6 start-page: 737 year: 2011 end-page: 747 ident: CR8 article-title: Object-based analysis of CT images for automatic detection and segmentation of hypodense liver lesions publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-011-0562-8 – volume: 1 start-page: e271 year: 2019 end-page: e297 ident: CR18 article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(19)30123-2 – volume: 45 start-page: 2688 year: 2020 end-page: 2697 ident: CR31 article-title: Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT imaging protocol publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-020-02485-8 – volume: 321 start-page: 321 year: 2018 end-page: 331 ident: CR39 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – volume: 8 start-page: 511 year: 2013 end-page: 525 ident: CR11 article-title: Computer-aided focal liver lesion detection publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0832-8 – volume: 53 start-page: 26 year: 2019 end-page: 38 ident: CR47 article-title: Learning to detect chest radiographs containing pulmonary lesions using visual attention networks publication-title: Med Image Anal doi: 10.1016/j.media.2018.12.007 – volume: 162 start-page: 697 year: 2015 end-page: 711 ident: CR4 article-title: Imaging techniques for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis publication-title: Ann Intern Med doi: 10.7326/M14-2509 – volume: 67 start-page: 401 year: 2018 end-page: 421 ident: CR5 article-title: Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis publication-title: Hepatology doi: 10.1002/hep.29487 – volume: 9 start-page: 577 year: 2014 end-page: 593 ident: CR13 article-title: Automated liver lesion detection in CT images based on multi-level geometric features publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0949-9 – ident: CR32 – ident: CR34 – ident: CR36 – volume: 5 start-page: 1221 year: 2007 end-page: 1228 ident: CR37 article-title: Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2007.05.020 – volume: 31 start-page: 1965 year: 2012 end-page: 1976 ident: CR9 article-title: Tumor burden analysis on computed tomography by automated liver and tumor segmentation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2211887 – volume: 12 start-page: 464 year: 2012 end-page: 473 ident: CR7 article-title: Fully automatic segmentations of liver and hepatic tumors from 3-D computed tomography abdominal images: comparative evaluation of two automatic methods publication-title: IEEE Sensors J doi: 10.1109/JSEN.2011.2108281 – volume: 210 start-page: 601 year: 1999 end-page: 604 ident: CR30 article-title: Detecting hepatic lesions: the added utility of CT liver window settings publication-title: Radiology doi: 10.1148/radiology.210.3.r99mr07601 – volume: 7 start-page: 105 year: 2020 ident: CR46 article-title: Improving the generalizability of convolutional neural network-based segmentation on CMR images publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2020.00105 – ident: CR24 – volume: 31 start-page: 1965 year: 2012 ident: 7803_CR9 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2211887 – volume: 321 start-page: 321 year: 2018 ident: 7803_CR39 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – ident: 7803_CR42 doi: 10.1109/CVPR.2018.00964 – volume: 7 start-page: 105 year: 2020 ident: 7803_CR46 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2020.00105 – ident: 7803_CR33 doi: 10.1109/CVPR.2016.90 – ident: 7803_CR21 doi: 10.1007/978-3-319-46723-8_49 – volume: 29 start-page: 196 year: 2010 ident: 7803_CR26 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2035616 – volume: 291 start-page: 651 year: 2019 ident: 7803_CR1 publication-title: Radiology doi: 10.1148/radiol.2019182587 – ident: 7803_CR6 doi: 10.1109/ICPR.2010.618 – ident: 7803_CR16 doi: 10.1007/978-3-319-59397-5_15 – volume: 59 start-page: 89 year: 2013 ident: 7803_CR44 publication-title: J Hepatol doi: 10.1016/j.jhep.2013.03.009 – volume: 275 start-page: 1585 year: 2018 ident: 7803_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.001 – volume: 2012 start-page: 31 year: 2012 ident: 7803_CR10 publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work – ident: 7803_CR40 doi: 10.1109/ISBI.2018.8363576 – volume: 8 start-page: 511 year: 2013 ident: 7803_CR11 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0832-8 – ident: 7803_CR19 doi: 10.1001/jama.2019.16489 – ident: 7803_CR25 doi: 10.1109/WACV.2019.00020 – volume: 6 start-page: 737 year: 2011 ident: 7803_CR8 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-011-0562-8 – volume: 10 start-page: 6204 year: 2020 ident: 7803_CR20 publication-title: Sci Rep doi: 10.1038/s41598-020-63285-0 – volume: 286 start-page: 887 year: 2018 ident: 7803_CR41 publication-title: Radiology doi: 10.1148/radiol.2017170706 – volume: 67 start-page: 401 year: 2018 ident: 7803_CR5 publication-title: Hepatology doi: 10.1002/hep.29487 – volume: 53 start-page: 26 year: 2019 ident: 7803_CR47 publication-title: Med Image Anal doi: 10.1016/j.media.2018.12.007 – ident: 7803_CR22 doi: 10.1007/978-3-658-25326-4_7 – ident: 7803_CR29 doi: 10.1007/978-3-319-10602-1_48 – ident: 7803_CR3 doi: 10.1016/j.jhep.2018.03.019 – volume: 67 start-page: 358 year: 2018 ident: 7803_CR2 publication-title: Hepatology doi: 10.1002/hep.29086 – ident: 7803_CR23 – ident: 7803_CR36 doi: 10.1007/978-3-319-50835-1_22 – ident: 7803_CR12 doi: 10.1117/12.2008624 – volume: 1 start-page: e271 year: 2019 ident: 7803_CR18 publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(19)30123-2 – volume: 9 start-page: 577 year: 2014 ident: 7803_CR13 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0949-9 – volume: 2 start-page: e191095 year: 2019 ident: 7803_CR15 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.1095 – volume: 22 start-page: 120 year: 2003 ident: 7803_CR28 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.809072 – volume: 57 start-page: 69 year: 2012 ident: 7803_CR38 publication-title: J Hepatol doi: 10.1016/j.jhep.2012.02.022 – ident: 7803_CR34 doi: 10.1109/CVPR.2017.106 – volume: 81 start-page: 227 year: 2009 ident: 7803_CR27 publication-title: Int J Comput Vis doi: 10.1007/s11263-008-0168-y – ident: 7803_CR32 doi: 10.1109/ICCV.2017.322 – volume: 210 start-page: 601 year: 1999 ident: 7803_CR30 publication-title: Radiology doi: 10.1148/radiology.210.3.r99mr07601 – volume: 162 start-page: 697 year: 2015 ident: 7803_CR4 publication-title: Ann Intern Med doi: 10.7326/M14-2509 – volume: 12 start-page: 464 year: 2012 ident: 7803_CR7 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2011.2108281 – volume: 5 start-page: 1221 year: 2007 ident: 7803_CR37 publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2007.05.020 – volume: 15 start-page: S217 year: 2018 ident: 7803_CR14 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2018.09.010 – ident: 7803_CR24 doi: 10.1109/ICCV.2019.01077 – volume: 45 start-page: 2688 year: 2020 ident: 7803_CR31 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-020-02485-8 – ident: 7803_CR43 doi: 10.1007/978-3-030-32226-7_19 – ident: 7803_CR48 doi: 10.1109/ICCV.2017.74 – ident: 7803_CR35 doi: 10.1109/TPAMI.2016.2577031 – volume: 50 start-page: 757 year: 2015 ident: 7803_CR45 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000180 |
| SSID | ssj0009147 |
| Score | 2.4952328 |
| Snippet | Objectives
To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high... To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for... ObjectivesTo develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7047 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Computed tomography Deep learning Diagnostic Radiology Hepatocellular carcinoma Image processing Image segmentation Imaging Imaging Informatics and Artificial Intelligence Integration Internal Medicine Interventional Radiology Liver cancer Machine learning Malignancy Medical imaging Medicine Medicine & Public Health Model testing Multiphase Neural networks Neuroradiology Radiology Risk Test sets Tomography Tuning Ultrasound |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELaqXaniQv-AbrutplJvrVFiO1nniLbQVatyYiV6ihzH3kXsJojNVoIT78Ab8iSMEyeIUipxycVjJxnP2J81428I-ZxoBA3MBFTIMKYiZwnNwoBTKU3ImOaBbhJkD-PJVPw4jo79pbBVm-3ehiTrlbq77ObKjgXUpRTgtobD4cLbr_m2eqS_9_33z_07st2wLiyGh3VJR0ki_GWZf49yf0N6gDIfREjrjefgBZm2n9zkm5zurqtsV1_-xeb41H96STY9EoW9xnRekWemeE2e__Kx9jfkzzdjzsBXlZjdXF27DS8HtZiV5yfVfAlVCblxMQg4aygrYG5cfraGJYL7mWPyuICTApqcxTn2hvERlBY8l-sKVAWOLhlcfjsgeobJeLxFpgf7R-MJ9VUaqOajqKIxrlA6YjnLjLBC5SK3CT60wnlGD1RZkCgRqzCQhgcG0YK2Utg4MDJDIWv4NukVZWHeEnDHm5CPlIhsgufOSMo4M4ifWKgstyIZkLCdqlR7CnNXSWORduTLtUJTVGhaKzRlA_Kl6-O18V_pYWsBqXfmVcoch1rMucDmT10zuqGLrajClGsn4yLiuPyjzE5jOd3ruGOPQmA5IF9bK7gb_PFvefc08fdkg9WG5PLfhqRXna_NBwRMVfbR-8ctZ_sIqA priority: 102 providerName: Springer Nature |
| Title | Deep learning–based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC |
| URI | https://link.springer.com/article/10.1007/s00330-021-07803-2 https://www.ncbi.nlm.nih.gov/pubmed/33738600 https://www.proquest.com/docview/2563063342 https://www.proquest.com/docview/2503632192 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwED9trYR4Qfxf2aiMxBtYJLaTOA8ItaVdBaJCaJXKU-QkTou0JWXLkHjjO_AN-STcJU4rNLEX5yHnxPHZvp9z598BvIwzBA3CelxpP-QqFzFPfU9yra0vRCa9rA2QXYTzpfqwClYHsOjOwlBYZbcmNgt1XmX0j_yNICKrUEol3m2_c8oaRd7VLoWGcakV8rcNxdgh9AUxY_WgP54uPn_Z0_D6Tcox3MZrHsWxcsdomsN0lNbM4xSygGYTmyv-NVU38OcN32ljkmb34Z7DkmzUKv8BHNjyIdz55Lzlj-DHe2u3zOWFWP_59ZtMVs7M-Ro_rN5csLpiuSUvAtu2pBNsYynCOmMXCM_XxMXxk30rWRt1uMHabHLGqoI5NtYrZmpGhMeMItQZ4l82n0wew3I2PZvMucuzwDMZBTUPcY3JApGL1KpCmVzlRYxFZlBTOIdM6sVGhcb3tJWeRXufFVoVoWd1ikKFlU-gV1alPQJGGxRfRkYFRYw7x0DrMLWIgIRvClmoeAB-16VJ5kjIKRfGebKjT27UkKAakkYNiRjAq10d1xu3Sp90mkrcdLxK9oNnAC92t3EikXfElLa6JhnyaeMCjjJPWw3vXieJ_wmh4QBedyrfP_z_bXl2e1uO4a5ohhtFrJ1Ar768ts8R4tTpEA6jVYSlnp0OoT-ajccLup5-_TgdujGNd5di9BdIn_sZ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwEXxD8LBQYJTmCR2E42PlQItq22tF0htJV6Sx3H2a3UJls2BfXGO_A-PAxPwkzi7ApV9NZLLrEda2bsmcnMfMPYa23RaBAu4CoJY65yoXkWBpIniQuFsDKwbYLsKB4eqM-H0eEK-93VwlBaZXcnNhd1Xln6R_5eEJBVLKUSH2ZnnLpGUXS1a6FhfGuFfKOBGPOFHbvu4ge6cPONnU3k9xshtrfGgyH3XQa4lf2o5jGeMBuJXGROFcrkKi80PqzBfaIEmSzQRsUmDBInA4fazhaJKuLAJRkOKpzEdW-wNSWVRudv7dPW6MvXJexv2LQ4CzReK32tlS_baYr3qI1awClFAtU0kkf8qxov2buXYrWNCty-y-542xU-tsJ2j6248j67ue-j8w_Y903nZuD7UEz-_PxFKjIHczJBQtbTU6gryB1FLWDWglzA1FFGt4VTdAcmhP1xAccltFmOU5wNgzFUBXj01zmYGghgGSgjHtDehuFg8JAdXAvFH7HVsirdEwbkEIWyb1RUaPRUoySJM4cWlwhNIQuleyzsSJpaD3pOvTdO0gVcc8OGFNmQNmxIRY-9Xczx1Lhy9HrHqdQf_3m6FNYee7V4jQeXojGmdNU5jaEYOioMHPO45fDic5LwptAU7bF3HcuXi_9_L0-v3stLdms43t9L93ZGu8_YbdGIHmXLrbPV-tu5e47mVZ298DIM7Oi6j81fKJk0MA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiP8uLTBIcIKoie38-IAQ2mW1pVBxaKW9Bcexd5HaZOmmoN54B96Gx-FJmEmcXaGK3nrJJU5izY9nnPn8DWMvlMGkgdswkFmUBLLkKiiiUARZZiPOjQhNB5A9TCbH8sM0nm6w3_1ZGIJV9mtiu1CXtaF_5HuciKwSISTfcx4W8Xk0frv4FlAHKaq09u00OhM5sBc_cPu2fLM_Ql2_5Hz8_mg4CXyHgcCING6CBL3LxLzkhZVO6lKWTuHFaJwjWo8uQqVloqMwsyK0GOmMy6RLQpsVOMhZge-9wW6mQiiCE6bTdE34G7XNzUKFC0qqlPQHdtpje9RALQwIHIEBGgXD_w2KlzLdS1XaNviN77DbPmuFd52Z3WUbtrrHtj75uvx99n1k7QJ8B4rZn5-_KDiWoE9mKLZmfgpNDaWlegUsOnoLmFvCchs4xY3AjFg_LuBrBR2-cY5Pw_AIagee93UJugGiVgbCwgNm2jAZDh-w42uR90O2WdWV3WZAW6FIpFrGTuEeNc6ypLCYa_FIO-GkGrCoF2luPN05dd04yVdEza0aclRD3qoh5wP2avWMl8aVo3d7TeXe8Zf52kwH7PnqNros1WF0ZetzGkPVcwwVOOZRp-HV5wQxTWESOmCve5WvX_7_uTy-ei7P2BY6S_5x__Bgh93ireURTG6XbTZn5_YJ5lVN8bQ1YGBfrttj_gKx5zHK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning%E2%80%93based+algorithm+to+detect+primary+hepatic+malignancy+in+multiphase+CT+of+patients+at+high+risk+for+HCC&rft.jtitle=European+radiology&rft.au=Kim%2C+Dong+Wook&rft.au=Lee%2C+Gaeun&rft.au=Kim%2C+So+Yeon&rft.au=Ahn+Geunhwi&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=9&rft.spage=7047&rft.epage=7057&rft_id=info:doi/10.1007%2Fs00330-021-07803-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |