Deep learning–based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC

Objectives To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). Methods A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) i...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 31; no. 9; pp. 7047 - 7057
Main Authors Kim, Dong Wook, Lee, Gaeun, Kim, So Yeon, Ahn, Geunhwi, Lee, June-Goo, Lee, Seung Soo, Kim, Kyung Won, Park, Seong Ho, Lee, Yoon Jin, Kim, Namkug
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-021-07803-2

Cover

Abstract Objectives To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). Methods A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning–based model capable of detecting malignancies was developed using a mask region–based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed. Results This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively. Conclusions The proposed deep learning–based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set. Key Points • Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning–based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.
AbstractList ObjectivesTo develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).MethodsA total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning–based model capable of detecting malignancies was developed using a mask region–based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.ResultsThis model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.ConclusionsThe proposed deep learning–based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.Key Points• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning–based model to detect primary hepatic malignancy.• Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.
To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed. This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively. The proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set. • Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.
Objectives To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC). Methods A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning–based model capable of detecting malignancies was developed using a mask region–based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed. Results This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively. Conclusions The proposed deep learning–based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set. Key Points • Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning–based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.
To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).OBJECTIVESTo develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.METHODSA total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.RESULTSThis model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.The proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.CONCLUSIONSThe proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.KEY POINTS• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.
Author Lee, June-Goo
Lee, Gaeun
Lee, Seung Soo
Kim, Namkug
Kim, Dong Wook
Ahn, Geunhwi
Lee, Yoon Jin
Park, Seong Ho
Kim, So Yeon
Kim, Kyung Won
Author_xml – sequence: 1
  givenname: Dong Wook
  surname: Kim
  fullname: Kim, Dong Wook
  organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center
– sequence: 2
  givenname: Gaeun
  surname: Lee
  fullname: Lee, Gaeun
  organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine
– sequence: 3
  givenname: So Yeon
  surname: Kim
  fullname: Kim, So Yeon
  email: sykim.radiology@gmail.com
  organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center
– sequence: 4
  givenname: Geunhwi
  surname: Ahn
  fullname: Ahn, Geunhwi
  organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine
– sequence: 5
  givenname: June-Goo
  surname: Lee
  fullname: Lee, June-Goo
  organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center
– sequence: 6
  givenname: Seung Soo
  surname: Lee
  fullname: Lee, Seung Soo
  organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center
– sequence: 7
  givenname: Kyung Won
  surname: Kim
  fullname: Kim, Kyung Won
  organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center
– sequence: 8
  givenname: Seong Ho
  surname: Park
  fullname: Park, Seong Ho
  organization: Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center
– sequence: 9
  givenname: Yoon Jin
  surname: Lee
  fullname: Lee, Yoon Jin
  organization: Department of Radiology, Seoul National University Bundang Hospital
– sequence: 10
  givenname: Namkug
  surname: Kim
  fullname: Kim, Namkug
  organization: Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33738600$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi1URE8LL8ACWWLDJjDx-OSyROFSpEpsyjpynEniktjBdpC64x14Q54EH84BpC66sTffNx7__wU7s84SY89zeJ0DlG8CACJkIPIMygowE4_YLpcoshwqecZ2UGOVlXUtz9lFCLcAUOeyfMLOEUusCoAd-_6OaOUzKW-NHX_9-NmpQD1X8-i8idPCo-M9RdKRr94syt_xiVYVjeaLms1oldV33Fi-bHM065Rs3txwN_ADRDYGriKfzDhxb8JXPjjPr5rmKXs8qDnQs9N9yb58eH_TXGXXnz9-at5eZxrLfcyKskC9F73oSA5S9bIf6nRohaABpOqgVrJQ6buEQHuR66GSQwFUdQkaCC_Zq-Pc1btvG4XYLiZommdlyW2hFXvAAkVei4S-vIfeus3btF2iCoQCUR6oFydq6xbq21Mo7d9EEyCOgPYuBE_DPySH9lBbe6ytTbW1f2prD1Ore5I2MeXnbPTKzA-reFRDeseO5P-v_YD1G9HVrO4
CitedBy_id crossref_primary_10_1002_kjm2_12901
crossref_primary_10_1136_egastro_2023_100002
crossref_primary_10_1109_TCBB_2023_3265394
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_1016_j_artmed_2023_102557
crossref_primary_10_3390_cancers15235701
crossref_primary_10_1142_S0219519424500349
crossref_primary_10_12677_ACM_2023_1391973
crossref_primary_10_3389_fonc_2024_1362737
crossref_primary_10_3389_fonc_2024_1374373
crossref_primary_10_1016_j_imed_2024_09_008
crossref_primary_10_1111_jgh_16663
crossref_primary_10_3390_cancers14246123
crossref_primary_10_26685_urncst_371
crossref_primary_10_1016_j_array_2024_100357
crossref_primary_10_1007_s12325_024_02781_5
crossref_primary_10_3390_diagnostics13091663
crossref_primary_10_1186_s12938_024_01297_x
crossref_primary_10_34921_amj_2023_2_026
crossref_primary_10_1016_j_compbiomed_2024_108337
crossref_primary_10_1016_j_eclinm_2025_103098
crossref_primary_10_3389_fradi_2024_1460889
crossref_primary_10_1021_acs_nanolett_4c02823
crossref_primary_10_3389_fonc_2024_1415859
crossref_primary_10_1109_ACCESS_2024_3369491
crossref_primary_10_7759_cureus_21347
crossref_primary_10_1007_s00261_024_04597_x
crossref_primary_10_3233_XST_221194
crossref_primary_10_1002_hep4_2029
crossref_primary_10_3389_fonc_2021_730282
crossref_primary_10_3390_jcm11216368
crossref_primary_10_1016_j_dld_2022_12_015
Cites_doi 10.1016/j.neucom.2017.10.001
10.1002/hep.29086
10.1016/j.jhep.2013.03.009
10.1097/RLI.0000000000000180
10.1109/TMI.2003.809072
10.1148/radiol.2017170706
10.1016/j.jacr.2018.09.010
10.1148/radiol.2019182587
10.1007/s11263-008-0168-y
10.1001/jamanetworkopen.2019.1095
10.1016/j.jhep.2012.02.022
10.1109/TMI.2009.2035616
10.1038/s41598-020-63285-0
10.1007/s11548-011-0562-8
10.1016/S2589-7500(19)30123-2
10.1007/s00261-020-02485-8
10.1016/j.neucom.2018.09.013
10.1007/s11548-013-0832-8
10.1016/j.media.2018.12.007
10.7326/M14-2509
10.1002/hep.29487
10.1007/s11548-013-0949-9
10.1016/j.cgh.2007.05.020
10.1109/TMI.2012.2211887
10.1109/JSEN.2011.2108281
10.1148/radiology.210.3.r99mr07601
10.3389/fcvm.2020.00105
10.1109/CVPR.2018.00964
10.1109/CVPR.2016.90
10.1007/978-3-319-46723-8_49
10.1109/ICPR.2010.618
10.1007/978-3-319-59397-5_15
10.1109/ISBI.2018.8363576
10.1001/jama.2019.16489
10.1109/WACV.2019.00020
10.1007/978-3-658-25326-4_7
10.1007/978-3-319-10602-1_48
10.1016/j.jhep.2018.03.019
10.1007/978-3-319-50835-1_22
10.1117/12.2008624
10.1109/CVPR.2017.106
10.1109/ICCV.2017.322
10.1109/ICCV.2019.01077
10.1007/978-3-030-32226-7_19
10.1109/ICCV.2017.74
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright European Society of Radiology 2021
European Society of Radiology 2021.
2021. European Society of Radiology.
Copyright_xml – notice: European Society of Radiology 2021
– notice: European Society of Radiology 2021.
– notice: 2021. European Society of Radiology.
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-021-07803-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Biological Science
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 7057
ExternalDocumentID 33738600
10_1007_s00330_021_07803_2
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Trade, Industry and Energy
  grantid: 10072064
  funderid: http://dx.doi.org/10.13039/501100003052
– fundername: Ministry of Trade, Industry and Energy
  grantid: 10072064
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-6763c52d2be4f4ad4df9d4dca30c004ab09a46a108e30e521cf84f60e8bdcafe3
IEDL.DBID BENPR
ISSN 0938-7994
1432-1084
IngestDate Fri Sep 05 13:26:16 EDT 2025
Tue Oct 07 05:53:50 EDT 2025
Wed Feb 19 02:28:36 EST 2025
Wed Oct 01 03:47:38 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:47:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Hepatocellular carcinoma
Computer-assisted radiographic image interpretation
X-ray computed tomography
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-6763c52d2be4f4ad4df9d4dca30c004ab09a46a108e30e521cf84f60e8bdcafe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33738600
PQID 2563063342
PQPubID 54162
PageCount 11
ParticipantIDs proquest_miscellaneous_2503632192
proquest_journals_2563063342
pubmed_primary_33738600
crossref_primary_10_1007_s00330_021_07803_2
crossref_citationtrail_10_1007_s00330_021_07803_2
springer_journals_10_1007_s00330_021_07803_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ben-Cohen, Klang, Kerpel, Konen, Amitai, Greenspan (CR17) 2018; 275
Palmer, Patel (CR38) 2012; 57
Pompili, Saviano, de Matthaeis (CR44) 2013; 59
Chou, Cuevas, Fu (CR4) 2015; 162
Klein, Staring, Murphy, Viergever, Pluim (CR26) 2010; 29
Yasaka, Akai, Abe, Kiryu (CR41) 2018; 286
CR19
CR16
Rusko, Perenyi (CR13) 2014; 9
CR36
Casciaro, Franchini, Massoptier (CR7) 2012; 12
Wu, Liu, Suehling, Tietjen, Soza, Zhou (CR10) 2012; 2012
CR35
CR12
Shi, Kuang, Cao (CR31) 2020; 45
CR34
CR33
CR32
Linguraru, Richbourg, Liu (CR9) 2012; 31
Liu, Faes, Kale (CR18) 2019; 1
Chen, Bai, Davies (CR46) 2020; 7
Frid-Adar, Diamant, Klang, Amitai, Goldberger, Greenspan (CR39) 2018; 321
Hwang, Park, Jin (CR15) 2019; 2
Mackin, Fave, Zhang (CR45) 2015; 50
Heimbach, Kulik, Finn (CR2) 2018; 67
Schwier, Moltz, Peitgen (CR8) 2011; 6
CR3
Roberts, Sirlin, Zaiem (CR5) 2018; 67
CR6
CR29
Chi, Zhou, Venkatesh (CR11) 2013; 8
CR48
CR25
Scheirey, Fowler, Therrien (CR14) 2018; 15
CR24
Welzel, Graubard, El-Serag (CR37) 2007; 5
CR23
Pesce, Withey, Ypsilantis, Bakewell, Goh, Montana (CR47) 2019; 53
CR22
CR21
CR43
CR42
Mattes, Haynor, Vesselle, Lewellen, Eubank (CR28) 2003; 22
CR40
Klein, Pluim, Staring, Viergever (CR27) 2009; 81
Kim, Choi, Kim, Kim, Lee, Byun (CR1) 2019; 291
Kim, Jung, Kim (CR20) 2020; 10
Mayo-Smith, Gupta, Ridlen, Brody, Clements, Cronan (CR30) 1999; 210
EJ Hwang (7803_CR15) 2019; 2
D Wu (7803_CR10) 2012; 2012
C Chen (7803_CR46) 2020; 7
E Pesce (7803_CR47) 2019; 53
7803_CR33
7803_CR12
7803_CR34
7803_CR32
7803_CR16
7803_CR35
7803_CR36
7803_CR19
MG Linguraru (7803_CR9) 2012; 31
M Pompili (7803_CR44) 2013; 59
DH Kim (7803_CR1) 2019; 291
JK Heimbach (7803_CR2) 2018; 67
L Rusko (7803_CR13) 2014; 9
R Chou (7803_CR4) 2015; 162
M Schwier (7803_CR8) 2011; 6
CD Scheirey (7803_CR14) 2018; 15
WC Palmer (7803_CR38) 2012; 57
D Mattes (7803_CR28) 2003; 22
A Ben-Cohen (7803_CR17) 2018; 275
S Klein (7803_CR26) 2010; 29
7803_CR40
X Liu (7803_CR18) 2019; 1
7803_CR3
H Kim (7803_CR20) 2020; 10
7803_CR22
K Yasaka (7803_CR41) 2018; 286
7803_CR23
TM Welzel (7803_CR37) 2007; 5
7803_CR42
7803_CR21
7803_CR43
7803_CR48
7803_CR6
7803_CR24
7803_CR25
S Klein (7803_CR27) 2009; 81
W Shi (7803_CR31) 2020; 45
7803_CR29
WW Mayo-Smith (7803_CR30) 1999; 210
LR Roberts (7803_CR5) 2018; 67
M Frid-Adar (7803_CR39) 2018; 321
D Mackin (7803_CR45) 2015; 50
Y Chi (7803_CR11) 2013; 8
S Casciaro (7803_CR7) 2012; 12
References_xml – ident: CR22
– ident: CR43
– ident: CR16
– volume: 275
  start-page: 1585
  year: 2018
  end-page: 1594
  ident: CR17
  article-title: Fully convolutional network and sparsity-based dictionary learning for liver lesion detection in CT examinations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.001
– ident: CR12
– volume: 67
  start-page: 358
  year: 2018
  end-page: 380
  ident: CR2
  article-title: AASLD guidelines for the treatment of hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.29086
– ident: CR33
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 59
  start-page: 89
  year: 2013
  end-page: 97
  ident: CR44
  article-title: Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma </=3 cm. Results of a multicenter Italian survey
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2013.03.009
– volume: 50
  start-page: 757
  year: 2015
  end-page: 765
  ident: CR45
  article-title: Measuring computed tomography scanner variability of radiomics features
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000180
– volume: 22
  start-page: 120
  year: 2003
  end-page: 128
  ident: CR28
  article-title: PET-CT image registration in the chest using free-form deformations
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.809072
– ident: CR40
– ident: CR25
– volume: 286
  start-page: 887
  year: 2018
  end-page: 896
  ident: CR41
  article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study
  publication-title: Radiology
  doi: 10.1148/radiol.2017170706
– ident: CR42
– ident: CR23
– volume: 15
  start-page: S217
  year: 2018
  end-page: s231
  ident: CR14
  article-title: ACR Appropriateness Criteria(®) acute nonlocalized abdominal pain
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2018.09.010
– volume: 291
  start-page: 651
  year: 2019
  end-page: 657
  ident: CR1
  article-title: Gadoxetic acid-enhanced MRI of hepatocellular carcinoma: value of washout in transitional and hepatobiliary phases
  publication-title: Radiology
  doi: 10.1148/radiol.2019182587
– ident: CR21
– volume: 81
  start-page: 227
  year: 2009
  ident: CR27
  article-title: Adaptive stochastic gradient descent optimisation for image registration
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-008-0168-y
– volume: 2
  start-page: e191095
  year: 2019
  ident: CR15
  article-title: Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.1095
– ident: CR19
– volume: 57
  start-page: 69
  year: 2012
  end-page: 76
  ident: CR38
  article-title: Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2012.02.022
– ident: CR48
– volume: 2012
  start-page: 31
  year: 2012
  end-page: 37
  ident: CR10
  article-title: Automatic detection of liver lesion from 3D computed tomography images
  publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: CR26
  article-title: elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 10
  start-page: 6204
  year: 2020
  ident: CR20
  article-title: Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63285-0
– ident: CR3
– volume: 6
  start-page: 737
  year: 2011
  end-page: 747
  ident: CR8
  article-title: Object-based analysis of CT images for automatic detection and segmentation of hypodense liver lesions
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-011-0562-8
– volume: 1
  start-page: e271
  year: 2019
  end-page: e297
  ident: CR18
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(19)30123-2
– volume: 45
  start-page: 2688
  year: 2020
  end-page: 2697
  ident: CR31
  article-title: Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT imaging protocol
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-020-02485-8
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: CR39
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– volume: 8
  start-page: 511
  year: 2013
  end-page: 525
  ident: CR11
  article-title: Computer-aided focal liver lesion detection
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0832-8
– volume: 53
  start-page: 26
  year: 2019
  end-page: 38
  ident: CR47
  article-title: Learning to detect chest radiographs containing pulmonary lesions using visual attention networks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.12.007
– volume: 162
  start-page: 697
  year: 2015
  end-page: 711
  ident: CR4
  article-title: Imaging techniques for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2509
– volume: 67
  start-page: 401
  year: 2018
  end-page: 421
  ident: CR5
  article-title: Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis
  publication-title: Hepatology
  doi: 10.1002/hep.29487
– volume: 9
  start-page: 577
  year: 2014
  end-page: 593
  ident: CR13
  article-title: Automated liver lesion detection in CT images based on multi-level geometric features
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0949-9
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 5
  start-page: 1221
  year: 2007
  end-page: 1228
  ident: CR37
  article-title: Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2007.05.020
– volume: 31
  start-page: 1965
  year: 2012
  end-page: 1976
  ident: CR9
  article-title: Tumor burden analysis on computed tomography by automated liver and tumor segmentation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2211887
– volume: 12
  start-page: 464
  year: 2012
  end-page: 473
  ident: CR7
  article-title: Fully automatic segmentations of liver and hepatic tumors from 3-D computed tomography abdominal images: comparative evaluation of two automatic methods
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2011.2108281
– volume: 210
  start-page: 601
  year: 1999
  end-page: 604
  ident: CR30
  article-title: Detecting hepatic lesions: the added utility of CT liver window settings
  publication-title: Radiology
  doi: 10.1148/radiology.210.3.r99mr07601
– volume: 7
  start-page: 105
  year: 2020
  ident: CR46
  article-title: Improving the generalizability of convolutional neural network-based segmentation on CMR images
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2020.00105
– ident: CR24
– volume: 31
  start-page: 1965
  year: 2012
  ident: 7803_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2211887
– volume: 321
  start-page: 321
  year: 2018
  ident: 7803_CR39
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– ident: 7803_CR42
  doi: 10.1109/CVPR.2018.00964
– volume: 7
  start-page: 105
  year: 2020
  ident: 7803_CR46
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2020.00105
– ident: 7803_CR33
  doi: 10.1109/CVPR.2016.90
– ident: 7803_CR21
  doi: 10.1007/978-3-319-46723-8_49
– volume: 29
  start-page: 196
  year: 2010
  ident: 7803_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 291
  start-page: 651
  year: 2019
  ident: 7803_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.2019182587
– ident: 7803_CR6
  doi: 10.1109/ICPR.2010.618
– ident: 7803_CR16
  doi: 10.1007/978-3-319-59397-5_15
– volume: 59
  start-page: 89
  year: 2013
  ident: 7803_CR44
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2013.03.009
– volume: 275
  start-page: 1585
  year: 2018
  ident: 7803_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.001
– volume: 2012
  start-page: 31
  year: 2012
  ident: 7803_CR10
  publication-title: IEEE Comput Soc Conf Comput Vis Pattern Recognit Work
– ident: 7803_CR40
  doi: 10.1109/ISBI.2018.8363576
– volume: 8
  start-page: 511
  year: 2013
  ident: 7803_CR11
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0832-8
– ident: 7803_CR19
  doi: 10.1001/jama.2019.16489
– ident: 7803_CR25
  doi: 10.1109/WACV.2019.00020
– volume: 6
  start-page: 737
  year: 2011
  ident: 7803_CR8
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-011-0562-8
– volume: 10
  start-page: 6204
  year: 2020
  ident: 7803_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63285-0
– volume: 286
  start-page: 887
  year: 2018
  ident: 7803_CR41
  publication-title: Radiology
  doi: 10.1148/radiol.2017170706
– volume: 67
  start-page: 401
  year: 2018
  ident: 7803_CR5
  publication-title: Hepatology
  doi: 10.1002/hep.29487
– volume: 53
  start-page: 26
  year: 2019
  ident: 7803_CR47
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.12.007
– ident: 7803_CR22
  doi: 10.1007/978-3-658-25326-4_7
– ident: 7803_CR29
  doi: 10.1007/978-3-319-10602-1_48
– ident: 7803_CR3
  doi: 10.1016/j.jhep.2018.03.019
– volume: 67
  start-page: 358
  year: 2018
  ident: 7803_CR2
  publication-title: Hepatology
  doi: 10.1002/hep.29086
– ident: 7803_CR23
– ident: 7803_CR36
  doi: 10.1007/978-3-319-50835-1_22
– ident: 7803_CR12
  doi: 10.1117/12.2008624
– volume: 1
  start-page: e271
  year: 2019
  ident: 7803_CR18
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(19)30123-2
– volume: 9
  start-page: 577
  year: 2014
  ident: 7803_CR13
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0949-9
– volume: 2
  start-page: e191095
  year: 2019
  ident: 7803_CR15
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.1095
– volume: 22
  start-page: 120
  year: 2003
  ident: 7803_CR28
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.809072
– volume: 57
  start-page: 69
  year: 2012
  ident: 7803_CR38
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2012.02.022
– ident: 7803_CR34
  doi: 10.1109/CVPR.2017.106
– volume: 81
  start-page: 227
  year: 2009
  ident: 7803_CR27
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-008-0168-y
– ident: 7803_CR32
  doi: 10.1109/ICCV.2017.322
– volume: 210
  start-page: 601
  year: 1999
  ident: 7803_CR30
  publication-title: Radiology
  doi: 10.1148/radiology.210.3.r99mr07601
– volume: 162
  start-page: 697
  year: 2015
  ident: 7803_CR4
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2509
– volume: 12
  start-page: 464
  year: 2012
  ident: 7803_CR7
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2011.2108281
– volume: 5
  start-page: 1221
  year: 2007
  ident: 7803_CR37
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2007.05.020
– volume: 15
  start-page: S217
  year: 2018
  ident: 7803_CR14
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2018.09.010
– ident: 7803_CR24
  doi: 10.1109/ICCV.2019.01077
– volume: 45
  start-page: 2688
  year: 2020
  ident: 7803_CR31
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-020-02485-8
– ident: 7803_CR43
  doi: 10.1007/978-3-030-32226-7_19
– ident: 7803_CR48
  doi: 10.1109/ICCV.2017.74
– ident: 7803_CR35
  doi: 10.1109/TPAMI.2016.2577031
– volume: 50
  start-page: 757
  year: 2015
  ident: 7803_CR45
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000180
SSID ssj0009147
Score 2.4952328
Snippet Objectives To develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high...
To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for...
ObjectivesTo develop and evaluate a deep learning–based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7047
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Computed tomography
Deep learning
Diagnostic Radiology
Hepatocellular carcinoma
Image processing
Image segmentation
Imaging
Imaging Informatics and Artificial Intelligence
Integration
Internal Medicine
Interventional Radiology
Liver cancer
Machine learning
Malignancy
Medical imaging
Medicine
Medicine & Public Health
Model testing
Multiphase
Neural networks
Neuroradiology
Radiology
Risk
Test sets
Tomography
Tuning
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELaqXaniQv-AbrutplJvrVFiO1nniLbQVatyYiV6ihzH3kXsJojNVoIT78Ab8iSMEyeIUipxycVjJxnP2J81428I-ZxoBA3MBFTIMKYiZwnNwoBTKU3ImOaBbhJkD-PJVPw4jo79pbBVm-3ehiTrlbq77ObKjgXUpRTgtobD4cLbr_m2eqS_9_33z_07st2wLiyGh3VJR0ki_GWZf49yf0N6gDIfREjrjefgBZm2n9zkm5zurqtsV1_-xeb41H96STY9EoW9xnRekWemeE2e__Kx9jfkzzdjzsBXlZjdXF27DS8HtZiV5yfVfAlVCblxMQg4aygrYG5cfraGJYL7mWPyuICTApqcxTn2hvERlBY8l-sKVAWOLhlcfjsgeobJeLxFpgf7R-MJ9VUaqOajqKIxrlA6YjnLjLBC5SK3CT60wnlGD1RZkCgRqzCQhgcG0YK2Utg4MDJDIWv4NukVZWHeEnDHm5CPlIhsgufOSMo4M4ifWKgstyIZkLCdqlR7CnNXSWORduTLtUJTVGhaKzRlA_Kl6-O18V_pYWsBqXfmVcoch1rMucDmT10zuqGLrajClGsn4yLiuPyjzE5jOd3ruGOPQmA5IF9bK7gb_PFvefc08fdkg9WG5PLfhqRXna_NBwRMVfbR-8ctZ_sIqA
  priority: 102
  providerName: Springer Nature
Title Deep learning–based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC
URI https://link.springer.com/article/10.1007/s00330-021-07803-2
https://www.ncbi.nlm.nih.gov/pubmed/33738600
https://www.proquest.com/docview/2563063342
https://www.proquest.com/docview/2503632192
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwED9trYR4Qfxf2aiMxBtYJLaTOA8ItaVdBaJCaJXKU-QkTou0JWXLkHjjO_AN-STcJU4rNLEX5yHnxPHZvp9z598BvIwzBA3CelxpP-QqFzFPfU9yra0vRCa9rA2QXYTzpfqwClYHsOjOwlBYZbcmNgt1XmX0j_yNICKrUEol3m2_c8oaRd7VLoWGcakV8rcNxdgh9AUxY_WgP54uPn_Z0_D6Tcox3MZrHsWxcsdomsN0lNbM4xSygGYTmyv-NVU38OcN32ljkmb34Z7DkmzUKv8BHNjyIdz55Lzlj-DHe2u3zOWFWP_59ZtMVs7M-Ro_rN5csLpiuSUvAtu2pBNsYynCOmMXCM_XxMXxk30rWRt1uMHabHLGqoI5NtYrZmpGhMeMItQZ4l82n0wew3I2PZvMucuzwDMZBTUPcY3JApGL1KpCmVzlRYxFZlBTOIdM6sVGhcb3tJWeRXufFVoVoWd1ikKFlU-gV1alPQJGGxRfRkYFRYw7x0DrMLWIgIRvClmoeAB-16VJ5kjIKRfGebKjT27UkKAakkYNiRjAq10d1xu3Sp90mkrcdLxK9oNnAC92t3EikXfElLa6JhnyaeMCjjJPWw3vXieJ_wmh4QBedyrfP_z_bXl2e1uO4a5ohhtFrJ1Ar768ts8R4tTpEA6jVYSlnp0OoT-ajccLup5-_TgdujGNd5di9BdIn_sZ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKwEXxD8LBQYJTmCR2E42PlQItq22tF0htJV6Sx3H2a3UJls2BfXGO_A-PAxPwkzi7ApV9NZLLrEda2bsmcnMfMPYa23RaBAu4CoJY65yoXkWBpIniQuFsDKwbYLsKB4eqM-H0eEK-93VwlBaZXcnNhd1Xln6R_5eEJBVLKUSH2ZnnLpGUXS1a6FhfGuFfKOBGPOFHbvu4ge6cPONnU3k9xshtrfGgyH3XQa4lf2o5jGeMBuJXGROFcrkKi80PqzBfaIEmSzQRsUmDBInA4fazhaJKuLAJRkOKpzEdW-wNSWVRudv7dPW6MvXJexv2LQ4CzReK32tlS_baYr3qI1awClFAtU0kkf8qxov2buXYrWNCty-y-542xU-tsJ2j6248j67ue-j8w_Y903nZuD7UEz-_PxFKjIHczJBQtbTU6gryB1FLWDWglzA1FFGt4VTdAcmhP1xAccltFmOU5wNgzFUBXj01zmYGghgGSgjHtDehuFg8JAdXAvFH7HVsirdEwbkEIWyb1RUaPRUoySJM4cWlwhNIQuleyzsSJpaD3pOvTdO0gVcc8OGFNmQNmxIRY-9Xczx1Lhy9HrHqdQf_3m6FNYee7V4jQeXojGmdNU5jaEYOioMHPO45fDic5LwptAU7bF3HcuXi_9_L0-v3stLdms43t9L93ZGu8_YbdGIHmXLrbPV-tu5e47mVZ298DIM7Oi6j81fKJk0MA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiP8uLTBIcIKoie38-IAQ2mW1pVBxaKW9Bcexd5HaZOmmoN54B96Gx-FJmEmcXaGK3nrJJU5izY9nnPn8DWMvlMGkgdswkFmUBLLkKiiiUARZZiPOjQhNB5A9TCbH8sM0nm6w3_1ZGIJV9mtiu1CXtaF_5HuciKwSISTfcx4W8Xk0frv4FlAHKaq09u00OhM5sBc_cPu2fLM_Ql2_5Hz8_mg4CXyHgcCING6CBL3LxLzkhZVO6lKWTuHFaJwjWo8uQqVloqMwsyK0GOmMy6RLQpsVOMhZge-9wW6mQiiCE6bTdE34G7XNzUKFC0qqlPQHdtpje9RALQwIHIEBGgXD_w2KlzLdS1XaNviN77DbPmuFd52Z3WUbtrrHtj75uvx99n1k7QJ8B4rZn5-_KDiWoE9mKLZmfgpNDaWlegUsOnoLmFvCchs4xY3AjFg_LuBrBR2-cY5Pw_AIagee93UJugGiVgbCwgNm2jAZDh-w42uR90O2WdWV3WZAW6FIpFrGTuEeNc6ypLCYa_FIO-GkGrCoF2luPN05dd04yVdEza0aclRD3qoh5wP2avWMl8aVo3d7TeXe8Zf52kwH7PnqNros1WF0ZetzGkPVcwwVOOZRp-HV5wQxTWESOmCve5WvX_7_uTy-ei7P2BY6S_5x__Bgh93ireURTG6XbTZn5_YJ5lVN8bQ1YGBfrttj_gKx5zHK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning%E2%80%93based+algorithm+to+detect+primary+hepatic+malignancy+in+multiphase+CT+of+patients+at+high+risk+for+HCC&rft.jtitle=European+radiology&rft.au=Kim%2C+Dong+Wook&rft.au=Lee%2C+Gaeun&rft.au=Kim%2C+So+Yeon&rft.au=Ahn+Geunhwi&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=9&rft.spage=7047&rft.epage=7057&rft_id=info:doi/10.1007%2Fs00330-021-07803-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon