PET radiotracers for whole-body in vivo molecular imaging of prostatic neuroendocrine malignancies
Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve p...
Saved in:
Published in | European radiology Vol. 33; no. 9; pp. 6502 - 6512 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1432-1084 0938-7994 1432-1084 |
DOI | 10.1007/s00330-023-09619-8 |
Cover
Abstract | Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [
18
F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with
68
Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either
18
F or
68
Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [
18
F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [
18
F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [
18
F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended.
Key Points
• The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data.
• When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [
18
F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand.
• When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management. |
---|---|
AbstractList | Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [18F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with 68Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either 18F or 68Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [18F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [18F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [18F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended. KEY POINTS: • The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data. • When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [18F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand. • When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management.Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [18F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with 68Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either 18F or 68Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [18F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [18F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [18F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended. KEY POINTS: • The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data. • When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [18F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand. • When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management. Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [18F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with 68Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either 18F or 68Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [18F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [18F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [18F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended.Key Points• The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data.• When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [18F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand.• When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management. Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [ F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either F or Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [ F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [ F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [ F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended. KEY POINTS: • The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data. • When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [ F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand. • When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management. Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated adenocarcinoma has been the subject of a large amount of recent research. However, the identification of neuroendocrine features in treatment-naïve prostatic tumor raises a differential diagnosis between prostatic adenocarcinoma with de novo neuroendocrine differentiation (dNED) versus one of the primary prostatic neuroendocrine tumors (P-NETs) and carcinomas (P-NECs). While [ 18 F]FDG is being used as the main PET radiotracer in oncologic imaging and reflects cellular glucose metabolism, other molecules labeled with positron-emitting isotopes, mainly somatostatin-analogues labeled with 68 Ga and prostate-specific membrane antigen (PSMA)-ligands labeled with either 18 F or 68 Ga, are now routinely used in departments of nuclear medicine and molecular imaging, and may be advantageous in imaging prostatic neuroendocrine malignancies. Still, the selection of the preferred PET radiotracer in such cases might be challenging. In the current review, we summarize and discuss published data on these different entities from clinical, biological, and molecular imaging standpoints. Specifically, we review the roles that [ 18 F]FDG, radiolabeled somatostatin-analogues, and radiolabeled PSMA-ligands play in these entities in order to provide the reader with practical recommendations regarding the preferred PET radiotracers for imaging each entity. In cases of tiNED, we conclude that PSMA expression may be low and that [ 18 F]FDG or radiolabeled somatostatin-analogues should be preferred for imaging. In cases of prostatic adenocarcinoma with dNED, we present data that support the superiority of radiolabeled PSMA-ligands. In cases of primary neuroendocrine malignancies, the use of [ 18 F]FDG for imaging high-grade P-NECs and radiolabeled somatostatin-analogues for imaging well-differentiated P-NETs is recommended. Key Points • The preferred PET radiotracer for imaging prostatic neuroendocrine malignancies depends on the specific clinical scenario and pathologic data. • When neuroendocrine features result from hormonal therapy for prostate cancer, PET-CT should be performed with [ 18 F]FDG or radiolabeled somatostatin-analogue rather than with radiolabeled PSMA-ligand. • When neuroendocrine features are evident in newly diagnosed prostate cancer, differentiating adenocarcinoma from primary neuroendocrine malignancy is challenging but crucial for selection of PET radiotracer and for clinical management. |
Author | Kesler, Mikhail Hazut Krauthammer, Shir Fahoum, Ibrahim Cohen, Dan Even-Sapir, Einat |
Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0001-8804-4806 surname: Cohen fullname: Cohen, Dan email: cohendandan@gmail.com organization: Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center – sequence: 2 givenname: Shir orcidid: 0000-0001-8165-3019 surname: Hazut Krauthammer fullname: Hazut Krauthammer, Shir organization: Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center – sequence: 3 givenname: Ibrahim surname: Fahoum fullname: Fahoum, Ibrahim organization: Institute of Pathology, Tel-Aviv Sourasky Medical Center – sequence: 4 givenname: Mikhail orcidid: 0000-0003-0786-084X surname: Kesler fullname: Kesler, Mikhail organization: Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center – sequence: 5 givenname: Einat orcidid: 0000-0003-2487-0310 surname: Even-Sapir fullname: Even-Sapir, Einat organization: Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37052659$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctO3jAQha2KqlzaF2CBLLHpJu34ksReIkQBCald0LXl2JMfo8QGO6Hi7Wv46UUsWHlkfcc-c84-2YkpIiGHDL4wgP5rARACGuCiAd0x3ah3ZI9JwRsGSu78N--S_VJuAUAz2X8gu6KHlnet3iPDj7Nrmq0PacnWYS50TJn-ukkTNkPyjzRE-hAeEp3rjVsnm2mY7SbEDU0jvcupLHYJjkZcc8Lok8shIp3tFDbRRhewfCTvRzsV_PRyHpCf386uTy-aq-_nl6cnV40Tfbs0bQde8H5UCHUXN6AdYWADl50aNFMgvev6UWoA75TnqKUWqGTbsVFwJ704IJ-371ZX9yuWxcyhOJwmGzGtxXAF0HHVal3R41fobVpzrO4qJVWrtOxEpY5eqHWY0Zu7XFfPj-ZPehXgW8DVHErG8S_CwDxVZLYVmVqRea7IqCpSr0QuPGWYYm0gTG9LxVZa6j9xg_mf7TdUvwH8GqTh |
CitedBy_id | crossref_primary_10_3390_tomography11030029 crossref_primary_10_2967_jnumed_124_268020 crossref_primary_10_3390_cancers15174404 |
Cites_doi | 10.1053/hp.2000.7295 10.1097/RLU.0000000000002013 10.1111/iju.13526 10.3390/biomedicines10030689 10.5489/cuaj.7268 10.1186/s13550-020-00640-2 10.14740/wjon739w 10.1111/j.1464-410x.1995.tb07385.x 10.1007/s00259-013-2361-7 10.5858/arpa.2019-0434-RA 10.1080/028418602320405005 10.3389/fonc.2021.683793 10.1016/j.eururo.2004.09.007 10.2967/jnumed.116.178095 10.1097/RLU.0000000000001618 10.1056/NEJMoa2107322 10.1038/pcan.2012.4 10.1111/bju.15086 10.1007/978-3-030-13601-7_6 10.1023/a:1007175924082 10.7759/cureus.8356 10.1186/s13256-021-02830-5 10.1007/s11912-020-01003-9 10.3389/fonc.2020.580617 10.3978/j.issn.2305-5839.2015.06.10 10.1038/s41598-018-33774-4 10.1186/1477-7819-6-64 10.1097/PAS.0000000000000208 10.1530/ERC-18-0226 10.1016/S0022-5347(02)80307-X 10.1016/S0140-6736(20)30314-7 10.1148/rg.352140164 10.1148/rg.2017170035 10.1200/JCO.2007.12.4487 10.1097/RLU.0000000000001424 10.1016/S1470-2045(21)00572-6 10.1001/jamaoncol.2019.0096 10.1002/(SICI)1097-0045(1998)8+<37::AID-PROS7>3.0.CO;2-D 10.1186/s13046-022-02255-y 10.1007/s12022-016-9421-z 10.1148/rg.2018170108 10.1038/s41698-022-00272-w 10.1002/(sici)1097-0045(19990501)39:2<135::aid-pros9>3.0.co;2-s 10.1038/modpathol.2017.164 10.1111/j.1365-2559.2011.04039.x 10.1016/j.clgc.2018.07.009 10.1200/JCO.2004.11.089 10.1158/1078-0432.CCR-09-1759 10.3389/fonc.2014.00060 10.1158/2159-8290.CD-11-0130 10.2967/jnumed.118.219501 10.1007/s00259-009-1349-9 10.1155/2011/543272 10.20517/cdr.2020.42 10.1016/j.biopha.2008.01.010 10.2967/jnumed.106.035667 10.1002/cncr.23469 10.1002/1097-0142(19941001)74:7<1899::aid-cncr2820740712>3.0.co;2-u 10.1002/pros.22831 10.3390/diagnostics12061387 10.1016/j.annonc.2020.06.011 10.1111/j.1464-410X.2011.10523.x 10.1016/j.humpath.2008.07.014 10.1056/NEJM198908173210702 10.1016/j.eururo.2016.02.028 10.1159/000499883 10.3389/fonc.2020.585213 10.1007/BF03347481 10.1007/s00428-012-1259-2 10.2967/jnumed.108.060236 10.1016/S0022-5347(01)62909-4 10.1038/s41391-021-00332-5 10.1097/00000478-200606000-00003 10.1016/j.eururo.2019.01.049 10.1007/s11307-009-0230-3 10.1097/PAS.0b013e318058a96b |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to European Society of Radiology. |
Copyright_xml | – notice: The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to European Society of Radiology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-023-09619-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 6512 |
ExternalDocumentID | 37052659 10_1007_s00330_023_09619_8 |
Genre | Journal Article Review |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ADHKG CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-560d327f8e0619cbeaf0b1b2468b91804dc67f4900dc8d2e9493e84561f32c4d3 |
IEDL.DBID | 8FG |
ISSN | 1432-1084 0938-7994 |
IngestDate | Fri Sep 05 08:41:36 EDT 2025 Sat Aug 23 12:22:38 EDT 2025 Thu Apr 03 06:57:05 EDT 2025 Tue Jul 01 00:42:20 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 Fri Feb 21 02:44:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | PET-CT 18F-FDG Somatostatin Prostate cancer PSMA antigen |
Language | English |
License | 2023. The Author(s), under exclusive licence to European Society of Radiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-560d327f8e0619cbeaf0b1b2468b91804dc67f4900dc8d2e9493e84561f32c4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2487-0310 0000-0001-8165-3019 0000-0003-0786-084X 0000-0001-8804-4806 |
PMID | 37052659 |
PQID | 2848589463 |
PQPubID | 54162 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2800628599 proquest_journals_2848589463 pubmed_primary_37052659 crossref_primary_10_1007_s00330_023_09619_8 crossref_citationtrail_10_1007_s00330_023_09619_8 springer_journals_10_1007_s00330_023_09619_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | HumphreyPAHistological variants of prostatic carcinoma and their significanceHistopathology2012601597410.1111/j.1365-2559.2011.04039.x22212078 ShayganBZukotynskiKBénardFCanadian Urological Association best practice report: prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and PET/magnetic resonance (MR) in prostate [published correction appears in Can Urol Assoc J. 2021 Aug;15(8):E423]Can Urol Assoc J.202115616217210.5489/cuaj.7268336610938195587 HugginsCHodgesCVStudies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941J Urol.20021672 Pt 2948521:CAS:528:DC%2BD38XhtVylsbw%3D10.1016/S0022-5347(02)80307-X11905923 WallittKLKhanSRDubashSTamHHKhanSBarwickTDClinical PET imaging in prostate cancerRadiographics20173751512153610.1148/rg.201717003528800286 SavelliGMuniABarbieriRNeuroendocrine differentiation of prostate cancer metastases evidenced "in Vivo" by 68Ga-DOTANOC PET/CT: two casesWorld J Oncol201452727610.14740/wjon739w291473815649877 MoroteJAguilarAPlanasJTrillaEDefinition of castrate resistant prostate cancer: new insightsBiomedicines.20221036891:CAS:528:DC%2BB38XosVOltb4%3D10.3390/biomedicines10030689353274918945091 GofritONFrankSMeirovitzANechushtanHOreviMPET/CT With 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancerClin Nucl Med20174211610.1097/RLU.000000000000142427775942 SleimanWKarrayOAbi AbdallahMLarge-cell neuroendocrine tumor of the prostate: a case report and review of the literatureJ Med Case Rep.202115125410.1186/s13256-021-02830-5339579798103761 ShenKLiuBZhouXThe evolving role of 18F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancerFront Oncol.2021116837931:CAS:528:DC%2BB3sXht1Ghs7fM10.3389/fonc.2021.683793343952518358601 AbrahamssonPANeuroendocrine differentiation in prostatic carcinomaProstate19993921351481:CAS:528:DyaK1MXivF2gtL8%3D10.1002/(sici)1097-0045(19990501)39:2<135::aid-pros9>3.0.co;2-s10221570 GeRWangZChengLTumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistanceNPJ Precis Oncol.202261311:CAS:528:DC%2BB38Xhs1GhsbzP10.1038/s41698-022-00272-w355086969068628 AmbrosiniVNanniCZompatoriM(68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumoursEur J Nucl Med Mol Imaging201037472272710.1007/s00259-009-1349-920107793 AllenFJVan VeldenDJHeynsCFAre neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer?Br J Urol19957567517541:STN:280:DyaK2MzjvVGlsw%3D%3D10.1111/j.1464-410x.1995.tb07385.x7613832 JeetleSSFisherGYangZHNeuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancerVirchows Arch201246121031071:CAS:528:DC%2BC38Xht1egtrfM10.1007/s00428-012-1259-222767265 FurtadoPLimaMVNogueiraCFrancoMTavoraFReview of small cell carcinomas of the prostateProstate Cancer.201120115432721:CAS:528:DC%2BC3MXhtFCkt7fE10.1155/2011/543272221109883200299 FindaklyDWangJMisdiagnosis of small cell prostate cancer: lessons learnedCureus.2020125e835610.7759/cureus.8356324945497263708 ZhouXLiYJiangXIntra-individual comparison of 18F-PSMA-1007 and 18F-FDG PET/CT in the evaluation of patients with prostate cancerFront Oncol.20211058521310.3389/fonc.2020.585213336042857884904 CrawfordEDEisenbergerMAMcLeodDGA controlled trial of leuprolide with and without flutamide in prostatic carcinoma [published correction appears in N Engl J Med 1989 Nov 16;321(20):1420]N Engl J Med198932174194241:STN:280:DyaL1MzksVWgtw%3D%3D10.1056/NEJM1989081732107022503724 BeltranHRickmanDSParkKMolecular characterization of neuroendocrine prostate cancer and identification of new drug targetsCancer Discov2011164874951:CAS:528:DC%2BC3MXhsVOhtbfJ10.1158/2159-8290.CD-11-0130223898703290518 SprattDEGavaneSTarlintonLUtility of FDG-PET in clinical neuroendocrine prostate cancerProstate20147411115311591:CAS:528:DC%2BC2cXhtVSqtLjE10.1002/pros.22831249139884355960 BinderupTKniggeULoftAFederspielBKjaerA18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumorsClin Cancer Res20101639789851:CAS:528:DC%2BC3cXhs1aqs7k%3D10.1158/1078-0432.CCR-09-175920103666 ParidaGKTripathySDatta GuptaSAdenocarcinoma prostate with neuroendocrine differentiation: potential utility of 18F-FDG PET/CT and 68Ga-DOTANOC PET/CT over 68Ga-PSMA PET/CTClin Nucl Med201843424824910.1097/RLU.000000000000201329474196 BeyerTTownsendDWBrunTA combined PET/CT scanner for clinical oncologyJ Nucl Med2000418136913791:STN:280:DC%2BD3cvitFCguw%3D%3D10945530 HopeTAGoodmanJZAllenIECalaisJFendlerWPCarrollPRMetaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathologyJ Nucl Med20196067867931:CAS:528:DC%2BB3cXpslarsg%3D%3D10.2967/jnumed.118.219501305308316581235 JadvarHImaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitationsEur J Nucl Med Mol Imaging.201340015101:CAS:528:DC%2BC3sXpvFeisrk%3D10.1007/s00259-013-2361-73681838 RosarFRibbatKRiesMNeuron-specific enolase has potential value as a biomarker for [18F]FDG/[68Ga]Ga-PSMA-11 PET mismatch findings in advanced mCRPC patientsEJNMMI Res.2020101521:CAS:528:DC%2BB3cXhtVemu7fL10.1186/s13550-020-00640-2324490867246282 McClintockJSpeightsVOJrNeuroendocrine differentiation in prostatic adenocarcinoma and its relationship to tumor progressionCancer19947471899190310.1002/1097-0142(19941001)74:7<1899::aid-cncr2820740712>3.0.co;2-u8082095 SalminenEHoggABinnsDFrydenbergMHicksRInvestigations with FDG-PET scanning in prostate cancer show limited value for clinical practiceActa Oncol200241542542910.1080/02841860232040500512442917 MerkensLSailerVLesselDAggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiationJ Exp Clin Cancer Res.2022411461:CAS:528:DC%2BB38XhtVeisLfL10.1186/s13046-022-02255-y351098998808994 DeorahSRaoMBRamanRGaitondeKDonovanJFSurvival of patients with small cell carcinoma of the prostate during 1973–2003: a population-based studyBJU Int2012109682483010.1111/j.1464-410X.2011.10523.x21883857 LenganaTLawalIOBoshomaneTG68Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli?Clin Genitourin Cancer201816539240110.1016/j.clgc.2018.07.00930120038 TanMOKaraoğlanUCelikBAtaoğluOBiriHBozkirliIProstate cancer and neuroendocrine differentiationInt Urol Nephrol199931175821:STN:280:DyaK1MzjsVOqsw%3D%3D10.1023/a:100717592408210408306 FendlerWPCalaisJEiberMAssessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trialJAMA Oncol20195685686310.1001/jamaoncol.2019.0096309205936567829 Bar-ShalomRYefremovNGuralnikLClinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient managementJ Nucl Med20034481200120912902408 UsmaniSAhmedNMarafiFRasheedRAmangunoHGAlKFMolecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CTClin Nucl Med201742541041310.1097/RLU.000000000000161828240661 BradleyJDDehdashtiFMintunMAGovindanRTrinkausKSiegelBAPositron emission tomography in limited-stage small-cell lung cancer: a prospective studyJ Clin Oncol200422163248325410.1200/JCO.2004.11.08915310768 SartorODe BonoJChiKNFizaziKHerrmannKRahbarKTagawaSTNordquistLTVaishampayanNEl-HaddadGParkCHLutetium-177–PSMA-617 for metastatic castration-resistant prostate cancerN Engl J Med202138512109111031:CAS:528:DC%2BB3MXitVCktLjF10.1056/NEJMoa2107322341610518446332 PereraMPapaNRobertsMGallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysisEur Urol202077440341710.1016/j.eururo.2019.01.04930773328 ScherHIHalabiSTannockIDesign and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working GroupJ Clin Oncol20082671148115910.1200/JCO.2007.12.448718309951 Shah RB, Zhou M. Histologic variants of acinar adenocarcinoma, ductal adenocarcinoma, neuroendocrine tumors, and other carcinomas. In: Prostate Biopsy Interpretation 2019 (pp. 69–95). Springer, Cham ParkerCCastroEFizaziKHeidenreichAOstPProcopioGTombalBGillessenSProstate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-upAnn Oncol2020319111911341:STN:280:DC%2BB38nlsVahsA%3D%3D10.1016/j.annonc.2020.06.01132593798 ConteducaVScarpiESalviSPlasma androgen receptor and serum chromogranin A in advanced prostate cancerSci Rep.201881154421:CAS:528:DC%2BC1MXhtFWmtb0%3D10.1038/s41598-018-33774-4303375896194135 ParimiVGoyalRPoropatichKYangXJNeuroendocrine differentiation of prostate cancer: a reviewAm J Clin Exp Urol.20142427385256065734297323 TuXChangTNieLLarge cell neuroendocrine carcinoma of the prostate: a systematic review and pooled analysisUrol Int2019103438339010.1159/00049988330965328 AkamatsuSInoueTOgawaOGleaveMEClinical and molecular features of treatment-related neuroendocrine prostate cancerInt J Urol20182543453511:CAS:528:DC%2BC1cXnvFaksb0%3D10.1111/iju.1352629396873 HofmanMSLawrentschukNFrancisRJProstate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre studyLancet202039510231120812161:CAS:528:DC%2BB3cXlsFegsr4%3D10.1016/S0140-6736(20)30314-732209449 HuJHanBHuangJMorphologic spectrum of neuroendocrine tumors of the prostate: an updated reviewArch Pathol Lab Med202014433203251:CAS:528:DC%2BB3cXhtlOku7vP10.5858/arpa.2019-0434-RA31644322 WangWEpsteinJISmall cell carcinoma of the prostate. A morpholo MS Hofman (9619_CR17) 2015; 35 X Tu (9619_CR74) 2019; 103 JR Strosberg (9619_CR83) 2021; 22 L Merkens (9619_CR7) 2022; 41 V Conteduca (9619_CR29) 2018; 8 G Savelli (9619_CR49) 2015; 3 DM Marcus (9619_CR66) 2012; 15 B Goulet-Salmon (9619_CR77) 2004; 27 SS Jeetle (9619_CR62) 2012; 461 I Kayani (9619_CR15) 2008; 112 Y Liu (9619_CR46) 2008; 6 K Shen (9619_CR48) 2021; 11 JE Berchuck (9619_CR64) 2021; 24 C Parker (9619_CR4) 2020; 31 S Usmani (9619_CR52) 2017; 42 J McClintock (9619_CR61) 1994; 74 E Panagiotidis (9619_CR16) 2017; 58 MS Hofman (9619_CR19) 2018; 38 ON Gofrit (9619_CR50) 2017; 42 W Sleiman (9619_CR73) 2021; 15 T Beyer (9619_CR12) 2000; 41 MS Hofman (9619_CR34) 2020; 395 H Beltran (9619_CR24) 2011; 1 FJ Allen (9619_CR59) 1995; 75 M Perera (9619_CR37) 2020; 77 T Binderup (9619_CR72) 2010; 16 KL Wallitt (9619_CR40) 2017; 37 R Casella (9619_CR58) 1998; 160 G Savelli (9619_CR51) 2014; 5 S Deorah (9619_CR65) 2012; 109 X Zhou (9619_CR39) 2021; 10 F Labrie (9619_CR21) 1982; 5 J Vargas Ahumada (9619_CR44) 2022; 12 N Vashchenko (9619_CR56) 2005; 47 RA Simon (9619_CR70) 2009; 40 O Sartor (9619_CR33) 2021; 385 GK Parida (9619_CR43) 2018; 43 S Terry (9619_CR25) 2014; 4 J Hu (9619_CR53) 2020; 144 R Bar-Shalom (9619_CR11) 2003; 44 H Jadvar (9619_CR14) 2013; 40 9619_CR1 P Furtado (9619_CR68) 2011; 2011 9619_CR2 M Gabriel (9619_CR81) 2007; 48 JI Epstein (9619_CR54) 2014; 38 B Shaygan (9619_CR18) 2021; 15 SW Fine (9619_CR10) 2018; 31 S Akamatsu (9619_CR31) 2018; 25 AJ Evans (9619_CR75) 2006; 30 D Putzer (9619_CR82) 2009; 50 W Wang (9619_CR67) 2008; 32 R Ge (9619_CR6) 2022; 6 V Parimi (9619_CR8) 2014; 2 MK Bakht (9619_CR42) 2018; 26 W Luboldt (9619_CR41) 2010; 12 F Rosar (9619_CR47) 2020; 10 J Morote (9619_CR27) 2022; 10 Y Yamada (9619_CR28) 2021; 23 T Szarvas (9619_CR30) 2021; 127 T Whelan (9619_CR78) 1995; 153 HI Scher (9619_CR26) 2008; 26 PA Humphrey (9619_CR76) 2012; 60 C Huggins (9619_CR20) 2002; 167 NR Mucci (9619_CR57) 2000; 31 PA Humphrey (9619_CR3) 2016; 70 M Bungaro (9619_CR23) 2020; 3 E Salminen (9619_CR13) 2002; 41 DE Spratt (9619_CR45) 2014; 74 JD Bradley (9619_CR71) 2004; 22 MO Tan (9619_CR60) 1999; 31 ED Crawford (9619_CR22) 1989; 321 T Uo (9619_CR5) 2020; 10 S Alanee (9619_CR32) 2015; 35 PA Abrahamsson (9619_CR63) 1998; 8 DS Priemer (9619_CR9) 2016; 27 D Findakly (9619_CR69) 2020; 12 S Fanti (9619_CR79) 2008; 62 WP Fendler (9619_CR35) 2019; 5 PA Abrahamsson (9619_CR55) 1999; 39 T Lengana (9619_CR38) 2018; 16 V Ambrosini (9619_CR80) 2010; 37 TA Hope (9619_CR36) 2019; 60 |
References_xml | – reference: KayaniIBomanjiJBGrovesAFunctional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDGCancer2008112112447245510.1002/cncr.2346918383518 – reference: HopeTAGoodmanJZAllenIECalaisJFendlerWPCarrollPRMetaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathologyJ Nucl Med20196067867931:CAS:528:DC%2BB3cXpslarsg%3D%3D10.2967/jnumed.118.219501305308316581235 – reference: UsmaniSAhmedNMarafiFRasheedRAmangunoHGAlKFMolecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CTClin Nucl Med201742541041310.1097/RLU.000000000000161828240661 – reference: ScherHIHalabiSTannockIDesign and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working GroupJ Clin Oncol20082671148115910.1200/JCO.2007.12.448718309951 – reference: LiuYFDG PET-CT demonstration of metastatic neuroendocrine tumor of prostateWorld J Surg Oncol.200866410.1186/1477-7819-6-64185652312440384 – reference: CasellaRBubendorfLSauterGMochHMihatschMJGasserTCFocal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsiesJ Urol199816024064101:STN:280:DyaK1czktlCrsA%3D%3D10.1016/S0022-5347(01)62909-49679888 – reference: ParkerCCastroEFizaziKHeidenreichAOstPProcopioGTombalBGillessenSProstate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-upAnn Oncol2020319111911341:STN:280:DC%2BB38nlsVahsA%3D%3D10.1016/j.annonc.2020.06.01132593798 – reference: FantiSAmbrosiniVTomassettiPEvaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PETBiomed Pharmacother200862106676711:CAS:528:DC%2BD1cXhtlyksL3K10.1016/j.biopha.2008.01.01018358680 – reference: HofmanMSLawrentschukNFrancisRJProstate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre studyLancet202039510231120812161:CAS:528:DC%2BB3cXlsFegsr4%3D10.1016/S0140-6736(20)30314-732209449 – reference: PereraMPapaNRobertsMGallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysisEur Urol202077440341710.1016/j.eururo.2019.01.04930773328 – reference: ZhouXLiYJiangXIntra-individual comparison of 18F-PSMA-1007 and 18F-FDG PET/CT in the evaluation of patients with prostate cancerFront Oncol.20211058521310.3389/fonc.2020.585213336042857884904 – reference: AbrahamssonPACockettATdi Sant'AgnesePAPrognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinomaProstate Suppl1998837421:STN:280:DyaK1czlt12ksA%3D%3D10.1002/(SICI)1097-0045(1998)8+<37::AID-PROS7>3.0.CO;2-D9690662 – reference: WangWEpsteinJISmall cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 casesAm J Surg Pathol.2008321657110.1097/PAS.0b013e318058a96b18162772 – reference: SartorODe BonoJChiKNFizaziKHerrmannKRahbarKTagawaSTNordquistLTVaishampayanNEl-HaddadGParkCHLutetium-177–PSMA-617 for metastatic castration-resistant prostate cancerN Engl J Med202138512109111031:CAS:528:DC%2BB3MXitVCktLjF10.1056/NEJMoa2107322341610518446332 – reference: EpsteinJIAminMBBeltranHProposed morphologic classification of prostate cancer with neuroendocrine differentiationAm J Surg Pathol201438675676710.1097/PAS.0000000000000208247053114112087 – reference: AlaneeSMooreANuttMContemporary incidence and mortality rates of neuroendocrine prostate cancerAnticancer Res20153574145415026124369 – reference: Bar-ShalomRYefremovNGuralnikLClinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient managementJ Nucl Med20034481200120912902408 – reference: LuboldtWZöphelKWunderlichGAbramyukALuboldtHJKotzerkeJVisualization of somatostatin receptors in prostate cancer and its bone metastases with Ga-68-DOTATOC PET/CTMol Imaging Biol2010121788410.1007/s11307-009-0230-319421819 – reference: PriemerDSMontironiRWangLWilliamsonSRLopez-BeltranAChengLNeuroendocrine tumors of the prostate: emerging insights from molecular data and updates to the 2016 World Health Organization ClassificationEndocr Pathol20162721231351:CAS:528:DC%2BC28XjtFKrs7w%3D10.1007/s12022-016-9421-z26885643 – reference: CrawfordEDEisenbergerMAMcLeodDGA controlled trial of leuprolide with and without flutamide in prostatic carcinoma [published correction appears in N Engl J Med 1989 Nov 16;321(20):1420]N Engl J Med198932174194241:STN:280:DyaL1MzksVWgtw%3D%3D10.1056/NEJM1989081732107022503724 – reference: SavelliGMuniAFalchiRSomatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patientsAnn Transl Med20153101451:CAS:528:DC%2BC28XhtlOjsbnL10.3978/j.issn.2305-5839.2015.06.10262072384486921 – reference: BeltranHRickmanDSParkKMolecular characterization of neuroendocrine prostate cancer and identification of new drug targetsCancer Discov2011164874951:CAS:528:DC%2BC3MXhsVOhtbfJ10.1158/2159-8290.CD-11-0130223898703290518 – reference: AbrahamssonPANeuroendocrine differentiation in prostatic carcinomaProstate19993921351481:CAS:528:DyaK1MXivF2gtL8%3D10.1002/(sici)1097-0045(19990501)39:2<135::aid-pros9>3.0.co;2-s10221570 – reference: LabrieFDupontABelangerANew hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogenClin Invest Med1982542672751:STN:280:DyaL3s7jtVWhsg%3D%3D6819101 – reference: JadvarHImaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitationsEur J Nucl Med Mol Imaging.201340015101:CAS:528:DC%2BC3sXpvFeisrk%3D10.1007/s00259-013-2361-73681838 – reference: PutzerDGabrielMHenningerBBone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphyJ Nucl Med20095081214122110.2967/jnumed.108.06023619617343 – reference: JeetleSSFisherGYangZHNeuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancerVirchows Arch201246121031071:CAS:528:DC%2BC38Xht1egtrfM10.1007/s00428-012-1259-222767265 – reference: SleimanWKarrayOAbi AbdallahMLarge-cell neuroendocrine tumor of the prostate: a case report and review of the literatureJ Med Case Rep.202115125410.1186/s13256-021-02830-5339579798103761 – reference: MerkensLSailerVLesselDAggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiationJ Exp Clin Cancer Res.2022411461:CAS:528:DC%2BB38XhtVeisLfL10.1186/s13046-022-02255-y351098998808994 – reference: SalminenEHoggABinnsDFrydenbergMHicksRInvestigations with FDG-PET scanning in prostate cancer show limited value for clinical practiceActa Oncol200241542542910.1080/02841860232040500512442917 – reference: YamadaYBeltranHClinical and biological features of neuroendocrine prostate cancerCurr Oncol Rep.20212321510.1007/s11912-020-01003-9334337377990389 – reference: ParidaGKTripathySDatta GuptaSAdenocarcinoma prostate with neuroendocrine differentiation: potential utility of 18F-FDG PET/CT and 68Ga-DOTANOC PET/CT over 68Ga-PSMA PET/CTClin Nucl Med201843424824910.1097/RLU.000000000000201329474196 – reference: SavelliGMuniABarbieriRNeuroendocrine differentiation of prostate cancer metastases evidenced "in Vivo" by 68Ga-DOTANOC PET/CT: two casesWorld J Oncol201452727610.14740/wjon739w291473815649877 – reference: StrosbergJRCaplinMEKunzPLRuszniewskiPBBodeiLHendifarAMittraEWolinEMYaoJCPavelMEGrandeE177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trialLancet Oncol20212212175217631:CAS:528:DC%2BB38XmvVKhsr8%3D10.1016/S1470-2045(21)00572-634793718 – reference: HumphreyPAMochHCubillaALUlbrightTMReuterVEThe 2016 WHO classification of tumours of the urinary system and male genital organs—part B: prostate and bladder tumoursEur Urol201670110611910.1016/j.eururo.2016.02.02826996659 – reference: HofmanMSLauWFHicksRJSomatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretationRadiographics201535250051610.1148/rg.35214016425763733 – reference: UoTSprengerCCPlymateSRAndrogen receptor signaling and metabolic and cellular plasticity during progression to castration resistant prostate cancerFront Oncol.20201058061710.3389/fonc.2020.580617331634097581990 – reference: DeorahSRaoMBRamanRGaitondeKDonovanJFSurvival of patients with small cell carcinoma of the prostate during 1973–2003: a population-based studyBJU Int2012109682483010.1111/j.1464-410X.2011.10523.x21883857 – reference: ShayganBZukotynskiKBénardFCanadian Urological Association best practice report: prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and PET/magnetic resonance (MR) in prostate [published correction appears in Can Urol Assoc J. 2021 Aug;15(8):E423]Can Urol Assoc J.202115616217210.5489/cuaj.7268336610938195587 – reference: VashchenkoNAbrahamssonPANeuroendocrine differentiation in prostate cancer: implications for new treatment modalitiesEur Urol20054721471551:CAS:528:DC%2BD2MXhslyht7w%3D10.1016/j.eururo.2004.09.00715661408 – reference: Vargas AhumadaJGonzález RuedaSDSinisterra SolísFAMultitarget molecular imaging in metastatic castration resistant adenocarcinoma prostate cancer with therapy induced neuroendocrine differentiationDiagnostics (Basel).2022126138710.3390/diagnostics12061387357411979221809 – reference: GabrielMDecristoforoCKendlerD68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CTJ Nucl Med20074845085181:CAS:528:DC%2BD2sXhtVert7jF10.2967/jnumed.106.03566717401086 – reference: FendlerWPCalaisJEiberMAssessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trialJAMA Oncol20195685686310.1001/jamaoncol.2019.0096309205936567829 – reference: BeyerTTownsendDWBrunTA combined PET/CT scanner for clinical oncologyJ Nucl Med2000418136913791:STN:280:DC%2BD3cvitFCguw%3D%3D10945530 – reference: BungaroMButtiglieroCTucciMOvercoming the mechanisms of primary and acquired resistance to new generation hormonal therapies in advanced prostate cancer: focus on androgen receptor independent pathwaysCancer Drug Resist.202034726411:CAS:528:DC%2BB3MXhslCmsb%2FJ10.20517/cdr.2020.42355822268992570 – reference: American Cancer Society. Cancer facts & figures 2022. Available at https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html. Accessed: September 7, 2022 – reference: GeRWangZChengLTumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistanceNPJ Precis Oncol.202261311:CAS:528:DC%2BB38Xhs1GhsbzP10.1038/s41698-022-00272-w355086969068628 – reference: TuXChangTNieLLarge cell neuroendocrine carcinoma of the prostate: a systematic review and pooled analysisUrol Int2019103438339010.1159/00049988330965328 – reference: HuJHanBHuangJMorphologic spectrum of neuroendocrine tumors of the prostate: an updated reviewArch Pathol Lab Med202014433203251:CAS:528:DC%2BB3cXhtlOku7vP10.5858/arpa.2019-0434-RA31644322 – reference: FindaklyDWangJMisdiagnosis of small cell prostate cancer: lessons learnedCureus.2020125e835610.7759/cureus.8356324945497263708 – reference: PanagiotidisEAlshammariAMichopoulouSComparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumorsJ Nucl Med2017581919610.2967/jnumed.116.17809527516446 – reference: LenganaTLawalIOBoshomaneTG68Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli?Clin Genitourin Cancer201816539240110.1016/j.clgc.2018.07.00930120038 – reference: SimonRAdi Sant'AgnesePAHuangLSCD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickersHum Pathol20094022522581:CAS:528:DC%2BD1MXjvFWisg%3D%3D10.1016/j.humpath.2008.07.01418835619 – reference: EvansAJHumphreyPABelaniJvan der KwastTHSrigleyJRLarge cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancerAm J Surg Pathol200630668469310.1097/00000478-200606000-0000316723845 – reference: TerrySBeltranHThe many faces of neuroendocrine differentiation in prostate cancer progressionFront Oncol.201446010.3389/fonc.2014.00060247240543971158 – reference: MarcusDMGoodmanMJaniABOsunkoyaAORossiPJA comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008Prostate Cancer Prostatic Dis20121532832881:STN:280:DC%2BC38vjs1Wqsg%3D%3D10.1038/pcan.2012.422349984 – reference: HumphreyPAHistological variants of prostatic carcinoma and their significanceHistopathology2012601597410.1111/j.1365-2559.2011.04039.x22212078 – reference: ShenKLiuBZhouXThe evolving role of 18F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancerFront Oncol.2021116837931:CAS:528:DC%2BB3sXht1Ghs7fM10.3389/fonc.2021.683793343952518358601 – reference: AmbrosiniVNanniCZompatoriM(68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumoursEur J Nucl Med Mol Imaging201037472272710.1007/s00259-009-1349-920107793 – reference: BakhtMKDerecicheiILiYNeuroendocrine differentiation of prostate cancer leads to PSMA suppressionEndocr Relat Cancer.20182621314610.1530/ERC-18-022630400059 – reference: BradleyJDDehdashtiFMintunMAGovindanRTrinkausKSiegelBAPositron emission tomography in limited-stage small-cell lung cancer: a prospective studyJ Clin Oncol200422163248325410.1200/JCO.2004.11.08915310768 – reference: HugginsCHodgesCVStudies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941J Urol.20021672 Pt 2948521:CAS:528:DC%2BD38XhtVylsbw%3D10.1016/S0022-5347(02)80307-X11905923 – reference: ConteducaVScarpiESalviSPlasma androgen receptor and serum chromogranin A in advanced prostate cancerSci Rep.201881154421:CAS:528:DC%2BC1MXhtFWmtb0%3D10.1038/s41598-018-33774-4303375896194135 – reference: Shah RB, Zhou M. Histologic variants of acinar adenocarcinoma, ductal adenocarcinoma, neuroendocrine tumors, and other carcinomas. In: Prostate Biopsy Interpretation 2019 (pp. 69–95). Springer, Cham – reference: HofmanMSHicksRJMaurerTEiberMProstate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfallsRadiographics201838120021710.1148/rg.201817010829320333 – reference: AkamatsuSInoueTOgawaOGleaveMEClinical and molecular features of treatment-related neuroendocrine prostate cancerInt J Urol20182543453511:CAS:528:DC%2BC1cXnvFaksb0%3D10.1111/iju.1352629396873 – reference: RosarFRibbatKRiesMNeuron-specific enolase has potential value as a biomarker for [18F]FDG/[68Ga]Ga-PSMA-11 PET mismatch findings in advanced mCRPC patientsEJNMMI Res.2020101521:CAS:528:DC%2BB3cXhtVemu7fL10.1186/s13550-020-00640-2324490867246282 – reference: WallittKLKhanSRDubashSTamHHKhanSBarwickTDClinical PET imaging in prostate cancerRadiographics20173751512153610.1148/rg.201717003528800286 – reference: Goulet-SalmonBBertheEFrancSProstatic neuroendocrine tumor in multiple endocrine neoplasia Type 2BJ Endocrinol Invest20042765705731:STN:280:DC%2BD2M%2Foslyrug%3D%3D10.1007/BF0334748115717656 – reference: WhelanTGatfieldCTRobertsonSCarpenterBSchillingerJFPrimary carcinoid of the prostate in conjunction with multiple endocrine neoplasia IIb in a childJ Urol19951533 Pt 2108010821:STN:280:DyaK2M7ls1KltA%3D%3D7853568 – reference: SprattDEGavaneSTarlintonLUtility of FDG-PET in clinical neuroendocrine prostate cancerProstate20147411115311591:CAS:528:DC%2BC2cXhtVSqtLjE10.1002/pros.22831249139884355960 – reference: AllenFJVan VeldenDJHeynsCFAre neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer?Br J Urol19957567517541:STN:280:DyaK2MzjvVGlsw%3D%3D10.1111/j.1464-410x.1995.tb07385.x7613832 – reference: MoroteJAguilarAPlanasJTrillaEDefinition of castrate resistant prostate cancer: new insightsBiomedicines.20221036891:CAS:528:DC%2BB38XosVOltb4%3D10.3390/biomedicines10030689353274918945091 – reference: MucciNRAkdasGManelySRubinMANeuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression [published correction appears in Hum Pathol 2000 Jun; 31(6):778]Hum Pathol20003144064141:CAS:528:DC%2BD3cXjsFCgtLc%3D10.1053/hp.2000.729510821485 – reference: BerchuckJEViscusePVBeltranHAparicioAClinical considerations for the management of androgen indifferent prostate cancerProstate Cancer Prostatic Dis202124362363710.1038/s41391-021-00332-5335687488353003 – reference: ParimiVGoyalRPoropatichKYangXJNeuroendocrine differentiation of prostate cancer: a reviewAm J Clin Exp Urol.20142427385256065734297323 – reference: TanMOKaraoğlanUCelikBAtaoğluOBiriHBozkirliIProstate cancer and neuroendocrine differentiationInt Urol Nephrol199931175821:STN:280:DyaK1MzjsVOqsw%3D%3D10.1023/a:100717592408210408306 – reference: GofritONFrankSMeirovitzANechushtanHOreviMPET/CT With 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancerClin Nucl Med20174211610.1097/RLU.000000000000142427775942 – reference: FurtadoPLimaMVNogueiraCFrancoMTavoraFReview of small cell carcinomas of the prostateProstate Cancer.201120115432721:CAS:528:DC%2BC3MXhtFCkt7fE10.1155/2011/543272221109883200299 – reference: McClintockJSpeightsVOJrNeuroendocrine differentiation in prostatic adenocarcinoma and its relationship to tumor progressionCancer19947471899190310.1002/1097-0142(19941001)74:7<1899::aid-cncr2820740712>3.0.co;2-u8082095 – reference: BinderupTKniggeULoftAFederspielBKjaerA18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumorsClin Cancer Res20101639789851:CAS:528:DC%2BC3cXhs1aqs7k%3D10.1158/1078-0432.CCR-09-175920103666 – reference: SzarvasTCsizmarikAFazekasTComprehensive analysis of serum chromogranin A and neuron-specific enolase levels in localized and castration-resistant prostate cancerBJU Int2021127144551:CAS:528:DC%2BB3MXmtl2ruw%3D%3D10.1111/bju.1508632314509 – reference: FineSWNeuroendocrine tumors of the prostateMod Pathol201831S112213210.1038/modpathol.2017.164 – volume: 31 start-page: 406 issue: 4 year: 2000 ident: 9619_CR57 publication-title: Hum Pathol doi: 10.1053/hp.2000.7295 – volume: 43 start-page: 248 issue: 4 year: 2018 ident: 9619_CR43 publication-title: Clin Nucl Med doi: 10.1097/RLU.0000000000002013 – volume: 25 start-page: 345 issue: 4 year: 2018 ident: 9619_CR31 publication-title: Int J Urol doi: 10.1111/iju.13526 – volume: 10 start-page: 689 issue: 3 year: 2022 ident: 9619_CR27 publication-title: Biomedicines. doi: 10.3390/biomedicines10030689 – volume: 15 start-page: 162 issue: 6 year: 2021 ident: 9619_CR18 publication-title: Can Urol Assoc J. doi: 10.5489/cuaj.7268 – ident: 9619_CR1 – volume: 10 start-page: 52 issue: 1 year: 2020 ident: 9619_CR47 publication-title: EJNMMI Res. doi: 10.1186/s13550-020-00640-2 – volume: 5 start-page: 72 issue: 2 year: 2014 ident: 9619_CR51 publication-title: World J Oncol doi: 10.14740/wjon739w – volume: 75 start-page: 751 issue: 6 year: 1995 ident: 9619_CR59 publication-title: Br J Urol doi: 10.1111/j.1464-410x.1995.tb07385.x – volume: 40 start-page: 5 issue: 01 year: 2013 ident: 9619_CR14 publication-title: Eur J Nucl Med Mol Imaging. doi: 10.1007/s00259-013-2361-7 – volume: 144 start-page: 320 issue: 3 year: 2020 ident: 9619_CR53 publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2019-0434-RA – volume: 41 start-page: 425 issue: 5 year: 2002 ident: 9619_CR13 publication-title: Acta Oncol doi: 10.1080/028418602320405005 – volume: 11 start-page: 683793 year: 2021 ident: 9619_CR48 publication-title: Front Oncol. doi: 10.3389/fonc.2021.683793 – volume: 47 start-page: 147 issue: 2 year: 2005 ident: 9619_CR56 publication-title: Eur Urol doi: 10.1016/j.eururo.2004.09.007 – volume: 58 start-page: 91 issue: 1 year: 2017 ident: 9619_CR16 publication-title: J Nucl Med doi: 10.2967/jnumed.116.178095 – volume: 42 start-page: 410 issue: 5 year: 2017 ident: 9619_CR52 publication-title: Clin Nucl Med doi: 10.1097/RLU.0000000000001618 – volume: 385 start-page: 1091 issue: 12 year: 2021 ident: 9619_CR33 publication-title: N Engl J Med doi: 10.1056/NEJMoa2107322 – volume: 15 start-page: 283 issue: 3 year: 2012 ident: 9619_CR66 publication-title: Prostate Cancer Prostatic Dis doi: 10.1038/pcan.2012.4 – volume: 127 start-page: 44 issue: 1 year: 2021 ident: 9619_CR30 publication-title: BJU Int doi: 10.1111/bju.15086 – ident: 9619_CR2 doi: 10.1007/978-3-030-13601-7_6 – volume: 2 start-page: 273 issue: 4 year: 2014 ident: 9619_CR8 publication-title: Am J Clin Exp Urol. – volume: 31 start-page: 75 issue: 1 year: 1999 ident: 9619_CR60 publication-title: Int Urol Nephrol doi: 10.1023/a:1007175924082 – volume: 12 start-page: e8356 issue: 5 year: 2020 ident: 9619_CR69 publication-title: Cureus. doi: 10.7759/cureus.8356 – volume: 15 start-page: 254 issue: 1 year: 2021 ident: 9619_CR73 publication-title: J Med Case Rep. doi: 10.1186/s13256-021-02830-5 – volume: 5 start-page: 267 issue: 4 year: 1982 ident: 9619_CR21 publication-title: Clin Invest Med – volume: 23 start-page: 15 issue: 2 year: 2021 ident: 9619_CR28 publication-title: Curr Oncol Rep. doi: 10.1007/s11912-020-01003-9 – volume: 10 start-page: 580617 year: 2020 ident: 9619_CR5 publication-title: Front Oncol. doi: 10.3389/fonc.2020.580617 – volume: 3 start-page: 145 issue: 10 year: 2015 ident: 9619_CR49 publication-title: Ann Transl Med doi: 10.3978/j.issn.2305-5839.2015.06.10 – volume: 8 start-page: 15442 issue: 1 year: 2018 ident: 9619_CR29 publication-title: Sci Rep. doi: 10.1038/s41598-018-33774-4 – volume: 6 start-page: 64 year: 2008 ident: 9619_CR46 publication-title: World J Surg Oncol. doi: 10.1186/1477-7819-6-64 – volume: 38 start-page: 756 issue: 6 year: 2014 ident: 9619_CR54 publication-title: Am J Surg Pathol doi: 10.1097/PAS.0000000000000208 – volume: 26 start-page: 131 issue: 2 year: 2018 ident: 9619_CR42 publication-title: Endocr Relat Cancer. doi: 10.1530/ERC-18-0226 – volume: 167 start-page: 948 issue: 2 Pt 2 year: 2002 ident: 9619_CR20 publication-title: J Urol. doi: 10.1016/S0022-5347(02)80307-X – volume: 395 start-page: 1208 issue: 10231 year: 2020 ident: 9619_CR34 publication-title: Lancet doi: 10.1016/S0140-6736(20)30314-7 – volume: 35 start-page: 500 issue: 2 year: 2015 ident: 9619_CR17 publication-title: Radiographics doi: 10.1148/rg.352140164 – volume: 44 start-page: 1200 issue: 8 year: 2003 ident: 9619_CR11 publication-title: J Nucl Med – volume: 37 start-page: 1512 issue: 5 year: 2017 ident: 9619_CR40 publication-title: Radiographics doi: 10.1148/rg.2017170035 – volume: 26 start-page: 1148 issue: 7 year: 2008 ident: 9619_CR26 publication-title: J Clin Oncol doi: 10.1200/JCO.2007.12.4487 – volume: 42 start-page: 1 issue: 1 year: 2017 ident: 9619_CR50 publication-title: Clin Nucl Med doi: 10.1097/RLU.0000000000001424 – volume: 22 start-page: 1752 issue: 12 year: 2021 ident: 9619_CR83 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(21)00572-6 – volume: 5 start-page: 856 issue: 6 year: 2019 ident: 9619_CR35 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2019.0096 – volume: 8 start-page: 37 year: 1998 ident: 9619_CR63 publication-title: Prostate Suppl doi: 10.1002/(SICI)1097-0045(1998)8+<37::AID-PROS7>3.0.CO;2-D – volume: 41 start-page: 46 issue: 1 year: 2022 ident: 9619_CR7 publication-title: J Exp Clin Cancer Res. doi: 10.1186/s13046-022-02255-y – volume: 27 start-page: 123 issue: 2 year: 2016 ident: 9619_CR9 publication-title: Endocr Pathol doi: 10.1007/s12022-016-9421-z – volume: 38 start-page: 200 issue: 1 year: 2018 ident: 9619_CR19 publication-title: Radiographics doi: 10.1148/rg.2018170108 – volume: 6 start-page: 31 issue: 1 year: 2022 ident: 9619_CR6 publication-title: NPJ Precis Oncol. doi: 10.1038/s41698-022-00272-w – volume: 39 start-page: 135 issue: 2 year: 1999 ident: 9619_CR55 publication-title: Prostate doi: 10.1002/(sici)1097-0045(19990501)39:2<135::aid-pros9>3.0.co;2-s – volume: 31 start-page: 122 issue: S1 year: 2018 ident: 9619_CR10 publication-title: Mod Pathol doi: 10.1038/modpathol.2017.164 – volume: 60 start-page: 59 issue: 1 year: 2012 ident: 9619_CR76 publication-title: Histopathology doi: 10.1111/j.1365-2559.2011.04039.x – volume: 16 start-page: 392 issue: 5 year: 2018 ident: 9619_CR38 publication-title: Clin Genitourin Cancer doi: 10.1016/j.clgc.2018.07.009 – volume: 22 start-page: 3248 issue: 16 year: 2004 ident: 9619_CR71 publication-title: J Clin Oncol doi: 10.1200/JCO.2004.11.089 – volume: 16 start-page: 978 issue: 3 year: 2010 ident: 9619_CR72 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-1759 – volume: 4 start-page: 60 year: 2014 ident: 9619_CR25 publication-title: Front Oncol. doi: 10.3389/fonc.2014.00060 – volume: 1 start-page: 487 issue: 6 year: 2011 ident: 9619_CR24 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0130 – volume: 60 start-page: 786 issue: 6 year: 2019 ident: 9619_CR36 publication-title: J Nucl Med doi: 10.2967/jnumed.118.219501 – volume: 37 start-page: 722 issue: 4 year: 2010 ident: 9619_CR80 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-009-1349-9 – volume: 2011 start-page: 543272 year: 2011 ident: 9619_CR68 publication-title: Prostate Cancer. doi: 10.1155/2011/543272 – volume: 3 start-page: 726 issue: 4 year: 2020 ident: 9619_CR23 publication-title: Cancer Drug Resist. doi: 10.20517/cdr.2020.42 – volume: 62 start-page: 667 issue: 10 year: 2008 ident: 9619_CR79 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2008.01.010 – volume: 48 start-page: 508 issue: 4 year: 2007 ident: 9619_CR81 publication-title: J Nucl Med doi: 10.2967/jnumed.106.035667 – volume: 112 start-page: 2447 issue: 11 year: 2008 ident: 9619_CR15 publication-title: Cancer doi: 10.1002/cncr.23469 – volume: 74 start-page: 1899 issue: 7 year: 1994 ident: 9619_CR61 publication-title: Cancer doi: 10.1002/1097-0142(19941001)74:7<1899::aid-cncr2820740712>3.0.co;2-u – volume: 35 start-page: 4145 issue: 7 year: 2015 ident: 9619_CR32 publication-title: Anticancer Res – volume: 74 start-page: 1153 issue: 11 year: 2014 ident: 9619_CR45 publication-title: Prostate doi: 10.1002/pros.22831 – volume: 41 start-page: 1369 issue: 8 year: 2000 ident: 9619_CR12 publication-title: J Nucl Med – volume: 12 start-page: 1387 issue: 6 year: 2022 ident: 9619_CR44 publication-title: Diagnostics (Basel). doi: 10.3390/diagnostics12061387 – volume: 31 start-page: 1119 issue: 9 year: 2020 ident: 9619_CR4 publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.06.011 – volume: 109 start-page: 824 issue: 6 year: 2012 ident: 9619_CR65 publication-title: BJU Int doi: 10.1111/j.1464-410X.2011.10523.x – volume: 40 start-page: 252 issue: 2 year: 2009 ident: 9619_CR70 publication-title: Hum Pathol doi: 10.1016/j.humpath.2008.07.014 – volume: 321 start-page: 419 issue: 7 year: 1989 ident: 9619_CR22 publication-title: N Engl J Med doi: 10.1056/NEJM198908173210702 – volume: 153 start-page: 1080 issue: 3 Pt 2 year: 1995 ident: 9619_CR78 publication-title: J Urol – volume: 70 start-page: 106 issue: 1 year: 2016 ident: 9619_CR3 publication-title: Eur Urol doi: 10.1016/j.eururo.2016.02.028 – volume: 103 start-page: 383 issue: 4 year: 2019 ident: 9619_CR74 publication-title: Urol Int doi: 10.1159/000499883 – volume: 10 start-page: 585213 year: 2021 ident: 9619_CR39 publication-title: Front Oncol. doi: 10.3389/fonc.2020.585213 – volume: 27 start-page: 570 issue: 6 year: 2004 ident: 9619_CR77 publication-title: J Endocrinol Invest doi: 10.1007/BF03347481 – volume: 461 start-page: 103 issue: 2 year: 2012 ident: 9619_CR62 publication-title: Virchows Arch doi: 10.1007/s00428-012-1259-2 – volume: 50 start-page: 1214 issue: 8 year: 2009 ident: 9619_CR82 publication-title: J Nucl Med doi: 10.2967/jnumed.108.060236 – volume: 160 start-page: 406 issue: 2 year: 1998 ident: 9619_CR58 publication-title: J Urol doi: 10.1016/S0022-5347(01)62909-4 – volume: 24 start-page: 623 issue: 3 year: 2021 ident: 9619_CR64 publication-title: Prostate Cancer Prostatic Dis doi: 10.1038/s41391-021-00332-5 – volume: 30 start-page: 684 issue: 6 year: 2006 ident: 9619_CR75 publication-title: Am J Surg Pathol doi: 10.1097/00000478-200606000-00003 – volume: 77 start-page: 403 issue: 4 year: 2020 ident: 9619_CR37 publication-title: Eur Urol doi: 10.1016/j.eururo.2019.01.049 – volume: 12 start-page: 78 issue: 1 year: 2010 ident: 9619_CR41 publication-title: Mol Imaging Biol doi: 10.1007/s11307-009-0230-3 – volume: 32 start-page: 65 issue: 1 year: 2008 ident: 9619_CR67 publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0b013e318058a96b |
SSID | ssj0009147 |
Score | 2.4310124 |
SecondaryResourceType | review_article |
Snippet | Prostatic neuroendocrine malignancies represent a spectrum of diseases. Treatment-induced neuroendocrine differentiation (tiNED) in hormonally treated... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6502 |
SubjectTerms | Adenocarcinoma Adenocarcinoma - diagnostic imaging Antigens Diagnostic Radiology Differential diagnosis Differentiation Fluorine isotopes Fluorodeoxyglucose F18 Gallium isotopes Gallium Radioisotopes Glucose metabolism Health services Humans Imaging Internal Medicine Interventional Radiology Isotopes Ligands Male Malignancy Medical imaging Medicine Medicine & Public Health Molecular Imaging Neuroendocrine tumors Neuroradiology Nuclear medicine Positron emission Positron emission tomography Positron Emission Tomography Computed Tomography - methods Prostate - pathology Prostate cancer Prostatic Neoplasms - pathology Radioactive tracers Radiology Review Somatostatin Tumors Ultrasound |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFA6uwrIv3tbLeCOCbxpJm7RNHkVGRVF8cECfSnOTQaeVmY7L7q_fk97EK_jUh1yaJic9Xzg534fQns4iJTRzBJ6c8MhxIrWQxNHIJBn4c8t8vvPlVXw24Oe30W2TFDZpb7u3IcnqT90lu3nZMUrAxxAvUyKJ-IHmIjigwHacOzq9u-i_kO0GPGkSZD5u-doJvUOW76KilbM5WUCDdpj1HZOHw2mpDvW_NwyO3_2ORTTfoE98VJvLEpqx-TL6ednE138jdd2_wePMDItynGlAhhgwLf7jNXSJKsxfPMzx8_C5wKNWVRcPR5XOES4cfvIZJJ4BFlcsmTY3hfbJhXgEYP--1gGerKDBSf_m-Iw0KgxEsyQqCUAiw8LECQuuX2plM0dVoEIeCyUDQbnRceK4pNRoYUIruWRWeFzmWKi5YatoNi9yu46wj5LGNlCBlBnPlIPenDEJFSaBgzIVPRS0y5LqhqLcK2U8ph25cjV5KUxeWk1eCm32uzZPNUHHl7W32tVOm806ScFDi0hIHrMe2u2KYZv52EmW22Lq69TZplL20FptJd3rWOJJcyIoOWhX_KXzz8ey8b3qm-hXWBsNocEWmi3HU7sNgKhUO439_weI3QEc priority: 102 providerName: Springer Nature |
Title | PET radiotracers for whole-body in vivo molecular imaging of prostatic neuroendocrine malignancies |
URI | https://link.springer.com/article/10.1007/s00330-023-09619-8 https://www.ncbi.nlm.nih.gov/pubmed/37052659 https://www.proquest.com/docview/2848589463 https://www.proquest.com/docview/2800628599 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEA_eHYgv4rfVs0TwTYPZTXaTPEkr7R3KlUOuUJ-WzZcU7G5teyf-906y2RY5vKc85GPDTJL5JbMzP4TembrQ0jBPoOSEF54TZaQinhZW1GDPHQvxzhez8nzOvyyKRXpw26bfKvszMR7UtjXhjfwjHKOykIqX7NP6FwmsUcG7mig0jtBJloOtDZHi07ND0t0sEozBpV0SoRRPQTMxdC6QmFECFosE0hNF5L-G6RbavOUpjQZo-gg9TMgRjzpVP0b3XPME3b9IvvGnSF9OrvCmtst2t6kNoDoMeBT_Dvy3RLf2D142-GZ50-JVz4iLl6vIUYRbj9ch-iNkb8Uxw6VrQCIhMBCvAKj_6Dh8t8_QfDq5-nxOEoMCMUwUOwJwxrJceOnAbCujXe2pznTOS6lVJim3phSeK0qtkTZ3iivmZMBUnuWGW_YcHTdt414iHDycpct0plTNa-1hNG-toNIKuORSOUBZL77KpPTigeXiZ7VPjBxFXoHIqyjyCvq83_dZd8k17mx92mulShttWx2WxQC93VfDFgl-j7px7XVo00WKKjVALzpt7j_HREh4U0DNh169h8H_P5dXd8_lNXqQd0uL0OwUHe821-4NgJedHqIjsRDDuE6H6GQ0HY9noTz7_nUC5Xgyu_wGtfN89Bf-Ou-w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAXxLsLBYwEJ7BwYie2DwghaLWl3YrDVtpbiF9oJTZZdret-qf4jczksStU0VtPOfgRa97OZOYj5I0rM6udiAyeksksSmacNizyzKsS_HkQWO88OsmHp_LbJJtskT99LQz-VtnbxMZQ-9rhN_IPYEZ1po3Mxaf5b4aoUZhd7SE0WrE4CpcXcGVbfjz8Cvx9m6YH--MvQ9ahCjAnVLZi4OK9SFXUAVyZcTaUkdvEpjLX1iSaS-9yFaXh3Dvt02CkEUFjnBFF6qQXsO8tcltiihH0R03Upslv0gCacQNGRBkjuyKdplQPQdM4Aw_JEGTFMP2vI7wS3V7JzDYO7-A-uddFqvRzK1oPyFaoHpI7oy4X_4jY7_tjuij9tF4tSgdRJIX4l14g3i6ztb-k04qeT89rOusReOl01mAi0TrSOVabYLdY2nTUDBVwAAsR6QwuBj9bzODlY3J6I7R9Qrarugq7hGJGNQ-JTYwpZWkj7Ba9V1x7BZdqrgck6clXuK6dOaJq_CrWjZgbkhdA8qIheQFr3q3XzNtmHtfO3uu5UnSKvSw2Yjggr9fDoJKYZymrUJ_hnLYy1ZgBedpyc_06obDBTgYj73v2bjb__1meXX-WV-TucDw6Lo4PT46ek520FTPGkz2yvVqchRcQOK3sy0ZaKflx0-rxF7mqJUE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEOW50IKR4ARWndiJ7QNCVdtVS2nVQyvtLcQvtBKbLLvbVv1r_DrGeewKVfTWUw5-JJq3M575AD7YMjPK8kDxKajIgqDaKk0Dy5ws0Z97HuudT07zwwvxbZSN1uBPXwsTr1X2NrEx1K628R_5DppRlSktcr4TumsRZ_vDr9PfNCJIxUxrD6fRisixv7nG49v8y9E-8vpjmg4PzvcOaYcwQC2X2YKiu3c8lUF5dGvaGl8GZhKTilwZnSgmnM1lEJoxZ5VLvRaaexVjjsBTKxzHfR_AQ8mFiLARciRXDX-TBtyMaTQoUmvRFew0ZXsRQI1R9JY0Aq5oqv51irci3VtZ2sb5DZ_A4y5qJbutmG3Cmq-ewsZJl5d_Bubs4JzMSjeuF7PSYkRJMBYm1xF7l5ra3ZBxRa7GVzWZ9Gi8ZDxp8JFIHcg0Vp7EzrGk6a7pK-RGLEokEzwk_Gzxg-fP4eJeaPsC1qu68q-AxOxq7hOTaF2K0gTcLTgnmXISD9hMDSDpyVfYrrV5RNj4VSybMjckL5DkRUPyAtd8Wq6Zto097py91XOl6JR8XqxEcgDvl8OonjHnUla-voxz2ipVrQfwsuXm8nVcxmY7GY587tm72vz_3_L67m95BxuoGMX3o9PjN_AobaWMsmQL1hezS7-NMdTCvG2ElcCP-9aOv4N0KXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PET+radiotracers+for+whole-body+in+vivo+molecular+imaging+of+prostatic+neuroendocrine+malignancies&rft.jtitle=European+radiology&rft.au=Cohen%2C+Dan&rft.au=Hazut+Krauthammer%2C+Shir&rft.au=Fahoum%2C+Ibrahim&rft.au=Kesler%2C+Mikhail&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=33&rft.issue=9&rft.spage=6502&rft.epage=6512&rft_id=info:doi/10.1007%2Fs00330-023-09619-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |