Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network
Objectives To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). Materials and methods A tota...
Saved in:
| Published in | Clinical oral investigations Vol. 26; no. 5; pp. 3987 - 3998 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1436-3771 1432-6981 1436-3771 |
| DOI | 10.1007/s00784-021-04365-x |
Cover
| Abstract | Objectives
To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).
Materials and methods
A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.
Results
For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.
Conclusions
The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.
Clinical relevance
An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible. |
|---|---|
| AbstractList | To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).OBJECTIVESTo propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.MATERIALS AND METHODSA total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.RESULTSFor the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.CONCLUSIONSThe proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.CLINICAL RELEVANCEAn implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible. Objectives To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). Materials and methods A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated. Results For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs. Conclusions The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols. Clinical relevance An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible. ObjectivesTo propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).Materials and methodsA total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.ResultsFor the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.ConclusionsThe proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.Clinical relevanceAn implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible. To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated. For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs. The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols. An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible. |
| Author | Ai, Qi Yong H. King, Ann D. Hung, Kuo Feng Leung, Yiu Yan Bornstein, Michael M. Wong, Lun M. |
| Author_xml | – sequence: 1 givenname: Kuo Feng surname: Hung fullname: Hung, Kuo Feng organization: Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong – sequence: 2 givenname: Qi Yong H. surname: Ai fullname: Ai, Qi Yong H. organization: Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Department of Health Technology and Informatics, The Hong Kong Polytechnic University – sequence: 3 givenname: Ann D. surname: King fullname: King, Ann D. organization: Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong – sequence: 4 givenname: Michael M. surname: Bornstein fullname: Bornstein, Michael M. organization: Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel – sequence: 5 givenname: Lun M. surname: Wong fullname: Wong, Lun M. email: lun.m.wong@cuhk.edu.hk organization: Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong – sequence: 6 givenname: Yiu Yan orcidid: 0000-0002-6670-6570 surname: Leung fullname: Leung, Yiu Yan email: mikeyyleung@hku.hk organization: Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35032193$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAQtVARfcAPsECW2LAJOHEezrKqoCBVYgNry3EmuS5xHPyg9_4aX9fJTStQF93YY_s8xjNzTk5mNwMhb3P2MWes-RRwEWXGijxjJa-rbP-CnOUYZbxp8pP_4lNyHsItY3lZN_wVOeUV40Xe8jPy9zJFZ1U0mvYQQUfjZqrmngYYLcxRHS_cQK3zy85NbjRaTVTv1DxCWB_iDqhVezNNyh9oMHMK1CbtgqLI1Jhy1oGyGNklRegp-rnRq2V3oMaqVSUha6QKpTxA1hs0Dmi7-rj5j5tS3E4zJH_c4p3zv16Tl4OaArx52C_Izy-ff1x9zW6-X3-7urzJNG-qmJWiFQUvBsUYb3WpGbR5x7RouobpruhUq_OhHAQMHGqhFOvLqq01q7FwomE9vyAfNt3Fu98JQpTWBA343xlcCrKoC8aEELxB6Psn0FuXPKa-oqpWYMkrgah3D6jUWejl4rEO_iAfu4IAsQG0dyF4GKQ2WyeiV2aSOZPrAMhtACQOgDwOgNwjtXhCfVR_lsQ3UkAw9tX_S_sZ1j3B2Mgz |
| CitedBy_id | crossref_primary_10_3390_diagnostics13010110 crossref_primary_10_36283_ziun_pjmd13_4_023 crossref_primary_10_1016_j_jdent_2023_104582 crossref_primary_10_1016_j_heliyon_2024_e31052 crossref_primary_10_1007_s00784_022_04708_2 crossref_primary_10_18261_ano_49_1_14 crossref_primary_10_5624_isd_20240139 crossref_primary_10_1111_cid_13352 crossref_primary_10_58600_eurjther1817 crossref_primary_10_3390_diagnostics12051029 crossref_primary_10_3390_healthcare10112188 crossref_primary_10_1007_s00405_024_08870_z crossref_primary_10_1007_s11042_023_16544_x crossref_primary_10_1186_s12903_024_04924_0 crossref_primary_10_1177_19458924251313845 crossref_primary_10_2196_57335 crossref_primary_10_3390_diagnostics12112819 crossref_primary_10_1038_s41598_023_49159_1 crossref_primary_10_12688_f1000research_140204_1 crossref_primary_10_2174_0118742106295168240507162754 crossref_primary_10_1001_jamaoto_2024_0013 crossref_primary_10_1016_j_identj_2024_11_011 crossref_primary_10_1177_19458924231162437 crossref_primary_10_3390_diagnostics13101684 crossref_primary_10_3390_bdcc8060066 crossref_primary_10_1007_s00784_025_06191_x crossref_primary_10_1109_JBHI_2024_3505262 crossref_primary_10_1038_s41598_022_11483_3 crossref_primary_10_1259_dmfr_20220335 crossref_primary_10_1007_s00784_022_04477_y crossref_primary_10_1093_dmfr_twae031 crossref_primary_10_1186_s12903_023_03607_6 |
| Cites_doi | 10.1259/dmfr.20190107 10.1007/s11282-020-00485-4 10.1016/j.visres.2020.04.003 10.1007/s00784-019-02829-9 10.1016/j.jcms.2019.03.006 10.5624/isd.20200267 10.11607/prd.3435 10.1259/dmfr.20150419 10.1016/j.jece.2020.103742 10.1148/radiol.2017171920 10.1016/j.bjoms.2019.04.007 10.1007/s00784-019-02907-y 10.1259/dmfr.20200171 10.1007/s11282-018-0363-7 10.1177/0022034520978774 10.1111/clr.13259 10.1186/s12880-015-0068-x 10.11607/jomi.2014suppl.g1.4 10.1111/prd.12161 10.1016/j.oooo.2015.07.033 10.5624/isd.2014.44.1.1 10.1016/S1079-2104(05)80375-0 10.1016/j.compbiomed.2016.11.003 10.1259/dmfr.20180051 10.3390/ijerph17124424 10.3390/diagnostics11040688 10.1002/lary.26856 10.1016/j.jdent.2021.103610 10.1007/s00276-019-02308-6 10.11607/prd.2043 10.1007/s11548-020-02228-6 10.1016/j.neuroimage.2006.01.015 10.1111/clr.13582 10.1186/s12880-021-00618-z 10.1109/3DV.2016.79 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00784-021-04365-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Proquest Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Dentistry |
| EISSN | 1436-3771 |
| EndPage | 3998 |
| ExternalDocumentID | 35032193 10_1007_s00784_021_04365_x |
| Genre | Journal Article |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 34H 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOR QOS R89 R9I RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z87 ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c375t-4898232fa0039c4c0e91b0c87b70cb2ba9c1f4f8ef3e68aa0d4596c06377870d3 |
| IEDL.DBID | AGYKE |
| ISSN | 1436-3771 1432-6981 |
| IngestDate | Thu Sep 04 20:17:17 EDT 2025 Fri Oct 03 09:21:59 EDT 2025 Thu Apr 03 07:07:35 EDT 2025 Wed Oct 01 01:48:34 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Fri Feb 21 02:45:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Mucosal thickening Cone-beam computed tomography Artificial intelligence Mucosal retention cyst Convolutional neural network Maxillary sinus |
| Language | English |
| License | 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-4898232fa0039c4c0e91b0c87b70cb2ba9c1f4f8ef3e68aa0d4596c06377870d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6670-6570 |
| PMID | 35032193 |
| PQID | 2659819358 |
| PQPubID | 33690 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2620088837 proquest_journals_2659819358 pubmed_primary_35032193 crossref_citationtrail_10_1007_s00784_021_04365_x crossref_primary_10_1007_s00784_021_04365_x springer_journals_10_1007_s00784_021_04365_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Clinical oral investigations |
| PublicationTitleAbbrev | Clin Oral Invest |
| PublicationTitleAlternate | Clin Oral Investig |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Watanabe, Ariji, Fukuda, Kuwada, Kise, Nozawa, Sugita, Ariji (CR9) 2020; 37 Jung, Lim, Lee, Cho, Song (CR14) 2021; 11 Chen, Stanley, Att (CR38) 2020; 51 Bornstein, Yeung, Tanaka, von Arx, Jacobs, Khong (CR15) 2018; 38 Bornstein, Scarfe, Vaughn, Jacobs (CR5) 2014; 29 Gong, Hu, Chen, Zhou, Wu, Man (CR30) 2019; 57 Kuwana, Ariji, Fukuda, Kise, Nozawa, Kuwada, Muramatsu, Katsumata, Fujita, Ariji (CR8) 2020; 50 Zhao, Lian, Fan, Huang, Wang, Wu (CR6) 2018; 29 Yeung, Colsoul, Montalvao, Hung, Jacobs, Bornstein (CR19) 2019; 23 Schwendicke, Singh, Lee, Gaudin, Chaurasia, Wiegand, Uribe, Krois (CR16) 2021; 107 Soikkonen, Ainamo (CR17) 1995; 80 Kurt Bayrakdar, Orhan, Bayrakdar, Bilgir, Ezhov, Gusarev, Shumilov (CR36) 2021; 21 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR20) 2006; 31 Hung, Montalvao, Yeung, Li, Bornstein (CR18) 2020; 42 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (CR23) 2019; 32 Park, Han (CR24) 2018; 286 Hung, Montalvao, Tanaka, Kawai, Bornstein (CR1) 2020; 49 (CR2) 2015; 120 Bornstein, Horner (CR7) 2000; 73 Tuzoff, Tuzova, Bornstein, Krasnov, Kharchenko, Nikolenko, Sveshnikov, Bednenko (CR35) 2019; 48 Joda, Yeung, Hung, Zitzmann, Bornstein (CR37) 2021; 100 Xu, Wang, Zhou, Liu, Jiang, Chen (CR12) 2020; 15 Procacci, Lanaro, Trevisiol, Bertossi, Zotti, Fabio, D'Agostino (CR3) 2019; 47 Zaghloul, Hamza, Iorhemen, Tay (CR21) 2020; 8 Janner, Dubach, Suter, Caversaccio, Buser, Bornstein (CR4) 2020; 31 Ohashi, Ariji, Katsumata, Fujita, Nakayama, Fukuda, Nozawa, Ariji (CR26) 2016; 45 Rondon, Pereira, doNascimento (CR27) 2014; 44 Kara, Kirmali, Ay (CR29) 2012; 27 CR22 Chen, Lee, Chang, Huang, Fu, Huang, Lee (CR31) 2018; 128 Zhuofu, Binbin, Zhiliang (CR13) 2020; 2020 Hung, Hui, Yeung, Wu, Hsung, Bornstein (CR33) 2021; 51 Baker, Lu, Erlikhman, Kellman (CR28) 2020; 172 Taha, Hanbury (CR25) 2015; 15 Friedland, Metson (CR32) 2014; 34 Yeung, Jacobs, Bornstein (CR39) 2019; 23 Murata, Ariji, Ohashi, Kawai, Fukuda, Funakoshi, Kise, Nozawa, Katsumata, Fujita, Ariji (CR10) 2019; 35 Miki, Muramatsu, Hayashi, Zhou, Hara, Katsumata, Fujita (CR34) 2017; 80 Hung, Yeung, Tanaka, Bornstein (CR11) 2020; 17 MM Bornstein (4365_CR7) 2000; 73 J Xu (4365_CR12) 2020; 15 YW Chen (4365_CR38) 2020; 51 Y Ohashi (4365_CR26) 2016; 45 T Gong (4365_CR30) 2019; 57 K Hung (4365_CR1) 2020; 49 AWK Yeung (4365_CR19) 2019; 23 MI Kara (4365_CR29) 2012; 27 K Hung (4365_CR33) 2021; 51 M Murata (4365_CR10) 2019; 35 SH Park (4365_CR24) 2018; 286 K Zhao (4365_CR6) 2018; 29 F Schwendicke (4365_CR16) 2021; 107 PA Yushkevich (4365_CR20) 2006; 31 AAE and AAOMR Joint Position Statement (4365_CR2) 2015; 120 4365_CR22 T Joda (4365_CR37) 2021; 100 MS Zaghloul (4365_CR21) 2020; 8 DV Tuzoff (4365_CR35) 2019; 48 P Procacci (4365_CR3) 2019; 47 K Hung (4365_CR11) 2020; 17 H Watanabe (4365_CR9) 2020; 37 K Soikkonen (4365_CR17) 1995; 80 A Paszke (4365_CR23) 2019; 32 B Friedland (4365_CR32) 2014; 34 R Kuwana (4365_CR8) 2020; 50 AA Taha (4365_CR25) 2015; 15 YW Chen (4365_CR31) 2018; 128 AWK Yeung (4365_CR39) 2019; 23 SK Jung (4365_CR14) 2021; 11 D Zhuofu (4365_CR13) 2020; 2020 RH Rondon (4365_CR27) 2014; 44 Y Miki (4365_CR34) 2017; 80 N Baker (4365_CR28) 2020; 172 MM Bornstein (4365_CR5) 2014; 29 MM Bornstein (4365_CR15) 2018; 38 S Kurt Bayrakdar (4365_CR36) 2021; 21 K Hung (4365_CR18) 2020; 42 SFM Janner (4365_CR4) 2020; 31 |
| References_xml | – volume: 49 start-page: 20190107 year: 2020 ident: CR1 article-title: The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20190107 – volume: 37 start-page: 487 year: 2020 end-page: 493 ident: CR9 article-title: Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study publication-title: Oral Radiol doi: 10.1007/s11282-020-00485-4 – ident: CR22 – volume: 172 start-page: 46 year: 2020 end-page: 61 ident: CR28 article-title: Local features and global shape information in object classification by deep convolutional neural networks publication-title: Vision Res doi: 10.1016/j.visres.2020.04.003 – volume: 23 start-page: 3977 year: 2019 end-page: 3986 ident: CR19 article-title: Visibility, location, and morphology of the primary maxillary sinus ostium and presence of accessory ostia: a retrospective analysis using cone beam computed tomography (CBCT) publication-title: Clin Oral Investig doi: 10.1007/s00784-019-02829-9 – volume: 47 start-page: 876 year: 2019 end-page: 882 ident: CR3 article-title: Is post orthognathic maxillary sinusitis related to sino-nasal anatomical alterations? publication-title: J Craniomaxillofac Surg doi: 10.1016/j.jcms.2019.03.006 – volume: 51 start-page: 117 year: 2021 end-page: 127 ident: CR33 article-title: Volumetric analysis of mucous retention cysts in the maxillary sinus: a retrospective study using cone-beam computed tomography publication-title: Imaging Sci Dent doi: 10.5624/isd.20200267 – volume: 38 start-page: 699 year: 2018 end-page: 710 ident: CR15 article-title: Evaluation of health or pathology of bilateral maxillary sinuses in patients referred for cone beam computed tomography using a low-dose protocol publication-title: Int J Periodontics Restorative Dent doi: 10.11607/prd.3435 – volume: 45 start-page: 20150419 year: 2016 ident: CR26 article-title: Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20150419 – volume: 27 start-page: 1205 year: 2012 end-page: 1210 ident: CR29 article-title: Clinical evaluation of lateral and osteotome techniques for sinus floor elevation in the presence of an antral pseudocyst publication-title: Int J Oral Maxillofac Implants – volume: 51 start-page: 248 year: 2020 end-page: 257 ident: CR38 article-title: Artificial intelligence in dentistry: current applications and future perspectives publication-title: Quintessence Int – volume: 8 start-page: 103742 year: 2020 ident: CR21 article-title: Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.103742 – volume: 286 start-page: 800 year: 2018 end-page: 809 ident: CR24 article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction publication-title: Radiology doi: 10.1148/radiol.2017171920 – volume: 2020 start-page: 5689301 year: 2020 ident: CR13 article-title: BE-FNet: 3D bounding box estimation feature pyramid network for accurate and efficient maxillary sinus segmentation publication-title: Math Probl Eng – volume: 57 start-page: 466 year: 2019 end-page: 472 ident: CR30 article-title: Raising the transcrestal sinus floor in the presence of antral pseudocysts, and in sinus floors with a normal Schneiderian membrane: a retrospective cohort study publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2019.04.007 – volume: 23 start-page: 2573 year: 2019 end-page: 2581 ident: CR39 article-title: Novel low-dose protocols using cone beam computed tomography in dental medicine: a review focusing on indications, limitations, and future possibilities publication-title: Clin Oral Investig doi: 10.1007/s00784-019-02907-y – volume: 50 start-page: 20200171 year: 2020 ident: CR8 article-title: Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20200171 – volume: 35 start-page: 301 year: 2019 end-page: 307 ident: CR10 article-title: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography publication-title: Oral Radiol doi: 10.1007/s11282-018-0363-7 – volume: 100 start-page: 448 year: 2021 end-page: 453 ident: CR37 article-title: Disruptive innovation in dentistry: what it is and what could be next publication-title: J Dent Res doi: 10.1177/0022034520978774 – volume: 29 start-page: 679 year: 2018 end-page: 687 ident: CR6 article-title: Long-term Schneiderian membrane thickness changes following zygomatic implant placement: a retrospective radiographic analysis using cone beam computed tomography publication-title: Clin Oral Implants Res doi: 10.1111/clr.13259 – volume: 15 start-page: 29 year: 2015 ident: CR25 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med Imaging BMC Med Imaging doi: 10.1186/s12880-015-0068-x – volume: 29 start-page: 55 year: 2014 end-page: 77 ident: CR5 article-title: Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks publication-title: Int J Oral Maxillofac Implants doi: 10.11607/jomi.2014suppl.g1.4 – volume: 73 start-page: 51 year: 2000 end-page: 72 ident: CR7 article-title: Jacobs R (2017) Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research publication-title: Periodontol doi: 10.1111/prd.12161 – volume: 120 start-page: 508 year: 2015 end-page: 512 ident: CR2 article-title: Use of cone beam computed tomography in endodontics 2015 update publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2015.07.033 – volume: 44 start-page: 1 year: 2014 end-page: 6 ident: CR27 article-title: Common positioning errors in panoramic radiography: a review publication-title: Imaging Sci Dent doi: 10.5624/isd.2014.44.1.1 – volume: 80 start-page: 487 year: 1995 end-page: 491 ident: CR17 article-title: Radiographic maxillary sinus findings in the elderly publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1016/S1079-2104(05)80375-0 – volume: 80 start-page: 24 year: 2017 end-page: 29 ident: CR34 article-title: Classification of teeth in cone-beam CT using deep convolutional neural network publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.11.003 – volume: 48 start-page: 20180051 year: 2019 ident: CR35 article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20180051 – volume: 17 start-page: 4424 year: 2020 ident: CR11 article-title: Current applications, opportunities, and limitations of AI for 3D imaging in dental research and practice publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17124424 – volume: 11 start-page: 688 year: 2021 ident: CR14 article-title: Deep active learning for automatic segmentation of maxillary sinus lesions using a convolutional neural network publication-title: Diagnostics doi: 10.3390/diagnostics11040688 – volume: 128 start-page: 1261 year: 2018 end-page: 1267 ident: CR31 article-title: A paradigm for evaluation and management of the maxillary sinus before dental implantation publication-title: Laryngoscope doi: 10.1002/lary.26856 – volume: 107 start-page: 103610 year: 2021 ident: CR16 article-title: Artificial intelligence in dental research: checklist for authors, reviewers, readers publication-title: J Dent doi: 10.1016/j.jdent.2021.103610 – volume: 42 start-page: 219 year: 2020 end-page: 228 ident: CR18 article-title: Frequency, location, and morphology of accessory maxillary sinus ostia: a retrospective study using cone beam computed tomography (CBCT) publication-title: Surg Radiol Anat doi: 10.1007/s00276-019-02308-6 – volume: 34 start-page: 807 year: 2014 end-page: 815 ident: CR32 article-title: A guide to recognizing maxillary sinus pathology and for deciding on further preoperative assessment prior to maxillary sinus augmentation publication-title: Int J Periodontics Restorative Dent doi: 10.11607/prd.2043 – volume: 32 start-page: 8024 year: 2019 end-page: 8035 ident: CR23 article-title: PyTorch: an imperative style, high-performance deep learning library publication-title: Adv Neural Inf Process Syst – volume: 15 start-page: 1457 year: 2020 end-page: 1465 ident: CR12 article-title: Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02228-6 – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: CR20 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 31 start-page: 463 year: 2020 end-page: 475 ident: CR4 article-title: Sinus floor elevation or referral for further diagnosis and therapy: a comparison of maxillary sinus assessment by ENT specialists and dentists using cone beam computed tomography publication-title: Clin Oral Implants Res doi: 10.1111/clr.13582 – volume: 21 start-page: 86 year: 2021 ident: CR36 article-title: A deep learning approach for dental implant planning in cone-beam computed tomography images publication-title: BMC Med Imaging doi: 10.1186/s12880-021-00618-z – volume: 11 start-page: 688 year: 2021 ident: 4365_CR14 publication-title: Diagnostics doi: 10.3390/diagnostics11040688 – ident: 4365_CR22 doi: 10.1109/3DV.2016.79 – volume: 35 start-page: 301 year: 2019 ident: 4365_CR10 publication-title: Oral Radiol doi: 10.1007/s11282-018-0363-7 – volume: 44 start-page: 1 year: 2014 ident: 4365_CR27 publication-title: Imaging Sci Dent doi: 10.5624/isd.2014.44.1.1 – volume: 80 start-page: 487 year: 1995 ident: 4365_CR17 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod doi: 10.1016/S1079-2104(05)80375-0 – volume: 47 start-page: 876 year: 2019 ident: 4365_CR3 publication-title: J Craniomaxillofac Surg doi: 10.1016/j.jcms.2019.03.006 – volume: 2020 start-page: 5689301 year: 2020 ident: 4365_CR13 publication-title: Math Probl Eng – volume: 51 start-page: 117 year: 2021 ident: 4365_CR33 publication-title: Imaging Sci Dent doi: 10.5624/isd.20200267 – volume: 107 start-page: 103610 year: 2021 ident: 4365_CR16 publication-title: J Dent doi: 10.1016/j.jdent.2021.103610 – volume: 21 start-page: 86 year: 2021 ident: 4365_CR36 publication-title: BMC Med Imaging doi: 10.1186/s12880-021-00618-z – volume: 100 start-page: 448 year: 2021 ident: 4365_CR37 publication-title: J Dent Res doi: 10.1177/0022034520978774 – volume: 17 start-page: 4424 year: 2020 ident: 4365_CR11 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17124424 – volume: 31 start-page: 1116 year: 2006 ident: 4365_CR20 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 128 start-page: 1261 year: 2018 ident: 4365_CR31 publication-title: Laryngoscope doi: 10.1002/lary.26856 – volume: 49 start-page: 20190107 year: 2020 ident: 4365_CR1 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20190107 – volume: 38 start-page: 699 year: 2018 ident: 4365_CR15 publication-title: Int J Periodontics Restorative Dent doi: 10.11607/prd.3435 – volume: 8 start-page: 103742 year: 2020 ident: 4365_CR21 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.103742 – volume: 45 start-page: 20150419 year: 2016 ident: 4365_CR26 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20150419 – volume: 48 start-page: 20180051 year: 2019 ident: 4365_CR35 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20180051 – volume: 37 start-page: 487 year: 2020 ident: 4365_CR9 publication-title: Oral Radiol doi: 10.1007/s11282-020-00485-4 – volume: 80 start-page: 24 year: 2017 ident: 4365_CR34 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.11.003 – volume: 15 start-page: 1457 year: 2020 ident: 4365_CR12 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02228-6 – volume: 27 start-page: 1205 year: 2012 ident: 4365_CR29 publication-title: Int J Oral Maxillofac Implants – volume: 50 start-page: 20200171 year: 2020 ident: 4365_CR8 publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20200171 – volume: 29 start-page: 55 year: 2014 ident: 4365_CR5 publication-title: Int J Oral Maxillofac Implants doi: 10.11607/jomi.2014suppl.g1.4 – volume: 29 start-page: 679 year: 2018 ident: 4365_CR6 publication-title: Clin Oral Implants Res doi: 10.1111/clr.13259 – volume: 286 start-page: 800 year: 2018 ident: 4365_CR24 publication-title: Radiology doi: 10.1148/radiol.2017171920 – volume: 32 start-page: 8024 year: 2019 ident: 4365_CR23 publication-title: Adv Neural Inf Process Syst – volume: 23 start-page: 3977 year: 2019 ident: 4365_CR19 publication-title: Clin Oral Investig doi: 10.1007/s00784-019-02829-9 – volume: 34 start-page: 807 year: 2014 ident: 4365_CR32 publication-title: Int J Periodontics Restorative Dent doi: 10.11607/prd.2043 – volume: 51 start-page: 248 year: 2020 ident: 4365_CR38 publication-title: Quintessence Int – volume: 42 start-page: 219 year: 2020 ident: 4365_CR18 publication-title: Surg Radiol Anat doi: 10.1007/s00276-019-02308-6 – volume: 120 start-page: 508 year: 2015 ident: 4365_CR2 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2015.07.033 – volume: 15 start-page: 29 year: 2015 ident: 4365_CR25 publication-title: BMC Med Imaging BMC Med Imaging doi: 10.1186/s12880-015-0068-x – volume: 172 start-page: 46 year: 2020 ident: 4365_CR28 publication-title: Vision Res doi: 10.1016/j.visres.2020.04.003 – volume: 73 start-page: 51 year: 2000 ident: 4365_CR7 publication-title: Periodontol doi: 10.1111/prd.12161 – volume: 23 start-page: 2573 year: 2019 ident: 4365_CR39 publication-title: Clin Oral Investig doi: 10.1007/s00784-019-02907-y – volume: 31 start-page: 463 year: 2020 ident: 4365_CR4 publication-title: Clin Oral Implants Res doi: 10.1111/clr.13582 – volume: 57 start-page: 466 year: 2019 ident: 4365_CR30 publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2019.04.007 |
| SSID | ssj0014673 |
| Score | 2.464676 |
| Snippet | Objectives
To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and... To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal... ObjectivesTo propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3987 |
| SubjectTerms | Algorithms Artificial Intelligence Computed tomography Cone-Beam Computed Tomography - methods Cysts Dentistry Maxillary sinus Maxillary Sinus - diagnostic imaging Medicine Mucosa Mucous Membrane Neural networks Neural Networks, Computer Original Article Segmentation Sinuses Tomography |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB7qFdQX0forWmUF33Qxye7mx4NI1ZYi9BCx0Lew2d2UgknqXU7Of82_zpnNJkWKfTqOZDfLze7M5Oab7wN4LRKT1FZqrjKrOBF28dLVGTdxo4SSJrZereFkmR2fyi9n6mwHllMvDMEqJ5_oHbXtDf1H_i7NVInRS6jiw-VPTqpRVF2dJDR0kFaw7z3F2C3YTYkZawG7Hw-XX7_NdQV0Cx5yL0XKM5wvtNH4ZjqKlpITZIFo2RXf_huqruWf12qnPiQd3Yd7IZdkB6PxH8CO6_bgzmfC_5CE2x7cPgmV84fw52Az9J6elVk3ePxVx3Rn2dqdt6H_qGN9w9oef_nJI7KxL3hNFzBTZK3ekkrR6jdbX3SbNWsJ764ZjsTXasdrp1tmRp0Iy_B5gQ-bXbSaZiGQ_TnTONXKOW5JWGAkBaHhv8IhwG9Esuk_PET9EZweHX7_dMyDbgM3IlcDl0VZYKLWaGr8NWhvVyZ1bIq8zmNTp7UuTdLIpnCNcFmhdWylKjODyVJO7sOKx7DocNVPgcW5bmSWlnncpNLJssZ9lGHG0WBalylbRpBMJqpMIDUnbY0f1UzH7M1aoVkrb9ZqG8GbeczlSOlx4937k-WrcLzX1dVmjODVfBkPJlVbdOf6Dd1D0JKiEHkET8YdMz9OqFhgqBARvJ220NXk_1_Ls5vX8hzuptSc4eGY-7AYVhv3AlOmoX4ZzsFfEWUVyA priority: 102 providerName: ProQuest |
| Title | Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network |
| URI | https://link.springer.com/article/10.1007/s00784-021-04365-x https://www.ncbi.nlm.nih.gov/pubmed/35032193 https://www.proquest.com/docview/2659819358 https://www.proquest.com/docview/2620088837 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-3771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014673 issn: 1436-3771 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-3771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014673 issn: 1436-3771 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-3771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014673 issn: 1436-3771 databaseCode: U2A dateStart: 19970325 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVgK0FfuJRboFRG4g1cJbGdy-NStlSgVgix0vIUObZTVZBstUlQ4dP4OmYcJwgKSH1JlI1vK4_tE82ZM4Q855GOSiMUk4mRDAW7WG7LhOmwklwKHRqXreH4JDlaircrufJBYe3Idh9dkm6nnoLd8DQTDCkFKJsuGSDHLae3NSNb8zef3i0m7wEsfu4DZP5e8_dD6BKyvOQVdYfN4W2yHIc5cEw-7_ddua-__6HgeNX_cYfc8uiTzgdzuUuu2WaH3HyNjCFM-rZDbhx7X_s98mPed2sn6EqN7Rxjq6GqMbS1p7WPWGrouqL1GuZq3EPpEEnc4gvAlrRWF5jXaPONtmdN39IaGfKKQk34ELestKqmesgsYSj05xW06VmtsBWk5Z9SBU1trGUGUxEMMiJY_atfNvCEspzu5kjt98nycPHx4Ij5TA9M81R2TGR5BtCuUhgqrMFCbB6Voc7SMg11GZcq11ElqsxW3CaZUqERMk80wKsUNxzDH5BZA6N-RGiYqkokcZ6GVSysyEuwvAQwSgVAMJEmD0g0Tn2hvQw6ZuP4UkwCzm6CCpigwk1QcRGQF1Od80EE5L-ld0eLKvyG0BbQdw7gi8ssIM-m17CU0T-jGrvusQySUbKMpwF5OFji1B2XIYfDhQfk5WhVvxr_91geX634E7IdY3iHI3Tuklm36e1TAF1duUeup6sUrtlBtOfXG9xfLU7ef4Bfl_H8J1I_LDQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlEuCMprSwEjwQmsJrGdxwGhqqXa0m5PrdRbcGynqkSy7WYXtn-KH8CvY8Z5VKiit56iyLEz0oxnJvE33wC8F6EJCys1V7FVnAi7eOaKmJugVEJJE1jfrWFyFI9P5LdTdboCv_taGIJV9j7RO2o7NfSPfCuKVYbRS6j0y8Ulp65RdLrat9BozeLAXf3CT7bm8_4u6vdDFO19Pd4Z866rADciUXMu0yzFNKLUVJZqUBqXhUVg0qRIAlNEhc5MWMoydaVwcap1YKXKYoOhPCHjtgLXvQf3pYgScgTpzgApIafjAf04xmOUtivS8aV6FIslJ0AEkb4rvvw3EN7Ibm-czPqAt_cYHnWZKttuTesJrLh6HdZ2CV1EDeLW4cGkO5d_Cn-2F_OpJ39l1s09uqtmurascWdVV91Us2nJqinqtfe3rK06bmgA81BW6SX1QJpdsea8XjSsIjS9ZjgTP9odL5yumGm7UFiG7-vYttl5pWkVgvCfMY1LzZzjltoWtJQjNP1nt8Xwjig8_cUD4J_ByZ3o7zms1ij1S2BBoksZR1kSlJF0MivQSmPMZ0pMGmNlsxGEvYpy01GmU-eOH_lA9uzVmqNac6_WfDmCj8Oci5Yw5NanN3vN553zaPJrUx_Bu2EYtz2d5ejaTRf0DAFX0lQkI3jRWszwOqECgYFIjOBTb0LXi_9flo3bZXkLa-PjyWF-uH908AoeRlQG4oGfm7A6ny3ca0zO5sUbvyMYfL_rLfgX_XdLXQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhUuCMprSwEjwQmsZmM7jwNCFcuqpbTiQKW9Bcd2qkokaTdZ2P61_jpmnGQrVNFbT1GU2BlpxjPj-JtvAN6KsRnnVmquIqs4EXbx1OURN0GhhJImsL5bw-FRtHcsv87UbA0uh1oYglUOPtE7alsb-ke-E0YqxeglVLJT9LCI75Ppp7NzTh2k6KR1aKfRmciBu_iD27fm4_4Edf0uDKdffnze432HAW5ErFoukzTBlKLQVKJqUDKXjvPAJHEeByYPc52acSGLxBXCRYnWgZUqjQyG9ZgM3Qqc9w7cjYVICU4Yz1abPXJAHtwvRcgjlLwv2PFlexSXJSdwBBHAK778Nyhey3SvndL64Dd9CA_6rJXtdmb2CNZctQn3JoQ0omZxm7Bx2J_RP4bL3UVbeyJYZl3rkV4V05VljTsp-0qnitUFK2vU8eB7WVeB3NADzElZqZfUD2l-wZrTatGwkpD1muFI3MA7njtdMtN1pLAMv9czb7PTUtMsBOc_YRqnmjvHLbUw6OhHaPjvfrnhHdF5-osHwz-B41vR31NYr1Dq58CCWBcyCtM4KELpZJqjxUaY2xSYQEbKpiMYDyrKTE-fTl08fmUr4mev1gzVmnm1ZssRvF-NOevIQ258e3vQfNY7kia7MvsRvFk9RhdA5zq6cvWC3iEQS5KIeATPOotZfU6oQGBQEiP4MJjQ1eT_l2XrZllewwYuvuzb_tHBC7gfUkWIx4Buw3o7X7iXmKe1-Su_IBj8vO0V-Bfho0_M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+and+segmentation+of+morphological+changes+of+the+maxillary+sinus+mucosa+on+cone-beam+computed+tomography+images+using+a+three-dimensional+convolutional+neural+network&rft.jtitle=Clinical+oral+investigations&rft.au=Hung%2C+Kuo+Feng&rft.au=Ai%2C+Qi+Yong+H&rft.au=King%2C+Ann+D&rft.au=Bornstein%2C+Michael+M&rft.date=2022-05-01&rft.issn=1436-3771&rft.eissn=1436-3771&rft.volume=26&rft.issue=5&rft.spage=3987&rft_id=info:doi/10.1007%2Fs00784-021-04365-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3771&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3771&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3771&client=summon |