Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network

Objectives To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). Materials and methods A tota...

Full description

Saved in:
Bibliographic Details
Published inClinical oral investigations Vol. 26; no. 5; pp. 3987 - 3998
Main Authors Hung, Kuo Feng, Ai, Qi Yong H., King, Ann D., Bornstein, Michael M., Wong, Lun M., Leung, Yiu Yan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1436-3771
1432-6981
1436-3771
DOI10.1007/s00784-021-04365-x

Cover

Abstract Objectives To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). Materials and methods A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated. Results For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs. Conclusions The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols. Clinical relevance An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.
AbstractList To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).OBJECTIVESTo propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.MATERIALS AND METHODSA total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.RESULTSFor the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.CONCLUSIONSThe proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.CLINICAL RELEVANCEAn implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.
Objectives To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). Materials and methods A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated. Results For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs. Conclusions The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols. Clinical relevance An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.
ObjectivesTo propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT).Materials and methodsA total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated.ResultsFor the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs.ConclusionsThe proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols.Clinical relevanceAn implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.
To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal retention cysts (MRCs) in the maxillary sinus on low-dose and full-dose cone-beam computed tomography (CBCT). A total of 890 maxillary sinuses on 445 CBCT scans were analyzed. The air space, MT, and MRCs in each sinus were manually segmented. Low-dose CBCTs were divided into training, training-monitoring, and testing datasets at a 7:1:2 ratio. Full-dose CBCTs were used as a testing dataset. A three-step CNN algorithm built based on V-Net and support vector regression was trained on low-dose CBCTs and tested on the low-dose and full-dose datasets. Performance for detection of MT and MRCs using area under the curves (AUCs) and for segmentation using Dice similarity coefficient (DSC) was evaluated. For the detection of MT and MRCs, the algorithm achieved AUCs of 0.91 and 0.84 on low-dose scans and of 0.89 and 0.93 on full-dose scans, respectively. The median DSCs for segmenting the air space, MT, and MRCs were 0.972, 0.729, and 0.678 on low-dose scans and 0.968, 0.663, and 0.787 on full-dose scans, respectively. There were no significant differences in the algorithm performance between low-dose and full-dose CBCTs. The proposed CNN algorithm has the potential to accurately detect and segment MT and MRCs in maxillary sinus on CBCT scans with low-dose and full-dose protocols. An implementation of this artificial intelligence application in daily practice as an automated diagnostic and reporting system seems possible.
Author Ai, Qi Yong H.
King, Ann D.
Hung, Kuo Feng
Leung, Yiu Yan
Bornstein, Michael M.
Wong, Lun M.
Author_xml – sequence: 1
  givenname: Kuo Feng
  surname: Hung
  fullname: Hung, Kuo Feng
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong
– sequence: 2
  givenname: Qi Yong H.
  surname: Ai
  fullname: Ai, Qi Yong H.
  organization: Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Department of Health Technology and Informatics, The Hong Kong Polytechnic University
– sequence: 3
  givenname: Ann D.
  surname: King
  fullname: King, Ann D.
  organization: Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong
– sequence: 4
  givenname: Michael M.
  surname: Bornstein
  fullname: Bornstein, Michael M.
  organization: Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel
– sequence: 5
  givenname: Lun M.
  surname: Wong
  fullname: Wong, Lun M.
  email: lun.m.wong@cuhk.edu.hk
  organization: Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong
– sequence: 6
  givenname: Yiu Yan
  orcidid: 0000-0002-6670-6570
  surname: Leung
  fullname: Leung, Yiu Yan
  email: mikeyyleung@hku.hk
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35032193$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQtVARfcAPsECW2LAJOHEezrKqoCBVYgNry3EmuS5xHPyg9_4aX9fJTStQF93YY_s8xjNzTk5mNwMhb3P2MWes-RRwEWXGijxjJa-rbP-CnOUYZbxp8pP_4lNyHsItY3lZN_wVOeUV40Xe8jPy9zJFZ1U0mvYQQUfjZqrmngYYLcxRHS_cQK3zy85NbjRaTVTv1DxCWB_iDqhVezNNyh9oMHMK1CbtgqLI1Jhy1oGyGNklRegp-rnRq2V3oMaqVSUha6QKpTxA1hs0Dmi7-rj5j5tS3E4zJH_c4p3zv16Tl4OaArx52C_Izy-ff1x9zW6-X3-7urzJNG-qmJWiFQUvBsUYb3WpGbR5x7RouobpruhUq_OhHAQMHGqhFOvLqq01q7FwomE9vyAfNt3Fu98JQpTWBA343xlcCrKoC8aEELxB6Psn0FuXPKa-oqpWYMkrgah3D6jUWejl4rEO_iAfu4IAsQG0dyF4GKQ2WyeiV2aSOZPrAMhtACQOgDwOgNwjtXhCfVR_lsQ3UkAw9tX_S_sZ1j3B2Mgz
CitedBy_id crossref_primary_10_3390_diagnostics13010110
crossref_primary_10_36283_ziun_pjmd13_4_023
crossref_primary_10_1016_j_jdent_2023_104582
crossref_primary_10_1016_j_heliyon_2024_e31052
crossref_primary_10_1007_s00784_022_04708_2
crossref_primary_10_18261_ano_49_1_14
crossref_primary_10_5624_isd_20240139
crossref_primary_10_1111_cid_13352
crossref_primary_10_58600_eurjther1817
crossref_primary_10_3390_diagnostics12051029
crossref_primary_10_3390_healthcare10112188
crossref_primary_10_1007_s00405_024_08870_z
crossref_primary_10_1007_s11042_023_16544_x
crossref_primary_10_1186_s12903_024_04924_0
crossref_primary_10_1177_19458924251313845
crossref_primary_10_2196_57335
crossref_primary_10_3390_diagnostics12112819
crossref_primary_10_1038_s41598_023_49159_1
crossref_primary_10_12688_f1000research_140204_1
crossref_primary_10_2174_0118742106295168240507162754
crossref_primary_10_1001_jamaoto_2024_0013
crossref_primary_10_1016_j_identj_2024_11_011
crossref_primary_10_1177_19458924231162437
crossref_primary_10_3390_diagnostics13101684
crossref_primary_10_3390_bdcc8060066
crossref_primary_10_1007_s00784_025_06191_x
crossref_primary_10_1109_JBHI_2024_3505262
crossref_primary_10_1038_s41598_022_11483_3
crossref_primary_10_1259_dmfr_20220335
crossref_primary_10_1007_s00784_022_04477_y
crossref_primary_10_1093_dmfr_twae031
crossref_primary_10_1186_s12903_023_03607_6
Cites_doi 10.1259/dmfr.20190107
10.1007/s11282-020-00485-4
10.1016/j.visres.2020.04.003
10.1007/s00784-019-02829-9
10.1016/j.jcms.2019.03.006
10.5624/isd.20200267
10.11607/prd.3435
10.1259/dmfr.20150419
10.1016/j.jece.2020.103742
10.1148/radiol.2017171920
10.1016/j.bjoms.2019.04.007
10.1007/s00784-019-02907-y
10.1259/dmfr.20200171
10.1007/s11282-018-0363-7
10.1177/0022034520978774
10.1111/clr.13259
10.1186/s12880-015-0068-x
10.11607/jomi.2014suppl.g1.4
10.1111/prd.12161
10.1016/j.oooo.2015.07.033
10.5624/isd.2014.44.1.1
10.1016/S1079-2104(05)80375-0
10.1016/j.compbiomed.2016.11.003
10.1259/dmfr.20180051
10.3390/ijerph17124424
10.3390/diagnostics11040688
10.1002/lary.26856
10.1016/j.jdent.2021.103610
10.1007/s00276-019-02308-6
10.11607/prd.2043
10.1007/s11548-020-02228-6
10.1016/j.neuroimage.2006.01.015
10.1111/clr.13582
10.1186/s12880-021-00618-z
10.1109/3DV.2016.79
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00784-021-04365-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Proquest Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 1436-3771
EndPage 3998
ExternalDocumentID 35032193
10_1007_s00784_021_04365_x
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
34H
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z87
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-4898232fa0039c4c0e91b0c87b70cb2ba9c1f4f8ef3e68aa0d4596c06377870d3
IEDL.DBID AGYKE
ISSN 1436-3771
1432-6981
IngestDate Thu Sep 04 20:17:17 EDT 2025
Fri Oct 03 09:21:59 EDT 2025
Thu Apr 03 07:07:35 EDT 2025
Wed Oct 01 01:48:34 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Fri Feb 21 02:45:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Mucosal thickening
Cone-beam computed tomography
Artificial intelligence
Mucosal retention cyst
Convolutional neural network
Maxillary sinus
Language English
License 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-4898232fa0039c4c0e91b0c87b70cb2ba9c1f4f8ef3e68aa0d4596c06377870d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6670-6570
PMID 35032193
PQID 2659819358
PQPubID 33690
PageCount 12
ParticipantIDs proquest_miscellaneous_2620088837
proquest_journals_2659819358
pubmed_primary_35032193
crossref_citationtrail_10_1007_s00784_021_04365_x
crossref_primary_10_1007_s00784_021_04365_x
springer_journals_10_1007_s00784_021_04365_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Clinical oral investigations
PublicationTitleAbbrev Clin Oral Invest
PublicationTitleAlternate Clin Oral Investig
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Watanabe, Ariji, Fukuda, Kuwada, Kise, Nozawa, Sugita, Ariji (CR9) 2020; 37
Jung, Lim, Lee, Cho, Song (CR14) 2021; 11
Chen, Stanley, Att (CR38) 2020; 51
Bornstein, Yeung, Tanaka, von Arx, Jacobs, Khong (CR15) 2018; 38
Bornstein, Scarfe, Vaughn, Jacobs (CR5) 2014; 29
Gong, Hu, Chen, Zhou, Wu, Man (CR30) 2019; 57
Kuwana, Ariji, Fukuda, Kise, Nozawa, Kuwada, Muramatsu, Katsumata, Fujita, Ariji (CR8) 2020; 50
Zhao, Lian, Fan, Huang, Wang, Wu (CR6) 2018; 29
Yeung, Colsoul, Montalvao, Hung, Jacobs, Bornstein (CR19) 2019; 23
Schwendicke, Singh, Lee, Gaudin, Chaurasia, Wiegand, Uribe, Krois (CR16) 2021; 107
Soikkonen, Ainamo (CR17) 1995; 80
Kurt Bayrakdar, Orhan, Bayrakdar, Bilgir, Ezhov, Gusarev, Shumilov (CR36) 2021; 21
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR20) 2006; 31
Hung, Montalvao, Yeung, Li, Bornstein (CR18) 2020; 42
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (CR23) 2019; 32
Park, Han (CR24) 2018; 286
Hung, Montalvao, Tanaka, Kawai, Bornstein (CR1) 2020; 49
(CR2) 2015; 120
Bornstein, Horner (CR7) 2000; 73
Tuzoff, Tuzova, Bornstein, Krasnov, Kharchenko, Nikolenko, Sveshnikov, Bednenko (CR35) 2019; 48
Joda, Yeung, Hung, Zitzmann, Bornstein (CR37) 2021; 100
Xu, Wang, Zhou, Liu, Jiang, Chen (CR12) 2020; 15
Procacci, Lanaro, Trevisiol, Bertossi, Zotti, Fabio, D'Agostino (CR3) 2019; 47
Zaghloul, Hamza, Iorhemen, Tay (CR21) 2020; 8
Janner, Dubach, Suter, Caversaccio, Buser, Bornstein (CR4) 2020; 31
Ohashi, Ariji, Katsumata, Fujita, Nakayama, Fukuda, Nozawa, Ariji (CR26) 2016; 45
Rondon, Pereira, doNascimento (CR27) 2014; 44
Kara, Kirmali, Ay (CR29) 2012; 27
CR22
Chen, Lee, Chang, Huang, Fu, Huang, Lee (CR31) 2018; 128
Zhuofu, Binbin, Zhiliang (CR13) 2020; 2020
Hung, Hui, Yeung, Wu, Hsung, Bornstein (CR33) 2021; 51
Baker, Lu, Erlikhman, Kellman (CR28) 2020; 172
Taha, Hanbury (CR25) 2015; 15
Friedland, Metson (CR32) 2014; 34
Yeung, Jacobs, Bornstein (CR39) 2019; 23
Murata, Ariji, Ohashi, Kawai, Fukuda, Funakoshi, Kise, Nozawa, Katsumata, Fujita, Ariji (CR10) 2019; 35
Miki, Muramatsu, Hayashi, Zhou, Hara, Katsumata, Fujita (CR34) 2017; 80
Hung, Yeung, Tanaka, Bornstein (CR11) 2020; 17
MM Bornstein (4365_CR7) 2000; 73
J Xu (4365_CR12) 2020; 15
YW Chen (4365_CR38) 2020; 51
Y Ohashi (4365_CR26) 2016; 45
T Gong (4365_CR30) 2019; 57
K Hung (4365_CR1) 2020; 49
AWK Yeung (4365_CR19) 2019; 23
MI Kara (4365_CR29) 2012; 27
K Hung (4365_CR33) 2021; 51
M Murata (4365_CR10) 2019; 35
SH Park (4365_CR24) 2018; 286
K Zhao (4365_CR6) 2018; 29
F Schwendicke (4365_CR16) 2021; 107
PA Yushkevich (4365_CR20) 2006; 31
AAE and AAOMR Joint Position Statement (4365_CR2) 2015; 120
4365_CR22
T Joda (4365_CR37) 2021; 100
MS Zaghloul (4365_CR21) 2020; 8
DV Tuzoff (4365_CR35) 2019; 48
P Procacci (4365_CR3) 2019; 47
K Hung (4365_CR11) 2020; 17
H Watanabe (4365_CR9) 2020; 37
K Soikkonen (4365_CR17) 1995; 80
A Paszke (4365_CR23) 2019; 32
B Friedland (4365_CR32) 2014; 34
R Kuwana (4365_CR8) 2020; 50
AA Taha (4365_CR25) 2015; 15
YW Chen (4365_CR31) 2018; 128
AWK Yeung (4365_CR39) 2019; 23
SK Jung (4365_CR14) 2021; 11
D Zhuofu (4365_CR13) 2020; 2020
RH Rondon (4365_CR27) 2014; 44
Y Miki (4365_CR34) 2017; 80
N Baker (4365_CR28) 2020; 172
MM Bornstein (4365_CR5) 2014; 29
MM Bornstein (4365_CR15) 2018; 38
S Kurt Bayrakdar (4365_CR36) 2021; 21
K Hung (4365_CR18) 2020; 42
SFM Janner (4365_CR4) 2020; 31
References_xml – volume: 49
  start-page: 20190107
  year: 2020
  ident: CR1
  article-title: The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20190107
– volume: 37
  start-page: 487
  year: 2020
  end-page: 493
  ident: CR9
  article-title: Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study
  publication-title: Oral Radiol
  doi: 10.1007/s11282-020-00485-4
– ident: CR22
– volume: 172
  start-page: 46
  year: 2020
  end-page: 61
  ident: CR28
  article-title: Local features and global shape information in object classification by deep convolutional neural networks
  publication-title: Vision Res
  doi: 10.1016/j.visres.2020.04.003
– volume: 23
  start-page: 3977
  year: 2019
  end-page: 3986
  ident: CR19
  article-title: Visibility, location, and morphology of the primary maxillary sinus ostium and presence of accessory ostia: a retrospective analysis using cone beam computed tomography (CBCT)
  publication-title: Clin Oral Investig
  doi: 10.1007/s00784-019-02829-9
– volume: 47
  start-page: 876
  year: 2019
  end-page: 882
  ident: CR3
  article-title: Is post orthognathic maxillary sinusitis related to sino-nasal anatomical alterations?
  publication-title: J Craniomaxillofac Surg
  doi: 10.1016/j.jcms.2019.03.006
– volume: 51
  start-page: 117
  year: 2021
  end-page: 127
  ident: CR33
  article-title: Volumetric analysis of mucous retention cysts in the maxillary sinus: a retrospective study using cone-beam computed tomography
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.20200267
– volume: 38
  start-page: 699
  year: 2018
  end-page: 710
  ident: CR15
  article-title: Evaluation of health or pathology of bilateral maxillary sinuses in patients referred for cone beam computed tomography using a low-dose protocol
  publication-title: Int J Periodontics Restorative Dent
  doi: 10.11607/prd.3435
– volume: 45
  start-page: 20150419
  year: 2016
  ident: CR26
  article-title: Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20150419
– volume: 27
  start-page: 1205
  year: 2012
  end-page: 1210
  ident: CR29
  article-title: Clinical evaluation of lateral and osteotome techniques for sinus floor elevation in the presence of an antral pseudocyst
  publication-title: Int J Oral Maxillofac Implants
– volume: 51
  start-page: 248
  year: 2020
  end-page: 257
  ident: CR38
  article-title: Artificial intelligence in dentistry: current applications and future perspectives
  publication-title: Quintessence Int
– volume: 8
  start-page: 103742
  year: 2020
  ident: CR21
  article-title: Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.103742
– volume: 286
  start-page: 800
  year: 2018
  end-page: 809
  ident: CR24
  article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume: 2020
  start-page: 5689301
  year: 2020
  ident: CR13
  article-title: BE-FNet: 3D bounding box estimation feature pyramid network for accurate and efficient maxillary sinus segmentation
  publication-title: Math Probl Eng
– volume: 57
  start-page: 466
  year: 2019
  end-page: 472
  ident: CR30
  article-title: Raising the transcrestal sinus floor in the presence of antral pseudocysts, and in sinus floors with a normal Schneiderian membrane: a retrospective cohort study
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2019.04.007
– volume: 23
  start-page: 2573
  year: 2019
  end-page: 2581
  ident: CR39
  article-title: Novel low-dose protocols using cone beam computed tomography in dental medicine: a review focusing on indications, limitations, and future possibilities
  publication-title: Clin Oral Investig
  doi: 10.1007/s00784-019-02907-y
– volume: 50
  start-page: 20200171
  year: 2020
  ident: CR8
  article-title: Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20200171
– volume: 35
  start-page: 301
  year: 2019
  end-page: 307
  ident: CR10
  article-title: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography
  publication-title: Oral Radiol
  doi: 10.1007/s11282-018-0363-7
– volume: 100
  start-page: 448
  year: 2021
  end-page: 453
  ident: CR37
  article-title: Disruptive innovation in dentistry: what it is and what could be next
  publication-title: J Dent Res
  doi: 10.1177/0022034520978774
– volume: 29
  start-page: 679
  year: 2018
  end-page: 687
  ident: CR6
  article-title: Long-term Schneiderian membrane thickness changes following zygomatic implant placement: a retrospective radiographic analysis using cone beam computed tomography
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.13259
– volume: 15
  start-page: 29
  year: 2015
  ident: CR25
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med Imaging BMC Med Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 29
  start-page: 55
  year: 2014
  end-page: 77
  ident: CR5
  article-title: Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks
  publication-title: Int J Oral Maxillofac Implants
  doi: 10.11607/jomi.2014suppl.g1.4
– volume: 73
  start-page: 51
  year: 2000
  end-page: 72
  ident: CR7
  article-title: Jacobs R (2017) Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research
  publication-title: Periodontol
  doi: 10.1111/prd.12161
– volume: 120
  start-page: 508
  year: 2015
  end-page: 512
  ident: CR2
  article-title: Use of cone beam computed tomography in endodontics 2015 update
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2015.07.033
– volume: 44
  start-page: 1
  year: 2014
  end-page: 6
  ident: CR27
  article-title: Common positioning errors in panoramic radiography: a review
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2014.44.1.1
– volume: 80
  start-page: 487
  year: 1995
  end-page: 491
  ident: CR17
  article-title: Radiographic maxillary sinus findings in the elderly
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1016/S1079-2104(05)80375-0
– volume: 80
  start-page: 24
  year: 2017
  end-page: 29
  ident: CR34
  article-title: Classification of teeth in cone-beam CT using deep convolutional neural network
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.11.003
– volume: 48
  start-page: 20180051
  year: 2019
  ident: CR35
  article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180051
– volume: 17
  start-page: 4424
  year: 2020
  ident: CR11
  article-title: Current applications, opportunities, and limitations of AI for 3D imaging in dental research and practice
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17124424
– volume: 11
  start-page: 688
  year: 2021
  ident: CR14
  article-title: Deep active learning for automatic segmentation of maxillary sinus lesions using a convolutional neural network
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11040688
– volume: 128
  start-page: 1261
  year: 2018
  end-page: 1267
  ident: CR31
  article-title: A paradigm for evaluation and management of the maxillary sinus before dental implantation
  publication-title: Laryngoscope
  doi: 10.1002/lary.26856
– volume: 107
  start-page: 103610
  year: 2021
  ident: CR16
  article-title: Artificial intelligence in dental research: checklist for authors, reviewers, readers
  publication-title: J Dent
  doi: 10.1016/j.jdent.2021.103610
– volume: 42
  start-page: 219
  year: 2020
  end-page: 228
  ident: CR18
  article-title: Frequency, location, and morphology of accessory maxillary sinus ostia: a retrospective study using cone beam computed tomography (CBCT)
  publication-title: Surg Radiol Anat
  doi: 10.1007/s00276-019-02308-6
– volume: 34
  start-page: 807
  year: 2014
  end-page: 815
  ident: CR32
  article-title: A guide to recognizing maxillary sinus pathology and for deciding on further preoperative assessment prior to maxillary sinus augmentation
  publication-title: Int J Periodontics Restorative Dent
  doi: 10.11607/prd.2043
– volume: 32
  start-page: 8024
  year: 2019
  end-page: 8035
  ident: CR23
  article-title: PyTorch: an imperative style, high-performance deep learning library
  publication-title: Adv Neural Inf Process Syst
– volume: 15
  start-page: 1457
  year: 2020
  end-page: 1465
  ident: CR12
  article-title: Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02228-6
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: CR20
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 31
  start-page: 463
  year: 2020
  end-page: 475
  ident: CR4
  article-title: Sinus floor elevation or referral for further diagnosis and therapy: a comparison of maxillary sinus assessment by ENT specialists and dentists using cone beam computed tomography
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.13582
– volume: 21
  start-page: 86
  year: 2021
  ident: CR36
  article-title: A deep learning approach for dental implant planning in cone-beam computed tomography images
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00618-z
– volume: 11
  start-page: 688
  year: 2021
  ident: 4365_CR14
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11040688
– ident: 4365_CR22
  doi: 10.1109/3DV.2016.79
– volume: 35
  start-page: 301
  year: 2019
  ident: 4365_CR10
  publication-title: Oral Radiol
  doi: 10.1007/s11282-018-0363-7
– volume: 44
  start-page: 1
  year: 2014
  ident: 4365_CR27
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2014.44.1.1
– volume: 80
  start-page: 487
  year: 1995
  ident: 4365_CR17
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol Endod
  doi: 10.1016/S1079-2104(05)80375-0
– volume: 47
  start-page: 876
  year: 2019
  ident: 4365_CR3
  publication-title: J Craniomaxillofac Surg
  doi: 10.1016/j.jcms.2019.03.006
– volume: 2020
  start-page: 5689301
  year: 2020
  ident: 4365_CR13
  publication-title: Math Probl Eng
– volume: 51
  start-page: 117
  year: 2021
  ident: 4365_CR33
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.20200267
– volume: 107
  start-page: 103610
  year: 2021
  ident: 4365_CR16
  publication-title: J Dent
  doi: 10.1016/j.jdent.2021.103610
– volume: 21
  start-page: 86
  year: 2021
  ident: 4365_CR36
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00618-z
– volume: 100
  start-page: 448
  year: 2021
  ident: 4365_CR37
  publication-title: J Dent Res
  doi: 10.1177/0022034520978774
– volume: 17
  start-page: 4424
  year: 2020
  ident: 4365_CR11
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17124424
– volume: 31
  start-page: 1116
  year: 2006
  ident: 4365_CR20
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 128
  start-page: 1261
  year: 2018
  ident: 4365_CR31
  publication-title: Laryngoscope
  doi: 10.1002/lary.26856
– volume: 49
  start-page: 20190107
  year: 2020
  ident: 4365_CR1
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20190107
– volume: 38
  start-page: 699
  year: 2018
  ident: 4365_CR15
  publication-title: Int J Periodontics Restorative Dent
  doi: 10.11607/prd.3435
– volume: 8
  start-page: 103742
  year: 2020
  ident: 4365_CR21
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.103742
– volume: 45
  start-page: 20150419
  year: 2016
  ident: 4365_CR26
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20150419
– volume: 48
  start-page: 20180051
  year: 2019
  ident: 4365_CR35
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180051
– volume: 37
  start-page: 487
  year: 2020
  ident: 4365_CR9
  publication-title: Oral Radiol
  doi: 10.1007/s11282-020-00485-4
– volume: 80
  start-page: 24
  year: 2017
  ident: 4365_CR34
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.11.003
– volume: 15
  start-page: 1457
  year: 2020
  ident: 4365_CR12
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02228-6
– volume: 27
  start-page: 1205
  year: 2012
  ident: 4365_CR29
  publication-title: Int J Oral Maxillofac Implants
– volume: 50
  start-page: 20200171
  year: 2020
  ident: 4365_CR8
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20200171
– volume: 29
  start-page: 55
  year: 2014
  ident: 4365_CR5
  publication-title: Int J Oral Maxillofac Implants
  doi: 10.11607/jomi.2014suppl.g1.4
– volume: 29
  start-page: 679
  year: 2018
  ident: 4365_CR6
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.13259
– volume: 286
  start-page: 800
  year: 2018
  ident: 4365_CR24
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume: 32
  start-page: 8024
  year: 2019
  ident: 4365_CR23
  publication-title: Adv Neural Inf Process Syst
– volume: 23
  start-page: 3977
  year: 2019
  ident: 4365_CR19
  publication-title: Clin Oral Investig
  doi: 10.1007/s00784-019-02829-9
– volume: 34
  start-page: 807
  year: 2014
  ident: 4365_CR32
  publication-title: Int J Periodontics Restorative Dent
  doi: 10.11607/prd.2043
– volume: 51
  start-page: 248
  year: 2020
  ident: 4365_CR38
  publication-title: Quintessence Int
– volume: 42
  start-page: 219
  year: 2020
  ident: 4365_CR18
  publication-title: Surg Radiol Anat
  doi: 10.1007/s00276-019-02308-6
– volume: 120
  start-page: 508
  year: 2015
  ident: 4365_CR2
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2015.07.033
– volume: 15
  start-page: 29
  year: 2015
  ident: 4365_CR25
  publication-title: BMC Med Imaging BMC Med Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 172
  start-page: 46
  year: 2020
  ident: 4365_CR28
  publication-title: Vision Res
  doi: 10.1016/j.visres.2020.04.003
– volume: 73
  start-page: 51
  year: 2000
  ident: 4365_CR7
  publication-title: Periodontol
  doi: 10.1111/prd.12161
– volume: 23
  start-page: 2573
  year: 2019
  ident: 4365_CR39
  publication-title: Clin Oral Investig
  doi: 10.1007/s00784-019-02907-y
– volume: 31
  start-page: 463
  year: 2020
  ident: 4365_CR4
  publication-title: Clin Oral Implants Res
  doi: 10.1111/clr.13582
– volume: 57
  start-page: 466
  year: 2019
  ident: 4365_CR30
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2019.04.007
SSID ssj0014673
Score 2.464676
Snippet Objectives To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and...
To propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and mucosal...
ObjectivesTo propose and evaluate a convolutional neural network (CNN) algorithm for automatic detection and segmentation of mucosal thickening (MT) and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3987
SubjectTerms Algorithms
Artificial Intelligence
Computed tomography
Cone-Beam Computed Tomography - methods
Cysts
Dentistry
Maxillary sinus
Maxillary Sinus - diagnostic imaging
Medicine
Mucosa
Mucous Membrane
Neural networks
Neural Networks, Computer
Original Article
Segmentation
Sinuses
Tomography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB7qFdQX0forWmUF33Qxye7mx4NI1ZYi9BCx0Lew2d2UgknqXU7Of82_zpnNJkWKfTqOZDfLze7M5Oab7wN4LRKT1FZqrjKrOBF28dLVGTdxo4SSJrZereFkmR2fyi9n6mwHllMvDMEqJ5_oHbXtDf1H_i7NVInRS6jiw-VPTqpRVF2dJDR0kFaw7z3F2C3YTYkZawG7Hw-XX7_NdQV0Cx5yL0XKM5wvtNH4ZjqKlpITZIFo2RXf_huqruWf12qnPiQd3Yd7IZdkB6PxH8CO6_bgzmfC_5CE2x7cPgmV84fw52Az9J6elVk3ePxVx3Rn2dqdt6H_qGN9w9oef_nJI7KxL3hNFzBTZK3ekkrR6jdbX3SbNWsJ764ZjsTXasdrp1tmRp0Iy_B5gQ-bXbSaZiGQ_TnTONXKOW5JWGAkBaHhv8IhwG9Esuk_PET9EZweHX7_dMyDbgM3IlcDl0VZYKLWaGr8NWhvVyZ1bIq8zmNTp7UuTdLIpnCNcFmhdWylKjODyVJO7sOKx7DocNVPgcW5bmSWlnncpNLJssZ9lGHG0WBalylbRpBMJqpMIDUnbY0f1UzH7M1aoVkrb9ZqG8GbeczlSOlx4937k-WrcLzX1dVmjODVfBkPJlVbdOf6Dd1D0JKiEHkET8YdMz9OqFhgqBARvJ220NXk_1_Ls5vX8hzuptSc4eGY-7AYVhv3AlOmoX4ZzsFfEWUVyA
  priority: 102
  providerName: ProQuest
Title Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network
URI https://link.springer.com/article/10.1007/s00784-021-04365-x
https://www.ncbi.nlm.nih.gov/pubmed/35032193
https://www.proquest.com/docview/2659819358
https://www.proquest.com/docview/2620088837
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-3771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014673
  issn: 1436-3771
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-3771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014673
  issn: 1436-3771
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-3771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014673
  issn: 1436-3771
  databaseCode: U2A
  dateStart: 19970325
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVgK0FfuJRboFRG4g1cJbGdy-NStlSgVgix0vIUObZTVZBstUlQ4dP4OmYcJwgKSH1JlI1vK4_tE82ZM4Q855GOSiMUk4mRDAW7WG7LhOmwklwKHRqXreH4JDlaircrufJBYe3Idh9dkm6nnoLd8DQTDCkFKJsuGSDHLae3NSNb8zef3i0m7wEsfu4DZP5e8_dD6BKyvOQVdYfN4W2yHIc5cEw-7_ddua-__6HgeNX_cYfc8uiTzgdzuUuu2WaH3HyNjCFM-rZDbhx7X_s98mPed2sn6EqN7Rxjq6GqMbS1p7WPWGrouqL1GuZq3EPpEEnc4gvAlrRWF5jXaPONtmdN39IaGfKKQk34ELestKqmesgsYSj05xW06VmtsBWk5Z9SBU1trGUGUxEMMiJY_atfNvCEspzu5kjt98nycPHx4Ij5TA9M81R2TGR5BtCuUhgqrMFCbB6Voc7SMg11GZcq11ElqsxW3CaZUqERMk80wKsUNxzDH5BZA6N-RGiYqkokcZ6GVSysyEuwvAQwSgVAMJEmD0g0Tn2hvQw6ZuP4UkwCzm6CCpigwk1QcRGQF1Od80EE5L-ld0eLKvyG0BbQdw7gi8ssIM-m17CU0T-jGrvusQySUbKMpwF5OFji1B2XIYfDhQfk5WhVvxr_91geX634E7IdY3iHI3Tuklm36e1TAF1duUeup6sUrtlBtOfXG9xfLU7ef4Bfl_H8J1I_LDQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlEuCMprSwEjwQmsJrGdxwGhqqXa0m5PrdRbcGynqkSy7WYXtn-KH8CvY8Z5VKiit56iyLEz0oxnJvE33wC8F6EJCys1V7FVnAi7eOaKmJugVEJJE1jfrWFyFI9P5LdTdboCv_taGIJV9j7RO2o7NfSPfCuKVYbRS6j0y8Ulp65RdLrat9BozeLAXf3CT7bm8_4u6vdDFO19Pd4Z866rADciUXMu0yzFNKLUVJZqUBqXhUVg0qRIAlNEhc5MWMoydaVwcap1YKXKYoOhPCHjtgLXvQf3pYgScgTpzgApIafjAf04xmOUtivS8aV6FIslJ0AEkb4rvvw3EN7Ibm-czPqAt_cYHnWZKttuTesJrLh6HdZ2CV1EDeLW4cGkO5d_Cn-2F_OpJ39l1s09uqtmurascWdVV91Us2nJqinqtfe3rK06bmgA81BW6SX1QJpdsea8XjSsIjS9ZjgTP9odL5yumGm7UFiG7-vYttl5pWkVgvCfMY1LzZzjltoWtJQjNP1nt8Xwjig8_cUD4J_ByZ3o7zms1ij1S2BBoksZR1kSlJF0MivQSmPMZ0pMGmNlsxGEvYpy01GmU-eOH_lA9uzVmqNac6_WfDmCj8Oci5Yw5NanN3vN553zaPJrUx_Bu2EYtz2d5ejaTRf0DAFX0lQkI3jRWszwOqECgYFIjOBTb0LXi_9flo3bZXkLa-PjyWF-uH908AoeRlQG4oGfm7A6ny3ca0zO5sUbvyMYfL_rLfgX_XdLXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhUuCMprSwEjwQmsZmM7jwNCFcuqpbTiQKW9Bcd2qkokaTdZ2P61_jpmnGQrVNFbT1GU2BlpxjPj-JtvAN6KsRnnVmquIqs4EXbx1OURN0GhhJImsL5bw-FRtHcsv87UbA0uh1oYglUOPtE7alsb-ke-E0YqxeglVLJT9LCI75Ppp7NzTh2k6KR1aKfRmciBu_iD27fm4_4Edf0uDKdffnze432HAW5ErFoukzTBlKLQVKJqUDKXjvPAJHEeByYPc52acSGLxBXCRYnWgZUqjQyG9ZgM3Qqc9w7cjYVICU4Yz1abPXJAHtwvRcgjlLwv2PFlexSXJSdwBBHAK778Nyhey3SvndL64Dd9CA_6rJXtdmb2CNZctQn3JoQ0omZxm7Bx2J_RP4bL3UVbeyJYZl3rkV4V05VljTsp-0qnitUFK2vU8eB7WVeB3NADzElZqZfUD2l-wZrTatGwkpD1muFI3MA7njtdMtN1pLAMv9czb7PTUtMsBOc_YRqnmjvHLbUw6OhHaPjvfrnhHdF5-osHwz-B41vR31NYr1Dq58CCWBcyCtM4KELpZJqjxUaY2xSYQEbKpiMYDyrKTE-fTl08fmUr4mev1gzVmnm1ZssRvF-NOevIQ258e3vQfNY7kia7MvsRvFk9RhdA5zq6cvWC3iEQS5KIeATPOotZfU6oQGBQEiP4MJjQ1eT_l2XrZllewwYuvuzb_tHBC7gfUkWIx4Buw3o7X7iXmKe1-Su_IBj8vO0V-Bfho0_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+and+segmentation+of+morphological+changes+of+the+maxillary+sinus+mucosa+on+cone-beam+computed+tomography+images+using+a+three-dimensional+convolutional+neural+network&rft.jtitle=Clinical+oral+investigations&rft.au=Hung%2C+Kuo+Feng&rft.au=Ai%2C+Qi+Yong+H&rft.au=King%2C+Ann+D&rft.au=Bornstein%2C+Michael+M&rft.date=2022-05-01&rft.issn=1436-3771&rft.eissn=1436-3771&rft.volume=26&rft.issue=5&rft.spage=3987&rft_id=info:doi/10.1007%2Fs00784-021-04365-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3771&client=summon